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Summary

Di�erential expression analysis is a popular approach for identifying genomic

biomarkers that distinguish various phenotype conditions. Using the identified

biomarkers, biological mechanisms responsible for the phenotype di�erences are

inferred. While methods for such analysis have evolved significantly in the last two

decades, they are unable to account for undeclared heterogeneity in the groups

under comparison. On the other hand, heterogeneity, of either biological or non-

biological origins, is observed to be invariably present in gene expression datasets.

Delineating the basis of gene expression heterogeneity in relation to biological

pathways is a di�cult problem. Our work is aimed at addressing this challenge in

three ways:

First, we propose a normalization technique based on rank-fuzzification – Gene

Fuzzy Scores (GFS), which retains meaningful variation in gene expression and

attenuates obscuring noise. This is important for two reasons: (a) the quality

of preprocessing heavily impacts the reliability of downstream gene expression

analysis; and (b) popular normalization methods are reported to seldom enhance

the quality of expression data. Comparison of GFS with other popular techniques –

mean-scaling, quantile normalization, z-score normalization – showed that output

from our normalization approach is more consistent and biologically coherent.

Second, we present SPSNet – a method for di�erential expression analysis of sam-

ples with potential heterogeneity. SPSNet reports a list of significant subnetworks

(smaller components of biological pathways) whose expression reveals undeclared

sub-populations within the given sample phenotypes. Current approaches to study
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heterogeneity perform comparisons of individual genes across phenotypes, and

thus shroud a holistic view of the underlying biological mechanisms. In contrast,

our approach reveals factors relevant to biological heterogeneity (e.g. disease

subtypes, developmental stages) or non-biological heterogeneity (e.g. platform

di�erences, batch e�ects) in the form of gene subnetworks, amplifies their e�ects

in the data, and facilitates discrimination of subpopulations within phenotypes.

Using publicly available gene expression datasets containing disease heterogeneity

and batch e�ects, we show that SPSNet has low false-positive rate, high sensitivity,

and high biological coherence in analyzing heterogeneous gene expression data.

Finally, with the help of an illustrative case-study, we demonstrate the potential

of our methods for normalization and heterogeneity analysis – GFS and SPSNet

– to analyze RNA-Seq datasets. We observe that data generated on RNA-Seq

platforms, unlike microarray data, is subject to sampling stochasticity when se-

quencing depth is insu�cient. This fact plays a critical role in the performance

of methods which analyze RNA-Seq data. We present a Bernoulli trial-based

model to explain sampling stochasticity, and propose the use of discretized-GFS

(D-GFS) to attenuate the stochasticity e�ect. In our analyses, we also note that

silhouette score fails to accurately represent the degree of clustering in data which

is characterized by high dispersion. In response, we suggest a simple and e�ective

alternative for clustering assessment, based on a metric we define as kNN score

– the proportion of samples whose label matches the majority of its k nearest

neighbors.
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Chapter 1
Introduction

"A hundred instances of Hodgkin’s disease, even though pathologically classified as the same

entity, were a hundred variants around a common theme. Cancers possessed temperaments,

personalities – behaviors. And biological heterogeneity demanded therapeutic heterogeneity;

the same treatment could not indiscriminately be applied to all..."

– Dr. Siddhartha Mukherjee, "The Emperor of All Maladies: A Biography of Cancer"

Heterogeneity is a well-recognized phenomenon in many complex diseases – cancers [FPS13],

diabetes [TSC+14], asthma [MB14], cystic fibrosis [DZD12], and schizophrenia [LCF+13]

are some common examples. Understanding heterogeneity in such diseases requires a sys-

tematic analysis of their multiple subtypes which arise from the exploitation and breaking

of diverse biological mechanisms, while maintaining similar overall characteristics. For this

reason, diagnostic criteria, which are based on a combination of clinical and morphological

features, are unable to fully capture the multi-faceted diversity amongst patients. A molecular

understanding of heterogeneity is essential so that patients may be appropriately classified into

more homogeneous subgroups, entailing more predictable and e�ective response to available

treatment options.

Gene expression studies are increasingly recording the presence of heterogeneity in several

contexts – heterogeneity is critical in the study of disease subtypes, developmental stages,

time-series gene expression, nested experimental conditions, as well as technical variation due
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to batch e�ects, platform di�erences in integrated meta-analyses, etc. We define heterogeneity

in a given phenotype as any variation in the transcriptional pattern that gives rise to smaller

subpopulations within the phenotype. Thus, the term is used in the sense of its literal English

meaning (according to the Oxford dictionary, heterogeneity is “the quality or state of being

diverse in character or content”). This way of defining heterogeneity is particularly significant

in our work because our aim is to gain a modular understanding of undeclared heterogeneity in

gene expression data. This means that we do not know in advance the source(s) of variation

present in the given gene expression datasets. The methods proposed in this thesis help to

delineate the basis of heterogeneity, irrespective of its source, in relation to biological pathways.

While methods for di�erential gene expression analysis have evolved considerably in the

past two decades, accounting for the presence of undeclared heterogeneity remains a problem.

Since a homogeneous sample is characterized by a set of common biological mechanisms,

it is generally described with a set of features (e.g. expression of selected genes, aggregate

expression of selected pathways, or aggregate expression of smaller components of pathways

called subnetworks) following unimodal distributions. Comparing a well-defined set of such

features across samples is relatively easier. In contrast, heterogeneous samples contain patients

with a variety of biological mechanisms, which result in features with more complex statistical

distributions. Thus, they are more di�cult to compare.

Analyzing heterogeneous gene expression data and gaining a modular understanding of hetero-

geneity is a di�cult task. Towards addressing this challenge, our work makes three contributions.

First, we examine the role and e�ectiveness of normalization techniques in preprocessing het-

erogeneous data. Second, we propose a method to obtain sub-population-specific signatures

in heterogeneous microarray expression data based on the activity of subnetworks in biological

pathways. Finally, we present two case-studies demonstrating the application of our nor-

malization and di�erential expression methods on RNA-Seq data, and discuss the specific

considerations involved in doing so.
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1.1 Motivation

1.1.1 Preprocessing

Preprocessing data with a suitable normalization method is essential to making expression

values from multiple samples comparable, especially when they are heterogeneous, are from

separate platforms, or in independent batches. Yet, it was reported [LSS+10] that popular

normalization techniques are not very successful in discriminating between real and obscuring

variation to produce quality input for downstream gene expression analysis. In fact, it was

noted by Luo et. al [LSS+10] that preprocessing using standard normalization methods led to

reduction in the quality of subsequent predictive models in up to 25% of the cases. On the

other hand, certain di�erential analysis techniques (such as PFSNet [LW13]) which use a rank

fuzzification transform on gene expression data as their preprocessing step, are known to be

more reproducible across multiple data batches. This motivates us to examine the role and

e�ectiveness of preprocessing in analyzing heterogeneous gene expression data.

1.1.2 Di�erential expression analysis

Heterogeneity, regardless of its origin, is often undeclared, as incomplete knowledge prevents

the accurate identification of sub-populations in a phenotype. A systematic understanding of

variation at the cellular and molecular level is key to deciphering such diversity. Many studies

attempt to achieve this using unsupervised techniques to learn gene expression-based subtype-

specific molecular signatures. Typically, gene expression data is subjected to hierarchical

clustering or orthogonal transformation, and sub-populations in the sample are inferred using

observations regarding variation patterns. However, such analysis is carried out at the individual-

gene level, and leaves considerable room for subjective, and possibly incorrect, interpretation

of the underlying biological mechanisms. It also prevents a systemic view of these mechanisms,

and leads to a high false-positive rate, and low reproducibility [ZZZ+09]. The famous work
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by Venet et al. [VDD11] even shows that such gene-based signatures are rarely better than

random, at least in the context of breast cancer. In contrast, PFSNet [LW13] and other

techniques (e.g. [LLCW15]) that report signatures based on subnetworks within pathways

are shown to be highly reproducible and exhibit very low false-positive rate. However, these

techniques are only designed to compare homogeneous phenotypes. This prompts us to take a

network-based approach to understanding heterogeneity in gene expression.

1.1.3 Analysis of RNA-Seq expression data

Gene expression data obtained on microarray and next-generation sequencing platforms di�er in

a few important ways – range of precise measurements, e�ect of sampling stochasticity, ability

to measure low expression transcripts, to name a few. Therefore, methods of analysis originally

designed for and tested on microarray datasets, often need modifications for application

on RNA-Seq data. Therefore, we examine the characteristics of RNA-Seq data specifically

important for normalization and di�erential expression analysis, and evaluate the potential of

GFS and SPSNet using a case-study on a HCC RNA-Seq dataset.

1.2 Focus and contributions of the thesis

This dissertation makes three important contributions towards understanding and analyzing

heterogeneity.

1. We propose Gene Fuzzy Score (GFS), a simple rank-based preprocessing technique, that

is able to largely reduce obscuring variation while retaining useful biological information.

Using four sets of publicly available microarray datasets containing batch e�ects and

heterogeneity, we compared GFS with three standard normalization techniques as well as

raw gene expression. Each method was evaluated with respect to the quality, consistency,

and biological coherence of its processed output. It was found that GFS outperforms
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other transformation techniques in all three aspects.

A paper resulting from this work was published in BMC Bioinformatics:

Abha Belorkar, and Limsoon Wong. "GFS: fuzzy preprocessing for e�ective

gene expression analysis." BMC Bioinformatics 17.17 (2016): 540.

2. We present a method – viz. Sub-Population-Specific Network-based analysis (SPSNet) –

to analyze heterogeneity in gene expression data, and obtain subtype-specific signatures

based on activity of subnetworks in biological pathways rather than individual genes.

When heterogeneity is biological in nature, our approach identifies sub-populations within

a sample and the underlying diverse biological mechanisms. In the presence of extrinsic

or non-biological heterogeneity such as batch e�ects, it amplifies these e�ects, and

helps to identify and eliminate factors irrelevant to the biology of the phenotypes being

studied. Using publicly available microarray datasets containing disease heterogeneity

and batch e�ects, we provide evidence for low false-positive rate, high sensitivity, and

high biological coherence of our method in analyzing heterogeneous gene expression

data.

A paper resulting from this work was published in BMC Systems Biology: Abha Be-

lorkar, Rajanikanth Vadigepalli, and Limsoon Wong. "SPSNet: subpopulation-

sensitive network-based analysis of heterogeneous gene expression data." BMC

Systems Biology 12.2 (2018): 28.

3. We perform a case-study of an RNA-Seq dataset, and observe that RNA-Seq data is

imprecise when sequencing depth is insu�cient. This is because, in RNA-Seq, transcripts

compete with each other to be assigned the limited number of total reads, which may

result in sampling a random subset of the original transcriptome. We propose a Bernoulli

trial-based model to describe this stochasticity. Further, to attenuate the e�ects of this

stochasticity on RNA-Seq data, we incorporate discretization into our normalization

approach (GFS). We also show that SPSNet can be used to analyze heterogeneity on
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RNA-Seq data. Moreover, we identify a context in which silhouette score fails to quantify

the extent of clustering – when intra-cluster distance is very high due to large dispersion

in data. We then define a metric called the kNN score, and propose a method to use

this score for performing a quantitative assessment of clustering based on the nearest

neighbors of a sample. We illustrate that the technique provides an intuitive and useful

way to quantify the extent of clustering.

1.3 Thesis organization

This thesis is organized in 6 chapters. Chapter 2 gives the background on popular methods for

di�erential expression analysis, and specifically illustrates that PFSNet is a method that – in

comparison to other common methods – is particularly e�ective and consistent across multiple

datasets. Chapter 3 discusses insights from our examination of the role of normalization

techniques in preprocessing heterogeneous data, and how a rank fuzzification transform such as

that used in PFSNet can be used as a tool to improve their e�ectiveness. Chapter 4 describes

our proposed approach SPSNet, a generalization of PFSNet, to analyze heterogeneity and

obtain subtype-specific signatures based on activity of subnetworks in biological pathways.

Chapter 5 highlights the e�ect of sampling stochasticity on the precision of RNA-Seq data,

and presents an illustrative case-study to demonstrate the potential of our normalization and

di�erential expression analysis approach on RNA-Seq. Chapter 6 summarizes our work and

presents directions for future work.
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Chapter 2
Related Work

"There’s two possible outcomes: if the result confirms the hypothesis, then you’ve made a

discovery. If the result is contrary to the hypothesis, then you’ve made a discovery."

– Enrico Fermi

2.1 Introduction

Methods analyzing data generated by microarray technology and next-generation sequencing

have substantially accelerated the rate of hypothesis generation in genomics. By observing

patterns in gene-expression data obtained from these high-throughput technologies, it is

possible to propose several interesting conjectures aimed at understanding the functioning

and co-ordination of genes in biological mechanisms. Genes which are di�erentially expressed

in two (or more) phenotypes of interest are likely to be instrumental in explaining biological

phenomena that cause, or arise from the di�erences in phenotypes under consideration (normal

and disease patients, patients before and after receiving a particular course of treatment, etc.)

This forms the premise for di�erential expression analysis, and helps to discover causal genes

and pathways, identify appropriate targets for drug treatments, etc.

Such analysis is impeded by various challenges, including biological noise, technological

noise, and batch e�ects, all of which complicate the process of recognizing true signals in
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gene-expression data. For example, Raser & O’Shea [RO05] discuss various sources of bio-

logical noise in gene-expression data, including the inherently stochastic nature of pertinent

biochemical reactions. Moreover, technological noise continues to be an inevitable component

of gene-expression data as even RNA-seq was shown to su�er from obscuring measurement

variability similar to what was earlier observed in microarrays [HIZ12]. In another study

[LSB+10], an analysis of second-generation sequencing data generated by the 1000 Genomes

Project revealed that 32% of the features (features = experimental measurements such as

expression levels of genes) were associated with the date of sequencing while merely 17% were

associated with biological outcomes, demonstrating the extent to which batch e�ects influence

measurement variability in genomic technologies. However, some issues in performance of

gene-expression analysis techniques do not stem from the challenges mentioned above. Many

concerns have been raised [GB07, KSB12, ACPS06] regarding the fundamental methodologies

adopted and assumptions made in statistical procedures that are used in some of the most

popular techniques.

2.2 Analysis at the individual-gene level

The earliest di�erential expression analysis methods relied on testing individual genes for

significance. A common way to do this has been to use the fold-change observed in the average

expression of each gene. Genes whose fold-change values lie on the tails of the distribution

so obtained, are considered to be significant. Alternatively, a t-test is done to compare the

means of expression value distributions corresponding to the two phenotypes of interest, and

thereby identify genes that are significantly di�erentially expressed. A similar strategy is to

use the Wilcoxon signed-rank test which compares population mean ranks instead of means

themselves. Attempts to improve the performance of these simplistic methods were made in

SAM [TTC01] and Rank Products [BAAH04], where, instead of evaluating individual genes,

the ordering information of statistics over the entire set of genes was used.
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There are multiple drawbacks associated with the above set of approaches. Most notably, it

gives rise to the issue of multiple hypothesis testing, since thousands of genes are used to

compare two phenotypes. When two classes (phenotypes) are compared based on multiple

features (genes), it is likely that more and more features will distinguish the classes by chance

alone, as the number of features increases. For example, if 20,000 genes are being tested with

a significance threshold of 0.05 each, the expected number of genes identified as significant

merely by chance would be a thousand. This leads to a high false-positive rate, and may

only be corrected by either obtaining a remarkably large sample, or requiring a much higher

threshold of significance. It was noted by Zhang et al [ZZZ+09], that the overlap between

lists of di�erentially expressed genes from two studies (of the same disease) is often low, even

in the presence of negligible technical noise. It was even found in some cases [VDD11], that

the outcome of such methods may be no better than a list of random genes. Moreover, even

if a reliable list of significant genes is obtained in this manner, explanatory biological themes

are hardly apparent from such an end result. So, in the last one and a half decade, the focus

of e�orts in di�erential expression analysis has shifted from finding individual significant genes

to identifying sets of related causal genes [Won11], where the information regarding groups

of related genes (and their interactions) are generally obtained from Gene Ontology (GO) or

pathway databases.

2.3 Incorporating biological pathway information

Testing gene sets for significance as opposed to individual genes would mitigate the issue of

multiple hypothesis testing, provided the gene sets under consideration are relatively few in

number. Indeed, if we were to examine all possible gene set formations, we would hugely

exacerbate the multiple hypothesis testing issue. An ideal way to limit such candidate gene

sets is to incorporate additional information, available in the form of biological pathways (or

ontologies), so that biologically unreasonable gene sets are excluded. This idea has given rise

to the next generation of di�erential expression analysis methods, which may be conceptually
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classified under the following categories.

2.3.1 Over-representation analysis

In over-representation analysis (ORA), a list of di�erentially expressed genes (DEGs) is first

obtained with a pre-determined significance threshold. Each pathway (or GO group) is then

tested for over-representation or under-representation in this pre-computed list, using a test

based on the hypergeometric, chi-squared, or binomial distribution [KD05]. However, this class

of methods su�ers from several shortcomings that arise from the procedure used to pre-compute

DEGs, as well as from the statistical tests used thereafter to test for over/under-representation.

Firstly, the list of DEGs is highly sensitive to the pre-specified significance threshold. Yet, the

choice of this threshold is almost arbitrary, implying that genes with marginally less significance

than the threshold could be missed easily. Secondly, the list of DEGs may be influenced

by the sample due to sampling bias [WSG16]. Thirdly, genes relevant to the di�erences in

phenotypes may not always be di�erentially expressed themselves but may cause other genes

to significantly change their expression [LW13]. By focusing only on di�erentially expressed

genes, ORA misses genes that may be biologically important. Fourthly, the null hypothesis

of the hypergeometric test assumes that genes in a pathway are no di�erent from a random

set of genes. This is obviously false since genes in a pathway are known to be correlated,

resulting in very frequent rejection of the null hypothesis, and consequently generating many

false-positives. It was also pointed out in [GB07], that the sampling procedure in ORA is

statistically invalid, leading to misleading interpretations of resultant p-values. Lastly, only a

small portion of a pathway may be relevant to the di�erences in phenotypes. By testing entire

pathways for over/under-representation, ORA risks missing important pathways where signals

from a small part of a relevant pathway are diluted by noise from the large remainder of the

pathway.
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2.3.2 Direct group analysis

Direct group analysis methods assign a significance score to each gene in a pathway, based

on the extent to which they are di�erentially expressed in the two phenotypes of interest and

then aggregate it to obtain a pathway-level score (such as the Kolmogorov-Smirnov statistic

in case of GSEA [STM+05], or mean of log-p values in FCS [GVDGDKVH04]). This score is

then subjected to a statistical test. In FCS, the statistical test involves estimating significance

of the pathway by comparing its score to that of repeatedly sampled sets of random genes of

the same size. This test, like ORA, generates many false-positives, because the null hypothesis

assumes independence of genes within a pathway. GSEA performs a permutation test which

involves class-label swapping (each tissue in the sample is randomly assigned a phenotype class

irrespective of its original membership) to generate its null distribution. Thus, the issue in

FCS is corrected here by using the correct null hypothesis, namely, that the di�erence of the

pathway-level statistic between the two phenotypes is irrelevant to the biological di�erences

between the phenotypes. However, for small sample sizes, GSEA cannot generate such a null

distribution, as the number of possible permutations is insu�cient. Hence, in case of small

sample sizes, it resorts to gene-label swapping, which again incorrectly assumes gene-gene

independence in pathways. Direct group methods overcome an important problem in ORA –

the need to specify a significance threshold at the level of individual genes is eliminated, as

each gene is assigned a significance score based on its expression values in the two classes

and is ultimately incorporated into the analysis. On the other hand, by considering entire

pathways, they leave the noise from irrelevant parts of the pathways unaccounted for. Also,

like ORA, this group of methods may miss biologically important genes that are not themselves

di�erentially expressed.
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2.3.3 Network-based analysis

Network-based analysis focuses on obtaining relevant subnetworks within pathways, which

may be consequently subjected to significance testing so that true signals from a�ected

parts of a pathway may be successfully discriminated from the noise in the remainder of

a pathway. NEA [ALP+12] attempts to handle this issue by forming subgraphs based on

immediate neighborhoods of each gene. Subsequent analysis is done by testing the subgraphs

so formed, using a permutation test such as that used in GSEA. Although this enhances the

power to recognize a�ected parts of a pathway, it provides little insight into the underlying

biological mechanism as the subnetwork formation procedure is somewhat coarse, and provides

no assistance in explaining the role of potential upstream influences. This is addressed by SNet

[SDGW11], which relies on the gene-expression matrix itself to obtain relevant subnetworks,

instead of adopting a generic pre-defined scheme for the task. SNet considers the top –%

highly expressed genes that occur in at least —% of tissues in each phenotype sample (where

the default values for – and — are set to 10 and 50 percent respectively). Genes obtained in

this manner are used to fragment the pathway, and the remaining genes are removed from the

following analysis. As SNet depends on gene ranks (which are relatively more stable) instead of

absolute expression values, it results in higher consistency compared to most previous methods.

However, this leads to the issue of determining appropriate values for the – and — parameters

– an overtly relaxed – would lead to many false-positives, whereas a highly conservative value

would incur the risk of missing important genes. PFSNet [LW13] improves on this deficiency

by disposing the strict cut-o�s in favor of a fuzzification process that assigns a score between

0 and 1 to genes that do not fall within the region defined by fixed thresholds. Further, it

computes a paired t-statistic obtained by allowing genes in each subnetwork to vote for both

phenotypes, which leads to more consistent results. A di�erent method in this category is

DEAP [HHS+13], which identifies the maximally di�erentially expressed path within each

pathway and then performs an array rotation test to estimate its significance. In the rotation

test, a null distribution is obtained by generating random expression profiles which preserve
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the gene-gene correlations in the expression values. Since the number of such rotations is

unlimited, reliable significance estimates can be obtained by this method even when the sample

size is very small. In general, network-based methods perform much better in practice than

ORA and direct group methods.

2.3.4 Model-based analysis

Model-based methods typically adopt a general framework that consists of three important

steps. First, groups of closely related genes are formed by various methods. GGEA [GCK+11]

does this by superimposing immediate neighborhoods of genes on a global gene regulatory

network to obtain smaller fragments. SRI [ZLSA11] forms subnetworks by extracting groups

of genes most correlated with each other, where the correlation threshold is defined by a rank

parameter ◊ whose best value is estimated using Bayesian Information Criterion. Second, the

gene-expression behavior of every subnetwork in one phenotype is modelled using a chosen

machine learning or modeling technique (e.g. fuzzy petri nets in GGEA, and linear regression

in SRI). Third, the resultant models are used to predict gene-expression values in another

phenotype, and a comparison between observed and predicted values is performed. Inconsistency

is interpretated to be indicative of perturbations responsible for biological di�erences within

the two phenotypes. If reasonable models for subnetworks are known, model-based methods

could be ideal for explaining biological mechanisms relevant to a disease, since they possess

the capability to specifically learn the working of individual subnetworks in control sample

and identify abnormalities in test sample based on this acquired understanding. This also

implies that the genes being detected as significant need not necessarily be di�erentially

expressed themselves. Despite the latent potential of model-based approaches derived from

the benefits mentioned above, these methods have not gained much popularity in practice,

since the parameter estimation involved in the learning process requires an enormous amount

of quality data, which has been relatively hard to collect so far. For example, SRI uses as

many as 1366 di�erent microarray experiments from Gene Expression Omnibus (GEO) for
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model training [ZLSA11]. However, it is possible that the single-cell sequencing technologies

will help to mitigate this problem, since it is capable of generating data that is not only rich

in biological information, but also adequate in quantity to overcome the classical issue of

parameter estimation.

2.4 Performance analysis of network-based methods

We designed three experiments to assess the reliability of some of the latest generation of

gene expression profile analysis methods – GGEA, DEAP, and PFSNet – based on their

consistency, false discovery rate, and performance on small-sized samples. We observed that,

in all three experiments, the performance of PFSNet is significantly better than the other two

methods, with DEAP being marginally better than GGEA. Below, we explain the design of our

experiments and present the results obtained from them.

In our setup, we used three pairs of datasets corresponding to three di�erent diseases –

Duchenne Muscular Dystrophy (DMD) [HSK+02, PBM+07], Leukemia [ASS+02, GST+99],

and Childhood Acute Lymphoblastic Leukemia (ALL) [RMO+04, YRS+02] (described in table

2.1).

Table 2.1: Datasets used for performance analysis

Disease type Source A�y GeneChip Dataset composition
DMD Haslett et al. [HSK+02] HG-U95Av2 12 DMD, 12 controls

Pescatori et al. [PBM+07] HG-U133A 22 DMD, 14 controls
Leukemia Golub et al. [GST+99] HU-6800 47 ALL, 25 AML

Armstrong et al. [ASS+02] HG-U95Av2 24 ALL, 24 AML
ALL Yeoh et al. [YRS+02] HG-U95Av2 15 BCR-ABL, 27 E2A-PBX1

Ross et al. [RMO+04] HG-U133A 15 BCR-ABL, 18 E2A-PBX1

We used pathway information from the database PathwayAPI [SDGW10] which contains the

unification of human pathways from KEGG [OGS+99], Wikipathways [KvIH+12], and Ingenuity.
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2.4.1 Consistency

To measure consistency of the methods, we use gene expression dataset pairs of the same

disease phenotypes. Since each disease should have a common set of causes, a good method

should consistently report the same causes and nothing else, when applied independently to two

datasets which are su�ciently representative of a disease phenotype. Thus, the reliability of a

di�erential gene expression analysis method can be assessed by evaluating how reproducible

the set of causes reported by a method is when the method is independently applied on such a

dataset pair.

We run GGEA, DEAP, and PFSNet independently on the two datasets in each of the three

dataset pairs. Thus for each method and each dataset pair, we get a pair of results corresponding

to the two datasets used. These results are in the form of a list of pathways (GGEA) or

subnetworks (DEAP, PFSNet) along with their respective p-values. A significance threshold

of p = 0.05 was used to extract pathways (subnetworks) which are reportedly significant in

accordance to the respective methods. Further, jaccard similarity coe�cient was used as a

measure to calculate the consistency in the two results for each dataset pair. The performance

of all methods is summarized in Figure 2.1.

Figure 2.1: Results from experiment to evaluate pathway/subnetwork consistency

For PFSNet, the subnetwork consistency was calculated by using the approach mentioned
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in [LW13] which uses jaccard-like agreement to calculate subnetwork consistency. However,

since GGEA reports pathways, we simply calculated the jaccard coe�cient for pathways. Even

though DEAP detects subnetworks within pathways, we also calculated its consistency in

the same manner as that of GGEA, as this does not adversely a�ect its performance profile.

Since DEAP detects only one subnetwork (the maximally di�erentially expressed path) per

pathway, pathway consistency would always prove to be an equally or more relaxed measure

than subnetwork consistency. Thus, despite giving DEAP the advantage of a more lenient

measure, we observe that PFSNet (with around 61% to 87% consistency) leads the other

methods by a huge margin (DEAP – 42% to 61%, GGEA – 10% to 23%).

2.4.2 False-positive rate

In this experiment, we generated random expression matrices of the same size as our original

three pairs of datasets. To generate these matrices, we computed the mean and standard

deviation of the expression of each gene across all patients, and sampled expression values

from the normal distribution of the same mean and standard deviation. For each dataset,

20 instances of such random matrices were generated. Since the matrices were randomly

generated, we know that every pathway or subnetwork reported as significant is actually a

false positive. We ran GGEA, DEAP, PFSNet on these random datasets, and calculated

false-positive rate (FPR) as the ratio of the number of pathways (or subnetworks) reported as

significant to the total number of input pathways. The average false-positive rate is shown in

Figure 2.2.
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Figure 2.2: A comparison of the false-positive rates of GGEA, DEAP, and PFSNet obtained by using random expression matrices
of same size as original datasets for DMD, Leukemia, and ALL subtype

It can be seen that PFSNet consistently gives the least FPR (around 0.002 to 0.01), whereas

GGEA performs the worst (FPR around 0.04 to 0.07).

2.4.3 Performance on small-sized samples

To assess the e�ect of sample size on performance of the methods, we performed random

sampling from the original datasets, and obtained new datasets of sample size 2, 4, 6, 8,

10 in each phenotype. We then calculated the consistency of GGEA, DEAP, and PFSNet

based on these smaller datasets, using the same procedure as specified in section 2.4.1. This

was repeated for 20 iterations and the average consistency was calculated for each method

corresponding to each of the sample sizes.

In Figure 2.3, we observe that both GGEA and DEAP perform very poorly on small sample

sizes, and are also slow to reach high consistency as sample size is increased. PFSNet is also

seen not performing very well on extremely small-sized datasets, though it recovers quickly to

give near perfect consistency as sample size is increased, except in the case of ALL subtype

datasets.

17



(a) DMD (b) Leukemia

(c) ALL subtype

Figure 2.3: E�ect of sample size on performance of GGEA, DEAP, PFSNet

2.5 Conclusion

An ideal method for di�erential expression analysis should be tolerant to noise, leading to

near-perfect consistency and very low false-positive rate, and should be powerful enough to

show good consistency even on smaller datasets. Such a method can be trusted to draw

accurate inferences regarding the biological phenomena underlying the reportedly significant

pathways and subnetworks. From our experiments above, we illustrated that the performance

of many popular current methods is not entirely satisfactory by these standards, and PFSNet is

one of the rare exceptions in demonstrating high consistency and reliability. We conjecture that

PFSNet partly derives its e�ectiveness from its normalization procedure – rank fuzzification.

This motivated us to examine the di�erent factors responsible for PFSNet’s performance. We

also proposed a generalization of PFSNet, which we called SPSNet, for identifying significant

gene subnetworks in heterogeneous expression data, since PFSNet is designed to analyze pure

phenotypes. Our approach and findings are discussed in the following chapters.
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Chapter 3
GFS: Fuzzy Preprocessing for E�ective Gene

Expression Analysis

"Everybody believes in the normal approximation, the experimenters because they think it is a

mathematical theorem, the mathematicians because they think it is an experimental fact."

– G. Lippman

3.1 Introduction

Gene expression profiling experiments and analysis are often designed with the objective of

verifying one or more hypotheses that can help in building e�ective diagnostic or prognostic

models in clinical settings. Typically, expression data are collected from groups manifesting

di�erences in certain properties of interest, such as disease types or states, developmental

stages, and response to specific treatments or interventions over time. The collected data are

then mined for appropriate variation patterns relevant to the hypotheses under consideration.

The underlying assumption in such studies is that the input gene expression values from

di�erent samples accurately reflect the amounts of RNA produced by the corresponding genes

and, thus, are properly comparable. However, in practice, unless an e�ective normalization

technique is applied to preprocess the expression data, a number of factors may lead to the

violation of this assumption [SRJ+06], [LSS+10].
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Firstly, the entire technical process of isolation and quantification of RNA leading up to the

final measurements is unlikely to be completely error-free, as inaccuracies may insinuate any

of the steps in the long procedure. Secondly, with change in time, place, and other variables

in experimental settings, systematic biases of non-biological origins invariably enter during

measurement experiments in the form of batch e�ects. When such biases are correlated with

the biological properties under investigation, they can severely confound interesting variation

[LSB+10]. Thirdly, di�erences in experimental settings may also introduce changes in local

environments of cells, thus inducing fluctuations in gene expression that further contribute to

noise in the measurement data [RO05].

All these factors together make it improbable for multiple samples to naturally have comparable

expression values. Therefore, we rely heavily on the capabilities of a preprocessing method

to recover meaningful biological information, and remove or account for noise in the form of

obscuring variation. Yet, it was reported [LSS+10] that popular normalization techniques are

not very successful in discriminating between real and obscuring variation to produce quality

input for downstream gene expression analysis. In fact, it was noted by Luo et al. [LSS+10]

that preprocessing using common methods led to reduction in the quality of subsequent

predictive models in up to 25% of the cases.

To mitigate the performance issues commonly presented by preprocessing techniques, we

propose Gene Fuzzy Score (GFS), a transformation method that uses fuzzy scores derived

from rank values of gene expression within individual tissues in a sample. We chose four

di�erent sets of gene expression data containing substantial batch e�ects and heterogeneity

for the analysis. On these datasets, we compared the performance of GFS and other popular

preprocessing methods with respect to the quality, consistency, and biological coherence of

their processed output.
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3.2 Background

Preprocessing techniques typically attempt to make expression values from multiple samples

comparable in two di�erent ways:

1. by scaling expression values such that each sample has an equal value for a statistic such

as mean or median; or

2. by adjusting expression values such that each sample has the same expression distribution

across genes.

The first approach includes methods such as mean and median scaling, and is popular for

A�ymetrix genechips. For example, in the mean-scaling method, the mean gene expression

value of each microarray in the sample is first calculated, and a grand mean is then computed

as the mean of all means. Finally, expression value of each microarray in the sample is scaled

such that the mean expression of each microarray is equal to the grand mean. Median scaling

also follows the same procedure, with the mean statistic being replaced by median. While

these methods are simple to implement, they assume that expression values of all microarrays

in the samples share a linear relationship. They – especially mean-scaling – also su�er from a

few other drawbacks such as sensitivity to outlier distortions [CVFB03].

The second approach includes more sophisticated methods such as z-score and quantile

normalization. In z-score normalization, the expression values of genes in each microarray are

transformed to fit the standard normal distribution with a mean of zero and 1 unit standard

deviation. On the other hand, quantile normalization uses the rank values of gene expression

within individual microarrays to make the distribution of all microarrays identical in statistical

properties. Since ranks are known to be relatively more robust to batch e�ects than absolute

expression values [SRJ+06], this is expected to lead to better performance on datasets with

batch e�ects. In the quantile normalization procedure, the expression values of each microarray

are first sorted in ascending order, and the mean expression corresponding to each rank across

microarrays is stored separately. Following this, the original expression values in each microarray
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are assigned ranks based on their relative quantitative order. Finally, a transformed matrix is

obtained by replacing each gene’s rank value by the mean expression value corresponding to

that rank as stored earlier.

The z-score and quantile normalization methods are relatively more robust to outliers, provided

that the number of microarrays in a dataset is su�ciently large. However, the actual distributions

of underlying data are assumed to be identical in all microarrays, and specifically assumed

to be Gaussian in case of z-score normalization. This assumption is especially likely to break

down in datasets with disease-state samples where the regular functions of the genes and their

synchronization with each other may be substantially disrupted. In such cases, the expression

patterns within a microarray of the disease sample may not be identical to those in the normal

phenotype sample. It also may not be identical to other microarrays in the disease sample

if the disease is heterogeneous and is able to manifest itself through the exploitation and/or

breaking of multiple mechanisms.

It is also commonly observed that low-expression genes and proteins exhibit a much greater

coe�cient of variance than highly expressed ones in their expression levels (see figure 2E in the

work by Goh et al. [GGAW15]). Thus, the expression rank of low-expression genes is highly

unstable. This may adversely a�ect the performance of a ranking-based normalization method

such as quantile normalization.

Therefore, we are inspired to present GFS as a preprocessing technique for gene expression

data. Like quantile normalization, GFS also makes use of gene expression ranks instead of

absolute values, thus earning more robustness to batch e�ects. However, unlike the above

techniques, we do not make any assumptions on the similarity of distribution or the equality of

any mean-, median-like statistic across microarrays in samples. Moreover, in GFS, we fuzzify

the expression ranks such that irrelevant fluctuations introduced by minor di�erences in ranks

are alleviated, and noise from low-ranked genes is discarded.

The idea of fuzzification has also been used earlier in a few gene expression profile analysis

methods [LW13] (PFSNet), [GCK+11] (GGEA) and also proteomic profile analysis methods
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[GGAW15] (qPSP), [GW16b]. However, these works merely use it as a component of their

respective methods, and do not study its role and e�ectiveness as a normalization procedure.

3.3 Material and Methods

3.3.1 Datasets

We collected datasets (see Table 3.1) from three di�erent disease types – Duschenne Muscular

Dystrophy (DMD), Leukemia, and Acute Lymphoblastic Leukemia (ALL).

Table 3.1: Datasets used for comparing preprocessing methods

Disease type Source A�y GeneChip Dataset composition
DMD Haslett et al. [HSK+02] HG-U95Av2 12 DMD, 12 controls

Pescatori et al. [PBM+07] HG-U133A 22 DMD, 14 controls
Leukemia Golub et al. [GST+99] HU-6800 47 ALL, 25 AML

Armstrong et al. [ASS+02] HG-U95Av2 24 ALL, 24 AML
ALL Yeoh et al. [YRS+02] HG-U95Av2 15 BCR-ABL, 27 E2A-PBX1

Ross et al. [RMO+04] HG-U133A 15 BCR-ABL, 18 E2A-PBX1
ALL Yeoh et al. [YRS+02] HG-U95Av2 6 Normal, 26 TEL-AML1,

22 Hyperdip>50, 15 T-ALL,
10 Pseudodip, 6 BCR-ABL,

7 MLL, 8 Hyperdip47-50
9 E2A-PBX1, 3 Hypodip

A single gene expression matrix was produced by merging the two DMD datasets from Haslett

et al. [HSK+02] and Pescatori et al. [PBM+07]. Similarly, data were merged from Armstrong

et al. [ASS+02] and Golub et al. (Leukemia) [GST+99], as also from Yeoh et al. [YRS+02]

and Ross et al. (ALL subtypes) [RMO+04].

Note that each of the first three pairs of the chosen datasets (as in Table 3.1) are independent

and were produced on di�erent microarray platforms. Thus, the merged gene expression

matrices obtained from them contain batch e�ects by default. We consider only genes that
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are common between the two samples in the dataset pair, and run all the four preprocessing

techniques – GFS, mean-scaling, z-score normalization, and quantile normalization – on these

input matrices, and evaluate their e�ectiveness in dealing with batch e�ects. To observe the

e�ect of preprocessing on highly heterogenous data, we also use another more heterogeneous

dataset from Yeoh et al. [YRS+02] that has 9 disease subtypes (ALL) and normal patients

to compare the selected methods. Thus, in total, four sets of input gene expression matrices

belonging to three di�erent disease types are used in our analysis.

3.3.2 Approach

In GFS, we transform a raw gene expression matrix by making use of the rank values of genes

within each microarray, rather than by using their absolute expression values. Further, we use

two quantile thresholds – ◊1 and ◊2 – to assign a fuzzified score to each gene in each patient.

Ranks below ◊2 in a microarray are all reduced to a score of zero, those above ◊1 are given

a score of 1, and intermediate ranks are interpolated to obtain a score between 0 and 1. In

particular, let r(g
i

, p

j

) be the rank of gene expression of a gene g

i

in patient p

j
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j
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(3.1)

Apart from the use of rank values in computing transformed scores, GFS also benefits from the

fact that it allows for selection of quantile thresholds such that noise from low-ranked genes is

safely removed by assigning a score of 0, while genes with very high expression are all treated

equally with a score of 1. A graphic representation of GFS is shown in Fig 3.1. For the purpose
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Figure 3.1: GFS normalization methodology

of uniformity in comparison, we fix ◊1 to 5% and ◊2 to 15% for all GFS runs mentioned in this

chapter. However, using a ◊1 value between 5% to 10% and ◊2 value between 15% to 20%

also leads to similar results.

In evaluating the proposed approach against other normalization techniques discussed earlier,

we focus on three salient questions in this dissertation:

1. Does the preprocessing technique produce consistent results across di�erent datasets,

provided that they have the same composition phenotypes?

2. What is the quality of the output produced by the preprocessing technique? How well

does the preprocessing retain useful information while mitigating obscuring e�ects?

3. Is the output produced by the technique biologically coherent?

We compared GFS with three standard normalization methods described in the previous section

– mean-scaling, z-score normalization, and quantile normalization. The description of our

design and approach to each experiment is given in the next section.
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3.4 Results

3.4.1 Visualizing data after PCA transformation

We preprocess the raw gene expression matrices with each of the four methods – mean-scaling,

z-score normalization, quantile normalization and GFS. For each method, we select the top

15% genes with maximum variance in the processed matrix, as these are most likely to be the

genes contributing to interesting variation. We then reduce the processed matrix to include

only these high-variance genes, and apply PCA transformation on the reduced matrix. A

scatter plot of the coordinates corresponding to the first two principal components (PC1 and

PC2) corresponding to each tissue in the sample is visualized.

A good preprocessing method is expected to show a clear clustering of tissues of the same

phenotype, and separation between tissues of di�erent phenotypes. Moreover, the quality of

clustering would ideally not be adversely a�ected by the presence of samples from multiple

batches in the data.

Observations: While in the Leukemia, DMD, and childhood ALL datasets, patients from

di�erent batches are clearly separated, GFS (Figure 3.6) shows the best phenotype-wise

clustering of patients among all preprocessing techniques. Mean scaling (Figure 3.3) does not

perform well on any of the datasets, and in some cases, obscures the separation seen even

in raw gene expression (Figure 3.2). This degradation in performance is in line with previous

findings [LSS+10]. Z-score normalization shows good performance on DMD and Leukemia

(Figure 3.4) datasets, and quantile normalization performs well only on the DMD dataset

(Figure 3.5).

In case of the more heterogeneous ALL dataset (9 disease subtypes and normal sample), GFS

is the only method to discriminate between patients of the di�erent ALL subtypes (Figures 3.2

- 3.6 (a)).

From the PCA scatterplots for all the three datasets with batch e�ects (Leukemia, DMD, and
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(a) ALL (9 subtypes) : PC1 vs. PC2 (b) ALL (9 Subtypes) : PC2 vs. PC3

(c) ALL (2 subtypes) : PC1 vs. PC2 (d) ALL (2 Subtypes) : PC2 vs. PC3

(e) Leukemia : PC1 vs. PC2 (f) Leukemia : PC2 vs. PC3

(g) DMD : PC1 vs. PC2 (h) DMD : PC2 vs. PC3

Figure 3.2: Visualisation with PCA scatter plots – Raw expression
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(a) ALL (9 subtypes) : PC1 vs. PC2 (b) ALL (9 Subtypes) : PC2 vs. PC3

(c) ALL (2 subtypes) : PC1 vs. PC2 (d) ALL (2 Subtypes) : PC2 vs. PC3

(e) Leukemia : PC1 vs. PC2 (f) Leukemia : PC2 vs. PC3

(g) DMD : PC1 vs. PC2 (h) DMD : PC2 vs. PC3

Figure 3.3: Visualisation with PCA scatter plots – Mean-scaled expression
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(a) ALL (9 subtypes) : PC1 vs. PC2 (b) ALL (9 Subtypes) : PC2 vs. PC3

(c) ALL (2 subtypes) : PC1 vs. PC2 (d) ALL (2 Subtypes) : PC2 vs. PC3

(e) Leukemia : PC1 vs. PC2 (f) Leukemia : PC2 vs. PC3

(g) DMD : PC1 vs. PC2 (h) DMD : PC2 vs. PC3

Figure 3.4: Visualisation with PCA scatter plots – Z-score normalized expression
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(a) ALL (9 subtypes) : PC1 vs. PC2 (b) ALL (9 Subtypes) : PC2 vs. PC3

(c) ALL (2 subtypes) : PC1 vs. PC2 (d) ALL (2 Subtypes) : PC2 vs. PC3

(e) Leukemia : PC1 vs. PC2 (f) Leukemia : PC2 vs. PC3

(g) DMD : PC1 vs. PC2 (h) DMD : PC2 vs. PC3

Figure 3.5: Visualisation with PCA scatter plots – Quantile normalized expression

30



(a) ALL (9 subtypes) : PC1 vs. PC2 (b) ALL (9 Subtypes) : PC2 vs. PC3

(c) ALL (2 subtypes) : PC1 vs. PC2 (d) ALL (2 Subtypes) : PC2 vs. PC3

(e) Leukemia : PC1 vs. PC2 (f) Leukemia : PC2 vs. PC3

(g) DMD : PC1 vs. PC2 (h) DMD : PC2 vs. PC3

Figure 3.6: Visualisation with PCA scatter plots – GFS normalized expression
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ALL with 2 subtypes), we observed that patients from two batches are always clearly separated

along PC1. This implies that the first principal component is highly enriched in batch e�ects.

Therefore, we exclude the first principal component (PC1), and draw scatterplots corresponding

to the second and third principal component (PC2, PC3). In PC2 vs PC3 scatterplots, there

is much less separation between patients from di�erent batches but belonging to the same

phenotype, as compared to that in PC1 vs PC2 scatterplots (Figures 3.2-3.6). This trend is

consistent across all three datasets with batch e�ects. Thus, removing PC1 can be an e�ective

technique to reduce batch e�ects in gene expression data to a great extent. However, for the

more heterogeneous ALL dataset where batch e�ects are absent, removing PC1 results in loss

of important variation information, and subsequently, less clear separation between di�erent

phenotypes.

3.4.2 Comparing processing quality

Quality of a preprocessing method is determined by its ability to separate interesting from

obscuring variation. An inferior preprocessing method leads to an output in which expression

variation across microarrays is confounded with irrelevant information. In contrast, expression

variation across microarrays in the output of an ideal preprocessing method corresponds to

interesting biological variation alone.

Experiment: We estimate the quality of preprocessing methods with respect to the capability

of their transformed output to separate patients of di�erent phenotypes. In particular, we

randomly select 15% of the genes, reduce the processed matrix to include the selected genes,

and apply PCA on the resultant matrix. The PCA co-ordinates of all patients are then used to

compute a clustering performance metric called the silhouette score. The silhouette score is

calculated based on the mean intra-cluster distance a and the mean nearest-cluster distance b

for each patient, as (b ≠ a)/max(a, b) [Rou87]. The score ranges from -1 to 1. In general, a

higher silhouette score indicates a better clustering.
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For the ALL dataset with 9 subtypes, co-ordinates corresponding to the first three principal

components are used, while for the other three datasets with batch e�ects, co-ordinates

corresponding to only the second and third principal components are used. This is repeated over

1000 iterations, and the distribution of silhouette scores corresponding to each preprocessing

method is used to infer the quality of clusters formed by its transformed output.

Observations: For all the four datasets, the distribution of silhouette scores obtained using

randomly chosen 15% genes is stable at a higher value in case of GFS, in comparison to

other preprocessing methods (see Figure 3.7). This shows that the assigned scores to each

microarray-gene pair after GFS preprocessing are more relevant to the interesting variation

in gene expression and thus, even randomly chosen features are better able to capture the

phenotype-based clusters. Moreover, the reference silhouette scores obtained from the top

15% variance genes in GFS processed matrices are consistently higher than the 75th percentile

score of its null distribution obtained from random 15% genes, across all datasets (Figure 3.7).

For quantile normalization, while the silhouette scores obtained from its top 15% variance

genes are also consistently higher than the 75th percentile score of the corresponding null

distribution, these observed silhouette scores are consistently lower than those for GFS. On

the other hand, the silhouette scores derived using the top 15% variance genes in z-score

normalized and raw expression are lower than the 75th percentile score of their corresponding

null distributions in the DMD dataset and ALL dataset with 2 subtypes. The silhouette score

computed on top 15% variance genes in mean-scaled expression data is lower than the median

score of its null distribution in all datasets. This shows GFS-processed expression values are

more e�ective than the other methods.
Table 3.2: Silhouette Scores with respect to phenotype labels obtained using the transformed expression values from top 15%
variance genes on applying di�erent preprocessing techniques (using first three principal components)

Raw Scaled Z-Score Quantile GFS
ALL (9 subtypes) -0.212 -0.209 -0.145 -0.099 0.312
ALL (2 subtypes) 0.009 0.027 0.043 0.070 0.145

DMD 0.025 0.044 0.096 0.202 0.203
Leukemia 0.153 0.128 0.177 0.227 0.289
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(a) ALL (9 Subtypes) (b) ALL (2 Subtypes)

(c) DMD (d) Leukemia

Figure 3.7: Null distributions of silhouette scores obtained with raw and processed
expression matrices taking 15% random genes as features (the three dashed lines
show 25th quartile, median and 75th quartile, while the red dot indicates the score
obtained from top 15% variance genes)

Table 3.3: Silhouette Scores with respect to phenotype labels obtained using the transformed expression values from top 15%
variance genes on applying di�erent preprocessing techniques (using only PC2 and PC3, ignoring PC1)

Raw Scaled Z-Score Quantile GFS
ALL (9 subtypes) -0.243 -0.186 0.017 0.027 0.217
ALL (2 subtypes) 0.012 0.121 0.176 0.289 0.538

DMD 0.049 0.047 0.426 0.486 0.530
Leukemia 0.349 0.072 0.412 0.482 0.528
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The silhouette scores obtained from the PCA transformed co-ordinates of patients using the

top 15% high-variance genes are recorded in Table 3.2 and 3.3. In all datasets, with and

without the first principal component (which is often the richest in batch e�ects), GFS is seen

to have a better score relative to other processing methods. Also, in the three datasets with

batch e�ects, removing PC1 improves phenotype-wise clustering, while in the heterogeneous

ALL dataset with no batch e�ects, removing PC1 leads to discarding important variation and

thus a reduction in clustering performance.

3.4.3 Comparing consistency

It is important that a reliable preprocessing method produces an output that remains consistent

in multiple runs over datasets of the same type. For instance, if two datasets of the same

disease are independently transformed by a preprocessing method, and the genes indicated to

have the highest contribution to interesting variation have very little overlap, it is natural to

infer that the variation is confounded by noise and the genes are likely to be false positives.

In contrast, consistency in such output lends confidence that the preprocessing method is

indeed reliable, since similarity (in terms of sample phenotypes) in input ensures similarity (in

terms of di�erentially expressed genes) in output. Thus, a preprocessing technique assigning

meaningfully transformed expression values should indicate a consistent set of high-variance

genes, when applied to di�erent datasets with the same phenotype distribution.

Experiment: In order to evaluate the consistency of di�erent preprocessing methods, we split

each dataset into two datasets such that each contains the same number of patients of each

phenotype, independently apply the preprocessing technique on the resultant split data, and

obtain the two resulting lists of the top 15% high-variance genes from the splits. Further, we

apply PCA to the normalized data, and remove genes that have a coe�cient of zero in all of

the first three principal components for the ALL dataset with 9 disease subtypes. For the other

three batch e�ects-ridden datasets, we only remove genes that have a coe�cient of zero in

the second and third principal component. This process is repeated 100 times using di�erent
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(a) ALL (9 Subtypes) (b) ALL (2 Subtypes)

(c) DMD (d) Leukemia

Figure 3.8: Consistency of preprocessed output - Jaccard coe�cient distribution of top variance-contributing genes on comparing
100 data splits

splits of each dataset. We then examine the distribution of similarity (measured in terms of

the jaccard coe�cient) between the two gene lists.

Observations : A consistent preprocessing technique is expected to demonstrate a high overlap

in high-variance genes. It is seen that the distribution of jaccard coe�cient when the split

datasets are processed using GFS, is stable at an equal or higher value than the other methods

in all the datasets (Figure 3.8). The other methods fluctuate in performance and, in some

cases, show worse consistency than raw gene expression.

3.4.4 Comparing biological coherence

For a phenotype to manifest, the causal genes often co-ordinate with other genes, and seldom

act alone. Therefore, genes contributing to interesting variation in data are more likely to
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be connected to each other in biological pathways. Thus, we expect that a more biologically

coherent preprocessing technique will result in high-variance genes that induce significantly

more and/or bigger subnetworks on known biological pathways.

Experiment: We assess the biological coherence of the preprocessing methods by examining the

subnetwork size distribution obtained when high-variance genes are used to induce subnetworks

on pathways. The subnetwork size distribution for each processing method is obtained as

follows:

1. Preprocess the gene expression matrix using the chosen technique.

2. Select top 15% genes with maximum variance across patients.

3. Reduce processed expression matrices to only include the selected genes.

4. Perform a PCA transformation on the reduced matrix, and list genes with non-zero

coe�cients in any of the first three principal components.

5. Using genes in step 4, induce subnetworks on known pathways from the PathwayAPI

database [SDGW10] and store the subnetwork size distribution.

To generate the null model, step 2 is replaced with randomly selecting 15% of all genes, and

steps 1-5 are repeated over 1000 iterations. Finally, for each subnetwork size, a p-value is

calculated as the proportion of subnetwork frequencies in the null model found to be greater

than the frequency from original distribution.

The same analysis is repeated for the three datasets with batch e�ects by modifying step 4

to include only those genes that have a non-zero coe�cient in the second or third principal

component.

Observations : The distribution of subnetwork sizes induced by the top 15% variance genes are

shown in Figure 3.9 (using the first three principal components) and Figure 3.10 (using PC2

and PC3 only). The figures show the actual subnetwork count distribution across di�erent

subnetwork sizes, while the inset figures show the corresponding percentage frequencies. In the
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Leukemia dataset and ALL dataset with 2 subtypes, GFS has the highest percentage frequency

of subnetworks of size greater than or equal to 5 and, in most datasets, GFS induces more

subnetworks overall.

Table 3.4: ALL (2 Subtypes) – Significance comparison of size of subnetworks induced by high-variance
genes in preprocessed output; p1 = p-value using first three PCs, p2 = p-value using PC2, PC3 only

Raw Scaled Z-score Quantile GFS

size freq p1 p2 freq p1 p2 freq p1 p2 freq p1 p2 freq p1 p2

2 89 0.620 0.604 94 0.476 0.482 93 0.502 0.509 92 0.527 0.532 82 0.128 0.105

3 44 0.646 0.663 44 0.646 0.663 50 0.419 0.430 44 0.646 0.663 46 0.030 0.030

4 31 0.196 0.173 32 0.162 0.153 28 0.312 0.316 29 0.268 0.259 33 0.001 0.001

5 14 0.429 0.398 13 0.509 0.487 18 0.169 0.156 17 0.226 0.193 20 0.001 0.002

6 12 0.082 0.101 15 0.018 0.024 12 0.082 0.101 14 0.032 0.038 6 0.045 0.043

7 7 0.133 0.117 7 0.133 0.117 6 0.224 0.220 9 0.035 0.030 14 0.000 0.000

8 6 0.050 0.043 6 0.050 0.043 7 0.019 0.017 5 0.098 0.097 5 0.006 0.005

9 2 0.324 0.345 2 0.324 0.345 1 0.594 0.607 4 0.061 0.069 3 0.043 0.031

10 3 0.076 0.075 1 0.451 0.449 1 0.451 0.449 1 0.451 0.449 1 0.177 0.168

11 1 0.350 0.357 - - - - - - - - - 1 0.129 0.117

12 1 0.300 0.278 1 0.300 0.278 1 0.300 0.278 1 0.300 0.278 1 0.066 0.083

13 - - - 1 0.233 0.264 1 0.233 0.264 1 0.233 0.264 - - -

14 - - - - - - - - - - - - 1 0.021 0.019

15 - - - 1 0.156 0.145 1 0.156 0.145 1 0.156 0.145 - - -

16 1 0.133 0.139 3 0.005 0.002 2 0.038 0.027 2 0.038 0.027 1 0.002 0.005

17 3 0.006 0.001 1 0.093 0.099 2 0.020 0.018 1 0.093 0.099 1 0.003 0.002

18 - - - 1 0.077 0.070 1 0.077 0.070 2 0.013 0.012 1 0.000 0.001

19 3 0.001 0.001 - - - 1 0.008 0.007 - - - 2 0.000 0.000

20 1 0.035 0.041 - - - - - - - - - - - -

21 - - - - - - - - - - - - 1 0.000 0.000

22 - - - 1 0.008 0.007 - - - - - - 1 0.000 0.000

From the low p-values in Tables 3.4, 3.5, 3.6, 3.7, we observe that the significance of frequencies

is high for subnetworks induced by GFS, regardless of their size. Further, comparison with

other methods shows that the frequency of subnetworks induced by high-variance genes in

GFS-processed datasets is much more significant than those induced on datasets processed

with other methods and raw gene expression.

Hence, we infer that GFS-transformed output is highly biologically coherent. Moreover, we
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Table 3.5: DMD – Significance comparison of size of subnetworks induced by high-variance genes in
preprocessed output; p1 = p-value using first three PCs, p2 = p-value using PC2, PC3 only

Raw Scaled Z-score Quantile GFS

size freq p1 p2 freq p1 p2 freq p1 p2 freq p1 p2 freq p1 p2

2 74 0.901 0.903 970 0.429 0.415 57 0.995 0.995 104 0.298 0.278 85 0.015 0.009

3 83 0.004 0.007 44 0.649 0.644 23 0.999 0.999 40 0.794 0.777 81 0.000 0.000

4 19 0.817 0.799 22 0.660 0.643 17 0.894 0.894 18 0.861 0.861 28 0.002 0.004

5 15 0.337 0.324 11 0.692 0.665 12 0.588 0.586 13 0.499 0.485 18 0.001 0.000

6 7 0.536 0.521 11 0.147 0.145 7 0.536 0.521 10 0.213 0.206 11 0.000 0.000

7 8 0.084 0.106 12 0.005 0.005 4 0.521 0.519 10 0.021 0.022 9 0.000 0.000

8 7 0.025 0.018 6 0.053 0.045 3 0.379 0.392 6 0.053 0.045 3 0.019 0.011

9 1 0.598 0.615 5 0.029 0.031 3 0.182 0.148 7 0.004 0.008 4 0.000 0.002

10 2 0.209 0.229 1 0.449 0.467 3 0.089 0.084 2 0.209 0.229 2 0.007 0.007

11 2 0.134 0.140 5 0.001 0.001 1 0.372 0.372 2 0.134 0.140 1 0.012 0.006

12 4 0.006 0.003 3 0.021 0.027 - - - 3 0.021 0.027 1 0.005 0.003

13 3 0.017 0.016 2 0.078 0.077 3 0.017 0.016 2 0.078 0.077 2 0.000 0.001

14 3 0.011 0.012 1 0.200 0.189 3 0.011 0.012 - - - 1 0.000 0.002

15 2 0.054 0.039 3 0.012 0.009 1 0.181 0.164 1 0.181 0.164 2 0.000 0.000

16 3 0.004 0.002 - - - - - - 1 0.133 0.142 2 0.000 0.000

17 1 0.104 0.091 - - - - - - 2 0.016 0.019 1 0.000 0.000

18 1 0.097 0.072 - - - - - - 1 0.097 0.072 - - -

19 1 0.058 0.073 - - - - - - - - - 1 0.000 0.000

20 1 0.041 0.040 1 0.041 0.040 - - - - - -

21 - - - - - - 1 0.026 0.038 - - - 1 0.000 0.000

28 - - - 1 0.001 0.000 - - - - - - - - -
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Table 3.6: ALL (9 subtypes) - Significance comparison of size of subnetworks induced by high-variance
genes in preprocessed output; p = p-value of the frequency using first three principal components

Raw Scaled Z-score Quantile GFS

size freq p freq p freq p freq p freq p

2 87 0.672 77 0.861 76 0.876 87 0.672 80 0.071

3 44 0.621 46 0.545 41 0.722 45 0.577 67 0.000

4 24 0.483 24 0.483 24 0.483 23 0.546 39 0.000

5 18 0.105 18 0.105 18 0.105 18 0.105 16 0.001

6 3 0.890 2 0.958 4 0.804 2 0.958 11 0.000

7 9 0.025 4 0.408 3 0.588 9 0.025 4 0.029

8 2 0.492 3 0.289 4 0.144 3 0.289 4 0.013

9 5 0.017 6 0.004 4 0.057 5 0.017 1 0.170

10 3 0.062 3 0.062 4 0.021 2 0.165 5 0.000

11 3 0.038 7 0.001 7 0.001 3 0.038 2 0.015

12 1 0.289 3 0.021 2 0.092 2 0.092 3 0.001

13 1 0.230 2 0.059 4 0.007 - - 1 0.011

14 3 0.005 1 0.203 - - 3 0.005 2 0.000

15 1 0.193 1 0.193 1 0.193 2 0.047 2 0.002

16 1 0.124 1 0.124 2 0.031 1 0.124 2 0.000

17 1 0.122 1 0.122 - - 1 0.122 - -

19 - - - - - - - - 1 0.000

20 - - - - - - - - 1 0.000

23 1 0.006 - - - - 1 0.006 - -

24 - - 1 0.003 1 0.003 - - - -
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Table 3.7: Leukemia – Significance comparison of size of subnetworks induced by high-variance genes
in preprocessed output; p1 = p-value using first three PCs, p2 = p-value using PC2, PC3 only

Raw Scaled Z-score Quantile GFS

size freq p1 p2 freq p1 p2 freq p1 p2 freq p1 p2 freq p1 p2

2 44 0.994 0.993 57 0.920 0.924 47 0.987 0.986 59 0.893 0.894 47 0.570 0.582

3 34 0.557 0.584 23 0.954 0.945 27 0.842 0.844 26 0.885 0.883 34 0.073 0.075

4 14 0.664 0.679 14 0.664 0.679 15 0.588 0.589 17 0.454 0.471 15 0.046 0.044

5 7 0.597 0.579 6 0.700 0.686 8 0.474 0.465 7 0.597 0.579 4 0.244 0.253

6 5 0.279 0.318 2 0.762 0.779 1 0.904 0.925 4 0.423 0.462 6 0.011 0.013

7 1 0.688 0.696 1 0.688 0.696 4 0.130 0.149 1 0.688 0.696 2 0.159 0.166

8 4 0.048 0.039 3 0.119 0.104 - - - 1 0.487 0.500 1 0.259 0.220

9 1 0.384 0.369 2 0.153 0.159 3 0.051 0.047 4 0.014 0.011 3 0.021 0.017

10 1 0.285 0.252 2 0.107 0.098 1 0.285 0.252 1 0.285 0.252 2 0.032 0.031

11 1 0.201 0.224 - - - - - - 1 0.201 0.224 2 0.020 0.017

12 - - - - - - - - - - - - 1 0.030 0.028

15 - - - - - - - - - - - - 1 0.006 0.001

observe that on excluding the batch e�ects-enriched PC1 from the analysis, the p-values

corresponding to larger subnetwork sizes are lower than those of smaller sizes, indicating higher

significance, and hence greater biological coherence, of the large subnetwork sizes.
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(a) ALL (9 Subtypes) (b) ALL (2 Subtypes)

(c) DMD (d) Leukemia

Figure 3.9: Distribution for size of subnetworks induced by high-variance genes in
di�erent preprocessed outputs (using first three components); Inset figure shows the
same as percentage frequency

(a) ALL (9 Subtypes) (b) ALL (2 Subtypes)

(c) DMD (d) Leukemia

Figure 3.10: Distribution for size of subnetworks induced by high-variance genes in
di�erent preprocessed outputs (using PC2, PC3 only, ignoring PC1 from analysis);
Inset figure shows the same as percentage frequency
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3.4.5 E�ect of ◊1 and ◊2 thresholds on the performance of GFS

We examined the e�ect of variation in ◊1 and ◊2 on the performance of GFS by computing the

silhouette scores corresponding to di�erent ◊1, ◊2 combinations.

(a) ALL (9 Subtypes) (b) ALL (2 Subtypes)

(c) DMD (d) Leukemia

Figure 3.11: Heatmaps of silhouette scores on di�erent datasets after normalization with GFS

Fig 3.11 shows the resultant heatmaps of these silhoeutte scores for each of our datasets. We

make two observations from this:

1. The silhouette score is the highest for the values ◊1 = 5%, ◊2 = 15% in all the three

datasets other than Leukemia. However, the silhouette scores in the Leukemia dataset

are high across all threshold combinations, and the di�erence between all the silhouette

scores is negligible.
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2. The extent to which the silhouette score degrades on using non-optimal ◊1, ◊2 thresholds

depends on the particular dataset – possibly the underlying biology, and precision of the

platform in measuring expression in the higher and lower ranges.

3.4.6 Selecting ◊1 and ◊2: Are we throwing away critical information?

As an example, say that ◊1 and ◊2 are set to 5% and 15%. Then, for a given microarray, 5% of

the genes (with the highest expression values) are given a score of 1, 85% of the genes (with

the lowest expression values) are given a score of 0, while only the intermediate genes (10%)

are given scores between 0 and 1 by linear interpolation of their ranks. So are we throwing

away critical information?

Firstly, notice that the genes which get a score of 0, will di�er across microarrays, as the

phenotype varies. This implies that for each gene, we have a vector of fuzzy scores - which

may be 0, 1, or some other fractional number between 0 and 1 - corresponding to all the

microarrays in which it has been measured.

Still, a large number of low expression genes are given a score of 0 in multiple microarrays.

This is justified because low expression genes tend to have a very high Coe�cient of Variation

(CoV), and often introduce noise rather than true signals in the data. We illustrate this with

the following procedure:

Duchenne Muscular Dystrophy (DMD) – Haslett dataset:

1. Measure the CoV of each gene across the disease sample, and across the normal sample.

2. Create an ‘average’ normal and ‘average’ disease sample, by averaging the expression of

each gene across all microarrays in normal and disease phenotypes respectively. For the

normal and disease ‘average’ samples, rank genes from the highest to lowest expression

level.

3. For the normal and disease samples, plot the range of CoV observed in genes with the
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top 10% highest expression, genes with ranks between top 10-20%, 20-30%, and so on.

We then observe how the CoV varies across the di�erent gene rank groups.

(a) Haslett dataset: Normal sample (b) Haslett dataset: DMD sample

We see that ranks from 20-30% onwards show increasingly noticeable increase in CoV, indicating

noise in expression measurements. This is particularly significant because DMD is caused by the

absence of dystrophin, a protein that helps keep muscle cells intact, and hence a homogeneous

disease with little expected variation.

This illustration serves two purposes: (a) It shows that a vast majority of lower expressed

genes have very high CoV, and the expression of such genes often does not contribute very

useful biological information. (b) A rank-wise boxplot of CoV across samples (such as the one

above) may be a helpful indicator for defining suitable values for ◊1 and ◊2.

3.4.7 E�ect of sample size on performance of GFS

To examine the e�ect of sample size on GFS, we randomly selected samples of the size of

0.25, 0.50, 0.75 times the original sample size over 100 iterations. We then noted the range of

silhouette scores obtained from the iterations for each sample size. (For the heterogeneous

ALL dataset, the first three PCs were used to calculate the silhouette scores, while for the

other datasets, only the second and third PCs were used.) As expected, Figure 3.13 shows that
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the clustering performance improves with increase in sample size. Interestingly, the boxplots

in Figure 3.13, interpreted together with Tables 3.2 and 3.3, also indicate that the median

performance of GFS when provided with even 0.25 times of the entire sample size is still

comparable with, and often better than, that of other normalization methods when they are

supplied with the entire sample size.

(a) ALL (9 Subtypes) (b) ALL (2 Subtypes)

(c) DMD (d) Leukemia

Figure 3.13: E�ect of sample size on clustering performance of GFS

3.5 Conclusion

An e�ective preprocessing technique is expected to transform the gene expression matrix such

that data of the same phenotype from di�erent sources is made similar. This can be achieved

by removing or accounting for obscuring noise in gene expression measurement, and retaining

interesting variation relevant to properties of biological interest. Such a processing is essential

to ensure reliable downstream analysis of gene expression data. However, popular normalization
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techniques do not necessarily improve the quality of expression data, and sometimes even

exacerbate the issue by mistaking real variation for noise and discarding it.

We discussed a new approach, Gene Fuzzy Score, to address this issue and compared it

with other popular preprocessing methods with respect to three important criteria. First, we

assessed the capability of the transformed output of each technique to resolve di�erences in

phenotypes within the dataset. Secondly, we estimated the consistency of their output when

presented with di�erent datasets with the same phenotype distribution. Finally, we analysed

the distributions of size of subnetworks induced by genes indicated to be sources of interesting

variation in each processed expression matrix. In each of these aspects, GFS was successful in

improving the transformation outcome, proving its applicability in datasets with batch e�ects

and heterogeneity. Moreover, the performance of GFS improves with increase in sample size.

A recurring observation from our experiments is that in datasets with significant batch e�ects,

the batch e�ects are generally captured by the first principal component in PCA. Thus, applying

a PCA transformation and excluding the first principal component from subsequent analysis

leads to significant reduction in batch e�ects in any dataset, and improves the performance of

all preprocessing techniques. Further, we note that GFS outperforms other methods irrespective

of whether this additional step is implemented.

Another merit of GFS is the interpretability of its transformed outcome. A biologist may quickly

understand how highly the gene is ranked in a particular patient. For example, when a gene

has a GFS score of 0.5 in a patient, it means the gene is in the top 10% most highly expressed

genes in that patient (assuming ◊1and ◊2 are set at 5% and 15% respectively). Thus, apart

from being a robust and e�ective preprocessing technique, GFS is also easily interpretable.
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Chapter 4
SPSNet: Sub-Population Sensitive

Network-based Analysis of Heterogeneous

Expression Data

"An approximate answer to the right problem is worth a good deal more than an exact answer

to an approximate problem."

– John Tuckey

4.1 Introduction

Diseases and biological processes are highly heterogeneous due to variation in the underlying

mechanisms. Regardless of its origin, heterogeneity is often implicit and undeclared, as

incomplete knowledge prevents the accurate identification of subpopulations in a phenotype.

Undeclared heterogeneity in transcriptomic data can arise from biological variation such

as diversity of disease subtypes, treatment subgroups, time-series gene expression, nested

experimental conditions, as well as technical variation due to batch e�ects, platform di�erences

in integrated meta-analyses, etc. Unless the underlying heterogeneity is appropriately considered,

comprehensive analysis of disease mechanisms is hindered, potentially resulting in misleading

conclusions. In general, a systematic understanding of the biological basis of heterogeneity is
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critical in many practical contexts, e.g.:

• developing e�ective treatments by precise identification of dysregulated mechanisms in

distinct disease subtypes.

• identifying di�erences in the molecular states of stem cells resulting in distinct lineage

progression, to better understand organ development and regeneration; and

• detecting and eliminating the e�ects of intrinsic heterogeneity (e.g., cell cycle di�er-

ences across cells, variation in cellular composition), which can hinder the discovery of

physiologically relevant variation in the gene expression profiles.

A systematic analysis of non-biological and extrinsic heterogeneity is also useful in many cases,

even when analyzing apparently homogeneous experimental conditions, for:

• extracting knowledge with greater confidence from a meta-analysis of independently

generated datasets;

• discovering unsuspected anomalies or technical errors; and

• identifying and eliminating factors most influenced by extrinsic elements and/or batch

e�ects.

Yet, handling heterogeneity in gene expression is a major problem with few and ine�ective

solutions.

4.2 Background

Previous studies have attempted to unravel heterogeneity using unsupervised techniques to

identify gene expression-based, subtype-specific, molecular signatures [AED+00, SPT+01,

MdRD+13, BSW+11]. In these approaches, gene expression data is typically subjected to

hierarchical clustering or orthogonal transformation, and subpopulations in the sample are

inferred using observations on the patterns of variation in gene expression. However, analysis
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carried out at the individual-gene level prevents a systemic view of the underlying mechanisms,

and leaves considerable room for subjective, and potentially incorrect, interpretation of the

underlying biological mechanisms. It also leads to a high false-positive rate, and low repro-

ducibility [ZZZ+09]. Notably, Venet et al. showed that, in the case of breast cancer, such

gene-based signatures are no better than randomly chosen signatures [VDD11].

Several methods have been proposed for analyzing di�erential expression between homogeneous

phenotypes at the level of biological pathways and subnetworks, including Over-Representation

Analysis (ORA)[KDOK02], Gene Set Enrichment Analysis (GSEA)[STM+05], Gene Graph

Enrichment Analysis (GGEA)[GCK+11], and Di�erential Expression Analysis in Pathways

(DEAP)[HHS+13]. However, it has been demonstrated that, when analyzing independent

datasets consisting of identical phenotypes, these methods produce results that considerably

di�er between the independent datasets, demonstrating lack of consistency. This issue

arises mainly due to ine�ective data normalization and/or the utilization of incorrect null

hypothesis/distribution. Two recent methods overcome these issues to yield consistent results

across data sets: SNet[SDGW11] and its refinement PFSNet[LW13]. However, these methods

are designed to analyze only homogeneous phenotypes without subclasses.

We propose a generalized approach to analyze heterogeneity in gene expression data, and

obtain subtype-specific signatures based on the di�erential gene expression of subnetworks

in biological pathways rather than individual genes. Our generalization of PFSNet is termed

SPSNet (SubPopulation-sensitive PFSNet). While PFSNet reports subnetworks that are

di�erentially expressed between two samples representing homogeneous phenotypes, SPSNet

makes no assumptions on the homogeneity of given phenotypes and automatically identifies

subnetworks that are di�erentially expressed between the subpopulations within phenotypes.

Thus, SPSNet serves a two-fold purpose: (i) when heterogeneity is biological in nature, it

provides insights into how subpopulations within a sample set indicating diverse biological

mechanisms manifest as sample subphenotypes; and (ii) in the presence of extrinsic or non-

biological heterogeneity, it amplifies these e�ects, facilitating identification and elimination of

50



factors extraneous to biology of the phenotypes being studied. We demonstrate the utility and

performance of SPSNet using publicly available gene expression datasets containing disease

heterogeneity, batch e�ects, and varied experimental treatments.

4.3 Methods

4.3.1 Data

• Leukemia dataset by Yeoh et al. [YRS+02]: We use the normal class (12 training, 6

test patients) and two large ALL subtypes, TEL-AML1 (52 training, 25 test patients),

T-ALL (29 training, 15 test patients) from this microarray dataset.

• Hepatocellular Carcinoma (HCC) dataset by Roessler et al. [RJB+10]: This microarray

dataset consists of 247 tumor and 241 adjacent non-tumor samples.

• HCC dataset by Burchard et al. [BZL+10]: This microarray dataset consists of 268

tumor and adjacent 249 non-tumor samples.

• TCGA RCC dataset—[N+13]: This microarray dataset contains 30 normal and 30 clear

cell Renal Cell Carcinoma (ccRCC) tumor samples.

• We obtained human pathway information from the PathwayAPI database which consists

of 300 human pathways [SDGW10].

4.3.2 Notations and terminology

• G: the set of all genes g

i

(i œ {1, 2, . . . , n}) whose expression has been measured

• P

C

, P¬C

: set of patients in the control and test phenotypes respectively, where the

phenotypes potentially contain undeclared sources of heterogeneity. The objective of

SPSNet is to identify gene subnetworks that are significantly di�erentially expressed
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between P

C

and P¬C

, while accounting for this potential heterogeneity.

• E(g, p): expression value of gene g in patient p

• F (g, p): the fuzzy score of gene g in patient p, as obtained by applying a GFS transform

(as described in Chapter 3) on the gene expression matrix. Briefly, genes are ranked in

each patient according to their raw expression, and a fuzzy score is obtained by using

two thresholds ◊1 and ◊2; genes in the upper ◊1 quantile are assigned a score of 1, genes

below the ◊2 quantile are assigned a score of 0, and those in between are assigned a score

by linear interpolation. In Chapter 3, we demonstrated that this transformation leads to

great improvement in the quality of downstream analysis, as compared to preprocessing

by mean-scaling, z-score, and quantile normalization.

• —(g, X): the relevance factor of gene g in a population represented by a set of patients

X. The factor denotes how consistently g gets highly expressed in X, and is computed

as the average fuzzy score of g over all patients in X:

—(g, X) =
ÿ

pœX

F (g, p)
|X| (4.1)

• S: the set of all candidate subnetworks S

k

(k œ {1, 2, . . . , r}) generated from known

biological pathways.

4.3.3 Approach

Generating candidate subnetworks

The primary goal of SPSNet is to identify biological factors that distinguish subpopulations

within a sample. Therefore, pathways were chosen to generate subnetworks as they represent the

biological processes in an organism, and di�erences in their functioning contribute to di�erences

within phenotypes. SPSNet does not preclude generating subnetworks from high-quality PPI

networks. Both PPI networks and biological pathways can be supplied, even simultaneously,
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as input to SPSNet (and also to PFSNet [LW13]). However, in this dissertation, we do not

investigate PPI networks since there are confounding issues when using PPI networks. For

example, a PPI network is strictly speaking an artificial assembly of pairwise PPIs: While each

individual PPI is a real biological interaction, the subnetwork itself is misleading because e.g.

not all partners of a protein in the subnetwork actually simultaneously bind the protein. To

ensure a straightforward interpretation and evaluation of SPSNet, we prefer to exclude PPI

networks.

The standard PFSNet methodology uses highly expressed genes from each phenotype to induce

subnetworks on known biological pathways. However, this technique for generating candidate

subnetworks is not suitable for heterogeneous data, as the presence of multiple subpopulations

in a phenotype is likely to dilute high expression in any specific subtype. Therefore, we

generate subnetworks as in NEA[ALP+12]; i.e. we form a subnetwork from each gene and its

immediate neighbors in a biological pathway. We filter out subnetworks with less than 5 genes.

We generate a total of 5654 such subnetworks from 300 human pathways in PathwayAPI

[SDGW10].

Computing subnetwork scores

A GFS tranform is first applied to the gene expression matrix, as described in Section 4.3.2. In

PFSNet, all subnetworks are then assigned phenotype-wise scores for each patient as follows.

A subnetwork S

k

is scored in phenotype C by summing the fuzzy votes of all patients towards

each member gene in S

k

, weighted by the respective gene relevance factors in C. Similarly, a

score corresponding to ¬C is obtained by weighing the gene fuzzy votes with the respective

relevance factors in ¬C. With the null hypothesis that subnetwork S

k

is not relevant to

the di�erence between phenotypes C and ¬C, we test whether distribution of the di�erence

between their corresponding scores is centered around zero. In particular,

PScore(p, S

k

, C) =
ÿ

gœSk

F (g, p) ◊ —(g, C) (4.2)
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PScore(p, S

k

, ¬C) =
ÿ

gœSk

F (g, p) ◊ —(g, ¬C) (4.3)

PFS -Score(p, S

k

, C, ¬C) = PScore(p, S

k

, ¬C) ≠ PScore(p, S

k

, C) (4.4)

Since PFSNet assumes no underlying heterogeneity in the phenotypes, the two relevance

factors —(g, C) and —(g, ¬C) are computed using the average of fuzzy votes in all patients

in the respective phenotype. However, since SPSNet deals with heterogeneous data, we

wish to compute subpopulation-specific relevance factors, rather than relevance factors over

entire phenotypes. For this, we assume that each subpopulation in a phenotype has at least

one subnetwork for which it has the highest expression among members of the phenotype.

We then select representative patients for each subpopulation as the top x patients with

highest expression of the subnetwork (supposing that the smallest subpopulation has at least

x members), and use these to compute the subpopulation specific relevance factors. In our

analysis, we set the value of x to 10, unless specified otherwise. The e�ect of variation in x

on the performance of SPSNet is discussed later in Section 4.4.6.

For each subnetwork S

k

, we compute the sum of gene fuzzy votes in patients belonging to

both phenotypes C and ¬C. Thus, two vectors V (S
k

, C) and V (S
k

, ¬C) are generated as:

V (S
k

, C) = [
ÿ

gœSk

F (g, p1),
ÿ

gœSk

F (g, p2), ...,

ÿ

gœSk

F (g, p|C|)] (4.5)

V (S
k

, ¬C) = [
ÿ

gœSk

F (g, p

Õ
1),

ÿ

gœSk

F (g, p

Õ
2), ...,

ÿ

gœSk

F (g, p

Õ
|¬C|)] (4.6)

The top x patients each with the highest values in V (S
k

, C) and V (S
k

, ¬C) are then selected

as the representative patients. Let the set of these patients be denoted as Q(S
k

, C) and

Q(S
k

, ¬C) respectively. Then, we compute the final scores for each subnetwork as:

SScore(p, S

k

, C) =
ÿ

gœSk

F (g, p) ◊ —(g, Q(S
k

, C)) (4.7)
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SScore(p, S

k

, ¬C) =
ÿ

gœSk

F (g, p) ◊ —(g, Q(S
k

, ¬C)) (4.8)

SPS -Score(p, S

k

, C, ¬C) = SScore(p, S

k

, ¬C) ≠ SScore(p, S

k

, C) (4.9)

Similar to PFSNet, the null hypothesis in SPSNet is that subnetwork S

k

is not relevant to

the di�erence between phenotypes C and ¬C. Therefore, it is tested whether the distribution

of SPS -Score(p, S

k

, C, ¬C) (as mentioned in Equation 4.9) across all patients is centered

around zero. However, before testing the subnetworks for statistical significance, we eliminate

candidate subnetworks which do not contain at least five genes with a phenotype-specific

(subpopulation-specific) relevance factor greater than or equal to 0.5 in PFSNet (SPSNet).

Setting this cuto� ensures that genes in each candidate subnetwork are highly expressed in

at least half of the patients of that phenotype/subpopulation, and thus helps to reduce false

positives.

Determining statistical significance

In the standard PFSNet methodology, a null score distribution for each phenotype is generated

by randomly swapping class-labels between patients in the control and test samples, and

computing subnetwork scores using the permuted labels. However, we use the theoretical

t-distribution as our null distribution, as a class-label permutation approach is not practical for

SPSNet. This is because the number of representative patients (recall x = 10) is insu�cient

for generating the necessary number of class-label permutations. We test how distant the

mean SPS -Score of each subnetwork is from zero (on either side), and thereby estimate the

corresponding statistical significance. All subnetworks with p-value below a given threshold are

reported as significant. In here, we use the customary significance threshold of 0.05.
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Figure 4.1: Flowchart illustrating the SPSNet methodology (in comparison to PFSNet)
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SPSNet as the generalization of PFSNet

As stated earlier in Section 2.1, SPSNet is a generalization of PFSNet. When a ‘subpopulation’

expands to accommodate the entire phenotype, and all patients in the phenotype can be

considered representative of it, SPSNet is equivalent to PFSNet:

SPS -Score(p, S

k

, C, ¬C) =
ÿ

gœSk

F (g, p) ◊ —(g, Q(S
k

, ¬C)) ≠
ÿ

gœSk

F (g, p) ◊ —(g, Q(S
k

, C))

(4.10)

= PFS -Score(p, S

k

, Q(S
k

, C), Q(S
k

, ¬C)) (4.11)

An overview of the PFSNet and SPSNet methodology is presented in Figure 4.1.

4.4 Results

In analyzing the performance of SPSNet, we take a four-fold approach: (i) First, we merge

samples with known experimental conditions; and test whether SPSNet is able to discover

subnetworks known to be di�erentially expressed in the individual subpopulations in the merged

dataset. We also quantitatively assess the discriminatory power of SPSNet by transforming

the subnetwork scores into feature matrices, and computing silhouette scores on their PCA

transform. (ii) To analyze the sensitivity and specificity of the method, we simulate test

datasets with induced heterogeneity, and evaluate if SPSNet correctly identifies the di�erentially

expressed subnetworks as such. (iii) To validate the reproducibility of SPSNet, we examine

the overlap between subnetworks reported significantly di�erentially expressed on independent

datasets with the same phenotype composition. (iv) Finally, we investigate the utility of

SPSNet scores in separating di�erent sub-populations within the heterogeneous phenotypes

under comparison.
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4.4.1 Comparison using homogeneous phenotypes

Since PFSNet performs well on homogeneous phenotypes [LW13], it is reasonable to assume

that subnetworks reported by it when comparing two homogeneous classes are truly di�erentially

expressed. Therefore, we compare the subnetworks reported significant from PFSNet runs on

homogeneous classes (e.g. A vs. C and B vs. C), with those reported by SPSNet and PFSNet

on heterogeneous classes obtained by merging multiple homogeneous phenotypes (e.g. A + B

vs. C).

Acute Lymphoblastic Leukemia

We obtain subnetworks highly expressed in the TEL-AML1 subtype and are reported by PFSNet

as significantly di�erentially expressed with respect to the normal class, and a similar set of

subnetworks highly expressed in the T-ALL subtype. To simulate the heterogeneous case, we

combine patients from both disease subtypes into a single “heterogeneous” disease class, and

then obtain subnetworks highly expressed in it that are reported by PFSNet and SPSNet as

significantly di�erentially expressed with respect to the normal class. Finally, we perform a

pathway-level comparison of the subnetworks reported significant in the homogeneous and

heterogeneous cases. Figure 4.2 records three sets of observations corresponding to datasets

of increasing heterogeneity (where the disease sample is created by incrementally merging 10,

20, and 29 patients of the T-ALL subtype respectively, with 30 TEL-AML1 patients in each

case). From the figure, we observe that both PFSNet and SPSNet are successful in identifying

pathways common to the TEL-AML1 and T-ALL subtypes. However, SPSNet is more sensitive

in detecting pathways that are specific to either of the disease subtypes.
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(a) 30 TEL-AML1 + 29 T-ALL (b) 30 TEL-AML1 + 20 T-ALL

(c) 30 TEL-AML1 + 10 T-ALL

1

Figure 4.2: Acute Lymphoblastic Leukemia (ALL) – pathways containing di�erentially expressed subnetworks

Hepatocellular Carcinoma

We conduct a similar experiment on the two batches of HCC data, whereby subnetworks highly

expressed in HCC and di�erentially expressed with respect to the normal sample are obtained

for each batch separately, and after merging the two batches. Pathway-level comparison of
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these subnetworks is recorded in Figure 4.3. We observe that PFSNet and SPSNet are able

to discover pathways that have subnetworks di�erentially expressed in both HCC batches.

However, SPSNet is able to better identify pathways di�erentially expressed only in one of the

two batches, indicating its sensitivity to heterogeneity in samples.

Figure 4.3: Hepatocellular Carcinoma (HCC) – pathways containing di�erentially expressed subnetworks that are highly expressed
in HCC

4.4.2 Estimating sensitivity and specificity from simulation

Simulation experiments, when carefully designed, have the advantage that ‘correct’ outcomes

from the application of a method can be known in advance. Thus, they can be powerful tools

for objective performance evaluation.

We simulate test samples with injected heterogeneity, pair them with homogeneous control

samples, and compare subnetworks that are known to be di�erentially expressed between the

two sample groups with those reported significant by SPSNet to estimate the sensitivity and

specificity of SPSNet. The detailed procedure is described below, and illustrated in Figure 4.4:

We choose a homogeneous normal sample, which is unlikely to contain any significantly

60



di�erentially expressed genes at the outset. The normal sample is randomly split into two

equal halves, N1 and N2, and one of these parts (N2) is allocated for injecting di�erential

expression. To induce heterogeneity, N2 is further divided into two subtypes, N21 and N22,

with –% and (100 ≠ –)% of its patients respectively. We sub-sample 10% of the total number

of genes and induce di�erential expression in patients in N21 for these selected genes, in a

manner similar to the description from Langley et al [LM15]. i.e. we multiply the expression

of patients in N21 by a factor of r, where r is chosen randomly from the set {1.2, 1.5, 1.8,

2.0, 3.0}, for each gene in the sub-sample. Another independent sub-sample of 10% genes

is chosen, and di�erential expression corresponding to genes in this sub-sample is induced in

patients belonging to the set N22.

Figure 4.4: Flowchart illustrating the simulation methodology for estimating sensitivity and specificity of SPSNet

Thus, we obtain four sets of genes, which we use to generate four sets of subnetworks:

61



• G1: genes di�erentially expressed between N1 and N21

• G2: genes di�erentially expressed between N1 and N22

• G12: genes di�erentially expressed between N1 and N21, AND between N1 and N22

• G0: genes not di�erentially expressed between N1 and N21 and between N1 and N22

To generate subnetworks from these genes, we adopt the procedure used by Goh and Wong

[GW16a], emulating the feature of real biological subnetworks that genes in a subnetwork tend

to have correlated expression patterns. In particular, we perform a hierarchical clustering of

genes in G1, and reposition them within their clusters such that the most similar genes are

next to each other. Subnetworks are then generated by splitting the resulting ordered list into

sets of seven genes each. As discussed in the work by Goh and Wong [GW16a], this procedure

is a sample prototype to generate pseudo-subnetworks in the absence of any gold-standard

for simulation purposes, and not a fool-proof to form groups of genes that approximate real

subnetworks. However, we avoid forming subnetworks with a very small number (e.g. < 5) of

genes, since it is likely to lead to a high fluctuation in the test statistic.

A similar ordering after hierarchical clustering is obtained separately for G2, G12, and G0.

However, for G0, we do not use all the non-di�erentially expressed genes to form subnetworks,

but only four times the number of genes in G1. This emulates the e�ect of incompleteness in

biological pathway databases, and also saves computation time required to generate a vast

number of negative control subnetworks.

The entire simulation process is repeated for 100 iterations. In each iteration, PFSNet and

SPSNet are run on newly simulated data, and subnetworks generated from G1, G2, G12, and

G0 in the corresponding iteration are tested for significance.

Estimating sensitivity

We use two datasets for simulation, normal kidney and normal liver tissue expression data from

TCGA [N+13] (Dataset 1) and Roessler et al. [RJB+10] (Dataset 2), which profile 20,502
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and 13,801 genes respectively. The number of subnetworks generated in each iteration from

Dataset 1 using G1, G2, G12, G0 are 292, 292, 30, 1168 respectively; while 197, 197, 20,

788 subnetworks are generated from Dataset 2. To understand the e�ect of di�erent levels

of heterogeneity within the data on the performance of PFSNet and SPSNet, we vary the

parameter – in our simulations. For Dataset 1, – is set to 50% (the test sample is divided

into two subtypes with 50% of its patients each), while for the larger Dataset 2, separate

simulations are performed with – set to 20% (subtype 1 – 20%, subtype 2 – 80%), 40%

(subtype 1 – 40%, subtype 2 – 60%), and 50% (subtype 1 – 50%, subtype 2 – 50%).

(a) Dataset 1: 50% subtype 1, 50 % subtype 2 (b) Dataset 2: 50% subtype 1, 50 % subtype 2

(c) Dataset 2: 40% subtype 1, 60 % subtype 2 (d) Dataset 2: 20% subtype 1, 80 % subtype 2

1

Figure 4.5: Proportion of significant subnetworks reported by PFSNet and SPSNet on test samples injected with di�erent levels
of heterogeneity

Figure 4.5 (a) shows four boxplots for Dataset 1 corresponding to the fraction of subnetworks

reported significant by PFSNet and SPSNet from subnetworks that are simulated to be
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significant in subtype 1, significant in subtype 2, simulated to be significant in both, and

non-significant in both subtypes. Figures 4.5 (b) to (d) show similar boxplots for Dataset 2,

with varying levels of heterogeneity (di�erent values of –).

As expected, both PFSNet and SPSNet show higher sensitivity for subnetworks significant

in both subtypes, when compared with those significant in only one of the subtypes. In all

three subnetwork categories—significant in subtype 1, subtype 2, and both—the sensitivity of

SPSNet is higher than PFSNet (SPSNet improves the median sensitivity by about 10% in case

of subnetworks significant in both subtypes, and by a larger margin in the subtype-specific

subnetworks). The subnetworks not significant in either subtypes are rarely reported significant

by PFSNet and SPSNet (high specificity); the false-positive rate, although a little higher in

SPSNet than PFSNet, is within or around the 5% bound in all cases.

It is also interesting to note the impact of varying heterogeneity on the sensitivity of the

two methods for simulations on Dataset 2. We notice that the output of PFSNet is strongly

dominated by the majority subtype, while SPSNet is relatively insensitive to the level of

heterogeneity. Thus, when – is set to 50%, the median sensitivity of PFSNet for subnetworks

significant in subtype 1 and 2 is about 10% and 20% respectively. When – is decreased to

40%, the median sensitivity for subnetworks significant in subtype 1 (minority) drops to below

5% and median sensitivity for subnetworks significant in subtype 2 (majority) rises to about

25%. At an even lower – of 20%, the recall for subnetworks significant in subtype 1 remains

almost the same, while the median sensitivity for subtype 2 rises to about 35%. On the other

hand, SPSNet performs relatively better at all levels of heterogeneity; irrespective of the value

of –, it consistently shows a median sensitivity of about 40%.

Estimating false-positive rate

To assess whether the false-positive rate in SPSNet is well-controlled, we use the same

simulation setup as that in the previous subsection 4.4.2, and explained in Fig 4.4. We

generate 1000 subnetworks using G0. Since the genes in G0 are di�erentially expressed
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between neither N1 and N21, nor N1 and N22, no subnetworks generated from G0 are expected

to be di�erentially expressed. We run SPSNet and test whether the subnetworks are reported

to be di�erentially expressed. For this experiment, we used the normal tissues from one of

the HCC datasets [RJB+10]. To observe whether sample size a�ects false-positive rate, we

randomly selected subsamples of size 240, 210, 180, 150, 120, 90, 60, and 30, fifty times each.

Figure 4.6 shows boxplots depicting the range of false-positive rates corresponding to subsamples

of each size. In samples of all sizes, the false positives were seen to be well-controlled: less

than 50 of 1000 subnetworks are reported significant (FP rate < 0.05).

Figure 4.6: False-positive rate of SPSNet on simulated data with varying sample size

4.4.3 Reproducibility on independent datasets

A reliable method would produce significant subnetworks that agree highly when run on

independent datasets with the same phenotypical composition. Therefore, we run PFSNet and

SPSNet to obtain significantly di�erentially expressed subnetworks between normal sample

and the heterogeneous ALL sample (with all patients from subtypes TEL-AML1 and T-ALL

combined). This is done separately for the training and test data, and the agreement (in the

form of jaccard coe�cient) between significant subnetworks obtained on the two sets of data

is recorded in Table 4.1. We observe that SPSNet shows much higher reproducibility on the
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heterogeneous dataset, as compared to PFSNet.

Training Test Training fl Test Training fi Test Jaccard Coe�cient

PFSNet 27 24 11 40 0.28

SPSNet 87 77 62 102 0.61

Table 4.1: Jaccard coe�cients showing agreement between significant subnetworks obtained by PFSNet and SPSNet on training
and test data;

4.4.4 Quality of feature selection

A good method for network-based di�erential expression analysis of heterogeneous data would

report significant subnetworks that can serve as relevant features in distinguishing the classes

being compared, as well as their component subpopulations. Therefore, we use the scores of

significant subnetworks in PFSNet and SPSNet as features, and visualize scatter plots based

on PCA transformation of the resulting feature matrices. Further, we quantitatively assess

the ability of these features to distinguish between subpopulations, with silhouette scores

computed using the feature matrices and known labels corresponding to patient subtype and/or

subpopulation.

Acute Lymphoblastic Leukemia

We use the same samples as mentioned in previous sections with experiments on the ALL

dataset [YRS+02] – normal class against datasets of increasing heterogeneity (where the

disease sample is created by incrementally merging 10, 20, and 29 patients of the T-ALL

subtype respectively, with 30 TEL-AML1 patients in each case). We draw PCA scatter plots

corresponding to subnetworks reported as di�erentially expressed between normal and each

heterogeneous disease sample (Figure 4.7).

Table 4.2 shows three sets of silhouette scores corresponding to feature matrices obtained

from scores of significantly di�erentially expressed subnetworks reported on comparing normal

sample with disease samples of increasing heterogeneity. From the silhouette scores, as well as
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PCA scatter plots of subnetwork scores, we observe that SPSNet is able to better discriminate

between di�erent disease subtypes within the ALL sample, across varying levels of heterogeneity.

30 TEL-AML1 + 10 T-ALL 30 TEL-AML1 + 20 T-ALL 30 TEL-AML1 + 29 T-ALL

PFSNet 0.079 0.12 0.116

SPSnet 0.288 0.342 0.323

Table 4.2: ALL – Silhouette scores based on the first 3 PCs of feature matrices built using scores significant subnetworks in
PFSNet and SPSnet;

(a) PFSNet – (Normal vs. 30 TEL-AML1 + 29 T-ALL) (b) SPSNet – (Normal vs. 30 TEL-AML1 + 29 T-ALL)

(c) PFSNet – (Normal vs. 30 TEL-AML1 + 20 T-ALL) (d) SPSNet – (Normal vs. 30 TEL-AML1 + 20 T-ALL)

(e) PFSNet – (Normal vs. 30 TEL-AML1 + 10 T-ALL) (f) SPSNet – (Normal vs. 30 TEL-AML1 + 10 T-ALL)

1

Figure 4.7: Normal vs heterogeneous ALL disease sample – PCA scatter plots based on scores of significant subnetworks in
PFSNet and SPSnet
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Hepatocellular Carcinoma

We use the two HCC datasets from [RJB+10] and [BZL+10], and create a new normal and

HCC sample by merging the normal and disease samples respectively from both batches. PCA

scatter plots drawn using scores of significant subnetworks are shown in Figure 4.8 (a) and (c).

(a) PFSNet – PC1 and PC2 (b) SPSNet – PC1 and PC2

1

Figure 4.8: Normal vs HCC sample combined from Dataset 1 ([RJB+10]) and Dataset 2 ([BZL+10]) – PCA scatter plots based
on scores of significant subnetworks in PFSNet and SPSnet

We observe that in the scatter plot corresponding to SPSNet features, patients appear better

separated with respect to their batch as well as phenotype labels. Further, PC1 is able to

capture and isolate almost all of the batch e�ects in the SPSNet scatter plot, whereas the

batch e�ects spill over to the lower PCs in the case of PFSNet. This is despite the fact that

PC1 in SPSNet covers only 66% of the total variance while PC1 in PFSNet covers 72% of its

total variance. Thus, SPSNet proves to be e�ective at identifying the heterogeneity induced

by batch e�ects.

Normal vs HCC Normal vs HCC

(first 3 PCs, with batch labels) (2nd, 3rd PC, without batch labels)

PFSNet 0.145 0.117

SPSnet 0.268 0.298

Table 4.3: HCC – Silhouette scores based on PCA transform applied to scores of subnetworks reported as significantly DE by
PFSNet and SPSNet;

Next, we eliminate PC1 to see if the normal and HCC samples (combined from two batches)

can be clearly separated by the remaining PCs based on their phenotypes alone. From the
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silhouette scores in Table 4.3, it is seen that PC2 and PC3 from SPSNet features are able

to better distinguish between normal and HCC samples, as compared to their counterparts

from PFSNet features. These observations are in line with the remarks from Chapter 3 that

eliminating PC1 often leads to removal of batch e�ects and a clearer separation based on

phenotypes.

4.4.5 Are representative patients of significant subnetworks enriched

in specific subpopulations?

Since SPSNet utilises a subset of patients for each subnetwork to represent potential sub-

populations in the phenotype, we study a) whether such subsets are enriched in one of the

constituent subpopulations, and b) how such enrichment is a�ected by the relative proportions

of the constituent subpopulations in the data.
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(a) 30 TEL-AML1 + 29 T-ALL (p-val: 1.1 � 10�3)(b) 30 TEL-AML1 + 20 T-ALL (p-val: 1.1�10�10)

(c) 30 TEL-AML1 + 10 T-ALL (p-val: 1.02�10�17) (d) HCC merged dataset (p-val: 5.5 � 10�4)

1

Figure 4.9: Number of subnetworks reported significant by SPSNet corresponding to di�erent purity levels. A chi-squared test
is performed to see if the number of significant subnetworks with high purity (purity > 0.75) is larger than those with low purity
(purity Æ 0.75); p-values are reported in brackets.

To assess this, we once again use the ALL [YRS+02] and HCC datasets [RJB+10, BZL+10], and

define a measure ‘purity’ as the proportion of patients belonging to the majority subpopulation

(subtype/batch) in the representative patients subset for a given significant subnetwork. Figure

4.9 records the number of significant subnetworks with purity levels between 0.5 to 1.0 and

the colors indicate the majority subpopulation which resulted in the purity value.

We observe that a large proportion of significant subnetworks are enriched in one of the

constituent subpopulations (high purity); such subnetworks help distinguish the subpopulations

from each other. There are also a few significant subnetworks which have low purity (almost

equal proportion of subpopulations); these indicate common biological characteristics shared by
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the subpopulations. Also, in the ALL dataset, when SPSNet is used to compare control sample

with a heterogeneous disease sample containing 30 TEL-AML1 patients and 29 T-ALL patients,

the contribution of the two disease subtypes to high purity levels (purity > 0.75) is similar;

i.e. the number of significant subnetworks with representative patients having TEL-AML1 and

T-ALL patients in majority is similar. This phenomenon persists even when the number of

T-ALL patients is reduced to 20. However, when only 10 T-ALL patients are included in the

heterogeneous sample, there are very few significant subnetworks with representative patients

having a T-ALL majority. This suggests that SPSNet is able to recover minority subpopulations

unless the size of the smaller subpopulations drops below a certain threshold (viz. x).

4.4.6 E�ect of varying number of representative patients on the

performance of SPSNet

For each subnetwork, representative patients are chosen by SPSNet to ensure representation

of a potential subpopulation in which the subnetwork is highly expressed. Ideally, the number

of representative patients, say x, is lower than or equal to the number of patients in the

smallest subpopulation within the phenotype. Thus, when top x patients with the highest

expression of a given subnetwork are chosen, the selected patients are likely belonging to the

same subpopulation.

We study the e�ect of varying the parameter x on the performance of SPSNet, in terms of its

ability to distinguish between subpopulations based on subnetworks reported to be di�erentially

expressed. A PCA transform was applied to the SPSNet scores of di�erentially expressed

subnetworks, and a silhouette score was computed using the first three principal components as

features, and sample labels – phenotype x batch. Figure 4.10 shows the trend in this silhouette

score with gradual increase in the value of x.
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Figure 4.10: HCC merged dataset: E�ect of varying x (number of representative patients) in SPSNet on silhouette scores

From Figure 4.10, we see that silhouette score drops as the value of x increases from 5 to 15,

and remains stable thereafter. The dataset is likely to contain at least one small subpopulation

of 5–10 patients who are most similar to each other in terms of their biological mechanisms,

than with other patients. The subsequent stability in silhouette scores uptil x = 40 suggests

that size of the next smallest subpopulation is around 40 patients. It is interesting to note that

SPSNet is relatively robust to minor changes in the parameter x – therefore, the silhouette

score also remains fairly stable between the range 15-40.

4.5 Conclusion

Presence of undeclared heterogeneity in gene expression data hinders identification of subpopu-

lations present in the phenotype sample and the specific biological factors associated with them.

We presented a method, SPSNet, which discovers and analyzes such heterogeneity. As opposed

to previous approaches that derived gene-based signatures to identify potential subpopula-

tions within specific diseases, our method is a generic tool which provides subnetwork-based

signatures for subpopulations in any phenotype.

While many methods are available for di�erential expression analysis on homogeneous pheno-
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types, only a few produce consistent results over independent datasets containing the same

phenotypes, and none are designed to deal with potential heterogeneity in the data. PFSNet is

one method among the rare exceptions which results in consistent outcomes, but it is designed

to analyze only homogeneous phenotypes. We proposed SPSNet, a generalization of PFSNet,

which is able to solve an important problem – handling undeclared heterogeneity in gene

expression samples by identifying subnetworks associated with hidden subpopulations within

phenotypes. The approach also helps recognize and eliminate extrinsic heterogeneity such

as batch e�ects. We demonstrated that SPSNet has high sensitivity, low false-positive rate,

high reproducibility, and high biological coherence when analyzing gene expression data with

heterogeneity.

However, there is room for improvement in the design and performance of SPSNet. For

example, SPSNet could benefit from a better subnetwork generation scheme. Although

the current procedure for generating candidate subnetworks—selecting each gene and its

immediate neighbors in a pathway—is a simple way to account for connections between genes

in biological pathways, it is relatively naive and results in fragmented components of pathways.

Complementing the information in pathways with that extracted from gene expression datasets

could possibly lead to generation of subnetworks that are more cohesive and biologically

meaningful. Research is also necessary to further improve the sensitivity of SPSNet.
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Chapter 5
Analyzing heterogeneity in RNA-Seq data

“The price to sequence a base [of the human genome] has fallen 100 million times. That’s the

equivalent of you filling up your car with gas in 1998, waiting until 2011, and now you can

drive to Jupiter and back twice.”

– Richard Resnick

5.1 Background

With dramatic decline in the price of sequencing, RNA-Seq is becoming increasingly popular as

a means to discover novel transcripts and transcript-phenotype associations. Recent RNA-Seq

studies have been able to report genes which were previously unidentified in microarray datasets,

to have critical roles in disease mechanisms [JSFDK12, TGJ+12, SFUdR+15].Due to the

promise that the RNA-Seq technology holds in making new biological discoveries, normalization

and analysis of RNA-Seq data are topics of great research interest to computational biologists.

In this chapter, we describe some important di�erences between data generated on the

microarray and RNA-Seq platforms, which suggest that the methods for normalization and

analysis of microarray datasets may not necessarily generalize to RNA-Seq data. We then

present an illustrative case-study on RNA-Seq datasets which demonstrates the application of

our normalization and heterogeneity approaches in this context.
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5.1.1 Di�erences between microarray and RNA-Seq data

While microarrays and RNA-Seq share a common purpose of quantifying the transcriptome,

each technology has its own merits and drawbacks.

In RNA-Seq, the expression level of each RNA unit is quantified as the number of sequenced

fragments mapping to each transcript species [RKL+13]. Depending on the sequencing depth, a

target number of bases/reads is sequenced. When the sequencing depth is su�cient, RNA-Seq

has the advantage of capturing a broad dynamic range of expression measurements, and is not

limited to the discovery of a fixed set of transcript species. Weakly expressed genes and rare

transcript species can also be detected by increasing the sequencing depth.

However, a typical human RNA-Seq experiment sequences about 40-50 million paired-end

reads. This implies that on an average, every gene is covered approximately 100 times. Since

bulk RNA-seq sequences many cells, this can cover only a small fraction of the transcripts.

When the sequencing depth is insu�cient, the sequenced fragments may be mapped to a

random subset of transcripts, distorting the estimation of the actual gene expression. The

subsequent observed variations in RNA-Seq measurements are more likely due to stochastic

under-sampling than to biological variations.

It is also important to note that, when read counts in RNA-Seq are mapped to genes, they

contain an inherent length bias. In particular, more reads are mapped to longer genes, resulting

in higher read counts for these genes. Thus for within-sample comparison (i.e. whether a

given gene is more highly expressed than another gene in the same sample), raw count data

from RNA-Seq cannot be used, unless normalized with respect to transcript length. However,

for inter-sample comparison (i.e. whether this same given gene is more highly expressed in

this given tissue than another tissue), such normalization with respect to gene length is not

needed and can even be harmful [CMT+16].

In contrast, microarrays use a fixed set of probes, which are designed to have specific target

transcripts. Due to this specificity, probes do not generally compete with each other to bind
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to their target transcripts. Thus, the probability of a probe binding to its target transcript is

primarily determined by the abundance of the transcript, and the resulting probe intensities are

independent of each other. Since the transcripts are tagged with molecular markers, transcript

abundance can be precisely captured with imaging techniques that quantify the hybridized

probes.

Due to limited number of probes in microarrays, the range of transcripts whose expression can

be obtained is limited. However, unlike RNA-Seq platforms, microarrays are not a�ected by

fluctuations due to sampling stochasticity – the transcripts of di�erent genes do not compete

with each other for binding to a microarray as the microarray has dedicated probes for each

transcript species.

These and other technical di�erences necessitate that when generalizing methods developed for

analysing microarray datasets to RNA-Seq, the datasets as well as the methods be examined

properly for their specific characteristics.

5.1.2 Normalization of RNA-Seq data

RNA-Seq data is complex – it contains large di�erences in the number of reads produced

between di�erent sequencing runs, technical variation arising due to nucleotide compositions,

sequencing platforms, library preparation protocols, and so on [RKL+13]. Normalization of

such data is essential to make sample expression measurements comparable.

Mortazavi et al. [MWM+08] proposed a simple normalization technique in 2008, RPKM (Reads

Per Kilobase of transcript per Million mapped reads), in which gene counts are normalized by

the transcript length and the total number of mapped reads in each library. In 2010, Trapnell

et al. [TWP+10] presented a variation of RPKM to accommodate paired end reads, FPKM

(Fragments Per Kilobase of transcript per Million mapped reads). However, in both RPKM

and FPKM, changes in the expression levels of genes a�ect all others. Consequently, these

normalization methods are suitable only for within-sample comparison, but not for inter-sample
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comparison.

To illustrate this point, we consider the following example. Suppose in sample A, there are

5,000 expressed genes X

i

, each of length 2,000 bases, and each is expressed at a level of

2,000 transcripts. Suppose the RNA-seq budget is 10,000,000 reads (for simplicity, assume

also that each read covers an entire transcript). Then the RPKM is 100 for each gene X

i

in

sample A. Suppose in sample B, the same 5,000 genes X

i

are also expressed at a level of

2,000 transcripts, and an additional 5,000 genes Y

j

(each of length 2,000 bases) are expressed

at a level of 2,000 transcripts as well. Again, suppose the RNA-seq budget is 10,000,000

reads (and each read covers an entire transcript). Then, since the budget is insu�cient to

sequence every transcript in sample B, in the best-case scenario, exactly 1,000 transcripts of

each X

i

and Y

i

get sampled in the RNA-seq. Then the RPKM is 50 for each gene X

i

and Y

i

in sample B. If sample A and B are compared for di�erentially expressed genes, each X

i

will

be declared di�erential, along with each Y

i

. However, we know that each X

i

has exactly the

same expression level in sample A and B, viz. 2,000 transcripts in both samples. Thus, the

reported di�erential expression of X

i

is an artefact of wrong use of RPKM normalization.

A straightforward way to avoid this problem is to spike samples A and B with a constant

number of transcripts of a positive-control gene. By design, this gene is known to have exactly

the same expression level in samples A and B. Thus if it is reported at say RPKM = 100 in

sample A but at RPKM = 50 in sample B, we know that all RPKM levels reported for sample

B must be multiplied by a factor of 2 before we can compare samples A and B. Alternatively,

we need to pick some genes that are known to have similar actual expression levels in samples

A and B, and use them to determine the multiplicative factor needed. Housekeeping genes

might be good candidates for this purpose for comparison of non-cancer samples; however,

they might not suitable for cancer samples since many housekeeping genes are aberrantly

expressed in cancer cells.

Sometimes an RNA-Seq dataset is available only in RPKM- or FPKM- normalized form. In

such a situation, GFS may be suitable for rectifying the distortions induced by RPKM and
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FPKM normalization. In raw RNA-Seq data, the rank of genes based on read counts do

not correspond to the rank based on their actual gene expression level, since the former is

influenced by gene length. RPKM and FPKM normalize a sample with respect to transcript

length and sequencing depth. Thus, despite distorting actual gene expression values in a

sample, they also restore the relative rank of the genes in the sample with respect to actual

expression level. As GFS replaces the expression values in a sample by fuzzified ranks of these

values in that sample, it discards the RPKM- and FPKM-induced distortions and makes the

relative rank information more robust.

5.1.3 Concordance between RNA-Seq and microarray datasets

Concordance between datasets of the same phenotype generated on the microarray and RNA-

Seq platforms is a topic of popular research interest. The study by Wang et al. [WGB+14a]

reports that concordance between microarray and RNA-Seq depends on the degree to which

the underlying biological mechanisms in the given phenotypes are perturbed, after adjusting

for chance. RNA-Seq has greater sensitivity in detecting lowly expressed genes when the

sequencing depth is reasonable, and expression of genes which are only in RNA-Seq data

and not microarrays, show strong correlation with the degree of perturbation. Thus, the

performance of RNA-Seq is significantly better than that of microarrays when comparing groups

with similar phenotypes, such as progressive stages of a disease. Microarray and RNA-Seq

show similar performance when comparing groups with very di�erent phenotypes, such as

cancer and normal tissues [WGB+14b].

5.2 A case-study on Hepatocellular Carcinoma

In our case-study, we use the Hepatocellular Carcinoma (HCC) RNA-Seq dataset from The

Cancer Genome Atlas GDC portal [GHF+16]. The dataset contains 367 tumor samples and 48

adjacent non-tumor samples (without pairing information between the tumor and non-tumor

78



samples). We used count and FPKM values (as generated by HTSeq [APH15]) for our

experiments reported below for this dataset.

In conjunction, we also use two HCC datasets generated on microarrays:

• Dataset from Roessler et al. [RJB+10] (GSE14520) consisting of 246 tumor (predomi-

nantly HBV-positive) and 240 adjacent non-tumor samples

• Dataset from Burchard et al. [BZL+10] consisting of 268 tumor (predominantly HBV-

positive) and adjacent 249 non-tumor samples.

We perform three types of analysis with the three datasets. First, we examine whether GFS

is a suitable technique to normalize RNA-Seq count data, and explore its robustness across

di�erent ◊ parameters (quantile thresholds). Second, we test the concordance between the

microarray and RNA-Seq data by comparing subnetworks reported significantly di�erentially

expressed between HCC and control samples in both the platforms. Third, we merge RNA-Seq

data with the two microarray batches, and apply SPSNet to see if the underlying heterogeneity

of batches and phenotypes is discovered. In our second and third analysis, we use FPKM

values of our RNA-Seq dataset.

Note that, as we described in Section 5.1.2, it is potentially harmful to use FPKM values when

comparing gene expression across samples. However, since read count-based ranks in RNA-Seq

data do not correspond to ranks based on actual gene expression level, GFS should not be

applied to raw RNA-Seq data directly when analysing RNA-Seq and microarray data together.

Applying GFS to raw RNA-Seq data causes GFS to produce fuzzified ranks based on read

counts; these ranks are incompatible with ranks produced by applying GFS to microarray gene

expression data. Fortunately, normalizing RNA-Seq data by FPKM, followed by GFS makes

the processed data compatible with microarray data normalized by GFS. Thus, GFS can be

used for combining data produced by these two platforms.
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5.2.1 Normalization

Recall that, GFS involves two quantile thresholds – ◊1 and ◊2 – to assign a fuzzified score to

each gene in each patient. Ranks below ◊2 are all reduced to a score of zero, those above ◊1

are given a score of 1, and intermediate ranks are interpolated to obtain a score between 0

and 1. In the case of the microarray datasets that we analysed (presented in Chapter 3), we

found that the performance of GFS is robust against changes in the upper and lower quantile

thresholds, when they are varied within specific ranges – i.e. silhouette scores with respect to

the underlying phenotypes remain stable across ◊1 and ◊2 values. In the following experiment,

we similarly test the robustness of GFS on our HCC RNA-Seq dataset against changes in the

quantile thresholds ◊1, ◊2 and discuss the findings in the context of sampling stochasticity.

For a given ◊1, ◊2 combination,

1. Apply GFS to the RNA-Seq count matrix, and microarray gene expression matrices

2. Apply PCA transform to the GFS-transformed matrices

3. Compute silhouette scores for each of the first 5 principle components, given the sample

phenotype labels.

4. Select the maximum of the silhouette scores obtained in 3.

Fig 5.1 shows heatmaps of the resultant silhouette scores for di�erent ◊1, ◊2 combinations, for

the RNA-Seq dataset, and the two microarray batches. Separate heatmaps are generated for

higher and lower ◊2 ranges.
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(a) HCC Microarray (Roessler et al.): High ◊2 cuto� range (b) HCC Microarray (Roessler et al.): Low ◊2 cuto� range

(c) HCC Microarray (Burchard et al.): High ◊2 cuto� range (d) HCC Microarray (Burchard et al.): Low ◊2 cuto� range

(e) HCC RNA-Seq (counts): High ◊2 cuto� range (f) HCC RNA-Seq (counts): Low ◊2 cuto� range

Figure 5.1: Silhouette scores on applying GFS with varying ◊1, ◊2 thresholds on HCC datasets – RNA-Seq and Microarray

The following observations can be made with regard to the heatmaps:
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• For microarrays, the silhouette scores show only a small di�erence across the di�erent ◊

ranges (Fig. 5.1 (a), (b), (c), (d)), and are thus relatively robust against changes in ◊1

and ◊2.

• For RNA-Seq expression data, we found that accounting for the highest and lowest

expressed genes leads to deterioration in the silhouette score. We suspect that this is

due to the e�ect of sampling stochasticity.

Note that the number of genes whose expression is measured in the RNA-Seq and microarray

datasets is not the same. Therefore, we repeat the above experiment, restricting the analysis to

genes common between RNA-Seq and microarray (Figure 5.2). This results in lower silhouette

scores than accounting for all the expressed genes in the data, but the scores are more robust

against changes in ◊1 and ◊2. This rea�rms the understanding that the broader dynamic range

of expression in RNA-Seq data comes at the cost of increased stochasticity.

(a) HCC RNA-Seq: High ◊2 cuto� range (b) HCC RNA-Seq: Low ◊2 cuto� range

Figure 5.2: Silhouette scores obtained by applying GFS with varying ◊1, ◊2 thresholds on RNA-Seq HCC data restricted to genes
common between microarrays and RNA-Seq

A model for sampling stochasticity in RNA-Seq data

To understand the nature of this observed stochasticity in RNA-Seq data, we appeal to the

following Bernoulli trial model. This model is based on the assumption that RNA-Seq only

samples a subset of transcripts, and that the transcripts have to (fairly) compete with each
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other to get sequenced. To explain our model, we first describe a simpler setting that represents

a fixed number of sequenced reads being mapped to two competing transcripts.

An analogous setting to emulate sampling stochasticity – ‘the red-ball model’

A box (B1) contains 300 red balls and 700 blue balls (300 and 700 transcripts of competing

transcript species). If a ball is drawn out (transcript is sequenced), there is a probability

p = 0.3 that the ball is red (read is mapped to the less abundant transcript species), and

a probability q = 0.7 that the ball is blue (read is mapped to the more abundant transcript

species). If 10 balls are drawn (only a limited total number of transcripts can be sequenced),

the expected number of red and blue balls are 3 and 7 respectively. This is true if the number

of times we make the 10-ball draw is very large, and if the numbers of red and blue balls

observed in each draw are averaged. However, if only a single draw of 10 balls is made, what

is the probability that r red balls are drawn? Equivalently, given a fixed number of total reads,

what is the probability of a given count value being assigned to one of the transcripts?

Computing probabilities of events in the sample space

When 10 balls are drawn, the possible outcomes include: 0 red balls (10 blue balls), 1 red

ball (9 blue balls), ... , 10 red balls (and 0 blue balls). The probability of the 10-ball draw

containing r red balls is given by:

P [num_red_balls = r] =
A

10
r

B

◊ 0.3r ◊ 0.710≠r (5.1)

Figure 5.3 (a) shows the probabilities of all possible events when 10 balls are drawn from the

box B1. Note that the expected number of red balls is 3, and the probability that the number

of red balls in the 10-ball draw is 3 or 3 ± 1 is given by the region colored green in Fig. 5.3 (a).
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(a) A draw of 10 balls from 300 red and 700 blue balls (b) A draw of 10 balls from 700 red and 300 blue balls

(c) A draw of 10 balls from 100 red and 900 blue balls (d) A draw of 10 balls from 900 red and 100 blue balls

Figure 5.3: Probability distribution of choosing r red balls in a 10-ball draw taken from a set of balls in a box

In the transcript mapping scenario, the area of this region indicates the probability of a

transcript species being assigned a read count value, which precisely (±1) represents its actual

abundance. The greater the area of the shaded region, the more likely it is to get precise

measurement of the transcript species’ abundance.

On the other hand, if a box B

Õ
1 contains 700 red balls and 300 blue balls, then the probabilities

of possible events when 10 balls are drawn from B

Õ
1 are shown in Figure 5.3 (b). The area of

the green shaded region (area = 0.484 units) is equal in 5.3 (a) and (b). This is expected due

to a symmetry in the binomial distribution used in the red-ball model;, the e�ect of sampling

stochasticity is the same on the high and low expressed transcript species.
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Next, we change the red-to-blue ball ratio (transcript abundance ratio), and plot the probabilities

of getting r red balls in the 10-ball draw (Figure 5.3(c),(d)). The area of the green shaded

region in both the cases is 0.659 units. This leads us to another interesting observation:

the more skewed the abundance ratio of competing transcripts, the more likely it is that the

assigned counts to the transcript species are precise.

Thus, the red-ball model provides important and interesting insights regarding the nature of

sampling stochasticity. However, it is a rough representation of the actual scenario, since it

overlooks that a transcript is not sequenced in one shot but in pieces. For a more accurate

model, transcript species can be divided into segments of 1,000 bases each, where each

segment h has a read count n

h

that follows the same red-ball model above. If m is the read

count total over all segments over all transcripts, then each n

h

/m is an estimate for p (the

relative abundance of the transcript species among all transcript species). By the central limit

theorem, these n

h

/m are normally distributed, and taking the average of these results in the

expected value for p, with a variance proportional to the inverse of the number of segments

that the transcript species has. Thus, the longer the gene, the more segments there are, and

the more accurate this expected value for p is.

Note that m ◊ p/106 equals the RPKM for this transcript species, from which the TPM

[WKL12] can be computed (TPM is the RPKM for this transcript species divided by the

sum of RPKM of all transcript species in the sample, multiplied by a million). Due to this

equivalence, the TPM measure also has a variance proportional to the inverse of the number

of segments the transcript species has (i.e. its length).

In short, shorter transcript species more strongly exhibit the stochasticity described by the

red-ball model, while measures like RPKM, FPKM, TPM mitigate long transcript species

against this stochasticity.
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Discretized-GFS

To attenuate the e�ect of sampling stochasticity on RNA-Seq gene expression, we propose the

use of discretized-GFS (D-GFS), as introduced in the work of Goh and Wong [GW16a] for

normalizing proteomics data. In D-GFS, gene ranks are interpolated into discrete bins, instead

of a continuous interval, thus, irrelevant variation is reduced. A formal description of D-GFS

(with 4 bins) is as follows:

Let r(g
i

, p

j

) be the rank of gene expression of a gene g

i

in tissue p

j

, and q(p
j

, ◊) be the rank

corresponding to the upper ◊th quantile of gene expression in tissue p

j

. Also, let ◊1 and ◊2 be

the upper and lower quantile thresholds respectively (as in GFS), and �◊ = ◊2 ≠ ◊1. Then,

the D-GFS score ds(g
i

, p

j

) assigned to a gene g

i

in tissue p

j

is given by the following function:

ds(g
i

, p

j

) =

Y
______________________]

______________________[

1, if q(p
j

, ◊1) Æ r(g
i

, p

j

)

0.8, if q(p
j

, ◊1) > r(g
i

, p

j

) Ø q(p
j

, ◊2 ≠ 3◊�◊

4 )

0.6, if q(p
j

, ◊2 ≠ 3◊�◊

4 ) > r(g
i

, p

j

) Ø q(p
j

, ◊2 ≠ 2◊�◊

4 )

0.4, if q(p
j
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4 ) > r(g
i

, p

j

) Ø q(p
j

, ◊2 ≠ �◊

4 )

0.2, if q(p
j

, ◊2 ≠ �◊

4 ) > r(g
i

, p

j

) Ø q(p
j

, ◊2)

0, otherwise

(5.2)

Silhouette scores obtained after applying D-GFS normalization on the RNA-Seq dataset are

shown in the heatmaps in Fig. 5.4.

We observe that D-GFS captures more meaningful variation in the data, and is more robust

than GFS against variation in the quantile thresholds – the silhouette scores with respect

to the normal and HCC phenotypes are both higher and more stable (Fig 5.1 (f), 5.4 (b)).

This is more easily observed in the heatmaps depicting lower expression ranges in which the

1 ≠ ◊2 value was varied across a wide range (0.05 – 0.65). This suggests that introducing

discretization in the GFS methodology helps in reversing the adverse impact of sampling

stochasticity.
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(a) HCC RNA-Seq: High ◊2 cuto� range (with discretization) (b) HCC RNA-Seq: Low ◊2 cuto� range (with discretization)

Figure 5.4: Silhouette scores on applying discretized GFS with varying ◊1, ◊2 thresholds on HCC datasets – RNA-Seq

We note that even after applying D-GFS, the silhouette scores obtained on RNA-Seq data do

not compare favorably with those obtained on the microarray data. This di�erence could be

attributed to three reasons. First, the RNA-Seq dataset is potentially more heterogeneous than

the microarray datasets, which are reported to be predominantly HBV-positive. Second, in the

case of RNA-Seq, the ratio of tumor and non-tumor samples is more imbalanced, which likely

weakens the di�erential signal between the normal and HCC phenotypes. Third, the di�erence

could be caused by some anomaly in the silhouette score (described in the next section).

5.2.2 Concordance across platforms, and the curious case of silhou-

ette scores

It is also interesting to study the concordance between the HCC microarray datasets and

RNA-Seq dataset. For this, we verify whether the subnetworks significantly di�erentially

expressed (as reported by PFSNet and SPSNet) in microarrays are also able to di�erentiate

between the HCC tumor and adjacent non-tumor samples in RNA-Seq data. In the analysis

below, we present our encounter of a particular scenario, that is an instructive example on the

meaning and interpretation of silhouette scores.
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The procedure for our analysis is described below:

1. Merge the two microarray datasets, and run PFSNet/SPSNet on the new dataset

comparing HCC tumor and adjacent normal samples. (Although we use both PFSNet

and SPSNet for this analysis, we expect PFSNet to perform better as it should be unable

to detect and report subnetworks that capture heterogeneity arising from batch e�ects

due to merging of the two microarray datasets.).

PFSNet: 12 subnets consisting of 124 genes and belonging to 4 di�erent pathways (Jak

Stat Signaling, Wnt Signaling, Pentose Phosphate Pathway, Proteosome Degradation)

were reported significant by PFSNet on this microarray data.

SPSNet: 31 subnets consisting of 245 genes and belonging to 13 di�erent pathways

were reported significant by SPSNet on the microarray data. The 12 subnets reported

by PFSNet are a subset of the 31 subnets reported by SPSNet.

2. Run PFSNet/SPSNet comparing HCC tumor and adjacent normal samples in the RNA-

Seq dataset. In this run, use subnetworks reported significant by PFSNet/SPSNet on

microarray as input subnetworks to be tested for significance on the RNA-Seq dataset.

PFSNet: Of the 12 subnets provided, PFSNet reported 4 sigificant subnets in this

run. These subnetworks consisted of 86 genes and belonged to 2 pathways – Jak Stat

Signaling and Proteosome Degradation.

SPSNet: Of the 31 subnets provided, SPSNet reported 22 sigificant subnets in this run.

The significant subnetworks consisted of 220 genes, and belonged to 11 pathways. The

4 subnets reported by PFSNet are included within the 22 subnets reported by SPSNet.

3. Apply PCA transformation to PFSNet/SPSNet scores of subnetworks reported significant

in run 2, and generate scatter plots to visualize PC scores.

4. Compute silhouette scores to quantify the extent to which same phenotype samples have

been clustered together.
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(a) PFSNet: PC 1, PC 2 (b) SPSNet: PC 1, PC 2

(c) PFSNet: PC 1, PC 3 (d) SPSNet: PC 1, PC 3

(e) PFSNet: PC 2, PC 3 (f) SPSNet: PC 2, PC 3

Figure 5.5: Using subnetworks reported significant by PFSNet on microarray to compare control and HCC samples generated
on RNA-Seq platform

Fig 5.5 shows that the 4 subnetworks selected by PFSNet are successful in separating the HCC
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and control phenotypes. However, it is interesting to note that the scatter plots show that even

though the plots corresponding to (PC 1, PC 2) and (PC 2, PC 3) both show good separation

between the control and HCC samples, the silhouette score corresponding to (PC 1, PC 2)

is extremely low: -0.04. This shows an anomaly associated with silhouette scores, possibly

arising due to high and unbalanced dispersion. The silhouette score is calculated based on

the mean intra-cluster distance a and the mean nearest-cluster distance b for each patient, as

(b ≠ a)/max(a, b) [Rou87]. Here, b is the distance between a sample and the nearest cluster

(amongst clusters excluding the one to which the sample belongs). Thus, for data with high

dispersion, the mean intra-cluster distance (a) would be a large number, often greater than

the mean nearest cluster distance (b), resulting in an overall negative value.

The above analysis was carried out in the setting ◊1 = 5% and ◊2 = 15% in all runs of PFSNet

and SPSNet. While selecting other values of ◊1 and ◊2 for PFSNet/SPSNet runs on microarray

and RNA-Seq datasets may result in a better separation between the tumor and non-tumor

samples, we intentionally present the above scenario, because it serves as a cautionary example

against the misinterpretation of silhouette scores.

(a) PFSNet (b) SPSNet

Figure 5.6: Variation in kNN score based on first three principle components with varying k

To address the anomaly, we propose a new way of assessing the separation of samples into
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clusters. Our method relies on kNN score, a metric we define as the proportion of samples

whose actual label matches the labels of a majority (> 50%) of its k nearest neighbors. Figure

5.6 shows the kNN scores obtained using di�erent combinations of the first three principle

components based on scores of significant subnets reported by PFSNet. Only odd k’s were

chosen to perform this experiment in order to avoid the issue of having no majority label.

From the pattern, it can be inferred that the combinations (PC 1, PC 2) and (PC 2, PC 3)

result in good clustering of the phenotypes, as they remain stable at a high kNN score even

with increasing k, whereas the kNN score corresponding to the combination (PC 1, PC 3)

continues to decrease with increasing k, although it starts o� at a high score. Interestingly,

this matches with the observation from the PCA scatter plot for (PC 1, PC 3) – although the

control samples are clustered together, they are surrounded by HCC samples and not separated

from them. This example demonstrates the potential of the kNN score metric for analyzing

clustering e�ectiveness where silhouette score is not a reasonable metric due to high data

dispersion.

Further, it is possible to report kNN scores adjusted for chance. The adjusted scores can be

computed by permuting the class labels to get a null distribution of kNN scores, so that we

could obtain (a) a p-value for the kNN score; and/or (b) an expected value of the kNN score

which can be used to compute adjusted kNN scores as:

adjusted_kNN_score = (observed_kNN_score ≠ E[kNN_score])
(1 ≠ E[kNN_score]) . (5.3)

5.2.3 Integrative analysis of multi-platform data

In our final analysis in the case-study, we perform a meta-analysis of our multi-platform HCC

dataset using SPSNet. The procedure for our analysis is as below:

1. Normalize the microarray HCC datasets independently using GFS, and the RNA-Seq

dataset using D-GFS with appropriate quantile thresholds. Based on Figure 5.4, we
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chose thresholds around which the performance of GFS does not change considerably:

for microarrays, ◊1 = 5%, ◊2 = 15%; for RNA-Seq, ◊1 = 15%, ◊2 = 35%.

2. Merge the RNA-Seq dataset [GHF+16] and two microarray datasets [RJB+10, BZL+10]

(on common genes) to prepare the multi-platform dataset.

3. Run SPSNet, sans its GFS preprocessing step, to compare HCC tumor and adjacent

control samples in the merged dataset.

4. List the genes belonging to the subnetworks reported significant by SPSNet in step 3.

5. Create a feature matrix of GFS values (from step 1) of genes listed in step 4.

6. Apply a PCA transform and generate scatter plots of the principle component scores.

7. Compute kNN scores to quantify the extent to which same phenotype, same batch

samples have been clustered together.

From Fig. 5.7 (a-c), it can be seen that the genes from significant subnetworks in SPSNet are

able to identify three levels of heterogeneity in the data – platforms, microarray batches, and

phenotypes. Particularly, PC 1 and PC 2 are both able to separate platforms and microarray

batches, and the sign of PC 1 indicates whether the platform is microarray (negative) or

RNA-Seq (positive). From Fig. 5.7 (d), the disease e�ect is concentrated in PC 3. Also, PC

3 is relatively free from platform/batch e�ects. This illustrates the potential of SPSNet in

systematically uncovering heterogeneity in a meta-analysis of multi-platform datasets.
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(a) SPSNet: PC 1, PC 2 (b) SPSNet: PC 1, PC 3

(c) SPSNet: PC 2, PC 3 (d) SPSNet: PC 3

Figure 5.7: (a-c) PCA scatter plots of GFS transformed expression of genes belonging to significant subnetworks reported
by SPSNet on a multi-platform gene expression dataset on containing control and HCC samples generated with 2 batches of
microarray data and 1 batch of RNA-Seq data (d) Swarmplot of PC 3 showing normal and HCC samples across all datasets

5.3 Conclusion

Data generated from RNA-Seq platforms and microarrays have fundamental di�erences. RNA-

Seq measures expression across a broader range than microarrays. However, when sequencing

depth is insu�cient, RNA-Seq is subject to sampling stochasticity. This means that the

abundance of some transcripts is inaccurately represented in RNA-Seq, because the sequencer

generates a limited number of total reads that sometimes result in a non-uniform sampling of

transcripts across the transcriptome. Thus, when analyzing RNA-Seq data using methods that

93



are originally designed for and tested on microarray samples, consideration of these di�erences

becomes critical.

We also note that RNA-Seq data that is normalized by RPKM or FPKM should be interpreted

with caution. These methods normalize read counts by million mapped reads before normalizing

by gene length. Therefore, while they are suitable for comparing genes within a given sample,

they also tend to induce distortions in the relative expression levels of a gene across samples.

In this chapter, we presented a case-study on a Hepatocellular Carcinoma RNA-Seq dataset

and two HCC microarray datasets. In our discussion of the analysis of these datasets, we (a)

demonstrated the potential of our methods for normalization and heterogeneity analysis – GFS

and SPSNet – to analyze RNA-Seq datasets, and (b) highlighted some critical points regarding

the application of these methods on RNA-Seq data.

First, we observed that the stability of RNA-Seq data is adversely a�ected by sampling

stochasticity. We proposed a model to explain this stochasticity based on the assumption that

only a limited portion of the transcriptome is sequenced by RNA-Seq, and there is competition

amongst transcripts to be sequenced. To attenuate the e�ect of this imprecision in RNA-Seq

data, we propose the use of discretized-GFS (D-GFS). In D-GFS, gene ranks within a certain

range are interpolated into discrete bins, instead of a continuous interval, and thus, confounding

e�ects due to stochasticity are reduced.

Second, we found that the concordance between the HCC microarray and RNA-Seq datasets is

high, with respect to the features distinguishing tumor samples from adjacent normal samples,

as reported by PFSNet/SPSNet. Interestingly, in our analysis, we noticed an anomalous

behavior of silhouette scores – their quantification of the extent of clustering is inaccurate

when data dispersion is high. Therefore, we described a method using the kNN score metric

(the number of samples whose label matches with majority of their k nearest neighbors) for a

more accurate quantitative assessment of clustering. Visualizing kNN scores across a series

of odd k values in an increasing order provides an easy-to-compute, e�ective substitute for

silhouette score in scenarios where data-dispersion is high.
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Finally, we observed that SPSNet is able to discover and isolate heterogeneity at the level of

platform, batch, and phenotype, in a multi-platform analysis of merged dataset containing

microarray and RNA-Seq HCC datasets. This is suggestive of its potential use in performing

multi-platform meta-analysis of gene expression datasets.
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Chapter 6
Conclusion

"It’s more fun to arrive at the conclusion than to justify it."

– Malcolm Forbes

In this thesis, we discussed our research work in three parts – preprocessing expression data,

analyzing expression to uncover undeclared heterogeneity, and generalizing the heterogeneity

analysis across platforms. Below, we provide a summary of our contributions, and discuss

potential directions for future work.

6.1 Summary

6.1.1 Role of preprocessing in gene expression analysis

Despite the critical impact of normalization on downstream gene expression analysis, popular

techniques often fail to enhance the quality of expression data. We proposed a technique

– Gene Fuzzy Scores (GFS) – a simple rank-based normalization technique that e�ectively

retains important sources of variation while removing obscuring noise. Using publicly available

datasets, we compared our approach against three other popular normalization methods –

mean-scaling, quantile normalization, and z-score normalization – with respect to the quality,

consistency, and biological coherence of the normalized output. The performance of GFS is
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equal to or better than the selected methods in all the three respects. Moreover, we illustrated

that as sample size increases, the performance of GFS improves further.

6.1.2 Di�erential gene expression analysis of heterogeneous pheno-

types

From batch e�ects to disease subtypes, heterogeneity has been gathering a lot of attention in

many di�erent contexts, in the past decade. However, this heterogeneity in gene expression

datasets is seldom understood or classified in advance. To our knowledge, there are no

network-based approaches at present to systematically analyze such undeclared heterogeneity.

Therefore, we proposed SPSNet, a generalization of PFSNet, which handles undeclared

heterogeneity in gene expression samples by identifying subnetworks associated with hidden

subpopulations within phenotypes. We demonstrated that SPSNet shows low false-positive

rate, high reproducibility, and high sensitivity in analyzing expression data with undeclared

heterogeneity.

6.1.3 Analysis of RNA-Seq datasets

RNA-Seq measures expression across a broader range than microarrays, but is subject to

sampling stochasticity when sequencing depth is insu�cient. Consideration of this factor

is important to ensure reliable analysis of RNA-Seq datasets. We presented a case-study

demonstrating the potential of our methods for normalization and heterogeneity analysis – GFS

and SPSNet – to analyze RNA-Seq datasets. We presented a Bernoulli trial-based model to

explain sampling stochasticity and proposed the use of discretized-GFS (D-GFS) to attenuate

the stochasticity e�ect. We also proposed a method using a kNN-score metric, which we define

as the number of samples whose label matches with majority of their k nearest neighbors as

an e�ective substitute for silhouette scores, which show anomalous behavior when dispersion

in the underlying data is high. We also demonstrated the potential of SPSNet in performing
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multi-platform meta-analysis of gene expression datasets.

6.2 Future work

6.2.1 Improving the design and performance of SPSNet

It would be interesting to explore ways to improve the design and performance of SPSNet. A

few important questions in this direction are:

• The current scheme of generating candidate subnetworks for SPSNet is simplistic, and

is independent of the gene expression data being analyzed. How can it be improved?

• Can we improve the way SPSNet picks reference subsamples to represent potential

subpopulations? Given a reference subsample, is it possible to identify the entire

subpopulation?

• The SPSNet scores of candidate subnetworks are tested for significance using the

theoretical t-distribution, which may not be a universally appropriate null distribution.

How can better null distributions be designed to replace this?

• How can the homogeneity of reference subsamples picked by SPSNet be evaluated in

the absence of actual subtype labels? Is it possible to e.g. infer this homogeneity by

drawing a PCA scatterplot of the SPSNet scores of these subsamples and assessing the

degree of their clustering?

In addition, SPSNet features could be used to perform clustering for subpopulation prediction

within phenotypes, and to build classifiers for predicting subpopulations in new data.
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6.2.2 Heterogeneity analysis of paired gene expression data

There are many scenarios where samples in heterogeneous datasets are paired – tumor tissues

before and after treatment, developmental stages of cells through di�erent time points,

analysis of the same samples on independent platforms, etc. Currently, SPSNet analyzes the

heterogeneity within two potentially heterogeneous samples, and does not consider any pairing

information between tissues. Incorporating the ability to analyze paired data in the SPSNet

methodology would further increase its utility.

6.2.3 Generalized model of sampling stochasticity in RNA-Seq data

We proposed a Bernoulli trial model using two transcripts competing to be sequenced, and show

interesting insights regarding the e�ect of sampling stochasticity in RNA-Seq data. However, it

is possible to extend the current model using the generalized Bernoulli distribution to account

for multiple competing transcripts. It would be interesting to see if the extension captures

sampling stochasticity in a more realistic manner.
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