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Summary

In 1953, James Watson and Francis Crick discovered the structure of DNA. This

eventually led to the Human Genome Project, which was completed in 2003. The post-

genomic era opens up exciting possibilities, along with grand challenges to overcome.

One of which is to build a mathematical model of the whole cell.

The first part of this thesis focuses on building efficient and practical tools for model

calibration and validation that are scalable to handle models of massive sizes. We built

two powerful and easy-to-use software (DA and MIRACH) for estimating parameters’

distribution of a given biological system and testing whether certain given properties

are satisfied by a given biological system. We then combined the technology of these

two software to design a framework that allows us to perform parameter estimation,

even when time series data are not available, by using known biological properties and

model checking.

In building these tools, we utilized state-of-the-art hypothesis testing algorithms,

which are necessary for interpreting the stochastic output of biological systems, and

discovered that they came with practical limitations. This leads us to the second part

of the thesis, where we developed algorithms to overcome these limitations. Specifically,

we developed two novel algorithms for sequential hypothesis testing that are compu-

tationally faster and more memory efficient. In addition, by integrating sequential

hypothesis testing algorithms with bagging, we developed a new powerful algorithm

which we named dynamic bagging. This algorithm supersedes standard bagging by

having all the benefits of standard bagging but is more efficient and removes the need

to arbitrarily fix a priori the number of bootstrap replicates. We first used dynamic

bagging in gene expression profile analysis to overcome batch effects that have plagued

many gene expression analysis projects. We then went on to show that its usefulness is

not limited to any problem domain. We also show that predictions from dynamic bag-

ging is consistent to standard bagging with much larger number of bootstrap replicates.

Finally, we offered an alternative and more direct explanation of bagging’s effectiveness

than the classical explanation based on bias-variance decomposition.

vi
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Part I

It’s a Noisy World
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Chapter 1

Introduction

1.1 Context and Motivation

“To understand complex biological systems requires the integration of experimental

and computational research—in other words, a systems biology approach” (Kitano,

2002). The major reason for the increasing interest in systems biology can be cred-

ited to technological advancements in molecular biology such as genome sequencing and

high-throughput measurements. These technological advancements have enabled quan-

titative data to be obtained at a system level. Using these information, mathematical

models of the biological system that is under investigation can be built.

There are a variety of reasons why the mathematical model of a biological system

under study should be built (Kell, 2006). 1) Using experimental facts to validate the

model built from the knowledge of the workings of the biological system, the accuracy

of that very knowledge can be reaffirmed. 2) By analyzing the model, the parts that

contribute most to the properties of interest can be identified. 3) Using the in-silico

model, the effects of manipulating experiments can be predicted rapidly. 4) With an

in-silico model, it is easier to design the next experiment that can gain the most insight

into the biological system. Currently, the building of mathematical models is not part

2
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of a biologist’s protocol, but it is widely postulated that it will become mandatory in

the years to come (Kitano, 2002; Kell, 2006).

There are a series of steps involved in building a mathematical model; viz., construc-

tion, verification, calibration and validation (Aldridge et al., 2006). Model construction

is the step where the network of the model is being drawn. This step is typically done

manually, based on prior knowledge from various databases such as Kyoto Encyclope-

dia of Genes and Genomes (Kanehisa et al., 2002), Reactome (Vastrik et al., 2007),

WikiPathways (Pico et al., 2008), etc. Naturally, this process becomes more cum-

bersome and error-prone as model complexity and size increases. The second step is

model verification, which is to ensure that the model is accurately translated from prior

knowledge and that the underlying structure is reasonable. This step is required as the

model construction step is prone to errors. Furthermore, it is also possible that prior

knowledge from various databases may contain structurally illogical errors. The main

purpose of model verification is to ensure that the model is structurally logical and

reasonable. Model calibration is the process of estimating the parameter values of the

model so that it fits experimental data. This involves solving an inverse problem and is

known to be ill-conditioned and multimodal (Moles et al., 2003). After model calibra-

tion, a model is supposed to be simulate-able, as parameters of the model would have

been filled. The final step in building a mathematical model is model validation. In

this step, the model is simulated and evaluated to ensure that it satisfies some known

constraints or properties that the biological system exhibits.

This thesis is split into two main parts. In the first part of this thesis, we seek to

contribute to the last two important and challenging steps, that is, model calibration

and model validation. In the process, we discovered inefficiencies and flaws in current

state-of-the-art algorithms in interpreting stochastic results. This leads us to the second

part of this thesis, where we developed new algorithms to overcome these limitations

and successfully applied these algorithms, not only to systems biology, but also to solve
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problems from a seemingly unrelated area. We further showed that these algorithms

are not restricted to any problem domain.

1.2 Our Philosophy and Contributions

In the classical view of biology, noise has a negative connotation associated with it.

Therefore, one would often attempt to remove “noise” from data using various sta-

tistical methods before any downstream analysis. There are generally two types of

noise in data; viz., observation noise and system noise. While observation noise is

due to experimental and/or measurement error, system noise is inherently part of a

biological system. “All cell components display intrinsic noise due to random births

and deaths of individual molecules and extrinsic noise due to fluctuations in reaction

rates” (Paulsson, 2004). Unfortunately, distinguishing observation noise from cell vari-

ation is a daunting task, and meaningful cell variation would be inadvertently removed

whenever one attempts to eliminate “noise”.

Therefore, the philosophy that is undertaken throughout this thesis is acknowledg-

ing that noise is inherent in biological systems and, embracing it. The first part of the

thesis acknowledges noise and, in the second part of the thesis, we develop approaches

to embrace it. More specifically, by embracing noise, we meant to accept that noise is

an inherent and important part of biological systems. Therefore, instead of trying to

measure and remove them. We use alternative ways to reduce and suppress them.

In typical parameter estimation, an exact value is estimated for each parameter.

However, we acknowledge that noise is inherent, and use approaches that estimate a

distribution value for each parameter instead (Chapter 2). A distribution is often a

better reflection of reality than an exact value (Pilpel, 2011). Model checking is an

essential process of understanding a biological system if one acknowledges that bio-

logical systems are noisy and produce stochastic outputs (Chapter 3). Acknowledging

that experimental data are often noisy as well, we built a framework which uses model
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checking to perform parameter estimation (Chapter 4).

We take into considerations two main ways of embracing noise. The first is when

determining whether the value of a biological entity is above or below a threshold;

instead of estimating its exact value and comparing that to the threshold, we estimate

a distribution of that value and see whether it is likely to be above or below the

threshold according to that distribution (Chapter 5). The second way is, instead of

carefully determining the noise and eliminating it from the set of samples, we use

bootstrap re-sampling from the training set to produce many bags of samples that are

enriched with less noisy samples. The intuition is that, and we formally prove this in

Chapter 7, so long as there are more bags that are enriched with less noisy samples

than those that are not, any analysis based on observations from a majority of the bags

is likely to be more heavily influenced by the less noisy samples, even though we do

not know which bags are enriched with less noisy samples.

There is a common thread that runs through the two ways of embracing noise

mentioned above. To determine whether the value of a biological entity is likely to be

above or below a threshold, we need to sample the biological entity several times. To

ensure that enough bags of bootstrapped samples are enriched with less noisy samples,

we need to produce the bags many times. An obvious question in these situations

is: how many times is enough? We use sequential hypothesis testing algorithms as

a unifying approach to address this question. In particular, we invented two novel

algorithms for sequential hypothesis testing that are computationally fast, memory

efficient, and provably correct (Chapter 5). By integrating sequential hypothesis testing

algorithms and bagging, which we named dynamic bagging, we showed how it can be

used to embrace batch effects in gene expression profile analysis that have plagued

many gene expression analysis projects (Chapter 6). We further show that dynamic

bagging is not restricted to only biological problems (Chapter 7).

In the following subsections, we give an overview of each chapter in this thesis.
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1.2.1 Parameters’ Distribution Estimation

A huge amount of effort has already been invested in the important yet difficult process

of model calibration (Moles et al., 2003; Rodriguez-Fernandez et al., 2006; Balsa-Canto

et al., 2008; Nagasaki et al., 2006). However, most parameter estimation algorithms aim

to estimate a single best parameter value that could best fit the given data. This ignores

the robustness of biological systems and inaccuracies of experimental data. In accord

with the philosophy of this thesis, we believe that variation is inherent in biological

systems and embracing it is a better way towards understanding them. As such, it

is more appropriate to do parameter’s distribution estimation rather than parameter

value estimation. Hence, we have built a pragmatic parameter estimation software

(DA 1.0) that is based on data assimilation. Particle filtering—the underlying method

used—is a well-established statistical method that approximates the joint posterior

distributions of parameters by using sequentially generated Monte Carlo samples.

In addition, this software is able to overcome practical limitations in parameter

estimation such as the lack of good quality time series data and limited computational

resources. To overcome the problem of limited experimental observed time-points due

to current experimental techniques and/or project funding, DA 1.0 is built with an

ability to increase the number of time-points by means of smoothing and re-sampling via

its intuitive graphical user interface. Another important factor that affects estimation

accuracy is the seed size (number of particles) with respect to the search space (number

of parameters to estimate x range of each parameter). However, setting a large seed

size requires huge run-time memory which is often limited. Interestingly, the very

nature of parameter distribution estimation can be used to elegantly work around this.

Instead of having a large seed size, we could instead have multiple subsequent runs of

medium seed size with parameters’ range for each new run adjusted by the distribution

estimation of the previous run. This would gradually reduce the search space and

therefore increases the coverage.
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We believe this tool would be as helpful to anyone who needs to perform parameter

estimation as it is for us.

1.2.2 Efficient Model Checking

Another step that is gaining attention of late is the model validation process where

the model’s behavior is checked to ensure that it conforms to a set of given properties.

The automated validation process is becoming increasingly important as larger and

more complex biological pathways are being modeled, which renders manual validation

tedious if not impossible. Current works in this area are still immature, as they either

waste resources (offline-based), is limited to a restricted class of models, or do not

provide reliable results (Troncale et al., 2007; Donaldson and Gilbert, 2008b; Fages

and Rizk, 2007; Clarke et al., 2008; Heiner et al., 2009; Batt et al., 2005) .

To this end, we have developed a program (MIRACH 1.0) which incorporates algo-

rithms (Younes, 2006; Younes et al., 2006) that always produces reliable (statistically

backed) results and deploys a more efficient online (on-the-fly) model checking imple-

mentation. We have shown that the amount of time saved by using MIRACH 1.0 easily

surpasses 400% compared to its offline-based counterparts. In addition, MIRACH 1.0

is able to support any model written in the widely used SBML or CSML formats.

In the next subsection, we show how an efficient model checker is more than merely

saving time.

1.2.3 Estimate Parameters using Model Checker

Typical parameter estimation algorithm requires time series data in order to perform

parameter estimation. However, in reality, the availability, quality and frequency of

these time series data are poor due to limitations, in experimental techniques and/or

project funding. This would severely degrade the performance of most of these algo-

rithms.
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To overcome this dependence, we developed a computational framework that is able

to do parameter estimation without the use of time series data. Given a pathway model

and a set of biological properties, we use a model checker to determine if the model

with a particular parameter value is able to satisfy all the given biological properties.

Repeating this numerous times, we are able to perform parameter estimation, i.e., locate

parameter sets within a search space that fits the given data (biological properties).

While such a framework might initially appear infeasible and not scaleable in prac-

tice, we have made it possible by deploying our efficient model checker (i.e. MIRACH

1.0) and fully parallelizing this framework, and demonstrated its effectiveness by suc-

cessfully performing parameter estimation on a large model consisting of 3,327 compo-

nents.

Such a framework is extremely useful since the availability and quality of time series

data are often poor.

1.2.4 Optimized Sequential Hypothesis Testing

Statistical model checking techniques have been shown to be effective for approximate

model checking on large stochastic systems, where explicit representation of the state

space is infeasible or impractical. It is important to note that these techniques ensure

the validity of results with statistical guarantees on errors. There is an increasing inter-

est in these classes of algorithms in computational systems biology since analysis using

traditional model checking techniques do not scale well. However, in the course of de-

veloping and deploying MIRACH 1.0, we realized that there exist practical limitations

in the state-of-the-art sequential hypothesis testing algorithms (Younes and Simmons,

2002; Younes, 2006) that MIRACH 1.0 is based on. Therefore, we present algorithms

to overcome these limitations.

Firstly, we eliminate the need for the user to define the indifference region, a critical

parameter in the success of previous sequential hypothesis testing algorithm (Younes
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et al., 2006). After which, we extend the algorithm to account for the case when there

may be a limit on the amount of resources that can be spent on verifying a property,

i.e, if the original algorithm is not able to make a decision even after consuming the

available amount of resources, we resort to a p-value based approach to make a de-

cision instead of the undecided (or “I don’t know”) response the previous algorithm

(Younes, 2006) would give. We tested and compared our algorithm first on a simple

yet representative random number generator model and also on a stochastic model of

cell fate determination in gustatory neurons (Saito et al., 2006). Our results show that

our algorithm is a practical extension to existing algorithms, with lesser parameters

to worry about, reduced error and no undecided outcomes. We foresee the usage of

these algorithms to be wide as there is no assumption or requirement of the simulation

model, allowing them to be applied to any form of stochastic system analysis.

In fact, we demonstrate how we could utilize these sequential hypothesis testing

algorithms to improve cross-batch prediction accuracy of microarray data, a seemingly

unrelated area, in the next subsection.

1.2.5 Overcoming Batch Effects in Microarray

One important application of microarray in clinical settings is in the construction of

a diagnosis or prognosis model. Batch effects are a well-known obstacle in this type

of applications. Recently, a prominent study (Luo et al., 2010) was published on how

batch effects removal techniques could potentially improve microarray prediction per-

formance. However, the results were not very encouraging, as prediction performance

did not always improve. In fact, in up to 20% of the cases, prediction accuracy was

reduced. Furthermore, as stated in that paper, that the techniques studied require

sufficiently large sample sizes in both batches (train and test) to be effective, which

is not a realistic situation especially in clinical settings where we typically have small

training samples per batch and often only a single sample for test (unknown) case in
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each batch.

The reason typical approaches require large sample sizes is because they are gen-

erally based on the estimate-and-remove-noise approach. To accurately estimate the

batch effect, naturally, sufficient samples are required. In accord with the philosophy

of this thesis, we have chosen to embrace it instead, which frees us from limitations

faced by conventional methods.

Our approach uses ranking values of microarray data and a modified bagging en-

semble classifier. Using similar datasets to those in the original study, we showed that

in only a single case was our performance reduced (by more than 0.05 AUC) and in

>60% of the cases, it was improved (by more than 0.05 AUC). In addition, our approach

works even on much smaller training data sets and is independent of the sample size

of the test data, making it feasible to be applied on clinical studies. Typical bagging

approaches use an arbitrary and pre-determined number of classifiers in the ensemble

and utilize all of them for every test case. Our modified version removes this parame-

ter by using our optimized sequential hypothesis testing algorithm to dynamically and

optimally determine the number of classifiers required to make prediction on each test

case. We name this algorithm dynamic bagging.

By embracing noise instead of estimating and removing noise, our approach does

not face the same limitations as conventional batch effects removal methods; this makes

it appealing for use in practical applications.

1.2.6 Bagging Explained and Made More Efficient

Bagging is a widely used approach in machine learning to obtain higher prediction

accuracy and is known to work better with unstable algorithms. Several attempts have

been made to explain this phenomenon using the bias-variance decomposition. We

offer an alternative and more direct explanation by focusing on noise in training data.

Specifically, we show that bagging-generated replicate training data are less noisy than
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the original training data and, consequently, a better ensemble bagging classifier can

be built.

A weakness of standard bagging algorithms is that the number of bootstraps is

often determined a priori and arbitrarily. Here, we remove the need for this parameter

by integrating bagging with sequential hypothesis testing, which we named dynamic

bagging. By doing so, computation requirements are significantly reduced while main-

taining similar prediction accuracy as standard bagging. More importantly, we have

shown that prediction from dynamic bagging is statistically consistent with standard

bagging with much larger number of bootstraps. We also demonstrate that dynamic

bagging, like standard bagging, is not restricted to any problem domain.

1.3 Outline

The rest of this thesis is organized as follows.

In Chapter 2, we present the handy tool (DA 1.0) to perform parameter estimation.

Chapter 3 describes our efficient and reliable model checker, MIRACH 1.0. Chapter 4

demonstrates the versatility of MIRACH 1.0, where we successfully used it to estimate

parameters based on biological properties and without time series data. In Chapter

5, we propose algorithms that overcome practical limitations we discovered in the un-

derlying state-of-the art sequential hypothesis testing algorithms of MIRACH 1.0. In

Chapter 6, we demonstrate how we can utilize these optimized sequential hypothesis

testing algorithms. We integrated it with bagging to create a new algorithm which we

named dynamic bagging. Using dynamic bagging, we successfully improved cross-batch

prediction accuracy of microarray data, a seemingly unrelated area. In Chapter 7, we

prove why bagging is an effective algorithm using an alternative and more direct expla-

nation that differs from classical bias-variance approach. We then show how dynamic

bagging is more efficient and practical compared to standard bagging.

Finally, in Chapter 8, we summarize the main results, discuss the implication of



CHAPTER 1. INTRODUCTION 12

our contributions and future possible follow-up research.
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Chapter 2

Parameter Distribution

Estimation

2.1 Introduction

Parameter estimation plays a key role in the understanding of complex biological path-

ways. Having the dynamics allows us to build a quantitative model, which in turn sheds

light on the underlying mechanisms. Parameter estimation is known to be a nonlinear

problem with numerous local minima and therefore local optimization approaches are

not able to obtain satisfactory results, as they are likely to converge quickly towards

local minima. Therefore, deterministic and stochastic global optimization methods are

usually employed. Another problem in parameter estimation is scalability because, as

the number of unknown parameters increases, the search space also grows exponentially,

rendering numerous algorithms infeasible.

Moles et al. (2003) compared several global optimization methods of different nature

such as deterministic methods, adaptive stochastic methods and evolutionary computa-

tion methods. Using simulation data from a model consisting of 36 kinetics parameters

and 8 ordinary differential equations (ODEs), they concluded that only stochastic al-

14
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gorithms which use evolution strategies, are able to obtain good results. However, this

comes at the price of a high computational cost. Therefore, recent efforts combine

global and local approaches to do parameters estimation (Rodriguez-Fernandez et al.,

2006; Balsa-Canto et al., 2008). Using these hybrid approaches, the rapid convergence

of local methods reduces the computational cost significantly while robust global al-

gorithms prevent getting trapped in local minima, thus producing satisfactory results.

Basically, these hybrid methods proceed as follows; first, scan the full search space

with a global algorithm until they hit a switching point, then they switch to a local

algorithm to find the optimal solution in the local vicinity. Naturally, determination

of the switching point is crucial to the success of a hybrid method. Different switching

points potentially lead to different results (Rodriguez-Fernandez et al., 2006).

Koh et al. (2006) suggested an interesting approach from an entirely different di-

rection. They proposed to first break a large pathway into small sub-pathways before

performing parameter estimation on each sub-pathway independently. This leads to

significant reduction in the search space, since each sub-pathway would have much

fewer parameters to be estimated and the search space is exponentially proportional

to number of parameters to be estimated. Thus, the computational time needed is

greatly reduced and, with a smaller search space, almost any algorithm can be used

since some algorithms—such as deterministic and exhaustive methods—are only fea-

sible for small problems. However, decomposing a large pathway into representative

smaller sub-pathways is not a trivial problem especially if the pathway has long feed-

back loops. Furthermore, the reconciliation of parameters estimated from these smaller

sub-pathways into one is another difficult problem in itself.

Most current parameter estimation algorithms aim to estimate a single best param-

eter value that best fits the given data. However, we believe this is inappropriate since

it is known that current experimental data is noisy. There are generally two types of

noise; viz., observation noise and system noise. Observation noise is due to experimen-



CHAPTER 2. PARAMETER DISTRIBUTION ESTIMATION 16

tal and/or measurement error. This can be reduced as better experimental protocols

are devised and more precise equipments are built. System noise is inherently part of

a biological system. All cell components display intrinsic noise due to random births

and deaths of individual molecules and extrinsic noise due to fluctuations in reaction

rates (Paulsson, 2004). Therefore, by estimating a single best parameter value that

best fits the given data, we are assuming data are noise-free. Hence, we believe it is

more appropriate to do parameter’s distribution estimation instead as it better reflects

the reality.

One class of algorithms that naturally generates a posterior distribution of a system

state is Data Assimilation (DA). It approximates the joint posterior distributions of

parameters by using sequentially-generated Monte Carlo samples. DA is an approach

widely used especially in the field of geophysics. It combines observations and numer-

ical simulation models to estimate unknown parameters. Two advantages of DA are

its compatibility with parallelism and its ability to reveal the posterior distributions

of unknown parameters. The approach is as follows: A pathway model, the list of

parameters to be estimated and N observed time points are given. A set of M particles

is drawn either randomly or through a user-specified distribution. At each time point

N, the M particles will be resampled with a probability directly proportional to a fit-

ness score. The fitness score is computed as a function of the difference between the

simulated and observed data at each time point. A higher score is given to particles

with simulated results closer to the observed results. At the end of the algorithm, users

are given the distribution plots of the values of the M particles. It is recommended

that the mode of the distribution be chosen as the estimated value for downstream

applications. For more details on the algorithm, please refer to Nagasaki et al. (2006).

The power of DA largely depends on these factors: (i) the number of observed time

points, (ii) the size of particles, and (iii) the number of parameters to be estimated.

From a statistical point of view, the more time points observed (higher frequency and
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longer duration), the higher the accuracy would be. However, time points are often

limited by current experimental techniques and/or project funding. The number of

particles should also be exponentially proportional to the number of parameters to be

estimated in order to obtain a high accuracy. However, if the number of particles is

large, it is likely to cause either out-of-memory error or slow running time on standard

desktop computers.

In the next section, we develop a software that incorporates practical ways to work

around the two limitations above and delivers an accurate estimation of parameters in

a normal desktop environment.

2.2 DA 1.0

We have developed an application (DA 1.0) to offer some practical solutions to the

two problems above. Since the number of observed time-points is often limited, this

potentially reduces estimation accuracy. To overcome this limitation, DA 1.0 has the

ability to increase the frequency of time points by means of smoothing and re-sampling

(Figure 2.1b). In some cases, it is possible that users do not have any experimental

data but have an idea of how a particular biological entity would behave with respect to

time, either gleaned from literature or simply testing out a hypothesis. To handle such

cases, we have also made it simple to draw expression plots within that application.

While inserting artificial data to get new data points might be worrying for the more

conservative experimentalists, it is a more viable option compared to having little to

no data points. Nevertheless, users should proceed with caution when using artificial

data points.

Another important factor that affects estimation accuracy is the seed size (number

of particles). However, setting a large seed size would cause the program to run slowly.

Therefore, we suggest for users to do repeat runs using medium seed size (Figure

2.1d) and to adjust the possible range after each run using the distribution plot of the
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parameters (Figure 2.1e). That is, after each run, the possible range of each parameter

can be reduced by looking at the distribution plot. This reduces the search space and

a more refined distribution plot would be available in the next run as the search space

is reduced with the same seed size.

	  
Figure 2.1: a) This step is to load the model file (CSML or SBML) and define the
distribution and range for parameters that users wish to estimate. b) This step is to
input the observed time-series data. Accepted formats include EDF, CSV and TSV.
Functions such as smoothing and sampling are included to improve the quality of
observed data for better estimation results. c) This step is needed to pair the model
entities with observed data. An auto-map function is available to match corresponding
entities and observed data with the same names. d) A variety of settings for the
particle filter and simulation is enabled to allow for flexibility based on the user’s
needs. e) After running the particle filter algorithm, the results of the simulation runs
using estimated parameters will be plotted for ease of comparison between the original
and fitted models. The parameters’ distribution plot is also displayed.

2.2.1 Software Features

DA 1.0 contains an implementation of the particle filter methodology and several other

features for ease of use, including a drawing utility that is particularly useful when
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observed data is limited. The user interface is deliberately minimalistic so that the

usage would be intuitive (Figure 2.1). The required inputs include a pathway model,

observed data and the range of the parameters to estimate. The output consists of

a distribution plot of the particles, simulation results of the fitted models and Cell

System Markup Language (CSML) format1 of the fitted models.

2.2.2 Inputs

DA 1.0 is built to run on hybrid functional Petri net with extension (HFPNe) (Na-

gasaki et al., 2004), which uses the CSML format. However, support has also been

extended to another format, Systems Biology Markup Language (SBML2) in the form

of a SBML2CSML converter. Thus, it is possible to input the pathway model in either

CSML or SBML (Figure 2.1a). If an input in the latter is provided, it is automati-

cally converted into CSML format using the SBML2CSML convertor. Therefore, DA

1.0 supports popular formats in quantitative modeling of biological processes such as

SBML and CSML.

As for observed data, EDF (expression data format) is required. EDF3 was de-

veloped for the ease of representing time series expression data that usually include

replicates and annotation data. Similarly, to support the commonly used tab- (or

comma-) separated format, a convertor to convert tab- (or comma-) separated format

into EDF is included. Finally, users have to set the range for the parameters they wish

to estimate (Figure 2.1a). This does not need to be precise. It is sufficient to simply

give it a rough range that is biologically possible.

1http://www.csml.org
2http://sbml.org
3http://da.csml.org



CHAPTER 2. PARAMETER DISTRIBUTION ESTIMATION 20

2.2.3 Outputs

Unlike parameter estimation methods based on using optimization methods (Yoshida

et al., 2008), data assimilation gives a distribution plot of the possible values for the

parameter. This information is particularly useful for repeat runs to obtain a better

estimation. The simulation results of the original model, observed data and fitted

model are also plotted on one graph for ease of comparison (Figure 2.1e). Finally,

users can save the fitted models in CSML format, which can be displayed and replayed

on Cell Illustrator Player that is available for free. Direct launch of the fitted models

in Cell Illustrator Player from DA 1.0 is also possible. Additionally, users can run

Cell Illustrator to apply more comprehensive downstream analysis. Users also have the

freedom to utilize other software of their choice, and they can obtain the estimated

values from the distribution plot (Figure 2.1e).

2.2.4 Performance

Figure 2.2: (a) Time versus seed size plot. (b) Score versus coverage plot. Scores close
to 1 indicates a very good match between observed data and simulation results. (Please
see supplementary data for experiments details.)

To give users a gauge of the performance of DA 1.0, we have performed some
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experiments using the circadian clock model (Nagasaki et al., 2006) with 17 parameters

in total, on a contemporary desktop machine (Intel Core i7 CPU at 3.2 GHz). We

focused on the influence of seed size on time used, space needed and estimation power.

With respect to the memory needed, every one million seeds require approximately

1 GB of RAM (data not shown). From Figure 2.2a, we can see that the time used

increases with the seed size linearly and is able to finish in reasonable time (<80 s for 2

million seeds). Figure 2.2b demonstrates how the coverage on the search space would

affect the estimation power. The standard deviation of the score is large because the

seeds are randomly generated. If a good seed is encountered, a low score is produced.

Naturally, with increased coverage, the chance of generating a good seed increases.

However, in the case of a large search space, having good coverage requires a huge

amount of memory that may not be available. In such cases, users are encouraged to

follow the strategy suggested in section 2.2.

2.2.5 Discussion

Parameter estimation is an important yet difficult step in the building of a computa-

tional pathway model. In this chapter, we have presented a handy tool to perform

parameter estimation. In accord with the philosophy of this thesis, we believe that

variation is inherent in biological systems and embracing it is a superior way towards

understanding them. Hence, we have chosen to perform parameters’ distribution esti-

mation over the typical single parameter set estimation for this tool.

Practical limitations in parameter estimation include the lack of good quality time

series data and insufficient computational resources to handle models with many pa-

rameters. This tool overcomes these practical limitations by intuitive yet effective

approaches (Section 2.2). We believe this tool would be as helpful to anyone who needs

to perform parameter estimation as it is for us.

The subsequent step in building a model is model validation (or model checking),
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which we discuss in the next chapter.



Chapter 3

Efficient Model Checking

3.1 Introduction

Model checking is an automated process to formally verify a system’s behavior with

respect to a set of properties. It is a widely used technique for validating circuit designs

(Biere et al., 2003). In model checking, the properties to be verified are first written

in a temporal logic. After which, the reachable states of the system are traversed (and

maybe recorded) in order for a model checker to determine if the system satisfies those

properties. As larger and more complex biological pathways are being modeled, the

manual validation of these models becomes tedious if not impossible. Therefore, there

is a growing interest in the development and application of model checking algorithms

to biological pathway models.

PRISM is a probabilistic model checker that is widely used in many different do-

mains (Heath et al., 2008). As PRISM is meant for a wide range of domains, it has its

own specific PRISM format for models to adhere to. Clarke et al. (2008) introduced

BioLab, an algorithm to verify properties written in probabilistic bounded linear tem-

poral logic, using the BioNetGen modeling (rule-based) framework. Genetic Network

Analyzer (GNA) is software for the modeling and simulation of qualitative models in

23
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the form of piecewise-linear differential equations, which also includes the ability to do

model checking (Batt et al., 2005). Donaldson and Gilbert (2008b) developed a Monte

Carlo offline-based model checker (MC2). MC2 has the advantage of being independent

from the modeling framework and is able to perform model checking as long as simula-

tion results can be obtained. However, this implies that the full simulation needs to be

completed and all traversed states recorded before model checking can commence. This

wastes CPU and storage resources if the decision of validity or rejection for the simula-

tion can be determined early in its execution. Online or on-the-fly model checking does

exactly this. It carries out model checking during the simulation run and results need

not be recorded as simulation runs are only executed for as long as a decision needs to

be made.

In this chapter, we present an on-the-fly probabilistic model checker, MIRACH, for

quantitative pathway models. It supports popular formats such as SBML (Hucka et al.,

2003) and CSML1. This quantitative model checker, MIRACH, is a valuable addition

to the available arsenal of qualitative (GNA) and rule-based (BioLab) model checkers.

3.2 Methods

3.2.1 Temporal Logics

Several different temporal logics have been proposed and used for model checking in

biological pathway models. Troncale et al. (2007) proposed Continuous Time Evolution

Logic (CTEL) for use with their Timed Hybrid Petri Nets (THPN). Clarke et al. (2008)

presented Probabilistic Bounded Linear Temporal Logic for their BioLab algorithm.

Donaldson and Gilbert (2008b) introduced Probabilistic Linear Temporal Logic with

numeric constraints (PLTLc). It combines LTL in probabilistic settings and LTL with

numeric constraints (Fages and Rizk, 2007). In their implementation, free variables

1http://www.csml.org/
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(or numeric constraints) are limited to the integer domain of 0 to positive infinity.

Although having free variables allow for a richer way to sum up a set of properties,

they are more complicated to write and interpret (Heiner et al., 2009). For MIRACH,

we have decided to extend PLTL to PLTLs (Probabilistic Linear Temporal Logic with

Statistics) as the original flavor is unable to handle the statistical component (sample-

efficient hypothesis testing (Younes and Simmons, 2002; Younes, 2006)) that we have

incorporated into MIRACH. We have chosen PLTL to build upon because it is sufficient

for stochastic model checking in general and is easy to write and interpret.

The syntax of PLTLs is defined in Table 3.1 and it allows for the use of filter

constructs. For a property in the form Φ{AP}, Φ is checked from the state that AP

is satisfied rather than from the default initial state. Note that PLTLs allows AP to

contain temporal logic operators (X,F,G,R,U). We also allow the use of formulas

without probabilistic operators (i.e., in pure LTL). This is useful when the model is

deterministic.

!  ::＝ P"# (LTL) | P=?$  (LTL) | LTL 
LTL ::＝ ! {AP} | !  
! ::＝ X ! | G ! | F ! | ! U ! | ! R ! | ¬ ! | ! &&! | ! || ! | ! => ! | AP 
AP ::＝ AP||AP | AP&&AP | AP=>AP | Value comp Value | Valueboolean 

Value ::＝ Value op Value | [variableName] | Functionnumeric | Integer | Real 
Valueboolean ::＝ true | false | Functionboolean 

comp ::＝ == | != | >= | > | < | <= 
op ::＝ + | - | * | / | ^ 
# ::＝ (%, &, ', max) | (%, (, &, ', max) | (%, (, &, ', ), max) 
$ ::＝ (confidence, max) | (confidence, CI, max)  
with ! ! {<, <=, >, >=}, % denotes the value to be compared against; ( denotes the 
half-width of the indifference region; & denotes the type-I error rate (false negative 
rate;, ' denotes the type-II error rate (false positive rate); ) denotes the probability 
of an undecided results; max denotes the maximum number of simulation run;, 
confidence denotes the confidence level; CI denotes the confidence interval. 

 
Table 3.1: PLTLs Syntax
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The semantics of PLTLs is defined over the finite sets of finite paths through sys-

tem’s state space, obtained by repeated simulation runs of HFPN models. A property

contains two components, the probabilistic operator and the linear temporal logic state-

ment. For each simulation run, the temporal logic statement is evaluated to a boolean

truth value, and the probability of the temporal logic statement holding true is decided

based on the whole set of simulation runs performed using statistical approaches.

For the probability operator component, there are two distinct operators; P♦ is the

inequality comparison of the probability of the property holding true and P=? returns

the value of the probability of the property holding true with a confidence interval. The

semantics of the temporal logic operators are described in Table 3.2. Concentrations

of biochemical species in the model are denoted by [variableName]. We also define a

special variable, [time], to represent simulation time.

Operator Explanation 

X ! ! must be true at the next time point.  
G ! ! must always be true. 
F ! ! must be true at least once. 
! 1U ! 2 ! 1 must be true until ! 2 becomes true; ! 2 must become true eventually. 

! 1R ! 2 ! 2 must be true until and including the time point ! 1 becomes true; if ! 2 
never true, ! 1 must always be true. 

 

Table 3.2: Semantics of temporal operators

Furthermore, we provide the ability to define functions of two different natures:

functions that return a real number and functions that return a boolean value. An

example of the real number function is d([variableName]) which returns the sub-

tracted value of [variableName] between time i and time i − 1. By convention, the

value of the d([variableName]) at time 0 is 0. One example of a boolean function is

similarAbsolute(V aluea, V alueb, V alueε). This function returns true if |a − b| ≤ ε,
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else it returns false. Please see supplementary material for details and examples on

usage of implemented functions.

3.2.2 MIRACH Implementation

Our on-the-fly sample verification is as follows: at each time step of a simulation run,

each LTL statement that has yet to be accepted or rejected is checked. A LTL statement

is removed once its truth-value can be determined and the simulation stops when all

LTL statements have been determined or the predetermined termination simulation

time has been reached. If the LTL statement cannot be decided at a particular time

point, the species involved in the LTL statement are stored in memory for this time

point as some temporal logics might need to refer to the values of previous states in

order to make a decision.

The above paragraph describes how MIRACH decides the truth-value of properties

for a single simulation run. However, for stochastic models, each simulation run pro-

duces different results. To understand stochastic models, we need to consider issues

such as, whether the model satisfies the property with at least (or at most) probability

θ or what the probability that a property holds is.

To address the former question, the sample-efficient hypothesis testing (Younes,

2006; Younes et al., 2006) was implemented. Hypothesis testing is implemented based

on Wald’s sequential probability ratio test (Wald, 1945), which could determine after

each sample run whether another sample run is required or a hypothesis could be

accepted with the prescribed strength using available samples. This is more efficient

as opposed to the estimation approach where the probability that the property holds

is computed using a predetermined number of samples and compared with the θ. For

more information on sample-efficient hypothesis testing, please read Chapter 5.

As for the latter, we implemented Wilson interval (Wilson, 1927) to estimate the

confidence interval of the probability that the property holds. We have chosen to use
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Wilson interval instead of the simpler normal approximation interval because normal

approximation is known to perform badly when the sample probability is close to 0 or

1 and fail completely when it is at 0 or 1. Due to this, one cannot devise a sequential

sampling algorithm that stops sampling once the confidence interval falls below a certain

value (user defined). Wilson interval does not have these limitations and allows us more

flexibility and efficiency in our model checker. Detailed implementation of MIRACH

and its usage are supplied as supplementary material.

3.3 Performance

	  
Figure 3.1: Levchenko et al. (2000) model

It is not difficult to appreciate that an online approach is almost certainly more

efficient than offline in terms of time efficiency since it only runs as long as it needs

to and does not read and write to the hard disk. One offline model checker similar to

MIRACH is MC2 (PLTLc) by Donaldson and Gilbert (2008b). Both model checkers

are written in Java and supports PLTL. Therefore, we use MC2 (PLTLc) to illustrate

the differences between online and offline checkers. To draw comparisons between the

two model checkers, we need a sample model that can be run on both of the checkers.

Our model of choice is a SBML model 3.1 by Levchenko et al. (2000), as it was also

used as an example by Donaldson and Gilbert (2008b).

From Table 3.3, we see that MIRACH outperforms MC2 (PLTLc) and the time

saved increases with sample size. When comparing the runtime for just 1000 samples,
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 100 Samples 1000 Samples 
MIRACH 

Initialization 6.85 (0.24) 6.86 (0.31) 
Simulation and Checking 5.34 (0.20) 40.74 (0.90) 
Total Time 12.19 47.6 

MC2(PLTLc) 
Run simulation and log 
results 

12.14 (0.40) 107.95 (1.52) 

Load results and check 10.13 (0.29) 88.58 (1.11) 
Total Time 22.27 196.53 

 

Table 3.3: MIRACH versus MC2 (PLTLc) using Levchenko model

the time saved by using MIRACH is already 400%. The sample size needed depends

on the problem at hand but in most situations, thousands of samples are insufficient

especially with the growing trend of using model checkers as part of parameter esti-

mation routine (Batt et al., 2010; Donaldson and Gilbert, 2008a). We had also utilize

MIRACH do to parameter estimation to investigate cell fate determination of gustatory

neurons in Caenorhabditis elegans (Saito et al., 2006) which is presented in Chapter

4. In that work, we had to run 20 million samples. It would have been extremely

inefficient or even impossible if we did not have this efficient implementation.

Another performance measure is the minimum memory requirement. Precise mem-

ory requirements depend on several factors such as the model used and the properties

to be checked. The memory requirement of online checking is likely to be higher than

offline checking because the offline method does not carry out checking and simulation

concurrently. As described in Section 3.2, in the checking step, MIRACH needs to store

the values of involved species in memory (RAM) when a LTL cannot be decided (nei-

ther TRUE nor FALSE) at that time point. However, even in an extreme case, where

there are 100 species involved and that property cannot be decided for 100 000 time

points, the additional memory (RAM) needed is still <80MB (100x100000x8 bytes).

Note that this memory space used will be freed once that particular simulation ends

and will not increase with the number of simulation runs.
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3.4 Discussion

In this chapter, we have presented an efficient model checker, MIRACH 1.0, for vali-

dating the ever-growing biological pathway simulation models—both in complexity and

quantity. Major contributions include the implementation of the more efficient on-the-

fly approach that saves significant amounts of computation time with minimal memory

increase, the ability to accept quantitative models directly in the popular SBML and

CSML formats, and the first model checker to be integrated with the HFPNe (Na-

gasaki et al., 2010) simulation engine—an expressive and powerful Petri net framework

for defining biological pathway models.

In Chapter 2, we discussed a general lack of good quality time series data to per-

form parameter estimation in reality. In the next chapter, we present an interesting

framework where we utilize our efficient model checker to overcome this limitation and,

at the same time, demonstrate that having an efficient implementation carries more

implications beyond the savings of time.



Chapter 4

Estimate Parameters using

Model Checker

4.1 Introduction

Mathematical modeling and simulation studies are playing an increasingly important

role in helping researchers elucidate how living organisms function in cells. Many for-

mal description methods on biological pathway modeling have been made (Yan et al.,

2010; Peng et al., 2010). Among them, Petri net and its related concepts have been

successfully applied in modeling a wide variety of biological pathways and have suc-

ceeded in reproducing consistent time-series profiles of biological substances such as

the concentrations of mRNA and protein by means of computer simulations (Hardy

and Robillard, 2008; Koh et al., 2006; Ruths et al., 2008; Steggles et al., 2007).

Simulation studies on biological pathways provide great insight in the understand-

ing of complex regulatory mechanisms in cells. Quantitative simulation models are

governed by a series of parameters, e.g., initial values, reaction speeds and threshold

values of cellular activities. Typically, a parameter estimation step is required to trans-

form a static model into a simulate-able model. While parameter estimation is critical
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in modeling the dynamics of biological pathways, it is at the same time a very challeng-

ing problem due to the large search space and the existence of multiple local minima.

A huge amount of effort has already been invested into this important and challenging

problem (Rodriguez-Fernandez et al., 2006; Balsa-Canto et al., 2008; Koh et al., 2006;

Nagasaki et al., 2006).

One practical limitation of typical parameter estimation algorithms is that it as-

sumes that the time series data of the species involved in the computational pathway

model is readily available. However, in reality, the availability, quality and frequency of

these time series data are poor, due to limitations in experimental techniques and/or

project funding, which would severely degrade the performance of most of these algo-

rithms.

To this end, we present a computational framework in this chapter that is able to

perform parameter estimation without the use of time series data. Given a pathway

model and a set of biological properties, we use a model checker, i.e., MIRACH 1.0

(Chapter 3) to determine if the model with a particular parameter set is able to sat-

isfy all the given biological properties. Repeating this process over several iterations

with different parameters, we are able to perform parameter estimation, i.e., locate

parameter sets within a search space that fits the given data (biological properties).

We demonstrate the practicality and scalability of this framework by analyzing the

underlying model for neuronal cell fate decision (ASE fate model) in Caenorhabditis

elegans. We have crafted a large, quantitative ASE fate model with 3,327 components

emulating nine genetic conditions. We then extracted a total of 45 biological properties

from published biological literature regarding neuronal cell fate decision in C.elegans.

Using the framework designed, we were able to identify 57 parameter sets that

were able to satisfy all 45 properties of this large pathway model that contains 3,327

components efficiently. We made this framework effective by incorporating our efficient

model checker (MIRACH 1.0) and fully parallelizing it.
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4.2 Related Work

Batt et al. (2010) have proposed using symbolic model checking, on piecewise-affine

differential equations (qualitative models) of regulatory networks, to search the en-

tire parameter space for parameter sets that are able to satisfy a given specification.

One advantage of their approach is that, while it scans the entire parameter space,

it avoids the generation of an explicit state space and the enumeration of all possible

parametrizations, making it highly efficient. However, that approach is only limited

to qualitative models, and in contrast, the framework that we are proposing works on

quantitative models. It is important to note that qualitative and quantitative models

provide complementary information on model dynamics.

A more closely related work is that of Donaldson and Gilbert (2008a). They have

developed a framework which combines genetic algorithm and model checking to per-

form parameter estimation for quantitative models. The model checker is used as the

fitness function to compute the fitness score for each given parameter set. Based on

this fitness score, parameter sets are evolved as in typical genetic algorithms. While

the idea is theoretically sound, it is inefficient in practice. As discussed in Chapter 3,

the model checker which they have used is extremely inefficient in terms of runtime

per sample, when it is compared to our online model checker. Furthermore, in evalu-

ating each parameter set, the number of samples required per parameter set by their

approach is likely to be higher (Younes, 2005b) and lacks statistical backing, as their

implementation is based on simple estimation, when compared to our approach which

is based on sequential hypothesis testing.

4.3 Proposed Framework

The overview of our framework is illustrated in Figure 4.1. In this framework, the

inputs required are a pathway model of interest, a set of biological properties that the
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Figure 4.1: (a) Framework overview and corresponding applications to ASE fate model;
(b) Flow diagram of operations shown in (a).

model is required to adhere to, and a range of parameters to estimate. A random

sampler instantiates the pathway model with a particular parameter set from the given

parameter search space. Combining this with the set of properties to check, our model

checker (MIRACH 1.0 from Chapter 3) runs simulations and returns a result as to

whether the given parameter set of the model is able to satisfy all the given properties.

This process repeats for as many times as the user specified and all the parameter sets

that satisfy all properties are returned as output. The details of this framework are

described in the rest of this section.

4.3.1 Inputs

Hybrid Functional Petri Net with extension (HFPNe) Model

Cell System Markup Language (CSML1) is the format which HFPNe models are en-

coded in. While MIRACH 1.0 is tightly integrated with HFPNe to enable the efficient

online implementation (see Chapter 3), it is also able to take in models that are en-

1http://www.csml.org
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coded in the popular Systems Biology Markup Language (SBML2) format, as we have

embedded a SBML2CSML convertor in MIRACH 1.0. Please see the supplementary

material section for more information regarding HFPNe.

Temporal Logic Rule Set

To verify user queries of specified properties by means of model checking, we have

to first write these properties in temporal logics. We have elected to implement in

MIRACH 1.0 Probabilistic Linear-time Temporal Logic with Statistics (PLTLs), which

is an extension of Probabilistic Linear-time Temporal Logic (PLTL). We have decided

to build upon PLTL because it is sufficient for stochastic model checking in general and

is easy to write and interpret. We extend it because the original flavor does not handle

the statistical component that is incorporated into MIRACH 1.0. Please see Chapter

3 for more details on the syntax and semantics of PLTLs.

Parameter Range Set

This is used to define the parameters that are required to be estimated and their range.

Combinatorially, the number of parameters to estimate and their range define the size

of the search space. It is also possible to input the distribution of each parameter if

the user has prior knowledge of the region where it is more likely to contain the correct

values. If the distribution is not provided, it would be set to the default of uniform

distribution.

4.3.2 Parameter Estimation using Model Checker

The core of our current framework is essentially a random sampler which would ran-

domly select values from the given search space and use MIRACH 1.0 to check if the

model with the given parameters’ value can satisfy all the given properties. We have

2http://sbml.org
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chosen a random sampler for this first prototype after taking into account various con-

siderations. First, this would allow the focus to be on the capability of MIRACH 1.0

to perform parameter estimation. Another advantage is that this would allow unbiased

and uniform sampling of the search space. Furthermore, since each run is independent,

it is possible to completely parallelize our framework. In fact we were able to maxi-

mize the utility of the resources we had with this framework, which was access to a

computing cluster with more than 6000 CPU nodes, each with the capability to run

8 threads, allowing for more than 40,000 simulations to run concurrently at any time.

In addition, having access to a large parallel computing cloud is becoming increasingly

commonplace. Hence we believe that, while more sophisticated ways to search the

parameter space might be superior in theory, a random sampler may not be inferior in

practice.

MIRACH 1.0 is already integrated with a simulation engine, enabling efficient online

(on-the-fly) checking. For the purposes of parameter estimation, we have added a new

run mode to MIRACH 1.0 (see Appendix B.2.2). Since we are only interested in models

that could satisfy all properties, this new mode terminates the simulation the moment a

model fails any of the given properties. This further improves the efficiency of MIRACH

1.0, when compared to the normal mode which checks the success or failure of all the

properties.

4.3.3 Outputs

The output of this framework are all parameter sets that have satisfied all the given

properties. With this, the process of parameter estimation is complete and users can

use them to perform downstream analysis such as sensitivity analysis or perturbation

optimization.
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4.4 Results

To demonstrate the practicality and scalability of our framework, we have chosen the

HFPNe model of neuronal fate decision mechanisms in C.elegans. Figure 4.2 illus-

trates the summary and biological diagram of the mechanisms by considering the new

transcriptional factor, fozi-1 (highlighted in Figure 4.2b) and regulations mediated by

fozi-1.

4.4.1 ASEL/R Cell Fate Regulatory Network

In ASE cell fate decision mechanism, a double-negative feedback loop (Figure 4.2b)

constituted by the regulatory factors lsy-6, cog-1, die-1 and mir-273 plays an impor-

tant role in providing the establishment and stabilization of the bi-stable ASE system.

Johnston et al. (2006) isolated a mutant, fozi-1, and it is characterized by de-repression

of ASEL fate in ASER via genetic experiments. fozi-1 codes for a protein contain-

ing two Zinc fingers and a single FH2 domain that functions in the nucleus of ASER

to inhibit expression of LIM homeobox gene, lim-6. In other words, fozi-1 genetically

interacts with a series of transcription factors and miRNAs to repress expression of

ASEL-specific effector genes in ASER to adopt terminally stable ASER cell fate.

4.4.2 Inputs

HFPNe Model

Saito et al. (2006) developed a HFPNe model which we have extended here by updat-

ing the regulatory interactions mediated by fozi-1. Figure 4.3 exhibits our HFPNe

model of ASE fate decision pathway in wild-type depicted in Figure 4.2. Table C.1

summarizes the biological interpretation and references of each reaction used in this

study. The whole ASE model is composed of 474 entities, 1,026 processes and 1,620

connectors (3,327 components in total). In this model, 23 kinetic parameters con-
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Figure 4.2: Summary of the regulatory interactions that determine ASEL/ASER fate.
(a) Two ASE neurons. ASE senses different ions and expresses distinct ASEL/ASER-
specific terminal fate markers, encoded by gcy and flp family genes. Photomicrographs
of ASEL/ASER-specific gcy gene expressions in wild type are adapted from Johnston
et al. (2006). (b) Biological diagram of ASE neuron fate decision pathway which takes
into account an additional regulator, fozi-1 (highlighted) and fozi-1 related regula-
tions. Broken lines denotes partially penetrant defects1 in maintaining the left/right
asymmetric expression of loop component. Genes in inactive or active states are shown
in grey or black, respectively. Four regulatory factors, lsy-6, cog-1, die-1 and mir-273
form a double-negative feedback loop. The expressions of flp-20/flp-4 and gcy-6/gcy-
7 are ASEL-specific terminal fate markers, while the expressions of gcy-5/gcy-22 and
hen-1 are used as ASER fate markers.

tributing to the regulation of forming alternative cell fates are to be estimated using

our framework. The HFPNe model and related data files are available at this link

(http://www.csml.org/models/csml-models/ase-cell-fate-simulation/ASE2010/).
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Figure 4.3: The HFPNe model of ASE fate decision pathway in wild-type depicted
in Figure 4.2b. The entities’ IDs used for parameter estimation are indicated in blue.
Biological interpretation of processes P1, ..., P36 are available in appendix (Table C.1).
An additional label (C) or (N) is attached at the end of a substance name, it is used
to indicate the location of substance (C for cytoplasm and N for nucleus).

Temporal Logic Rule Set

The temporal logic rule set includes 45 rules which are extracted from literature. These

45 rules are translated into PLTL subsequently, as shown in Table 4.4.2. For instance,

Johnston et al. (2005) suggested that “In wild type, the expression pattern of mir-273

gene adopts L>R, L=R or L<R”. This biological fact is then translated into PLTLs

syntax as given in Figure 4.4b. Note that the variable [thres l] is used to denote
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a threshold value that is close to zero; whereas [thresh] is used to discriminate the

expression differences between ASEL and ASER which is unambiguous when biologists

say “L>R” or “L<R”.

	  
Figure 4.4: PLTLs statement formulated from observed biological results. (a) The
asymmetric expression of mir-273prom :: gfp in wild type (see Figure 2a of Johnston
et al. (2005)) (b) Biological results in PLTLs syntax.

Parameter Range Set

In this study, 23 kinetic parameters involving one initial value, one reaction rate and

21 threshold values of the regulatory (i.e. inhibitory and associate) interactions are to

be estimated with a uniform distribution in the setting of range values summarized in

Table 4.4.2. Note that the scope (the column “Range values” in Table 4.4.2) of the

parameters for estimation is narrowed down by several initial estimation and model

checking, where we have observed that it becomes considerably easier to violate at

least one of the 45 rules when models are given the parameter values beyond this

scope.

4.4.3 Outputs

By applying our proposed framework to the above settings, we were able to obtain

from 20 million parameter sets, 57 parameter sets that successfully conform to all the

45 given biological specifications. As our fully parallelizable framework is able to take

advantage of the computing cluster we have access to, we were able to complete these 20

million simulation run of this large model (consisting of 3,327 components) successfully

given our resources.
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No.
Rules

Biological Evidence
Translation

Rule 1
lsy-2 in the nucleus will never increase if it once begins to rise and fall.

Saito et al.
(2006)

( d([lsy2n lwt]) ≥ 0 ) U ( G ( d([lsy2n lwt]) ≤ 0 )

Rule 2

There exist no expressions of ASEL/ASER-specific reporter genes (i.e., gcy-5,
flp-4, gcy-6, hen-1) in ASER neuron.

X (similarAbsolute([gcy5 rwt], 0, [thres h]) && similarAbsolute([flp4 rwt], 0, [thres h])
&& similarAbsolute([gcy6 rwt], 0, [thres h]) && similarAbsolute([hen1 rwt], 0,
[thres h])) {[time] == 0}

Rule 3
lsy-2 in the cytoplasm keeps decreasing.

G ( d ([lsy2c lwt]) ≤ 0 )

Rule 4

After 250 time point, when the concentration of die-1 is greater than cog-1 in
the nucleus, the concentration of lsy-6 will be more than that of mir-273 in the
cytoplasm.

F ( (([die1n lwt] > [cog1n lwt]) {[time] > 250}) && ( ([lsy6c lwt] > [mir273c lwt]) {[time]
> 250}) )

Rule 5

The concentration of lim-6 in the nucleus when die-1 is greater than cog-1 in
the nucleus is greater than that of lim-6 in the nucleus when die-1 is less than
cog-1 in the nucleus.

F ([lim6n lwt] > [lim6n rwt]) {([time] > 250) && ([die1n lwt] > [cog1n lwt]) &&
([die1n rwt] < [cog1n rwt])}

Rule 6

If concentration of lsy-2 in cytoplasm of the initial state is larger than 0.5,
concentrations of gcy-7 and flp-4 are greater than those of gcy-5 and hen-1
after 250 time point.

( ([lsy2c lwt] > 0.5) && [time] == 0 ) => F (([gcy6 lwt] > [gcy5 lwt]) && ([gcy6 lwt]
> [hen1 lwt]) && ([flp4 lwt] > [gcy5 lwt]) && ([flp4 lwt] > [hen1 lwt]) ) {[time] > 250}

Rule 7

In wild type, the expression pattern of mir-273 gene adopts L>R, L=R or L<R

Figure 2a of
Johnston et al.
(2005)

G ( ( ([mir273n lwt] + [mir273c lwt]) > (([mir273n rwt] + [mir273c rwt]) + [thres h]))
|| similarAbsolute(([mir273n lwt] + [mir273c lwt]), ([mir273n rwt] + [mir273c rwt]),
[thres l]) || ( ( ([mir273n lwt] + [mir273c lwt]) + [thres h]) < ([mir273n rwt] +
[mir273c rwt])) ) {[time] > 250}

Rule 8

In lsy-6(ot71) mutants, the expression pattern of mir-273 gene adopts L>R,
L=R or L<R

G ( (([mir273n lot71] + [mir273c lot71]) > (([mir273n rot71] + [mir273c rot71]) +
[thres h] ) ) || similarAbsolute(([mir273n lot71] + [mir273c lot71]), ([mir273n rot71]
+ [mir273c rot71]), [thres l]) || ( (([mir273n lot71] + [mir273c lot71]) + [thres h]) <
([mir273n rot71] + [mir273c rot71])) ) {[time] > 250}

Rule 9

In cog-1(sy607) mutants, the expression pattern of mir-273 gene adopts L>R,
L=R or L<R

G ( (([mir273n lsy607] + [mir273c lsy607]) > (([mir273n rsy607] + [mir273c rsy607]) +
[thres h]) ) || similarAbsolute(([mir273n lsy607] + [mir273c lsy607]), ([mir273n rsy607]
+ [mir273c rsy607]), [thres l]) || ( (([mir273n lsy607] + [mir273c lsy607]) + [thres h]) <
([mir273n rsy607] + [mir273c rsy607])) ) {[time] > 250}

Table 4.1: Translation of extracted biological evidences into PLTL rules. Only the first
nine rules are listed here. For the full 45 rules, please see Li et al. (2011).

In the original paper (Li et al., 2011), which this chapter is based upon, additional

experiments were performed on these 57 parameter sets to identify those that are able

to still satisfy all 45 rules under noisy conditions. We will not discuss those as the focus

of this chapter is on parameter estimation without time series data, although interested

readers are encouraged to read (Li et al., 2011).
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Entity Name Type Range values

e7 threshold value of the inhibition from [lsy6c] to [cog1c] threshold value 0 - 0.25

e11 threshold value of the inhibition from [die1c] to [gcy5] threshold value 0 - 0.35

e13 initial value of [lsy6n] initial value 0 - 0.02

e28 threshold value of the inhibition from [lim6c] to [gcy5] threshold value 0 - 0.7

e29 threshold value of the inhibition from [die1c] to [fozi1] threshold value 0 - 0.26

e30 threshold value of the inhibition from [fozi1] to [lim6c1] threshold value 0 - 0.55

e31 threshold value of the inhibition from [fozi1] to [gcy6] threshold value 0 - 0.55

e32 threshold value of the inhibition from [die1c] to [hen1] threshold value 0 - 0.2

e33 threshold value of the association from [lsy2n] to [lsy6n] threshold value 0 - 0.1

e34 threshold value of the association from [die1n] to [lsy6n] threshold value 0 - 0.1

e35 threshold value of the association from [lim6n] to [lsy6n] threshold value 0 - 0.1

e36 threshold value of the association from [lim6n] to [lim6mRNA] threshold value 0 - 0.1

e37 threshold value of the association from [die1c] to [lim6c] threshold value 0 - 0.1

e38 threshold value of the association from [die1c] to [flp4] threshold value 0 - 0.1

e39 threshold value of the association from [die1c] to [gcy6] threshold value 0 - 0.1

e40 threshold value of the association from [cog1n] to [mir273n] threshold value 0 - 0.1

e41 threshold value of the association from [cog1n] to [cog1mRNA] threshold value 0 - 0.1

e9 threshold value of the inhibition from [mir273c] to [die1c] threshold value 0 - 0.25

e481 threshold value of the inhibition from [fozi1] to [lim6c2] threshold value 0 - 0.55

e482 threshold value of the association from [lim6c] to [flp4] threshold value 0 - 0.1

e477 high threshold value threshold value 0 - 0.1

e478 low threshold value threshold value 0 - 0.5

e484 transcription speed of fozi-1 reaction rate 0 - 0.25

Table 4.2: Summary of the range values for parameter estimation. The entities used
for parameter estimation are indicated in blue in Figure 4.3 for easy reference.

4.5 Discussion

In this chapter, we have successfully designed a framework that is able to estimate

parameters without the need of having time series data. Such a framework is extremely

useful in practice since the availability and quality of time series data are often poor.

With its parallelizing capability and efficient implementation, we have shown that this

framework is able to scale up and successfully perform parameter estimation on large

models.

The process of constructing a pathway model from literature used to be extremely

time-consuming. Then, along came databases such as BioModels.net which allowed for

the easy reuse or extension of pathway models. In this study, the process of extracting

biological properties from literature was the most tedious part. It was envisioned that a

library with properties that encoded key behavioral features of pathway models would

be useful for validating new models (Hlavacek, 2009). Such a library could also be
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used by our framework to make the extraction of properties more efficient and perform

parameter estimation with ease.

In Chapter 3, we implemented MIRACH 1.0 and in this chapter, we have incor-

porated MIRACH 1.0 into a framework to perform parameter estimation. In these

processes, we have heavily utilized MIRACH 1.0 and realized that there exist practi-

cal limitations in the underlying sequential hypothesis testing algorithms (Younes and

Simmons, 2002; Younes, 2006) that MIRACH 1.0 is based upon. We discuss these lim-

itations in the next chapter and new algorithms that we have developed to overcome

them.



Chapter 5

Optimized Sequential Hypothesis

Testing

5.1 Introduction

Model checking is an automated method to formally verify a system’s behavior. It

is a technique widely used to validate logic circuits, communication protocols and

software drivers (Clarke et al., 1999). Usually, the system to be analyzed is encoded

in a specification language suitable for automated exploration, and the properties (or

behavior) to be verified are specified as formulas in temporal logics. Given a model of

the system and a temporal logic formula, the model checker systematically explores the

state space of the model to check if the specified property is satisfied. If the property

holds, the model checker returns the value true; otherwise, the model checker returns a

false value, with a counter example of a specific trace of the system where the property

failed.

Recently there have been efforts to apply model checking in computational sys-

tems biology (Chabrier-Rivier et al., 2004; Clarke et al., 2008; Donaldson and Gilbert,

2008b; Gong et al., 2010; Kwiatkowska et al., 2008; Li et al., 2011). In this context,

44
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probabilistic models — such as Discrete Time Markov Chain (DTMC) or Continuous

Time Markov Chain (CTMC) — are often used and, properties are expressed with

specialized probabilistic temporal logics that quantify the properties with probability.

We refer to this as probabilistic model checking.

Usually probabilistic model checking is solved using numerical solution techniques,

and typically involves iteratively computing the exact probability of paths satisfying

appropriate sub-formulas. There are several efficient optimizations to represent the

state space of these models compactly, and to traverse the state space efficiently. How-

ever, they are usually very memory intensive and do not scale well to large stochastic

models. Hence, approximate methods for solving such problems are often used. One

such class of methods, known as statistical model checking, relies on using, as the name

suggests, statistical techniques to perform model checking. It is based on simulating a

number of sample runs of the system and, subsequently, deciding whether the samples

provide enough evidence to suggest the validity or invalidity of the property specified

as a probabilistic temporal logic formula (Younes et al., 2006).

Statistical model checking is based on the crucial observation that it may not be

necessary to obtain an absolute accurate estimate of a probability in order to verify

probabilistic properties. For example, to verify if the probability of a random variable

exhibiting a certain behavior is greater than θ, it is not necessary to compute the

exact probability of the property (p) to hold; instead, it is enough if we infer, by

sufficiently sampling the underlying model, that the probability is safely above or below

θ. Approaches based on statistical model checking are proven to be scalable, since they

are not dependent on constructing and traversing the full state space of the model.

Additionally, they have a low time complexity, require low memory, and are tunable to

the desired accuracy. These factors make them ideal for performing analysis on large

complex stochastic systems.

Since computational pathway models are typically large complex stochastic models,



CHAPTER 5. OPTIMIZED SEQUENTIAL HYPOTHESIS TESTING 46

our focus in this Chapter is on the statistical model checking problem. A standard

version of statistical model checking, which is the one we focus on in this Chapter,

is called sequential hypothesis testing (Younes and Simmons, 2002; Younes, 2006).

The success of this approach depends largely on a user-defined parameter called the

indifference region. The choice of the indifference region dictates the number of samples

necessary to verify the property and the outcome of the verification task. Consequently,

it is helpful to have a method of specifying the indifference region that does not solely

depend on the user-input.

Furthermore, when the true probability of the property is very close to the proba-

bility specified in the formulas, a large number of simulations is needed to validate or

invalidate the property. Maintaining an optimal balance between computational effort

and precision is important. It may well be the case with existing algorithms that, to

satisfy the specified error bounds, a large number of samples are drawn. In such cases,

it is useful to return a reasonable answer once a pre-specified amount of computational

resources have been consumed while the statistical test required is unable to make a

decision yet.

To address these issues, we propose optimized sequential hypothesis testing algo-

rithms which 1) do not need the user to provide the indifference region parameter; 2)

adjusts to the difficulty of the problem, i.e. the distance between p (the true proba-

bility) and θ (probability dictated by the property) dynamically; 3) always provides a

definite true or false result, i.e, does not return the undesirable undecided result (or

“I do not know” response).

5.2 Related Work

Existing works on statistical model checking can be classified based on whether the

probabilistic system is a black-box or a white-box system. A white-box system allows

generation of as many trajectories of the system as desired. In a black-box system,



CHAPTER 5. OPTIMIZED SEQUENTIAL HYPOTHESIS TESTING 47

only a fixed number of trajectories is available and, using which a decision has to be

made. We establish the basic concepts and terminologies to be used in the rest of the

Chapter in this section. Formally, probabilistic model checking refers to the problem

of verifying if M |= Pr∆θ{ψ}, ∆ ∈ {≤,≥, >,<} ; i.e, given a probabilistic model M ,

and a property ψ encoded in a probabilistic temporal logic formalism, check whether

ψ holds in M with probability dictated by ∆ w.r.t to θ.

5.2.1 Black-box Systems

Statistical model checking on black-box systems is based on calculating a p-value that

quantifies the statistical evidence of satisfaction or rejection of a hypothesis using the

set of samples given (Sen et al., 2004; Younes, 2005a). Sen et al gives an algorithm for

black box systems which quantifies the evidence of satisfaction of the formula by a p-

value (Sen et al., 2004). The problem is formulated as solving two separate hypothesis

tests (H0 : p < θ against H1 : p ≥ θ). If
∑
xi/n ≥ θ (where xi is 1 if the ith sample

satisfies ψ and 0 if it does not), H0 is rejected, the formula is declared to hold, and

the p-value is calculated. If the test does not reject H0 then a second experiment

is conducted, with H0 : p ≥ θ against H1 : p < θ. If
∑
xi/n < θ, H0 is rejected, the

formula is declared false, and the corresponding p-value is calculated. The smaller the

p-value, the greater is the confidence in the decision.

Younes also discusses an algorithm for black box systems using a modified version

of single-sampling plan with p-value (Younes, 2005b). Younes proposes the single-

sampling-based hypothesis testing algorithm where the number of samples n is decided

upfront. The model checking problem is formulated as a hypothesis test with the null

hypothesis H0 : p ≥ θ against the alternate hypothesis H1 : p < θ, a constant c is also

specified that decides the number of samples that should evaluate to true to accept the

null hypotheses. Let Xi be a Bernoulli random variable with parameter p such that

Pr[Xi = 1] = p and Pr[Xi = 0] = 1− p. An observation/sample of Xi, represented as



CHAPTER 5. OPTIMIZED SEQUENTIAL HYPOTHESIS TESTING 48

xi, states whether the specified temporal logic formula is true or false for a particular

observation. For example, in this case, xi is 1 if the ith sample satisfies ψ and 0 if

it does not. The strength of the hypothesis test is decided by parameters α and β,

which represent the probability of false negatives (Type-1 error) and false positives

(Type-2 error) respectively. If
∑n

i=1 xi > c then the hypothesis H0 is accepted; else H1

is accepted. The main challenge is to find the pair 〈n, c〉 which obey the error bounds

〈α, β〉. Younes describes an algorithm based on binary search to find the pair 〈n, c〉

that obeys the bounds (Younes, 2005b).

5.2.2 White-box Systems

Model checking on white-box systems can be classified into those which are based on

either statistical estimation or hypothesis testing. Statistical estimation based methods

rely on getting an estimate of the true probability, p, and comparing it with θ (dictated

by the temporal logic formula) to make a decision (Herault et al., 2003). Algorithms

based on hypothesis testing formulate the model checking problem into a standard

hypothesis test between a null and alternate hypothesis. Using techniques developed

for solving hypothesis testing problems, a decision is made about the satisfiability of

the property. Methods based on hypothesis testing can be further subdivided into two

different approaches — those that rely on Frequentist statistical procedures (Younes

and Simmons, 2002; Younes, 2006); and those that use Bayesian statistical procedures

(Zuliani et al., 2010; Jha et al., 2009).

Bayesian methods have the advantages of smaller expected sample sizes and abil-

ity to incorporate prior information. However, Bayesian methods are generally more

computationally expensive than their frequentist counterpart due to the requirement

to produce a posterior distribution (Jha and Langmead, 2011). In Bayesian methods,

the degree of confidence is indicated via a parameter called, Bayes factor threshold,

whereas frequentist methods use error bounds (Type-1 (α) and Type-2 (β) error). To
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say one is better than the other would be going into the old debate between Frequentist

and Bayesian statistics. However, we prefer the frequentist approach since it allows us

to explicitly state the error bounds, which is more intuitive to us.

5.2.3 Frequentist Statistical Model Checking

Younes and Simmons formulate the probabilistic model-checking problem as a sequen-

tial hypothesis-testing problem. Here, we call their algorithm Younes A (Younes and

Simmons, 2002), which is as follows: To verify a formula of the form Pr≥θ{ψ}, a hy-

pothesis test is setup between a null hypothesis H0 : p ≥ θ + δ against the alternative

hypothesis H1 : p < θ − δ. The factor δ represents the indifference region around the

threshold θ. This is represented in Figure 5.1. Algorithms based on sequential hy-

pothesis testing need input parameters α, β, δ which specify the Type-1, Type-2 error

bounds and the indifference region respectively. These parameters help in controlling

the number of samples and guaranteeing the desired error rates. For a fixed value of

α and β, δ decides the number of samples needed to verify a property. It is inversely

proportional to the number of samples required; i.e., the smaller δ is, the more samples

are needed. Also, the smaller δ is, the lesser is the probability of p being in the region

[θ− δ, θ+ δ]. δ is a user-defined parameter whose choice is problem specific and usually

involves iterative tuning. Hence, deciding the optimal value of δ affects the practical

applicability of these algorithms. A sequential sampling algorithm based on Wald’s se-

quential probability test is used to solve the hypothesis testing problem. After taking

the nth sample from the model, the factor fn is calculated as,

fn =

n∏
i=1

Pr[Xi = xi | p = θ − δ]
Pr[Xi = xi | p = θ + δ]

=
[θ − δ](

∑n
i=1 xi)[1− [θ − δ]](n−

∑n
i=1 xi)

[θ + δ](
∑n

i=1 xi)[1− [θ + δ]](n−
∑n

i=1 xi)
(5.1)

Hypothesis H0 is accepted if fn ≥ A; Hypothesis H1 is accepted if fn ≤ B; and
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Figure 5.1: Probability of accepting H0 : p ≥ θ + δ vs the actual probability of the
formula holding (adapted from Younes (2005b)).

if B < fn < A, another sample is drawn. The constants A and B are chosen so that

they result in a test of strength 〈α, β〉. In practice, to satisfy the strength dictated by

〈α, β〉, choose A = 1−β
α and B = β

1−α . The algorithm satisfies the error bounds 〈α, β〉

only when the true probability does not lie in the indifference region, which is an issue.

To address this issue, Younes discusses a modified algorithm (Algorithm 1), which

we call Younes B here, that bounds the error for cases when the true probability lies

in the indifference region by introducing a factor (γ), which allows and controls the

probability of undecided results (when the true probability is within the indifference

region) (Younes, 2006). Younes B uses two acceptance sampling tests:

H0 : p ≥ θ against H1 : p < θ − δ with strength〈α, γ〉

H
′
0 : p ≥ θ + δ against H

′
1 : p < θ with strength 〈γ, β〉
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Pr≥θ{ψ} is reported as true when both H0 and H
′
0 are accepted. It is reported

as false when both H1 and H
′
1 are accepted. Otherwise, the results is reported as

undecided. It is not meaningful to distinguish between Pr≥θ{ψ} and Pr>θ{ψ}; and

Pr≤θ{ψ} can essentially be written as ¬Pr≥θ{ψ}. Therefore, it is sufficient to present

on this case, Pr≥θ{ψ}.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Original Younes B(θ, δ, α, β, γ){
n← 0, d← 0;
Return Compute Y ounes B(θ, δ, α, β, γ, n, d);
}

Compute Y ounes B(θ, δ, α, β, γ, n, d){
A1 ← log 1−γ

α ; {Accept H0 if fn > A1}
B1 ← log γ

1−α ; {Accept H1 if fn < B1}
A2 ← log 1−β

γ ; {Accept H ′0 if f ′n > A2}
B2 ← log β

1−γ ; {Accept H ′1 if f ′n < B2}
repeat
n← n+ 1; {Generates a new sample}
if (xn == 1) then
d← d+ 1;

end if
fn ← d log θ−δ

θ + (n− d) log 1−(θ−δ)
1−θ ;

f ′n ← d log θ
θ+δ + (n− d) log 1−θ

1−(θ+δ) ;

until !((B1 < fn < A1)||(B2 < f ′n < A2))
if ((fn < B1)&&(f ′n < B2)) then

Return (n, d, TRUE); {p ≥ θ}
else if ((fn > A1)&&(f ′n > A2)) then

Return (n, d, FALSE); {p 6≥ θ}
else

Return (n, d, UNDECIDED);
end if
}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
n is the number of samples
d is the number of samples satisfying ψ xn is the outcome of the nth sample,
1 if true else 0
α is the Type I error
β is the Type II error
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Algorithm 1: Original Younes B
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5.3 Optimized Statistical Model Checking Algorithm

As discussed earlier, we aim to remove the manual selection of the indifference region

parameter. The rationale behind this is because, while the parameter is critical to the

success of previous sequential hypothesis testing algorithms, it is very difficult for the

user to select a suitable value. We combine ideas from the realms of verifying white box

and black box to produce an algorithm that is practically superior. The essence of our

proposed algorithms is similar to Younes B’s two-acceptance-sampling-tests approach

but, we make several critical changes which enhance them significantly. We describe

our algorithm in the following subsections.

5.3.1 Adjusting δ Automatically

Instead of having to specify a difficult-to-determine indifference region, we first assume

it to be 1.0, which is the largest possible value. We start with a large δ because, the

larger δ is, the fewer samples we need. We then proceed with using two simultaneous

acceptance-sampling tests just like Younes (2006). However, the crucial difference is

that, whenever an undecided result is returned by the algorithm, we reduce δ by half

and check whether 1) a definite result can be given, 2) another sample is needed, or

3) a further reduction is required. We continue this process until a definite result is

produced. The details are given in Algorithm 2.

Our algorithm, which we would like to call it as OSM A (Optimized Sequential

Hypothesis Testing Method), has three advantages over previous works. First, a pre-

determined user-defined indifference region δ is not required. Secondly, the number of

samples required adjusts automatically to the difficulty of the problem, i.e., depending

on how close p is to θ, by starting with the largest possible indifference region. Finally,

our algorithm always gives a definite result if sufficient samples are given and, that

result is guaranteed to be error bounded.

However, if p is very close to θ, the indifference region needs to be reduced to a
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
OSM A(θ, α, β){
δ ← 1, γ ← min(α, β), n← 0, d← 0;
while (true) do

(n, d, y)← Compute Y ounes B(θ, δ, α, β, γ, n, d);
if ((y == TRUE)||(y == FALSE)) then

Return y;
else
δ ← δ/2; {Undecided with current δ, halve it}

end if
end while
}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
n is the number of samples
d is the number of samples satisfying ψ xn is the outcome of the nth sample,
1 if true else 0
α is the Type I error
β is the Type II error
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Algorithm 2: OSM A

very small value such that δ < |p − θ|. If δ is very small, the sample size required to

determine a result will be very large or, in the worst case where p = θ, this algorithm

will not terminate. Therefore, while such an algorithm is superior in theory, it may be

limited in some situations in practice. Hence, in sub-section 5.3.2, we further improve

this algorithm by setting a limit on the sample size. This ensures that the program

completes in a user-acceptable runtime to handle such unlikely but possible situations.

The ability of OSM A to control errors is obviously dependent on Younes B algo-

rithm’s ability to control them. Therefore, interested readers are referred to Younes

(2006) where they provide proofs for the strength of two acceptance sampling tests. In

this Chapter, we empirically demonstrate in Section 5.4 that OSM A consistently has

the ability to control errors in various settings.

Based on Algorithm 2, as OSM A repeatedly calls Compute Younes B, it would

require much more samples to be generated than Younes B. However, that is not true.

This is because OSM A reuses samples from previous iterations (with a different δ)
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Figure 5.2: Log2 expected value of n at which the Younes B algorithm terminates
and returns a TRUE/FALSE/UNDECIDED answer for different values of δ (0.02, 0.05
and 0.1) at varying θ with α = 0.01, β = 0.01, γ = 0.01 and p = 0.7. This figure
demonstrates that with decreasing δ, the expected n increases.

instead of starting from scratch with each call. Therefore, the number of samples

needed to be generated by OSM A is actually the same as Younes B given the same

θ, α, β, γ and δ. It is possible to reuse samples from different iterations because, given

the same θ, α, β, and γ, if the Younes B algorithm running at a larger value of δ

terminated at a value of n but returned UNDECIDED, then the Younes B algorithm

running at a smaller value of δ would not terminate and return TRUE/FALSE at

that same value of n (though it would terminate at a higher value of n and return a

TRUE/FALSE/UNDECIDED answer) (Figure 5.2).

5.3.2 Limiting the Number of Samples

By limiting the sample size, we can bound the runtime of the program but we may not

be able to bound the error rates. Therefore, we compute a p-value to serve as a measure

of the confidence of the result. The modified algorithm is as follows. As before, we first
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assume δ to be the largest possible, i.e., 1.0. Then we proceed using two simultaneous

acceptance-sampling tests and, whenever an undecided result is given, we reduce δ by

half and check whether 1) a definite result can be given, 2) another sample is needed,

or 3) a further reduction is required. We continue this process until a definite result

is given or when the sample size limit is reached. If a definite result is reached before

the sample size limit, then the error rate is guaranteed to be bounded (because it is

running as OSM A before sample size limit). Otherwise, if the sample size limit is

reached, we compute the p-value for both hypotheses H0 : p ≥ θ and H1 : p < θ, and

accept the hypothesis with the lower p-value. The p-values are computed using the

method presented in Younes (2005a) — viz., the p-value for H0 is 1−F (d;n, θ) and the

p-value for H1 is F (d;n, θ), where d is the number of successes (or true), n is the total

number of samples, and F (d;n, θ) is the Binomial cumulative distribution function,

F (d;n, θ) =

d∑
i=0

(
n

i

)
θi(1− θ)n−1 (5.2)

With this, we have developed an algorithm that 1) does not require the user to

predetermine a suitable indifference region, 2) is guaranteed to bound specified Type-1

and Type-2 errors if sufficient samples can be generated, and 3) terminates and returns

a confidence measure even in the rare event when p is extremely close to or equal to θ.

We call the above algorithm OSM B.

In the next section, we demonstrate the superiority of our proposed algorithms

against current state of art, first with a straightforward yet representative example

followed by applying to a real biological model.

5.4 Results

For a fair comparison across different algorithms, we need to define the performance

measures of interest. In model checking, simulation runs are typically the most compu-
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tationally expensive and obtaining accurate conclusions about the model is of paramount

importance. Therefore, the most desirable situation would be to obtain accurate con-

clusions of the model’s behavior with the minimum number of simulation runs. As

such, we use error rates and simulation runs (or samples) required of each algorithm

as the basis for judging superiority in our comparison.

5.4.1 Simple Model

Here, we use a simple uniform random generator that produces real numbers in the

range of [0,1] as our probabilistic simulation model. Suppose the property that we are

testing is whether p ≥ θ, and we fixed p (the true probability) to 0.3. To generate a

sample, we use the uniform random generator to generate a random number and, the

sample is treated as a true sample if and only if the generated value is lesser than p.

We vary θ from [0.01, 0.99] (except p which is 0.3) with an interval of 0.01 and set δ

to be 0.05 and 0.025 for Figure 5.3a, 5.3b and 5.3c, 5.3d respectively. For each setting,

the experiments are repeated 1000 times with α (Type-1 error rate) and β (Type-2

error rate) of 0.01. We also limit the sample size for OSM B to be 3000.

Figure 5.3 shows how critical and difficult the selection of δ is for Younes A and

Younes B. Too large, the error and undecided rates within the wide indifference region

are unbounded and high (Figure 5.3a). On the other hand, if δ is too small, then the

number of samples required grows rapidly in the indifference region (Figure 5.3d).

Indeed, if a suitable δ can be chosen for Younes A and Younes B, the error rate is

bounded and minimum samples are used. However, it is a difficult task to choose an

ideal δ that balances the samples required and the error rates unless one has a good

estimate of p (the true probability), which is unrealistic.

Furthermore, it should be noted that the Younes A algorithm does not provide

information on whether the error rate is bounded or not, i.e., whether p is within

or outside the indifference region. This implies that the user may come to a false
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Figure 5.3: Plots a & b are with an indifference region of 0.05 whereas c & d are with
an indifference region of 0.025 for the small synthetic model.

conclusion that the result is bounded with a certain error rate when it is actually not

(Figure 5.3a and c).

While the Younes B algorithm does indeed always bound the error rate when a defi-

nite result is given, it comes at the expense of a large number of undecided results when

p is inside the indifference region. This means the algorithm uses up computational

resources and, in the end, returns an undecided result, which is undesirable.

Our proposed algorithm (OSM A) overcomes all these problems. First, the tough

decision of choosing the indifference region is not required as the algorithm does do so

dynamically and error rates are always bounded (Figure 5.3a and c). However, OSM

A has a limitation in that it requires rapidly increasing number of samples as θ closes

in on p (Figure 5.3b and d).
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OSM B removes this limitation by limiting the number of samples and ensures

termination (Figure 5.3b and d). We should note that whenever OSM B returns a

definite answer, the error is guaranteed to be bounded and, when the sample limit is

reached, a confidence measure (p-value) is given. Therefore, it is clear to the user when

a result is guaranteed to be error bounded and when it is not.

5.4.2 Cell Fate Model of Gustatory Neurons with MicroRNAs

Figure 5.4: Summary of the ASE pathway model. Four regulatory factors lsy-6, cog-1,
die-1 and mir-273 form a double-negative feedback loop which determines whether the
cells will be ASEL or ASER. In ASEL cells, flp-20, flp-4, gcy-6 and gcy-7 (coded in
blue) are expressed, whereas in ASER cells, gcy-5, gcy-22 and hen-1 (coded in red) are
expressed (Saito et al., 2006).

Next, we perform model checking on the cell fate determination model of gustatory

neurons (ASE) of Caenorhabdities elegans (Saito et al., 2006). This model studies

the regulatory aspects mediated by miRNA’s on the ASE cell fate in C.elegans and

focuses on a double negative feedback loop which determines the cell fate (Figure

5.4). A precursor cell state have equivalent potential to transit into the stable ASEL

or ASER terminal state. While ASEL and ASER are physically asymmetric, they are

morphologically bilaterally symmetric. It is believed that the cell fate (ASEL or ASER)
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Figure 5.5: Plots a & b are with indifference region of 0.05 whereas c & d are with
indifference region of 0.025 for the cell fate model. As expected, this figure looks
identical to Figure 5.3 as these algorithms do not make assumptions on the underlying
stochastic model.

is controlled by miRNA (lsy-6 and mir-273 ) in the double negative feedback loop. The

computational model contains 22 entities (RNA or protein) and 27 processes (biological

reactions). We first use a property from Li et al. (2011), where it validates that the

concentration of LSY-2 in the nucleus will never increase if it has risen and fallen once

previously, to illustrate the technical superiority of our proposed algorithms even in

real biological examples. We discuss the practical implications in the next section.

As before, we vary θ from [0.01, 0.99] (except p which is estimated to be 0.25) with

an interval of 0.01 and set δ to be 0.05 and 0.025 for Figure 5.5a, 5.5b and 5.5c, 5.5d

respectively. For each setting, the experiments are repeated 1000 times with fixed α

(Type-1 error rate) and β (Type-2 error rate) of 0.01. We again limit the sample size
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for OSM B to be 3000. Using a separate experiment of 10,000,000 simulation runs, we

estimated that the true probability, p, of this property to be 0.25 (in the 10 million run

results, approximately 25% of them satisfied the property).

	  	   Average	  Sample	  Size	   Total	  Errors/Undecided	  

θ	   δ	   Younes	  A	   Younes	  B	   OSM	  A	   OSM	  B	   Younes	  A	   Younes	  B	   OSM	  A	   OSM	  B	  	  
(P-‐Value)	  

0.5	   0.05	   45.9	   102.5	  
34.1	   34.1	  

0	   0	  
0	   0	  

	  	   0.025	   92.0	   194.4	   0	   0	  

0.28	   0.05	   288.8	   1560.7	  
2063.0	   1807.6	  

54	   254	  
5	   5	  

	  	   0.025	   614.5	   2091.4	   2	   0	  

0.26	   0.05	   393.8	   1176.2	  
18832.7	   2784.7	  

324	   937	  
7	   114	  (107)	  

	  	   0.025	   1316.6	   6179.6	   129	   738	  

Table 5.1: Cross-section of Figure 5.5 where θ = (0.5, 0.28 and 0.26). At θ = 0.26,
total errors made by OSM B is 114 out of which 107 is due to p-value (sample limit
reached).

Figure 5.5 again demonstrates the superiority of our proposed algorithms over cur-

rent state of art. To give an even clearer picture of the advantages of our algorithm,

we shall look at the cross-section of a few crucial data points (Table 5.1).

Firstly, when θ is distant from p, the problem is easy. Ideally, algorithms should

use minimum amount of samples while maintaining the error bound. In Table 5.1, at

θ = 0.5, although all algorithms kept well within the error bounds but Younes A and

B both requires much more samples than OSM A and B on average.

As θ approaches p, understandably more samples would be required to make an

accurate conclusion. In these situations, the priority would typically still be to ensure

error rates are under control while not using an exorbitant number of samples. Based

on Table 5.1, at θ = 0.28, error rate of Younes A and B are dependent on the choice of

δ. If the user is able to choose δ to be 0.025, errors are low (Younes A made 2 errors

while Younes B made no error) but if the user makes a wrong choice, δ = 0.05, it would

be disastrous (Younes A made 54 errors while Younes B made 254 errors/undecided).
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Since δ is not a parameter for OSM A and B, their performance are consistent, with

error rates within 1% (or 10 errors in 1000 runs) and average sample size around 2000.

In the event where θ is extremely close to (or equal) p, it is hard (or impossible)

to accurately decide unless we have huge (or infinite) samples. Therefore, one could

only choose between high accuracy or minimum samples. Our proposed algorithms are

useful each in one situation. If high accuracy is desired by the user, OSM A is suitable.

As shown in Table 5.1, θ = 0.26, OSM A is constantly keeping errors close to 1% or

10 errors. If computation limitation is of concern to the user, OSM B could be used

to maintain sample size limit. Younes A seems to perform better than OSM B, since

it uses less samples and has relatively similar errors. However, it is important to note

that this is actually not true because, when OSM B cannot guarantee the error rate, it

returns a p-value (107 errors are made by p-value), instead of the typical true or false

conclusion, which would alert the user to be cautious. In contrasts, Younes A does not

have such differentiation and might mislead user to trust its decision. Furthermore,

the value of each resulting p-value can be used as another red flag, as OSM B tends

to be correct when the p-value is small and incorrect when the p-value is large (Figure

5.6). As for Younes B, it is even worse, it would run thousands of simulations and give

undecided conclusion, which is not very useful, up to 93.7% of the time.

5.4.3 Practical Implications

In the previous few sections, we have shown the superiority of our algorithms from

a technical standpoint. In this section, we discuss the practical implications of our

algorithms. In particular, we use model checking to verify two behaviors of the ASE

pathway model.
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Figure 5.6: P-value distribution of OSM B (from Figure 5.5) when θ = 0.26. Average
p-value for OSM B Correct is 0.147 whereas average p-value for OSM B Incorrect is
0.357.

Equivalent potential to transit into ASER or ASEL

One important application of model checking is using it to ensure that the created

simulation model exhibits behaviors that are widely accepted. In literature, it is stated

that a precursor ASE cell state should have equivalent potential to transit into stable

ASER or ASEL. Therefore, we need to first ensure that the ASE pathway model created

exhibits this behavior before we can deem the model to be correctly built and utilize

it to perform any downstream analysis.

Suppose we accept equivalent potential to be between 45% and 55%, which means

the simulation model should transit into ASER or ASEL with a probability of 0.45 to

0.55. Translating this to model checking language would mean that ASER terminal

cell fate markers (such as gcy5) should be more abundant than ASEL terminal cell fate

markers (such as gcy6) after some simulation time with a probability of 0.45 to 0.55.
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More formally, the PLTLs format would be P≥0.45G([gcy5] > [gcy6]){[time] > 300}

AND P≤0.55G([gcy5] > [gcy6]){[time] > 300}. Readers unfamiliar with temporal logics

and model checking in systems biology can find the relevant background materials in

Koh et al. (2011).

By using a separate, computationally expensive experiment of 10,000,000 simulation

runs, we found that the ASE model transits into ASER and ASEL with approximately

46% and 54% probability respectively. Therefore, the correct conclusion to be given by

the algorithms should be to accept that the model as correct.

Assuming that a user wants the error rate to be around 1% (α = 0.01 β = 0.01),

and has chosen δ to be 0.025. Table 5.2 shows that there is a 13.1% probability that

Younes A incorrectly rejects the model while there is a 70.3% probability that Younes

B replies with an undecided response.

On the other hand, as shown in Table 5.2, OSM A only gives a wrong conclusion

with 1.2% probability. However, OSM A requires, on average, ≥23,000 simulation

runs to make a decision, which could be much more than the available computational

resources to the user. In such cases, the user can still depend on OSM B where it needs

only about 2,800 simulation runs on average, with only 1.2% probability of giving a

wrong conclusion. The rest of the 11.4% wrong decisions given by OSM B is when

computational resources are maxed out and OSM B returns a p-value instead of the

true or false response. This should alert the user to be more cautious of the conclusion.

	  	   Average	  Sample	  Size	   Total	  Errors/Undecided	  

Δ	   θ	   Younes	  A	   Younes	  B	   OSM	  A	   OSM	  B	   Younes	  A	   Younes	  B	   OSM	  A	   OSM	  B	  	  
(P-‐Value)	  

≥	   0.45	   1593.1	   8469.2	   23769.5	   2810.0	   131	   703	   12	   12	  (114)	  

≤	  	   0.55	   262.1	   595.8	   311.2	   311.2	   0	   0	   0	   0	  

Table 5.2: To verify whether the ASE model has equivalent potential to transit into
ASER or ASEL. With α = 0.01, β = 0.01, γ = 0.01, δ = 0.025 and repeating the
experiment 1000 times.
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lsy-2 in the nucleus will never increase if it has risen and fallen once previ-

ously

Suppose that after validating the model, we are now interested in investigating whether

the ASE model exhibits the following behavior: There is more than 28% probability

that the concentration of lsy-2 in the nucleus will never increase if it has risen and

fallen once previously. Translating this to PLTLs would be P≥0.28((d([lsy2N ]) >

0)U(G(d([lsy2N ]) ≤ 0))).

Once again, by using a computationally expensive, separate experiment of 10,000,000

simulation runs, we have found that the model only exhibits this behavior approx-

imately 25% of the time. Therefore, the correct conclusion to be drawn by the al-

gorithms should be the model does not exhibit this behavior more than 28% of the

time.

Assume a user wants the error rate to be around 1% (α = 0.01 β = 0.01) and

has chosen δ to be 0.05. This time, there is a 5.4% probability that Younes A gives a

wrong conclusion while there is a 25.4% probability that Younes B gives a wrong or

undecided conclusion, whereas there is only a 0.5% probability that OSM A and OSM

B make a wrong conclusion (Table 5.1). On the other hand, if the user had chosen a

smaller δ (= 0.025), they would have been able to control the error rates (Table 5.1).

Therefore, one naive strategy would be to always choose an extremely small δ that is

close to 0. However, since the expected number of samples of Younes A and Younes B

are inversely proportional to δ2 (Younes, 2005b), such a strategy would have required

an exorbitant number of simulation runs.

In the two scenarios above, we have chosen different values of δ for Younes A

and Younes B. Unfortunately, it was insufficient in both cases, causing Younes A and

Younes B to not perform well (i.e. keeping error rates under control). This clearly

shows that their success or failure depends heavily upon the value of δ and, in practice,

it is unrealistic to expect users to be able to provide a suitable δ for every scenario.
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Therefore, eliminating the need for users to decide on the value δ, and dynamically

selecting the optimal value depending on the situation, is a useful practical solution as

proposed in OSM A and OSM B.

5.5 Discussion

In this Chapter, we have presented two algorithms (OSM A and OSM B) that are

similar but serve different purposes. OSM A is recommended when computational

resources are plentiful and/or bounding the error rates is a priority. In the situation

where computational resources are limited, OSM B is useful. While these algorithms are

founded upon a simple idea, the improvements over current state-of-the-art algorithms

are significant and practically useful. Firstly, our algorithms do not require the critical,

yet difficult to determine indifference region as an input parameter. Secondly, our

algorithms adjust automatically to the difficulty of the problem by dynamically halving

the indifference region, leading to using fewer samples when p is far away from θ. Lastly,

it always returns a definite response to the user, which is either guaranteed to be error

bounded given sufficient samples or comes with a confidence measure if computational

resources are limited.

Therefore, we foresee the usage of these algorithms to be wide as there is no as-

sumption or requirement of the simulation model, allowing them to be applied to any

stochastic system analysis. In fact, in the next chapter, we will show how we can uti-

lize these sequential hypothesis testing algorithms to improve cross-batch prediction

accuracy of microarray data, a seemingly unrelated area.



Chapter 6

Overcoming Batch Effects in

Microarray

6.1 Introduction

Noise has a negative connotation in the classical view of biology. Therefore, one often

attempts to remove “noise” from data using various statistical methods before any

downstream analysis. However, there are two different types of noise in biological data,

experimental noise and inherent cell variation. Distinguishing experimental noise from

natural fluctuation due to inherent cell variation is a daunting task, and attempts to

de-noise data often remove meaningful cell variation as well. Therefore, in this work,

we take a different approach of embracing noise instead.

Inherent cell variations could arise from intrinsic and extrinsic sources (Raser and

O’Shea, 2005). Intrinsic noise sources would affect two equivalent and independent

gene reporters placed in the same cell differently, whereas extrinsic noise sources would

affect two reporters in any given cell equally but affect reporters in another cell dif-

ferently. Examples of intrinsic noise sources are stochastic events during the process

of gene expression, such as transcription regulation, translation regulation and protein

66



CHAPTER 6. OVERCOMING BATCH EFFECTS IN MICROARRAY 67

degradation. Sources of extrinsic noise include local environmental differences or ongo-

ing genetic mutations. These inherent cell variations have been gaining recognition in

their contribution to cell robustness, which enables organisms to survive in the ever-

changing environment (Raser and O’Shea, 2005; Mettetal and van Oudenaarden, 2007;

Quaranta and Garbett, 2010; Kitano, 2007).

Experimental noise in gene expression measurement data mainly contains two forms

of experimental errors: measurement errors and batch effects. Measurements errors in

gene expression microarrays are studied by the MicroArray Quality Control (MAQC)

project, a large-scale study led by FDA scientists involving 137 participants from 51

organizations, where they showed that the median coefficient of variation of replicates

is between 5% and 15% (MAQC Consortium, 2006). The batch effects problem is a

non-biological systematic bias that exists in various batches of samples due to experi-

mental handling. If not appropriately handled, incorrect conclusions might be drawn,

especially when batch effects are correlated with an outcome of interest (Leek et al.,

2010).

An important application of microarrays in clinical settings is to construct a pre-

dictive model for diagnosis or prognosis purposes. To do so, we need to overcome the

various types of noises mentioned above, especially batch effects (Tillinghast, 2010).

Recently, a prominent study on how batch effect removal techniques could improve mi-

croarray prediction performance was published (Luo et al., 2010). However, the results

were not very encouraging, as the techniques studied did not always improve predic-

tion. In fact, in up to 20% of the cases, prediction accuracy was reduced. Furthermore,

it was stated in the paper that the techniques studied required sufficiently large sample

sizes in both batches (train and test) to be effective, which is not a realistic situation

in clinical settings.

Most batch effects removal algorithms try to accurately estimate the batch effects

before removing them, which is why large sample sizes are required for each batch and
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a balanced class ratio is often desired. In this work, we attack the problem from a

different angle. Specifically, we propose a computational approach that increases cross-

batch microarray prediction accuracy that mitigates batch effects without explicitly

estimating and removing them. Our proposed approach uses the following two main

ideas. Firstly, it is well known that while batch effects affect the absolute values of

the genes expression measured, they often do not affect the relative ranking of the

gene ordered by their expression values (MAQC Consortium, 2006). Thus, instead of

attempting to estimate noise due to batch effects, we embrace it by using rank values

rather than absolute values. Secondly, assuming the number of seriously noisy sam-

ples is far fewer than the number of relatively clean samples, we show that stochastic

sampling with replacement can generate many new diverse training sets that are en-

riched with clean samples. Thus, instead of identifying and removing noise explicitly,

we employ stochastic sampling with replacement to generate many diverse training

sets that are enriched with clean samples, to suppress unwanted noise while allowing

diversification to emerge.

6.2 Materials and Methods

6.2.1 Data Sets

Four data sets from the MAQC project are used in this work (Table 6.1). Three are

chosen due to their varying amount of batch effects as visually quantified using PCA

(Figure 6.1); and the fourth one is simply a negative control where class labels were

randomly assigned. We name the data sets in the same way as in the MAQC project

(MAQC Consortium, 2010).

The Hamner Institutes for Health Sciences (Research Triangle Park, NC, USA)

provided data set A. The objective of the study was to apply gene expression data

from the lungs of mice exposed to a 13-week treatment of chemicals to predict increased
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Training set Validation set 

Data set code Data set 
description 

Number of 
samples 

Positives Negatives Number of 
Samples 

Positives Negatives 

A Lung tumorigen 
vs. non-

tumorigen 
(Mouse) 

70 26 44 88 28 60 

D Breast cancer 
pre-operative 

treatment 
response 

(pathologic 
complete 
response) 

130 33 97 100 15 85 

F Multiple 
myeloma 

overall survival 
milestone 
outcome 

340 51 289 214 27 187 

I Same as data 
set F but class 

labels are 
randomly 
assigned 

340 200 140 214 122 92 

Table 6.1: Data sets from MAQC project used in this work.

lung tumor incidence in the two-year rodent cancer bioassays of the National Toxicology

Program. Results of this study may be used to create a more efficient and economical

approach for evaluating the carcinogenic activity of chemicals. A total of 70 mice were

analyzed in the first phase and used as the training set. An additional 88 mice were

later collected and analyzed, and subsequently used as the validation set.

The University of Texas M. D. Anderson Cancer Center (MDACC, Houston, TX,

USA) generated data set D. 230 stages I-III breast cancers gene expression samples

were collected from newly diagnosed breast cancers before any therapy. Specimens were

collected sequentially between 2000 and 2008 during a prospective pharmacogenomics

marker discovery study. Patients received 6 months of preoperative chemotherapy

followed by surgical resection of the cancer. Response to preoperative chemotherapy

was categorized either as a pathological complete response (pCR), which indicates no

residual invasive cancer in the breast or lymph nodes, or residual invasive cancer (RD).

Gene expression profiling was performed in multiple batches using Affymetrix U133A

microarrays. The first 130 collected samples were assigned as the training set, whereas
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Figure 6.1: PCA plots of the data sets used. PCA plots are typically used to visualize
batch effects. These data sets are chosen from the FDA-led Microarray Quality Con-
trol (MAQC) Consortium project. See MAQC Consortium (2010) for details on data
sets. Based on the PCA plots, data set A contains the most batch effects (points are
separated by batches instead of class labels) while data set F contains the least. Note
that data set I is a negative control where class labels are randomly assigned.

the next 100 samples were used as the validation set.

The Myeloma Institute for Research and Therapy at the University of Arkansas for

Medical Sciences (UAMS, Little Rock, AR, USA) contributed data sets F and I. Highly

purified bone marrow plasma cells were collected from patients with newly diagnosed

multiple myeloma followed by gene expression profiling of these cells. The training set

consisted of 340 cases enrolled on total therapy 2 (TT2) and the validation set comprised

214 patients enrolled in total therapy 3 (TT3). Dichotomized overall survival (OS) and

event-free survival (EFS) were determined based on a two-year milestone cutoff.

As all the data sets above from the MAQC project are cancer-related, we have
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therefore gathered an additional non-cancer-related data set from a different source

(Soh et al., 2011) to show that our methodology is not limited only to cancer-related

data sets. This data set is a Duchenne Muscular Dystrophy (DMD) data set that

compares patients suffering from DMD to normal patients. Not only does this DMD

data set contains batch effects, it is also a cross-platform data set. The training set

with 12 DMD patients and 12 controls comes from Affymetrix HG-U95Av2 GeneChip

(Haslett et al., 2002) whereas the validation set with 22 DMD pateints and 14 controls

uses HG-U133A GeneChip (Pescatori et al., 2007). Due to the cross-platform nature

of this data set, additional pre-processing is required. Firstly, probe IDs of both chips

needs to be converted into Entrez IDs and only Entrez IDs that appear on both chips are

retained. Furthermore, as multiple probes could be mapped into a single Entrez ID, the

maximum value of the probes are chosen to be the representative value for the Entrez

ID, and this approach of collapsing is also recommended by GSEA (Subramanian et al.,

2005).

6.2.2 Proposed Algorithm

As previously mentioned, we are proposing an entirely different approach towards over-

coming batch effects. This computational approach is inspired by two articles in the

field of biology, and is further enhanced with idea from our previous work on sequential

hypothesis testing (Chapter 5).

First, we propose using rank values instead of absolute values of gene expression

microarray data. This is inspired by the FDA-led Microarray Quality Control (MAQC)

Consortium project (MAQC Consortium, 2006), where one of its findings is that while

noise is inevitable in microarray experiments, the rank correlation between different

experimental groups and microarray platforms remains high. It was found that gene

expression data had a median coefficient of variation between 5-15% for sample repli-

cates. In contrast, the ranks correlations (Spearman) of log ratios were highly correlated
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(minimum R = 0.69) even across different platforms. Therefore, by using rank values,

experimental noise is reduced considerably and substantial improvement in prediction

performance can be seen (Figure 6.2).
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Figure 6.2: The percentage of cases with AUC changes under various settings. The
number of scenarios explored in each setting is 108. “A. Rank Values” uses rank values
instead of absolute values of microarray data. “B. Bagging (10)” and “C. Bagging
(100)” use bagging of 10 and 100 bootstrap replicates respectively with rank values.
“D. Dynamic Bagging” uses bagging with non-fixed number of bootstrap replicates,
where the number of bootstrap replicates is determined by the sequential hypothesis
testing algorithm proposed in Chapter 5 and error rates are set as 10−4. AUC Change
= AUCafter - AUCbefore. The base AUC (i.e., AUCbefore) refers to absolute gene
expression values and no bagging is used. “Increased” and “Decreased” refers to cases
where the change of AUC is >0.05 and <-0.05 before (using absolute values) and after
(using given algorithm) respectively. “Increased Slightly” is when AUC change ≥0 but
≤0.05, whereas “Decreased Slightly” indicates that AUC change <0 but ≥-0.05.

In another article (Janes et al., 2010), a team of biologists successfully used repeated

stochastic sampling to suppress experimental noise while allowing meaningful hetero-
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geneity in a cell population to emerge. Interestingly, this approach is very similar to

the bootstrapping approach in statistics. Therefore, our second idea in this algorithm

is to use bootstrapping to generate numerous diverse sets of training clones from the

original training data. We will show in Chapter 7 that these training clones are likely

to be enriched with more clean samples than the original training data. In Chapter 7,

we further demonstrate that an ensemble classifier built from this collection of training

clones—which is called a bagging classifier—improves prediction accuracy by embrac-

ing (i.e., reducing the influence of) noisy samples, as long as there are many more

“good” samples than “bad” samples in the original training set, which is a reasonable

assumption for any decent training datasets.

However, in the original flavor of bagging, while the number of training clones, n,

needs to be sufficiently large to ensure the effectiveness of bagging classifier (Chapter

7). n is typically determined a priori and arbitrarily (Breiman, 1996a). Here, we

propose using a sequential hypothesis testing procedure (Wald, 1945) to dynamically

and optimally choose n for each test instance.

In Chapter 5, we developed a sequential hypothesis testing procedure called OSM

(Optimized Statistical Model Checking Algorithm). OSM is able to determine the

number of simulation runs required to prove whether a stochastic model satisfies a

probabilistic formula, P≥θ{ψ} where θ represents the threshold probability and ψ rep-

resents the property. For instance, P≥0.7{X1>10} checks whether the given stochastic

model would have variable X1 > 10 in ≥70% of the cases. Essentially, the OSM

sequential hypothesis testing procedure draws samples until it can assert or reject a

probabilistic formula with statistical guarantees on the error rates.

Let Ti be the ith test instance. Let P (C(Bn), Ti) be the Boolean prediction on

Ti of the classifier trained using Bn, which will be True if Ti is predicted to be of

the positive class label and False if Ti is predicted to be of the negative class la-

bel. Therefore, we can formulate the probabilistic formula for our current problem
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as P≥0.5{P (C(Bn), Ti) = True}. That is, given a test instance Ti and a training set

S, and a large number of classifiers trained from bags of m samples randomly drawn

with repetitions from S, would more than 50% of these classifiers predict Ti to be of

the positive class label? By stating the problem in this format, n will be dynamically

determined by the sequential hypothesis testing procedure and is optimal for each test

instance. This will improve both the computational efficiency and prediction accuracy

over standard bagging. For the purposes of comparison with standard bagging (with

bootstrap replicates 10 and 100), we set the parameters for the OSM sequential hy-

pothesis testing algorithm as follows. The maximum value of n is set to 100 and the

guaranteed false positive and false negative error rates are both set to 10−4.

In summary, we propose using ranking value of microarray data and bagging with

the sequential hypothesis testing algorithm to dynamically determine the number of

classifiers required. Finally, the average of these classifiers scores is taken as the final

prediction score for a particular test instance.

6.2.3 Evaluation of Effectiveness

In this work, our main objective is to improve cross-batch prediction accuracy. There-

fore, we use it as our performance measurement. The primary performance metric used

is area under the ROC curve (AUC) as it has the advantage of evaluating performance

across the full range of sensitivity and specificity. A prediction model is built using the

training set and evaluated using the validation set (forward prediction) and vice versa

(backward prediction).

To demonstrate the applicability of our proposed algorithm in small-sample-size

scenarios, we create two additional data sets by randomly selecting 25% or 50% of the

samples while maintaining the class ratio from each of the original data sets given in

Table 1. In total, we have 12 training sets and 12 validation sets. Next, in order to show

that our approach is independent of the feature selection algorithm and classification
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methods, we have chosen several different approaches representing various categories.

For feature selection, we have picked t-test and Wilcoxon Rank Sum test as they rep-

resent parametric and non-parametric approaches respectively. As for classification

methods, we have chosen support vector machine (SMO with buildLogisticsModel set

to True), K nearest neighbors (K = 5) and the popular tree algorithm, C4.5 (named

as J48 in Weka (Hall et al., 2009)). All classification methods use the default settings

in Weka 3.6.4 with the stated changes. They represent linear classifier, instance-based

classifier and tree classifier respectively.

Using the above-mentioned data sets, feature selection algorithms and classification

methods, we measure the difference in AUC before and after our proposed algorithms

in each of the possible permutations. There are a total of 9 different data sets, 3 from

each data set A, D and F. Data set I is not used to measure performance improvement

since it is a negative control; it is used instead to ensure arbitrary improvement is

not seen. Together with two different prediction directions (forward and backward),

two different feature selection algorithm (t-test and Wilcoxon Rank Sum test) and

three different classification methods (SVM, k-NN and C4.5), there are a total of 108

(9x2x2x3) different possible scenarios.

6.3 Results

The main objective of this work is to improve cross-batch prediction performance. In

Figure 6.2, we looked at the AUC change in all 108 possible permutations for various

algorithms. Figure 6.2 shows that our proposed algorithm is able to improve AUC by

>0.05 in >60% of the cases with only one case (<2%) having reduced AUC exceeding -

0.05. Combining the observations of Figure 6.2 and Figure 6.3, one can easily infer that

having more classifiers in the ensemble for majority voting would increase performance;

but having more classifiers would also require additional computational resources. The

number of bootstrap replicates or classifiers to use is typically decided arbitrarily. This
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is where dynamic bagging has an edge; it uses just enough classifiers to make the

prediction. In Figures 6.2 and 6.3, it is demonstrated that dynamic bagging is able to

achieve a comparable performance using only about 60% of the number of bootstrap

replicates on average as compared to bagging with 100 bootstrap replicates.
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Figure 6.3: Classifiers used by various algorithms. “A. Rank Values” uses rank values
instead of absolute values of microarray data. “B. Bagging (10)” and “C. Bagging
(100)” use bagging of 10 and 100 bootstrap replicates respectively with rank values. “D.
Dynamic Bagging” uses bagging with non-fixed bootstrap replicates, where the number
of bootstrap replicates is determined by the sequential hypothesis testing algorithm
proposed in Chapter 5 and error rates are set as 10−4. “MIN” is the minimum number
of classifiers used in all scenarios. “MAX” is the maximum number of classifiers used
in all scenarios. “AVG” is the average number of classifiers used in all scenarios. The
number of scenarios explored in each setting is 108.

Another important consideration in building prediction models for clinical usage is

the required sample size of training and test sets to properly deploy it. As the MAQC
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project is a large-scale study, its data sets are larger than usual. We did random

subset sampling to reduce the number of samples available to us to as low as 25% of

the original data, during the training phase, to mimic the low sample size in clinical

settings. Despite the reduction in training samples, our algorithm still maintained

its improvements with median AUC improvements well above 0.05 (Figure 6.4). It

is worth noting that the number of samples in the test data set has no influence on

prediction performance for our algorithm since we use them individually and solely for

the purpose of classifying it unlike conventional batch removal methods.

●●

Dynamic Bagging.0.25 Dynamic Bagging.0.5 Dynamic Bagging.1.0

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25

Influence of algorithms over various subset sizes

A
U

C
 C

ha
ng

e

Figure 6.4: Boxplot of AUC change on varying subset sizes under various scenarios
(36). AUC Change = AUCafter - AUCbefore. The subset size here refers to the use of
a random subset of the given data during the training phase. “Dynamic Bagging.0.25”,
“Dynamic Bagging.0.5” and “Dynamic Bagging.1.0” are the AUC changes after apply-
ing dynamic bagging and using rank values with 25%, 50% and 100% of the original
given data for training respectively compared with the conventional approach, which
is without bagging and using absolute values (MAQC Consortium, 2010).
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As the PCA plots of Figure 6.1 suggest that the different data sets are likely to have

a varying amount of batch effects, it is also interesting to look at how our algorithm

would perform on each data set. Figure 6.5 shows that our proposed algorithm performs

consistently with median AUC improvement well above 0.05 regardless of the data set.

This consistent improvement across various data sets with varying “magnitudes” of

batch effects implies that our algorithm is able to successfully overcome batch effects.
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Figure 6.5: Boxplot of AUC change on different data sets (A, D, F) under various sce-
narios (36). AUC Change = AUCafter - AUCbefore. “Dynamic Bagging.A”, “Dynamic
Bagging.D” and “Dynamic Bagging.F” are the AUC change after applying dynamic
bagging and using rank values on data sets A, D and F respectively compared with the
conventional approach, which is without bagging and using absolute values (MAQC
Consortium, 2010).

Finally, one critical issue highlighted by the MAQC project (MAQC Consortium,

2010) is regarding proper validation procedure to ensure the independence of the valida-
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tion set, such as modification of an originally designed algorithm after being validated

on the validation set. This would turn the validation set into part of the training pro-

cess. To ensure that our algorithm is not arbitrarily improving performance, we test it

on a negative control data set (data set I). Since it is a negative control data set, the

AUC should be close to 0.5 and, as shown by Figure 6.6, after applying our algorithm,

the median AUC is very close to 0.5 and the distribution is within a tight range of

0.45 to 0.55. This conclusively shows that our algorithm does not arbitrarily inflate

performance.
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Figure 6.6: Boxplot of AUC on data set I with varying subset sizes under various
scenarios (36). The subset size here refers to the use of a random subset of the given
data during the training phase. “Dynamic Bagging.0.25”, “Dynamic Bagging.0.5” and
“Dynamic Bagging.1.0” are the AUC achieved by applying dynamic bagging and using
rank values with 25%, 50% and 100% of the data given originally for training.
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Additional Validation

In addition to cancer-related data sets from MAQC projects, we have also obtained

a DMD data set from a different source (Soh et al., 2011) to demonstrate that our

methodology is not limited to a specific group of problems. The conclusion that we

obtained from running our methodology on the DMD data set is similar to the MAQC

data sets (Figure 6.7). By simply using ranking values instead of absolute values, sig-

nificant improvements can be seen. Compliment that with bagging brings the improve-

ments one notch higher, while dynamic bagging is able to maintain high performance

with a minimum number of bootstrap replicates. With this DMD data set, we have

shown that our methodology works well also on a non-cancer-related data set and it

further suggests that our work is able to overcome cross-platform prediction problems

in addition to batch effects.

6.4 Discussion

Overcoming batch effects is an important step before the deployment of diagnostic

or prognostic models based on gene expression data in clinical settings. Numerous

algorithms have been proposed in an attempt to solve this widespread and critical

problem in high-throughput experiments (Alter et al., 2000; Benito et al., 2004; Johnson

et al., 2007). However, these algorithms typically focus on accurately estimating batch

effects and then removing them using various methodologies. Often, the applicability

and efficacy of these algorithms rely heavily on the sample size and class ratio of each

individual batch. This prevents the methods from being applicable in clinical settings,

where batch size is likely to consist of only a few single samples. While the use of

calibration samples might somehow be able to overcome this, we also need to consider

other pertinent issues such as additional costs and proper preservation procedures.

In this work, we approached the batch effects problem from a different angle. We
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Figure 6.7: The percentage of cases with AUC changes under various settings for DMD
data set. The number of scenarios explored in each setting is 36. “A. Rank Values” is
using rank values instead of absolute values of microarray data. “B. Bagging (10)” and
“C. Bagging (100)” are using bagging of 10 and 100 bootstrap replicates respectively
with rank values. “D. Dynamic Bagging” is using bagging with non-fixed number of
bootstrap replicates where the number of bootstrap replicates is determined by the
sequential hypothesis testing algorithm proposed in Chapter 5 and error rates set to
be 10−4. AUC Change = AUCafter - AUCbefore. The base AUC (i.e., AUCbefore)
is where absolute gene expression values and no bagging are used. “Increased” and
“Decreased” refers to cases where the change of AUC is >0.05 and <-0.05 respectively
before (using absolute values) and after (using given algorithm). “Increased Slightly”
is when AUC change ≥0 but ≤0.05 whereas “Decreased Slightly” indicates that AUC
change <0 but ≥-0.05.

proposed a computational algorithm that attempts to embrace noise instead of esti-

mating and removing it. By simply employing the ranking of values instead of using

the absolute values of data, we were already able to obtain noticeable improvements.

Combine this with bagging and a sequential hypothesis testing algorithm; we were able
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to achieve a significant increase in cross-batch prediction performance over a wide range

of training data sample size and severity of batch effects. It is important to note that

our approach does not face the same limitations as conventional batch effects removal

methods, thus making it appealing for use in practical applications.

In the next chapter, we investigate more closely the reason why bagging classifier

is effective and also show that the integration with the sequential hypothesis testing

algorithms to make bagging more efficient is not restricted to biological domain.



Chapter 7

Bagging Explained and Made

More Efficient

7.1 Introduction

Bagging (Breiman, 1996a) is a commonly used approach in machine learning to obtain

a high-accuracy classifier from a base learning algorithm that produces base classifiers

that are less accurate. Bagging generates multiple versions of a predictor by using

bootstrap replicates of the training set, and uses them to create an aggregate predictor.

The effectiveness of bagging was formally analyzed in several classic papers (Bauer and

Kohavi, 1999; Breiman, 1996a,b; Friedman and Fayyad, 1997). In these papers, they

often focus on the bias-variance decomposition. It is also observed in these papers that,

when the perturbation of the training set due to bootstrapping causes large changes in

the base classifiers, bagging significantly improves accuracy. That is, the improvement

is largely related to how stable the base learning algorithm is and, specifically, unstable

learning algorithms benefit more from bagging than stable learning algorithms.

While this account provides a technically accurate explanation of why unstable

learning algorithms benefit from bagging, it is perhaps a somewhat indirect explanation

83
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of the effectiveness of bagging. A more fundamental and direct explanation of the

effectiveness of bagging should be independent of the stability or instability of the base

learning algorithm. We aim to provide such a more fundamental explanation here. In

particular, in a setting where there is noise in the training samples, we show that more

of the bootstrap replicates generated by bootstrapping contain more “good” samples

(i.e., correctly labeled or clean samples) than those that contain more “bad” samples

(i.e., incorrectly labeled or noisy samples). Now, suppose the base learning algorithm

is well behaved in the sense that it produces more accurate base classifiers when given

better training data (i.e., a bootstrap replicate with more “good” samples). As there

are more bootstrap replicates that are enriched with “good” samples than those that

contain more “bad” samples, the well-behaved base learning algorithm produces more

base classifiers that make better predictions than those that make worse predictions.

Thus, an aggregated predictor based on these base classifiers is dominated by the former

and, consequently, makes better predictions. We would like to highlight here that a

“bad” sample is not limited to only being a noisy sample. A “good” sample for a

particular learning algorithm could be “bad” to another learning algorithm due to the

inherent learning bias of learning algorithms.

A weak spot in the original flavor of bagging is that the number of bootstrap

replicates, n, is typically determined a priori and arbitrarily (Breiman, 1996a). In

Chapter 6, we successfully improved the efficiency of bagging on microarray data by

using a sequential hypothesis testing procedure (Wald, 1945) that dynamically decides

a minimum n required for each test instance. This removes the need for arbitrarily

fixing n. Specifically, our approach requires a lesser number of bootstrap replicates on

average, while maintaining similar prediction performance as standard bagging. We

term our algorithm as dynamic bagging.

In this chapter, we first show empirically that learning algorithms, regardless of

whether they are stable or unstable, are well behaved. That is, learning algorithms
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produce more accurate base classifiers when given better training data (i.e., data with

more “good” samples). Next, we prove formally that bootstrapping is more likely to

generate bootstrap replicates with more “good” samples than the original training set

if there exists many more “good” samples in the training data, which is typically the

case for any decent dataset. Finally, we show that, by combining bagging with our

previously developed sequential hypothesis testing procedure, it removes the need to

predetermine the number of bootstrap replicates and improves the efficiency of bagging

by dynamically choosing a minimum n, the number of bootstrap replicates, that is able

to make a statistically confident prediction on a given test instance. We will further

show that the prediction on a given test instance from this n classifiers would be largely

consistent with a prediction from an infinite number of classifiers theoretically (and a

much larger number of classifiers experimentally).

7.2 Materials and Methods

7.2.1 Datasets

All datasets used here are obtained from the UCI repository. We consider four datasets

from various problem domains.

Ionosphere This radar dataset was collected by a system in Goose Bay, Labrador

(Sigillito et al., 1989). There are 351 instances, each with 34 continuous attributes.

There are two classes, 226 good and 125 bad. Good would imply that there exists

some type of structure in the ionosphere where bad would indicate that there is no

structure.

Diabetes This dataset contains various medical measurements such as age and

pregnancy information. All patients here are females at least 21 years old and of Pima

Indian heritage. It consists of 768 instances, each with 8 continuous attributes. There

are two classes, 268 positive and 500 negative. Positive would imply that patient is
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tested positive for diabetes (Smith et al., 1988).

Tic-tac-toe This dataset encodes all possible board configurations at the end of tic-

tac-toe games, where ‘x’ is assumed to have played first. There are 958 instances, each

with 9 categorical attributes. There are two classes, 626 positive and 332 negative.

Positive class indicates that player ‘x’ had won the game and negative class indicates

that either player ‘o’ had won the game or it was a draw game.

V ote This dataset includes the votes for each of the U.S. House of Representatives

Congressmen on the 16 key votes identified by the CQA (Congressional Quarterly

Almanac) in 1984. It has 435 instances, each with 17 boolean valued attributes. There

are two classes, 267 democrats and 168 republicans. The class attribute is their party

affiliation.

7.2.2 Learning Algorithms

An unstable learning algorithm is one that produces classifiers that make different pre-

dictions on the same set of testing data and, thus, exhibit large differences in their

accuracy, when trained on training sets that have only a small amount of differences

between them. Unstable learning algorithms include methods based on decision tree in-

duction, neural networks, etc (Breiman, 1996c). In contrast, a stable learning algorithm

is one that produces classifiers whose predictions (and thus accuracy) do not change

much when trained on training sets that are not much different from each other. Ex-

amples of stable learning algorithms are k-Nearest-Neighbours and Naive-Bayes (Bauer

and Kohavi, 1999; Breiman, 1996a).

Therefore, we have chosen k-Nearest-Neighbours (k = 10) and Naive-Bayes as the

representatives for stable algorithms. As for the unstable algorithms representatives,

we have chosen the popular tree algorithm, C4.5 (known as J48 in Weka) and neural

networks (known as MultilayerPerceptron in Weka). For all algorithms, we use the

default settings of Weka 3.6.4 (Hall et al., 2009).
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7.3 Both Stable and Unstable Algorithms are Well Be-

haved
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Figure 7.1: Applying k-Nearest-Neighbors (k = 10), neural networks, C4.5 and Naive-
Bayes on the four datasets discussed in Section 7.2.1 with 5 repeats of 5-fold cross-
validation. Each data point is computed based on 20 runs (4 different datasets * 5
repeats). Error bar indicates the 95% confidence interval. Noise is injected into data
by flipping the class labels of a fraction of samples in the training data randomly.

In this section, we show empirically that both stable and unstable algorithms are

well behaved. A well-behaved learning algorithm, in this context, means that the

learning algorithm would produce more accurate classifier when given better training

data (i.e., data with more “good” samples).

Figure 7.1 clearly indicates that, as noise in the datasets increases, prediction accu-

racy (represented by AUC) falls accordingly regardless of the algorithm being a stable

or unstable one. Here, noise is injected into data by flipping the class labels of a frac-

tion of samples in the training data randomly. Other forms of noise in the data are

possible. However, having the wrong class label is arguably the most extreme form of
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noise, as it is equivalent to injecting so much noise in all the features of a sample that

it resembles more of a sample in the other class than its own class. This shows that

learning algorithms, regardlessly of stable or unstable, are well behaved.

Figure 7.1 also suggests that when the noise size is less than 50%, stable algorithms

are less sensitive to noise than unstable algorithms. On the other hand, when this 50%

mark is crossed, stable algorithms’ performance deteriorates drastically. One possible

explanation using the bias-variance decomposition is that, since stable algorithms have

a lower variance and higher bias (Breiman, 1996b), stable predictors are not so much

affected when some noise is added (i.e., low variance). However, when more than 50%

of the training samples are wrong, stable predictors will be more likely, on average, to

predict wrongly (i.e., high bias). The inverse explanation could be used for unstable

predictors. This suggests that noise in data is a direct cause for reduction in prediction

accuracy, which is intuitive.

7.4 Bootstrap Replicates are More Likely to be Enriched

with “good” Samples

In this section, we prove formally that bootstrapping generates replicates that are more

likely to be enriched with “good” samples (i.e., less noisy) than the original training

set.

Given two training sets, B1 and B2 of the same size and class label distributions,

let C(B1) and C(B2) be the classifiers trained on B1 and B2 respectively. We have

shown in the Section 7.3 that C(B1) would have a better accuracy than C(B2) if B1

has more “good” samples than B2. Suppose a set S of m samples is given. Suppose x

of the samples are “bad” (i.e., incorrect or very noisy) and y = (m− x) of the samples

are “good” (i.e., correct or little noise). Let q = x/m and p = (1 − q) = (m − x)/m.

Let B be a bag of m samples randomly drawn with repetitions from S. Therefore,
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according to the principle of Bernouli trials, the chance of B having k “bad” samples

is given by a binomial distribution PB(k) = (mCk)(p
m−k)(qk), where mCk means “m

choose k”. Then the chance of B having fewer “bad” samples than S is given by

PB(<x) =
∑

k<x PB(k), while the chance of B having more “bad” samples than S is

given by PB(>x) =
∑

k>x PB(k).
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Figure 7.2: Theoretical values of PB(< x)− PB(> x) for different sample size (i.e., m)
at varying percentage of “good” samples (i.e, p).

The skewness of a binomial distribution is given by the formula (1 − 2q)/
√
mqp.

When p > q, and thus 1 > 2q, the skew is positive. In general, this means that the bulk

of the distribution falls to the left of the mean x = mq and, thus, PB(<x) > PB(>x)

as shown in Figure 7.2. Indeed, both the series PB(x), PB(x − 1), ..., PB(0) and the

series PB(x), PB(x + 1), ..., PB(m) are exponentially decaying; c.f. the Chernoff and

Hoeffding bounds for binomial distributions. Thus, to verify PB(<x) > PB(>x), it is

sufficient to check that
∑

j PB(x − j) >
∑

j PB(x + j), for the first few j from 1 to

x− 1.



CHAPTER 7. BAGGING EXPLAINED AND MADE MORE EFFICIENT 90

Let g = (m− x)/x. A little simple algebra shows that, for 0 < j < x:

PB(x− j) = PB(x)

j∏
i=1

(
x− i+ 1

x

)(
gx

gx+ i

)

PB(x+ j) = PB(x)

j∏
i=1

(
x

x+ i

)(
gx− i+ 1

gx

)

So, PB(x−1)
PB(x+1) > 1 if and only if

(
gx

gx+ 1

)(
x+ 1

x

)
> 1,

which holds when g > 1 (i.e., p > q). Similarly, PB(x−2)
PB(x+2) > 1 if and only if

PB(x− 1)

PB(x+ 1)

(
x− 1

x

)(
x+ 2

x

)(
gx

gx+ 2

)(
gx

gx− 1

)
> 1,

which holds when g > 1 (i.e., p > q) and x > 2. More generally, PB(x−(j+1))
PB(x+(j+1)) > 1 if and

only if

PB(x− j)
PB(x+ j)

(
x− j
x

)(
x+ j + 1

x

)(
gx

gx+ j + 1

)(
gx

gx− j

)
> 1,

which holds when g > 1 (i.e., p > q) and x > j(j + 1).

It follows that
∑

j PB(x − j) >
∑

j PB(x + j), for j = 1 to roughly
√
x. Together

with the exponential decay of PB(x− j) and PB(x+ j) as j increases, this implies that

PB(<x) > PB(>x) holds when g > 1 (i.e., m − x > x). This completes the proof of

the following theorem:

Theorem 7.1. Suppose there are many more “good” than “bad” samples in the original

training set. Then any finite collection of bootstrap replicates are likely to be enriched

with bags that contain more “good” samples than “bad” samples.

Let B1, B2, ..., Bn be n bags of m samples randomly drawn with repetitions from S.
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Let H be the collection of bags among B1, B2, ..., Bn containing more “good” samples

than S. Let H ′ be the collection of bags among B1, B2, ..., Bn containing more “bad”

samples than S. Let H ′′ be the collection of bags among B1, B2, ..., Bn containing the

same number of “good” and “bad” samples as S. Based on the observation in Section

7.3 (i.e., learning algorithms are well behaved), h = |H| bags give rise to better-

performing classifiers than C(S), while h′ = |H ′| bags give rise to poorer-performing

classifiers, and the remaining h′′ = |H ′′| bags give rise to equal-performing classifiers.

We know that as n tends to infinity, h/n tends to PB(<x), h′/n tends to PB(>x), and

h′′/n tends to PB(x). It follows that h > h′, when p > q.
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Figure 7.3: Graphs for h > h′ with a fixed total number of 100 samples. We performed
1000 simulation trials each for 10, 100 and 1000 bagging replicates. We also performed
the same experiments for 50, 500 and 1000 samples, and similar results were obtained
(Supplementary Materials). Error bar indicates the 95% confidence interval.

Figure 7.3 shows experimentally that, with increasing bootstrap replicates and/or

increasing percentage of “good” samples in the datasets, h is more likely to be greater

than h′. Figure 7.4 further shows that h ≥ h′ stays well above 50% if there is more than
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Total Samples = 100, Repeats = 1000
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Figure 7.4: Graphs for h ≥ h′ with a fixed total number of 100 samples. We performed
1000 simulation trials each for 10, 100 and 1000 bootstrap replicates. Error bar indi-
cates the 95% confidence interval. Results show that h is almost always greater than
or equal h’ as long as percentage of “good” samples are greater than 50%.

65% “good” samples in a dataset which is typically the case for any decent dataset.

The exponential decay of the series PB(x− 1), PB(x− 2), ..., PB(0) and the series

PB(x+ 1), PB(x+ 2), ..., PB(m) suggest that most of the bags in H have roughly the

same extra number of “good” samples, which is close to the number of extra “bad”

samples that most of the bags in H ′ have. In addition, it can be seen in Figure 7.1

that the amount of performance improvement or deterioration in well-behaved learning

algorithms is largely proportional to the proportion of “bad” samples in the training

set. Therefore, classifiers trained on a bag in H have roughly the same accuracy gain δ,

which is close to the accuracy loss that most classifiers trained on a bag in H ′ have. It

follows that an ensemble classifier built by a majority vote of C(B1), C(B2), ..., C(Bn)

should have an accuracy gain of (h − h′)δ. Since h > h′, the performance gain of

this ensemble classifier is positive and, thus, is better than C(S). This shows that
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such an ensemble classifier—which is called a bagging classifier—improves prediction

accuracy by suppressing the influence of noisy samples, as long as there are many more

“good” samples than “bad” samples in the original training set S, which is a reasonable

assumption for any decent training datasets. This is formalized in the corollary below.

Corollary 7.2. Given a well-behaved learning algorithm C(·) that produces a classifier

C(B) whose accuracy is roughly linearly proportional to the amount of “good” samples

in its training set B. Given the training set S that has many more “good” samples than

“bad” samples. Let B1, ..., Bn be boostrap replicates of S. Then the bagging classifier

based on a majority vote of base classifiers C(B1), ..., C(Bn) is likely to have a higher

accuracy than C(S).

Combining the conclusion drawn in Section 7.3 (i.e., noise causes accuracy reduc-

tion) and this section (i.e., bagging reduces noisy samples), we postulate that it is the

suppression of noise that directly enables bagging classifiers to have improved perfor-

mance. Previous works (Bauer and Kohavi, 1999; Breiman, 1996a,b; Friedman and

Fayyad, 1997) suggest that bagging works better on unstable algorithms than stable

algorithms. It follows from our results that this is really because of the fact that stable

algorithms are less sensitive to some noise in data.

7.5 Bagging made Efficient

In the original flavor of bagging, while n needs to be sufficiently large to ensure h ≥ h′

and h ≥ h” (Section 7.4), n is typically determined a priori and arbitrarily (Breiman,

1996a). In the previous chapter, we successfully improved the efficiency of bagging

(achieved similar results as standard bagging with much fewer classifiers) on microarray

data using a sequential hypothesis testing procedure (Wald, 1945) that dynamically

decides n for each test instance. In this chapter, we demonstrates that it is not restricted

to any problem domain.
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In Chapter 5, we developed a sequential hypothesis testing procedure called OSM

(Optimized Statistical Model Checking Algorithm) to determine the number of trials

required to prove whether a stochastic model satisfies a probabilistic formula, P≥θ{ψ},

where θ represents the threshold probability and ψ represents the property. For in-

stance, P≥0.7{X1>10} checks whether the given stochastic model would have variable

X1 > 10 in ≥70% of the cases. Essentially, the OSM sequential hypothesis testing pro-

cedure draws samples until it can assert or reject a probabilistic formula with statistical

guarantees on the error rates.

Let Ti be the ith test instance. Let P (C(Bn), Ti) be the Boolean prediction on

Ti of the classifier trained using Bn, which will be True if Ti is predicted to be of

the positive class label and False if Ti is predicted to be of the negative class la-

bel. Therefore, we can formulate the probabilistic formula for our current problem

as P≥0.5{P (C(Bn), Ti) = True}. That is, given a test instance Ti and a training set

S, and a large number of classifiers trained from bags of m samples randomly drawn

with repetitions from S, would more than 50% of these classifiers predict Ti to be of

the positive class label? By stating the problem in this format, we have morphed the

problem into a probabilistic model checking problem where we have a stochastic system

and a probabilistic formula to check. With that we can apply our previous algorithms

from Chapter 5. Following the results from Chapter 5, n, the number of classifiers used

to make prediction on the given test instance can be dynamically determined by the

sequential hypothesis testing procedure and is optimal (minimum n that is required to

give a prediction that is consistent with infinite n with a guaranteed error bound) for

each test instance. Compared to standard bagging, this would improve computational

efficiency (i.e., requires much lesser n on average) while maintaining prediction accu-

racy. For efficient implementation, new classifiers are not learned for each sequential

test instance, instead the classifiers previously trained are stored and new classifiers are

trained only when more classifiers than currently available stored classifiers is needed.
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For the purpose of comparison with standard bagging, we set the parameters for the

OSM sequential hypothesis testing algorithm as follows: maximum value of n is set to

100 and the guaranteed error rates are both set to 10−4, which means OSM requires n

to be at least 14. If the first 14 base classifiers predict the same label for a test instance,

it is sufficient to satisfy OSM formula for error rate of less than 10−4; otherwise, more

base classifiers are needed and, we limit this to 100. Do note that an error here refers to

when the prediction with minimum n differs from the prediction with infinite n given

a particular test instance. Experimentally, infinite n is not possible, therefore we are

comparing the predictions of minimum n against a n of 10,000 (Table 7.1).
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Figure 7.5: Applying k-Nearest-Neighbors (k = 10), neural networks, C4.5 and Naive-
Bayes on the four datasets discussed in Section 7.2.1 with 2 repeats of 5-fold cross-
validation. Each data point is computed based on 32 runs (4 different algorithms * 4
different datasets * 2 repeats). Error bar indicates the 95% confidence interval. Noise
is injected into data by flipping the class labels of a fraction of samples in the training
data randomly.

Figure 7.5 shows that, as expected, with increasing number of bootstrap replicates,

better performance can be obtained. Figure 7.5 and Figure 7.6 show that, with as
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little as 30% of the number of bootstrap replicates as those required by bagging with

100 bootstrap replicates, dynamic bagging is able to achieve similar prediction per-

formance. Similar results can be seen across all datasets; this indicates that dynamic

bagging based on sequential hypothesis testing is not restricted to any problem domain

(Supplementary Materials).
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Figure 7.6: Same experimental settings as Figure 7.5. The number of bootstrap repli-
cates used by various algorithms is shown instead.

Figure 7.6 shows that the average number of bootstrap replicates required by dy-

namic bagging mirrors and peaks at 50% noise. This is because as the training data

becomes increasingly noisy, it increases the variance of resulting classifiers and hence,

more bootstrap replicates are required to confidently make a decision. When more

than 50% of the class labels in training data are flipped, the resulting classifiers would

again become consistent (although the prediction has become a prediction of the op-

posite class), leading to fewer bootstrap replicates being needed to confidently make a

decision.

Table 7.1 shows that predictions from our dynamic bagging is largely consistent with
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NN10	   Ionosphere	  (702)	   Diabetes	  (1536)	   Tic-‐tac-‐toe	  (1916)	   Vote	  (870)	  

OSM	  A	  (Errors	  /	  Decisions)	   0	  /	  669	   0	  /	  1247	   0	  /	  1800	   0	  /	  845	  

OSM	  B	  (Errors	  /	  Decisions)	   4	  /	  33	   29	  /	  289	   11	  /	  116	   5	  /	  25	  

Total	  Errors	  (%)	   4	  (0.57%)	   29	  (1.89%)	   11	  (0.57%)	   5	  (0.57%)	  

Avg	  Bootstrap	  Replicates	   21.30	   39.23	   47.92	   25.85	  

C45	   Ionosphere	  (702)	   Diabetes	  (1536)	   Tic-‐tac-‐toe	  (1916)	   Vote	  (870)	  

OSM	  A	  (Errors	  /	  Decisions)	   0	  /	  642	   0	  /	  1093	   0	  /	  1535	   0	  /	  848	  

OSM	  B	  (Errors	  /	  Decisions)	   12	  /	  60	   41	  /	  443	   31	  /	  381	   4	  /	  22	  

Total	  Errors	  (%)	   12	  (1.71%)	   41	  (2.67%)	   31	  (1.62%)	   4	  (0.46%)	  

Avg	  Bootstrap	  Replicates	   28.87	   52.72	   45.21	   18.12	  

NB	   Ionosphere	  (702)	   Diabetes	  (1536)	   Tic-‐tac-‐toe	  (1916)	   Vote	  (870)	  

OSM	  A	  (Errors	  /	  Decisions)	   0	  /	  661	   0	  /	  1429	   0	  /	  1733	   0	  /	  864	  

OSM	  B	  (Errors	  /	  Decisions)	   4	  /	  41	   7	  /	  107	   22	  /	  183	   1	  /	  6	  

Total	  Errors	  (%)	   4	  (0.57%)	   7	  (0.46%)	   22	  (1.15%)	   1	  (0.11%)	  

Avg	  Bootstrap	  Replicates	   21.77	   23.28	   27.59	   15.1	  

Table 7.1: Comparison of dynamic bagging with standard bagging with 10,000 boot-
strap replicates. Each dataset is ran with 2 repeats of 5-fold cross-validation. OSM A
(Errors / Decisions) indicates the number of errors that is made out of the number of
decisions that could be made by OSM A. Likewise for OSM B. Total Errors (%) gives
the total number of errors made by both algorithms and its error percentage. Avg
Bootstrap Replicates is the average number of bootstraps replicates used by dynamic
bagging for each test instance.

predictions from bagging with a much larger number of bootstrap replicates (10,000).

It is also important to note that we are able to achieve it with a much smaller aver-

age number of bootstrap replicates. An error here corresponds to the situation when

dynamic bagging prediction is different from prediction with bagging with 10,000 boot-

strap replicates. The errors of OSM B are caused by reaching the bootstrap replicates

limit of 100 but when this sample limit is reached, OSM B returns a p-value that gives

users a confidence measure of how this confident it is that this prediction would be the

same as with infinite (or a large number of) bootstrap replicates. To reduce the errors

by OSM B, we can simply increase the sample limit of OSM B. As for OSM A, it is able

to be always consistent with the prediction from 10,000 bootstrap replicates because

we have set a very small error bound of 0.0001 (or 0.01%). Please read Chapter 5 for
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more details regarding OSM A and OSM B.

Dynamic bagging has several advantages over standard bagging. In particular,

there is no need to decide a priori the same number of bootstrap replicates needed.

It dynamically selects, for each test instance, the minimum required number of boot-

strap replicates that is statistically equivalent to having infinite bootstrap replicates.

Consequently, when the pre-specified number of bootstrap replicates in standard bag-

ging is large, dynamic bagging usually requires much fewer bootstrap replicates on

average while giving similar prediction accuracy. Also, when the pre-specified number

of bootstrap replicates is too low, standard bagging may perform badly. In contrast,

dynamic bagging continues to deliver good prediction accuracy by dynamically using

more bootstrap replicates.

7.6 Discussion

In this chapter, we have proposed an entirely different way in explaining why bagging is

effective compared to the classical approach of using bias-variance decomposition. We

show that bagging suppresses noise in datasets and, it is this suppression that leads to

higher performance of individual base classifiers. Consequently, these better performing

classifiers give the ensemble bagging classifier its improved performance. The typical

observation of unstable algorithms gaining more improvement than stable algorithms

when bagging is applied can be attributed to the fact that unstable algorithms are

more sensitive to noise. Therefore, this reduction in noise leads to more gain in the

prediction accuracy for unstable algorithms.

In addition, we have shown how to optimally determine number of bootstraps re-

quired for each unique test instance instead of arbitrarily fixing it for all test instances.

More bootstrap replicates may result in better prediction performance, but it comes

at a cost of higher computational resources. By integrating bagging with a sequential

hypothesis testing procedure, we have shown that this parameter can be removed and
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optimally determined for each unique test instance to reduce computational require-

ment while maintaining high prediction accuracy by delivering predictions consistent

with having infinite bootstrap replicates.
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Living with Noise
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Chapter 8

Conclusion

This thesis spans across six different projects unified as one under the umbrella of

“Embracing Noise in Bioinformatics”. The first part of this thesis focused on building

tools to assist in moving towards one of the grand challenges in Systems Biology,

which is to build a mathematical model of the whole cell (Omenn, 2006). Such a

model is inevitably extremely complex and likely to consist of hundreds of thousands

of components. This is the reason why the tools and framework that we have built

throughout this thesis are very focused on being efficient, scalable and practical.

In the process of building these tools and framework, we came to understand that

biological systems are inherently robust and its outputs are stochastic. Therefore, in

order to infer the behavior of biological systems, we need to analyze these stochastic

outputs. This leads to the use of statistical algorithms, which could assist in making

conclusions on hypotheses that we might have based on these stochastic observables.

However, current state-of-the-art algorithms have practical limitations which render

them less than ideal to deploy in practice. This leads us to the second part of this

thesis where we built new algorithms upon existing ones to overcome these limitations.

Interestingly, we were able to discover novel applications for our sequential hypothesis

testing algorithms. We integrated our sequential hypothesis testing algorithms with
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bagging to create a new algorithm which we named dynamic bagging. Using dynamic

bagging, we successfully improved the cross-batch prediction accuracy of microarray,

a seemingly unrelated area. More importantly, due to fundamental differences from

the conventional approaches of that domain, we were able to overcome limitations

typically faced by those approaches, making it more suitable for use in clinical settings.

Extending the findings, we went on to show that dynamic bagging is not limited to

any problem domain. Lastly, we proposed an alternative and more direct explanation

of why bagging is effective compared to the classical explanation using bias-variance

decomposition.

8.1 Biological Implications

“Study of the cell will never be complete unless its dynamic behavior is understood.

The complex behavior of the cell cannot be determined or predicted unless a computer

model of the cell is constructed and computer simulation is undertaken” (Tomita, 2001).

In this thesis, we had developed tools and algorithms that enable an accurate rep-

resentation of biological systems and its downstream computational analysis. Current

biological knowledge and/or experimental data can be used to create a computational

biological model with our parameter estimation (Chapter 2) and model checking (Chap-

ter 4) tools. With a simulate-able model, hypothesis regarding the behavior of the bio-

logical system can be accurately determined using our algorithms developed in Chapter

5. This can then be used to assist in designing optimal “wet” experiments that enable

new knowledge to be gained. With the newly acquired knowledge, it can be used to

further fine tune the computational biological model and the process goes on. The

end result is a computational model that is an accurate representation of a biological

system with numerous new knowledge regarding the biological system being discovered

and understood.
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8.2 Future Works

Just as our work is built on previous knowledge, it is our hope that this thesis enables

others to further the boundaries of knowledge by building on our contributions.

8.2.1 Parameters’ Distribution Estimation

As mentioned in Chapter 2, one important factor that affects the estimation power is

the size of particles. With the increasing availability of large computer clusters and

faster processors, the bottleneck is likely to be limited run-time memory. As such, it

would be useful to look at how works done in the area of on-the-fly data compression

and decompression could be incorporated to reduce memory requirements in parameter

estimation and simulation.

One advantage of data assimilation is that it gives a distribution instead of a single

optimal value for each parameter. However, most current simulation software would

only allow one parameter set per simulation, which is not realistic if we consider the fact

that biological systems are robust and the parameters could be constantly changing.

Hence, a simulation software that allows its parameters to be given as a distribution

instead of a single value would better reflect reality.

8.2.2 Efficient Model Checking

The sequential hypothesis testing algorithms that are incorporated into MIRACH 1.0

are based on Frequentist (or Classical) statistics. There are other sequential hypothesis

testing algorithms that are based on Bayesian statistics. While the superiority of either

one is highly debatable, it is always nice to offer more options to users.

Currently, MIRACH 1.0 is only integrated with HFPNe (Nagasaki et al., 2010) and

therefore natively only accepts models written in CSML. While MIRACH 1.0 is able

to also accept the popular SBML format, this is done via a convertor which could lose

some information in translation. The best way of ensuring no loss of information is
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through integrating MIRACH 1.0 with engines that can accept SBML format natively.

As before, users can be given the choice to select their preferred engine and it is always

a welcome addition.

8.2.3 Estimate Parameters using Model Checker

In Chapter 4, the process of extracting biological properties from literature was the most

tedious part for that work. While it was envisioned that a library with properties that

encode key behavioral features of pathway models would be useful (Hlavacek, 2009),

there is no clear evidence at the moment to indicate that such a library is being formed.

Should such a library exist, there are numerous functions that it could serve. One of

which is that it can be used to centrally house a compilation of knowledge pertaining

to pathways. It can also be used as a quality control tool for testing newly-built

models by ensuring that they satisfy widely-accepted properties as a form of validation.

Extrapolating it to our project, it would also allow our framework to perform parameter

estimation with ease.

Currently, our framework utilizes a simple uniform sampler to scan the search space.

While we have shown it to be useful in practice, there are many other more advanced

algorithms to perform this more effectively in theory. Our framework would be greatly

improved if we could find one that scales up well in practice and can be incorporated into

our framework. One other feature that would make this search algorithm more powerful

is the ability to assimilate time series information, if available, into the framework since

we currently do not take time series data into consideration.

8.2.4 Optimized Sequential Hypothesis Testing

One way to reach a wider audience is to have the algorithm released in an easy-to-use

software package. In its simplest form, our algorithm requires only two things - a series

of True/False and the θ for the property under consideration to be compared against.
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The algorithm would give a reply from one of the three responses: 1. It needs more

samples to make a decision, 2. Yes (the stochastic system will satisfy the property in

≥ θ ? of the time) or 3. No (the stochastic system will not satisfy the property in ≥ θ

of the time).

We foresee the usage of our optimized sequential hypothesis testing algorithms to

be far-reaching as we made little assumptions or restrictions on its usage, allowing them

to be applied to almost any stochastic system analysis. One novel application which

we have uncovered and applied on is combining it with bagging and using it to improve

cross-batch prediction accuracy of microarray. We believe that there are many more

novel applications waiting to be discovered.

8.2.5 Overcoming Batch Effects in Microarray

Feature selection algorithms considered in this work make use only of generic statistical

tests that consider one gene at a time. However, recent feature selection algorithms for

gene expression data are increasingly focused on using prior biological information to

group genes and perform statistical tests on these groups of genes instead of individual

genes (Subramanian et al., 2005; Soh et al., 2011). The impact of such algorithms is

not evaluated in this work and is worth considering in future work.

Finally, while AUC has the advantage of evaluating performance across the full

range of sensitivity and specificity, low False Negatives are more important than low

False Positives in clinical settings. While False Positives can be rejected by using more

in-depth downstream clinical tests, False Negatives would delay treatment and poten-

tially cause deaths. Therefore, apart from making this work more readily available

and easier to deploy, more in-depth studies on its False Negative rates and False Pos-

itive rates should be performed in order to bring it one step closer towards clinical

application.
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8.2.6 Bagging Explained and Made More Efficient

Bagging is a widely-used ensemble algorithm to improve classification accuracy. How-

ever, deciding the number of iterations is typically done a priori and arbitrarily. As

we have shown that our dynamic bagging technique is not only more efficient, it is

equally successful if not better than standard bagging. Like standard bagging, it is not

restricted to any problem domains. It is our wish to see dynamic bagging used more

widely and eventually replacing standard bagging.

For this to happen, it needs to be readily available and practical examples on how

to successfully deploy it to be easily available. Therefore, the first step would be

to integrate it into popular machine learning software such as WEKA and releasing

software packages that uses dynamic bagging as a default. Thereafter, through the use

of these software, apply dynamic bagging on different problems and demonstrating how

to effectively deploy it and compare its performance against standard bagging.
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Chapter 2

A.1 Details of Experiments and Results

We performed all experiments using the circadian model which has 17 parameters in

total. This model can be downloaded from http://da.csml.org. The desktop computer

used is an Intel Core i7 CPU at 3.2 GHz.

As it is difficult to obtain the precise measurement of memory needed for varying

amount of seeds, we could only obtain the estimated memory needed using Xmx option

via trial and error e.g. we ran DA 1.0 with Xmx1GB and tried to run 1.5 million seeds

and the out of memory exception was thrown. Hence we know that with 1GB, it is

unable to handle 1.5 million seeds.

The settings used for each run are as follows: Engine Solver (RK4), Number of

Threads (2), Simulation Time (200.0) and Simulation Interval (0.1). Experiments are

repeated 10 times each for plotting time vs. seed size and score vs. coverage charts.

The results of each run are shown in table 1 and 2 respectively.
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Seed Size 100000 500000 1000000 1500000 2000000 

 22 32 46 62 76 

 21 32 47 61 76 

 21 31 47 63 77 

 21 30 48 63 76 

 21 33 46 60 74 

 22 32 46 63 75 

 21 32 47 61 76 

 20 33 49 64 78 

 21 30 50 65 78 

 21 31 47 62 79 
Mean 21.1 31.6 47.3 62.4 76.5 
Stdev 0.567646 1.074968 1.337494 1.505545 1.509231 

 

Table A.1: Time vs. Seed size

Coverage 100% 10% 1% 0.10% 0.01% 
Seed size 1000000 100000 10000 1000 100 

 1.4247 1.4125 1.3042 1.3042 3.6368 

 0.142 1.9063 1.3093 1.9063 5.5213 

 0.142 0.3557 1.9063 1.9063 1.6073 

 
1.7522 0.142 1.5737 1.3042 1.8278 

 
0.142 1.8092 1.2987 1.3093 1.5852 

 1.3064 1.9063 1.3042 1.8384 1.679 

 1.5281 0.3557 1.4332 1.8037 1.8485 

 0.3557 0.142 0.9761 1.8029 1.4098 

 
0.142 1.9063 1.3042 1.3042 1.3298 

 
1.7451 1.4332 1.3042 1.3042 5.386 

Mean 0.86802 1.13692 1.37141 1.57837 2.58315 
Stdev 0.734825 0.788237 0.239056 0.29001 1.647302 

 

Table A.2: Score vs. Coverage. Search space of 1,000,000 is created by estimating the
last 3 parameters (C3, C4, C5) with the range of 0-10 and interval of 0.1.



Appendix B

Supplementary Information for

Chapter 3

B.1 Usage

B.1.1 Quick Start

1. Download Examples.zip and MIRACH1.0.jar from Sourceforge1

2. Unzip Examples.zip.

3. Ensure that JDK1.6 (not JRE1.6) and above is installed.

4. From a command prompt (Windows) or terminal (Linux), go to the folder where

MIRACH1.0.jar was saved and run the following command: java -jar MIRACH1.0.jar

1.

5. Select ASEcells2010.csml.gz (model file), ASERules100.txt (rule file) and

ASE2010MappingFile (mapping file) from the ASE2010 folder in the unzipped

Examples.zip folder. (Please refer to Saito et al. (2006) for details on ASE2010

1http://sourceforge.net/projects/mirach/
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model).

6. Readers are also encouraged to try out other models such as SimpleTestModel.csml.gz

with SimpleTestModelRules.txt under SimpleTestModel folder. Note that

SimpleTestModel does not have Mapping file.

B.1.2 Advanced Usage

Instead of selecting the model, rule and mapping files from dialog, users can choose to

supply them as arguments for ease of automation.

Example: java -jar MIRACH1.0.jar 1 [Model file location] [Rule file location] [Map-

ping file location]

B.2 Run Modes

There are two run modes available in MIRACH 1.0.

B.2.1 Obtain Properties Results Mode

In this mode, program will be run until all results of each property can be determined.

This mode should be used when users would like to know how the model performs

against those properties. This mode is suitable for understanding how far a model is

from satisfying a set of properties.

B.2.2 Check Model Mode

As for this mode, it is used to validate if the model can satisfy all of the properties.

This mode runs faster as the model is rejected and the program terminates the moment

any property cannot be satisfied. This mode is useful when users have a set of models

and want to shortlist those that satisfy all properties.
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B.3 Implementation

MIRACH 1.0 was developed using Java and thus would be executable on any platform

installed with JDK 6.0 (not JRE 6.0) or later. Figure B.1 and B.2 gives an overview

of MIRACH 1.0. The inputs of MIRACH 1.0 are simply the set of probabilistic linear

temporal logic statements to validate and the model to check against. MIRACH 1.0

can run in two different modes–obtain properties results or check model. In the obtain

properties results mode, the program will run until all results of properties can be

obtained. This mode should be used when users would like to know how the model

performs against those properties. This mode is suitable for understanding how far

a model is from satisfying a set of properties. As for the check model mode, it is to

validate if the model can satisfy all of the properties. This mode runs faster as the

model is rejected and the program terminates the moment any property cannot be

satisfied. This mode is useful when users have a set of models and want to select those

that satisfy all properties.

Figure B.1: Overview of MIRACH’s architecture
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Figure B.2: Overview of the two possible run modes.

B.4 Inputs

1. Model file (required).

The model file can be in either the format of CSML or SBML (L2v1).

2. Rule (or PLTLs) file (required).

Summary:

Default (when mapping file is not provided): Rule file should use the variable

name that corresponds to the model variable name. With a mapping file provided:

Rule file can have any name as long the mapping file maps it to a variable ID in

the model.

Details:

This file is simply a text file that have properties or rules that user wish to check

the model against. Please read the PLTLs syntax section for syntax and/or refer

to example rule files that are available in the Examples.zip. Variable names used

in rule file depends on the model and whether mapping file is supplied. If mapping

file is suppiled, users can use any name easy for reference as long it has a map to

a model variable ID stated in the mapping file. Else, model variable name will
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be used by default. However, if model variable name are used, please ensure that

it is an unique name in the model as CSML and SBML does not enforce variable

name to be unique else an error will be thrown.

3. Mapping file (optional)

This is simply a tab-separated file where the variable name in the rule file is

mapped to the variable ID in the model file. The format is: [variableNameIn-

RuleFile] [tab] [variableIDInModelFile].

B.5 Additional Information

• [time] is a special variable used to represent the current simulation time.

• All variables (entity name or ID) should be enclosed with [ ].

• Use only ( ) for precedence ordering. [ ] and { } are reserved symbols.

• Concatenated LTL should be enclosed with ( ). e.g. P=? 0.99, 1000 ((F(etc))

&& (G(etc)))

• Always use ( ) to ensure the correct parsing of PLTLs rules.

• Whenever there is a temporal operator (X, G, F, C, U, R) or function, place it

to the leftmost possible. This is to reduce recursion and speed up the program.

• Note that the root operator should always be a temporal operator (X, C, G, F,

U, G). e.g. P=? 0.99, 1000 ([A] > [B]) or ([Z] > 0){[time] > 10} are not allowed

causing an error to be thrown. The correct representation should be P=? 0.99,

1000 (G([A] > [B])) or P=? 0.99, 1000 (F([A] > [B])) or C([Z] > 0){[time] > 10}

or G([Z] > 0){[time] > 10}.

Reason: This is because ([Z] > 0){[time] > 10} is ambiguous as it is unclear what

the user requires. Does user require [Z] > 0 to be TRUE always after [time] >
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10? Or does user require only [Z] > 0 to be TRUE only once after [time] > 0?

etc.
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Chapter 4

C.1 Hybrid Functional Petri Net with extension (HF-

PNe)

HFPNe is a mathematical tool used for the modeling and simulation of biological

networks. HFPNe deals with three types of data - discrete, continuous and generic -

and is comprised of three types of elements - entities, processes and connectors - whose

symbols are illustrated in Figure C.1a.

• Entities are classified into three types: discrete, continuous and generic. A dis-

crete entity holds an integer number. A continuous entity holds a real number,

and is typically used to represent the concentration of a substance such as mRNA

and protein. Usually, the values of discrete or continuous entities are limited to a

non-negative values. A generic entity can hold any type of object, e.g. the string

of nucleotide base sequences.

• Processes are classified into three types: discrete, continuous and generic. A dis-
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Figure C.1: (a) Basic HFPNe elements and biological icons in Cell Illustrator. (b)
Connection rules (left) and corresponding network (right) in HFPNe. For instance, in
the uppermost block labeled “Connection from Entity to Process with Process con-
nectors”, the check mark denotes the availability to connect corresponding entities to
processes, e.g. only the generic process can be selected as the output to connect the
generic entity to the process connector.

crete process in HFPNe is similar to that used in the traditional discrete Petri

net. A continuous process is used to represent a biological reaction such as tran-

scription or translation, where the reaction speed is assigned as a parameter. A

generic process can deal with any kind of operation (e.g. alternative splicing

and frame-shifting) to all types of entities. Generic entities and processes have

been practically applied for modeling and simulating more complicated biological

processes, e.g. activities of enzymes for a multi-modification protein.
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• Connectors are classified into three types: normal, test and inhibitory. Normal

connectors connect an entity to a process and vice versa. Test or inhibitory

connectors represent a condition and are only directed from an entity to a process.

A test connector or inhibitory connector from an entity can participate in the

activating or repressing of a process respectively, as long as the value of the

entity is over the threshold. For both the activation and repression processes, the

value of the entity will not be reduced. Figure C.1b illustrates the connection

rules in HFPNe.

For a more comprehensive description of HFPNe and its usage, please see Nagasaki

et al. (2010, 2004).

C.2 ASEL/R Cell Fate Regulatory Network

Two gustatory neurons in C.elegans, “ASE left” (ASEL) and “ASE right” (ASER)

are morphologically bilaterally symmetric, but physically asymmetric in function and

in the expression of distinct ASEL/ASER-specific cell fate markers. This includes the

specific subsets of guanylyl cyclase receptors, encoded by GCY genes (e.g. gcy-5 and

gcy-7), and FMRFamide-type neuropeptides, encoded by FLP genes (e.g. flp-4). In an

adult, the differences between cell fate markers are used to discriminate between ASEL

and ASER cells. That is, gcy-6 and flp-4 are stereotypically expressed in the ASEL

cell, whereas gcy-5 is expressed only in the ASER cell as shown in Figure 4.2. The

left/right asymmetric fates develop from a precursor state in which the ASE neurons

have equivalent potential to adopt alternative cell fates (Saito et al., 2006; Johnston

et al., 2005). The ASE cell fate decision mechanism between two alternative neuronal

fates is controlled by a complex gene regulatory network composed of microRNAs

(miRNAs) (e.g. lsy-6 and mir-273) and transcription factors (e.g. cog-1, lim-6 and

die-1). This mechanism diversifies the neuronal subclass specification in the nervous
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system of the nematode C.elegans (Johnston et al., 2006).
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Process

Name Wet experiment results published in literature Reaction type

p1 Transcription of the lsy-6 gene, produces lsy-6 pre-miRNA, and Drosha
processing yields lsy-6 pre-miRNA

Transcription / Drosha processing

p2 lsy-6 pre-miRNA is exported from nucleus to cytoplasm by exportin-5
and processed by dicer (lsy-6 miRNA) to form miRNA

Nuclear export / Dicer processing

p3 cog-1 mRNA(C) is translated to cog-1(C) under suppression of lsy-6
miRNA (within RISC)

Translation / microRNA inhibition

p4 Transcription of cog-1 gene yields cog−1 mRNA Transcription

p5 cog-1 mRNA(N) is exported from nucleus to cytoplasm (cog-1 mRNA
(C))

Nuclear export

p6 cog-1(C) is imported from cytoplasm to nucleus (cog-1(N)) Nuclear import

p7 cog-1(N) activates transcription of cog-1 gene, producing cog-1 mRNA Transcription

p8 cog-1(N) activates transcription of mir-273 gene, producing mir-273
pre-miRNA, and Drosha processing leads to production of mir-273 pre-
miRNA

Transcription / Drosha processing

p9 Transcription of mir-273 gene yields mir-273 pre-miRNA, and Drosha
processing produces mir-273 pre-miRNA

Transcription / Drosha processing

p10 mir-273 pre-miRNA is exported from nucleus to cytoplasm by
exportin-5 and processed by dicer (mir-273 miRNA) to yield miRNA

Nuclear export / Dicer processing

p11 die-1 mRNA(C) is translated to die-1(C) under suppression of mir-273
miRNA (within RISC

Translation / microRNA inhibition

p12 Transcription of die-1 gene leads to production of die-1 mRNA Transcription

p13 die-1 mRNA(N) is exported from nucleus to cytoplasm (die-1
mRNA(C))

Nuclear export

p14 die-1(C) is imported from cytoplasm to nucleus (die-1(N)) Nuclear import

p15 die-1(N) activates transcription of lsy-6 gene, producing lsy-6 pre-
miRNA, and Drosha processing leads to production of lsy-6 pre-miRNA

Transcription / Drosha processing

p16 Expression of lim-6(C) is activated by die-1(C) and suppressed by cog-
1(C)

Expression

p17 lim-6(C) is imported from cytoplasm to nucleus (lim-6(N)) Nuclear import

p18 lim-6(N) activates transcription of lsy-6 gene, producing lsy-6 pre-
miRNA, and Drosha processing leads to production of lsy-6 pre-miRNA

Transcription / Drosha processing

p19 lim-6(N) activates transcription of die-1 gene, producing die-1 mRNA Transcription

p20 Expression of gcy-7 is activated by die-1 and suppressed by cog-1 Expression

p21 Expression of gcy-6 is activated by die-1 and suppressed by cog-1 Expression

p22/p23 lim-6(C) suppresses expression of gcy-5/gcy-22 gene Expression

p24/p25 lim-6(C) activates expression of flp-4/flp-20 gene Expression

p26 Protein lsy-2(C) is imported from cytoplasm to nucleus (lsy-2(N)) Expression

p27 lsy-2(N) activates transcription of gene lsy-6, producing lsy-6 pre-
miRNA, and Drosha processes to produce lsy-6 pre-miRNA

Nuclear import

p28 Transcription of lim-6 gene which yields lim-6 mRNA Transcription / Drosha processing

p29 lim-6(N) activates transcription of lim-6 gene which produces lim-6
mRNA

Transcription

p30 Transcription of fozi-1 gene which yields fozi-1 mRNA Transcription

p31 fozi-1 mRNA(N) is exported from nucleus to cytoplasm (fozi-1 mRNA
(C))

Transcription

p32 lim-6 mRNA(N) is exported from nucleus to cytoplasm (lim-6 mRNA
(C))

Nuclear export

p33 fozi-1 mRNA(C) is translated to fozi-1(C) which is repressed by die-
1(C)

Nuclear export

p34 lim-6 mRNA(C) is translated to lim-6(C) which is repressed by fozi-
1(C)

Translation / Inhibition

p35 die-1(C) activates expression of flp-4/flp-20 gene Translation / Inhibition

p36 die-1(C) represses the translation of hen-1 gene Translation / Inhibition

d1-d28 Natural degradation of attached substances Degradation

Table C.1: Biological interpretation of each reaction in Figure 4.3 based on literature.
The processes {p1, p2, ..., p27} are adapted from Saito et al. (2006). Nine fozi-1-related
interactions are assigned to the processes {p28, p29, ..., p36} and are adapted from
Hobert (2006); Johnston et al. (2005). {d1, d2, ..., d28} represents natural degradations
of the attached substances.
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Total Samples = 50, Repeats = 1000
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Figure D.1: Graphs for h > h′ with a fixed total number of 50 samples. We per-
formed 1000 simulation trials each for 10, 100 and 1000 bootstrap replicates. Error bar
indicates the 95% confidence interval.
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Figure D.2: Graphs for h ≥ h′ with a fixed total number of 50 samples. We per-
formed 1000 simulation trials each for 10, 100 and 1000 bootstrap replicates. Error bar
indicates the 95% confidence interval.
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Figure D.3: Graphs for h > h′ with a fixed total number of 500 samples. We per-
formed 1000 simulation trials each for 10, 100 and 1000 bootstrap replicates. Error bar
indicates the 95% confidence interval.
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Figure D.4: Graphs for h ≥ h′ with a fixed total number of 500 samples. We per-
formed 1000 simulation trials each for 10, 100 and 1000 bootstrap replicates. Error bar
indicates the 95% confidence interval.
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Figure D.5: Graphs for h > h′ with a fixed total number of 1000 samples. We per-
formed 1000 simulation trials each for 10, 100 and 1000 bootstrap replicates. Error bar
indicates the 95% confidence interval.
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Figure D.6: Graphs for h ≥ h′ with a fixed total number of 1000 samples. We per-
formed 1000 simulation trials each for 10, 100 and 1000 bootstrap replicates. Error bar
indicates the 95% confidence interval.
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Figure D.7: Applying k-Nearest-Neighbors (k = 10), neural networks, C4.5 and Naive-
Bayes on the Diabetes datasets discussed in Section 7.2.1 with 2 repeats of 5-fold
cross-validation. Each data point is computed based on 8 runs (4 different algorithms
* 2 repeats). Error bar indicates the 95% confidence interval. Noise is injected into
data by flipping the class labels of a fraction of samples in the training data randomly.
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Figure D.8: Same experimental settings as Figure D.7. The average number of boot-
strap replicates used by various algorithms is shown instead.
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Figure D.9: Applying k-Nearest-Neighbors (k = 10), neural networks, C4.5 and Naive-
Bayes on the Ionosphere dataset discussed in Section 7.2.1 with 2 repeats of 5-fold
cross-validation. Each data point is computed based on 8 runs (4 different algorithms
* 2 repeats). Error bar indicates the 95% confidence interval. Noise is injected into
data by flipping the class labels of a fraction of samples in the training data randomly.
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Figure D.10: Same experimental settings as Figure D.9. The average bootstrap repli-
cates used by various algorithms is shown instead.
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Figure D.11: Applying k-Nearest-Neighbors (k = 10), neural networks, C4.5 and Naive-
Bayes on the Tic− tac− toe dataset discussed in Section 7.2.1 with 2 repeats of 5-fold
cross-validation. Each data point is computed based on 8 runs (4 different algorithms
* 2 repeats). Error bar indicates the 95% confidence interval. Noise is injected into
data by flipping the class labels of a fraction of samples in the training data randomly.
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Figure D.12: Same experimental settings as Figure D.11. The average bootstrap repli-
cates used by various algorithms is shown instead.
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Figure D.13: Applying k-Nearest-Neighbors (k = 10), neural networks, C4.5 and Naive-
Bayes on the V ote dataset discussed in Section 7.2.1 with 2 repeats of 5-fold cross-
validation. Each data point is computed based on 8 runs (4 different algorithms * 2
repeats). Error bar indicates the 95% confidence interval. Noise is injected into data
by flipping the class labels of a fraction of samples in the training data randomly.
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Figure D.14: Same experimental settings as Figure D.13. The average bootstrap repli-
cates used by various algorithms is shown instead.
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