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A polyadenine tail is found at the 3’ end of nearly every fully processed eukaryotic mRNA and has 
been suggested to influence virtually all aspects of mRNA metabolism. The ability to predict 
polyadenylation site will allow us to define gene boundaries, predict number of genes present in a 
particular gene locus and perhaps better understand mRNA metabolism. To this end, we built an 
arabidopsis polyadenylation prediction model. The prediction model uses a machine learning 
method which consists of four sequential steps: feature generation, feature selection, feature 
integration and cascade classifier. We have tested our model on public datasets and achieved more 
than 97% sensitivity and specificity. We have also directly compared with another arabidopsis 
prediction model, PASS 1.0, and have achieved better results.
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1. Introduction

Polyadenylation is a post-transcriptional process. The process basically cleaves and adds 
about 200 adenosine residues to the pre-mRNA 3’ end. The site where the pre-mRNA is 
cleaved is known as the polyadenylation site. The selection of polyadenylation sites are
determined by polyadenylation signals or cis-elements in the pre-mRNA. In humans, 
AAUAAA is a highly conserved polyadenylation signal. However, no highly conserved 
polyadenylation signal has been identified in arabidopsis. In this respect, the prediction of 
polyadenylation site is therefore more difficult.

The polyadenine tail has been shown to boost translation, protects the 3’ end of 
mRNA from exonucleases and is needed for the mRNA nuclear-to-cytoplasmic export. 
This process has also been found to be tightly coupled with splicing and transcription 
termination. Thus, it is an essential processing event and an integral part of gene 
expression [5].

Therefore, the ability to predict the polyadenylation site potentially allows us to 
better understand the process and also to be able to better segment genes. To this end, we 
developed an arabidopsis polyadenylation prediction model.

Although proteins involved in polyadenylation processes appears to be conserved 
among human and arabidopsis, their polyadenylation signals differ widely in terms of 
their locations with respect to polyadenylation site and sequence content [5]. In humans, 
AAUAAA (or its one-base variant) is a highly conserved polyadenylation signal and is 
found in 87.1% of the observed sites [1]. In plants, there are no highly conserved 
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polyadenylation signals. AAUAAA is the most frequently occurring polyadenylation 
signal, yet it is found in only about 10% of arabidopsis genes [5]. 

Nonetheless, studies have shown that arabidopsis polyadenylation signals are 
composed of three major groups: far upstream elements (FUE), near upstream elements 
(NUE) and cleavage elements (CE). The far upstream elements span a region of 60-130 
nucleotides, resides at a location 18 to 22 nucleotides upstream of the cleavage site and 
has a high U content. The near upstream elements spans a region of 6-10 nucleotides, 
resides at a location 12 nucleotides upstream of the cleavage site and has a high A 
content. The cleavage elements span a region of about 27 nucleotides, resides from a 
position which is 12 nucleotides upstream to about 15 nucleotides downstream of the 
cleavage site and it consists of the well conserved YA(CA or TA) just before the cleavage 
site and U-rich elements flanking both sides of the cleavage site [5]. For a schematic 
representation of polyadenylation site in arabidopsis mRNA 3’ ends, see Figure 1.

Figure 1. A schematic representation of polyadenylation site in arabidopsis mRNA 3’ ends.

Currently, there exists another prediction program for arabidopsis named 
polyadenylation site sleuth or PASS [3]. PASS was developed based on Generalized 
Hidden Markov Model using polyadenylation signals identified by [5]. We compared
against PASS 1.0 using the same datasets and achieved better results in most cases.

For our arabidopsis polyadenylation prediction, we built a model based on the 
machine learning methodology described in [4]. However, we added an additional step to 
that methodology - a cascade classifier. This additional step is implemented due to the 
fact that there are no highly conserved polyadenylation signals in Arabidopsis; and this 
step has been shown to increase both sensitivity and specificity.

2. Tools, Datasets, and Methods

2.1 Tools

In our prediction model, certain steps were implemented using Waikato Environment for 
Knowledge Analysis (WEKA). WEKA is a free machine learning software package 
written in Java and developed at University of Waikato [8]. One particular learning 
scheme that we have employed from WEKA is SMO. SMO is the WEKA implementation 



3

of support vector machine [7] using John Platt’s sequential minimal optimization 
algorithm [6].

2.2 Datasets

Datasets used for this project came from two main sources. 
1) Datasets derived by Hao Han

 Dataset A (used to set parameters): 
o 804 (+ve) sequences with EST-supported polyadenylation sites, derived 

based on ATPACDB and has confidence “high” or “very high”. 
(http://harlequin.jax.org/atpacdb/confidence.php) 

o 9742 (-ve) coding sequences that were extracted from ENSEMBL 
database, arabidopsis section

o Sequences in Dataset A are of length 400. For each of the 804 (+ve) 
sequences, the EST-supported polyadenylation is at location 201.

2) Datasets provided by Qingshun Li; please refer to [3] for more information on how the 
following datasets were derived

 Dataset B (used for SMO1 training):
o 2640 (+ve) sequences with EST-supported polyadenylation sites
o 900 (-ve) coding sequences
o 476 (-ve) 5’UTR sequences
o 954 (-ve) intronic sequences

 Dataset C (used for SMO2 training):
o 1500 (+ve) sequences with EST-supported polyadenylation sites
o 100 (-ve) coding sequences
o 100 (-ve) 5’UTR sequences
o 100 (-ve) intronic sequences

 Dataset D (used for SMOA and SMO2 testing):
o 2069 (+ve) sequences with EST-supported polyadenylation sites
o 501 (-ve) coding sequences
o 288 (-ve) 5’UTR sequences
o 527 (-ve) intronic sequences

 Dataset E (used for SMOA training):
o 4140 (+ve) sequences with EST-supported polyadenylation sites
o 1000 (-ve) coding sequences
o 576 (-ve) 5’UTR sequences
o 1054 (-ve) intronic sequences

 Each sequence in Dataset B, C, D and E is of length 400. Each (+ve) sequences 
has the EST-supported polyadenylation sites at location 301. Dataset E is formed 
by combining Dataset B and Dataset C. Each sequence in Dataset B, C and D 
underwent pair-wise global alignment against every other sequence. If any two 
sequences have more than 70% similarity, one of them is discarded. (i.e., if we 
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randomly pick a sequence from Dataset B, we will not find any other sequence in 
Dataset B, C or D with more than 70% similarity). This is to minimize biasness 
due to similarity of sequences.

2.3 Methods

2.3.1  Architecture of the polyadenylation prediction system

Our polyadenylation prediction system is a cascade of two layers of classifiers. In the first 
layer, a classifier SMO1 is used to score positions (-40/+40) at every nucleotide and 
therefore, there is a total of 81 SMO1 scores relative to a candidate site. In the second 
layer, a classifier SMO2 takes these 81 SMO1 scores to decide if the candidate site is a 
polyadenylation site.

We follow the “feature generation, feature selection, feature integration” 
methodology [4] in developing our prediction system, and in particular, the first-layer 
classifier SMO1.

The architecture of our polyadenylation prediction system and an overview of the 
steps involved are depicted in Figure 2.

Figure 2. Architecture of our polyadenylation prediction system. 
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2.3.2 Training Phase

1) Feature Generation
The candidate features that we considered for SMO1 are 1-gram (A, C, G, U), 2-gram
(AA, AC, AG, AU,…, GU, UU), 3-gram (AAA, AAC, AAG, AAU, …, UGU, UUU), 
4U/1N (NUUUU, UNUUU, UUNUU, UUUNU, UUUUN), 4A/1N (NAAAA, ANAAA, 
AANAA, AAANA, AAAAN) and G/U*7 (A stretch of G or U for 7 bp). We consider 
these features separately in 3 different windows relative to the candidate site, (-110/+5), (-
35/+15) and (-50/+30); and we calculate the frequency of the features in these 3 different 
windows. A total of 261 candidate features were generated.

We chose these features and windows by referencing to biological literature [1, 2 and 
5] and findings from analyzing Dataset A.

2) Feature Selection
The feature selection step is done by using WEKA supervised attribute filter with 
Attribute Evaluator set to “ChiSquaredAttributeEval” and Search Method set to “Ranker”. 
Statistics of these candidate features are then computed based on Dataset B for SMO1.
Features that have chi-square statistics greater than the threshold value of 0 are chosen to 
form the feature vector.

Out of the 261 candidate features generated, 228 have chi-square value exceeding 0
and were selected. Of them, the minimum observed chi-square value is 11. 

3) Feature Integration
The first-layer classifier SMO1 is then trained using the SMO support vector machine 
learning scheme in WEKA and the selected features from Step 2. The training data used 
in this step is from Dataset B. 

4) Cascade Classifier (SMO2)
The second layer classifier SMO2 is then trained using the SMO support vector machine 
learning scheme in WEKA. The feature vector for this step is the 81 scores output by 
SMO1 at positions (-40/+40) relative to a candidate site. The training data for this step is
from Dataset C.

2.4 Prediction Phase

Although in Figure 1, “YA” is said to be well conserved at positions just before the 
polyadenylation sites, it is found in less than 41% of the sequences in Dataset A. 
Therefore, when given a sequence to predict the existence and location of polyadenylation 
sites, we consider every location to be a possible candidate site instead of only “YA” 
positions. Hence, the classifier SMO1 is first deployed to get a score at every nucleotide
for a given sequence. Cascade classifier SMO2 then makes use of the SMO1 scores at 
positions (-40/+40) relative to a candidate site to carry out prediction for polyadenylation 
sites.
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However, in order to make predictions on a particular nucleotide, SMO1 needs to 
know that particular nucleotide’s (-110/+30) composition. Therefore, for SMO2 to make 
a prediction, it needs to know the composition of (-150/+70). Hence, given a sequence of 
DNA, our prediction model is not able to make prediction on the first 150 and last 70 
nucleotides of the sequence. Likewise, PASS 1.0 is also unable to make predictions on the 
first 149 and last 10 nucleotides. PASS 1.0 assumes these locations to be unlikely to be a 
polyadenylation site and sets the scores for these locations to be 0. Our prediction model 
also assumes these locations to be unlikely to be a polyadenylation site and sets their 
scores to 0. Therefore, the users of our model and/or PASS 1.0 are advised to provide 
sequences that are of sufficient length. (i.e., having upstream and downstream of a 
sequence to go beyond 3’UTR).

3. Results

In order to show improvements given by using the cascade classifier step, we also trained 
another classifier SMOA with Dataset E using the same steps for SMO1. Using Dataset E 
for SMOA ensures that SMOA and SMO2 uses equal amount of training data.

We then used Dataset D to evaluate the performance of our polyadenylation 
prediction system (SMO2), SMOA and PASS 1.0. We considered the following 
measures:

Sensitivity (SN) = TP / (TP + FN)
Specificity (SP) = TN / (TN + FP)

where TP (True Positive) is the total number of EST-supported polyadenylation sites that 
are identified or correctly predicted in the (+ve) sequences. FN (False Negative) is the 
total number of EST-supported polyadenylation sites that are not identified or predicted 
correctly in the (+ve) sequences. TN (True Negative) is the total number of sites with 
score  threshold in the (-ve) sequences. FP (False Positive) is the total number of sites 
with score > threshold in the (-ve) sequences.

The sensitivity and specificity of SMOA, SMO2 and PASS 1.0 running on the test 
dataset can be observed in Figures 3, 4 and 5 respectively. The equal-error-rates values 
(i.e., the points where sensitivity = specificity) achieved by SMOA, SMO2 and PASS 
with SN_0, SN_10 and SN_30 are laid out in tabular form on Tables 1, 2 and 3.

SN_0 means the predicted polyadenylation site is exactly the same as the EST-
supported polyadenylation site. SN_10 means the EST-supported polyadenylation site is 
within 10 nucleotides of the predicted polyadenylation site. SN_30 means the EST-
supported polyadenylation site is within 30 nucleotides of the predicted polyadenylation 
site. SP_CDS means the specificity achieved by running the classifier on coding 
sequences. SP_5UTR means the specificity achieved by running the classifier on 5’UTR 
sequences. SP_Intron means the specificity achieved by running the classifier on intronic 
sequences.

 For Figure 5, the specificity of PASS 1.0 differs from what was reported in [3]. This
is because the specificity calculated in [3] includes positions even where PASS 1.0 was 
unable to make a prediction as stated in Section 2.4. By doing so, it almost always 
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recognizes those positions as TN, which will inevitably increase its specificity, whereas 
the calculation of specificity in this paper does not make use of those positions, hence 
resulting in a lower specificity.
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Figure 3. The prediction performance of SMOA.
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Figure 4. The prediction performance of SMO2.
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PASS 1.0
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Figure 5. The prediction performance of PASS 1.0.

Table 1. Equal-error-rate points of SMO1, SMO2, and PASS 1.0 for SN_0.

SN_0 SMO A SMO 2 PASS 1.0
Control 
Sequences

SN & SP Threshold SN & SP Threshold SN & SP Threshold

CDS 91.1% 0.33 94.3% 0.24 95.3% 3.76
5’UTR 79.3% 0.50 84.9% 0.48 77.7% 5.53
Intron 63.9% 0.68 71.1% 0.68 62.8% 6.36

Table 2. Equal-error-rate points of SMO1, SMO2, and PASS 1.0 for SN_10.

SN_10 SMO A SMO 2 PASS 1.0
Control 
Sequences

SN & SP Threshold SN & SP Threshold SN & SP Threshold

CDS 94.8% 0.42 96.5% 0.31 96.5% 4.02
5’UTR 85.8% 0.61 89.2% 0.60 80.7% 5.81
Intron 72.5% 0.75 78.8% 0.76 67.7% 6.62

Table 3. Equal-error-rate points of SMO1, SMO2, and PASS 1.0 for SN_30.

SN_30 SMO A SMO 2 PASS 1.0
Control 
Sequences

SN & SP Threshold SN & SP Threshold SN & SP Threshold

CDS 97.1% 0.50 97.5% 0.37 97.5% 4.29
5’UTR 89.8% 0.69 91.5% 0.67 84.0% 6.13
Intron 79.2% 0.81 83.0% 0.81 71.7% 6.85
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4. Discussions

From the results, it is clear that introducing the cascade classifier (SMO2) step on top of 
the “feature generation, feature selection, feature integration” methodology helps improve 
both sensitivity and specificity (Shown by comparison between SMOA and SMO2). Our 
prediction model (SMO2) is also able to achieve a significant 7 – 11% higher sensitivity
and specificity against PASS 1.0 with control sequences from 5’UTR and introns, while 
maintaining similar sensitivity and specificity with control sequences from the coding 
region.

When different control sequences are used, a drastic difference in the levels of 
sensitivity and precision is observed. With SN_0, coding sequences gives a sensitivity and 
specificity of 94.3% while introns sequences only achieved 71.1%; see Table 1. There 
could be two main reasons for this:

Firstly, recall that the parameter of our arabidopsis prediction model is set by using 
Dataset A derived by Hao Han. In that dataset, the control sequences used are from 
coding regions. This could have caused our arabidopsis prediction model to be biased 
towards coding sequences. Introducing 5’UTR and intronic sequences into the dataset 
used for setting the parameters could potentially increase the accuracy achieved on
5’UTR and intron.

Secondly, features used in our arabidopsis prediction model are compositional 
features. It is known that the intronic sequences have high A and U composition. This is a 
characteristic shared by the (+ve) sequences with EST supported polyadenylation site. 
This could explain why our arabidopsis prediction model has more difficulty in separating 
them. Therefore, introducing positional specific features or any features that are not 
compositional could potentially enhance the prediction model.

3. Conclusions

Our arabidopsis prediction model was built based on a machine learning 
methodology as described in [4]. It basically consists of 3 steps: 1) feature generation 2) 
feature selection 3) feature integration. An extra step (cascade classifiers) has been added 
for our model which helped increase sensitivity and specificity. In the above few steps,
feature generation is the most crucial and difficult step. Given the “correct” set of features 
to generate, any method used for feature selection, feature integration and cascade 
classifier would yield high accuracy. However, to find the “correct” set of features to 
generate is similar to the problem of motif finding given a set of sequences, which is 
known to be NP-hard. Our approach is to use biological understanding of polyadenylation 
mechanism to decide on the set of features to generate. This approach has been shown to 
yield reasonably high accuracy in our prediction model.

Our arabidopsis prediction model has outperformed PASS 1.0 by a 7 – 11% margin 
on a validation dataset given by Qingshun Li (inventor of PASS 1.0). On the validation 
dataset, sensitivity and specificity for our model ranges from 71.1% to 94.3% with SN_0. 
As discussed previously, it is possible that the prediction model that we have developed 
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for arabidopsis is biased towards coding sequences due to the parameter setting process. 
Therefore, one possible way to better improve its accuracy for other control sequences 
would be to redo the parameter setting procedure using other control sequences. Also, 
including more features that are not compositional could help better distinguish (+ve)
sequences from (-ve) intronic sequences as they are compositionally similar.

As polyadenylation takes place just before the end of a transcription, the ability to 
accurately predict a polyadenylation site would be useful in predicting the ends of 
transcripts and also terminal exons. To this end, our prediction model has achieved 
reasonable accuracy and would certainly be useful for better gene annotations.

The datasets and source files used for this project are available at 
http://www.comp.nus.edu.sg/~wongls/projects/dnafeatures/giw07-supplement/
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