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PRIMA: PEPTIDE ROBUST IDENTIFICATION FROM MS/MS SPECTRA

JIAN LIU
�
and BIN MA

�

and MING LI
�

In proteomics, tandem mass spectrometry is the key technology for protein identification from the
cells. However, partially due to the deficiency of peptide identification software, over half of the
tandem mass spectra are discarded in almost all proteomics centers because they are not interpretable.
The problem is more acute with the lower end data from low quality but cheaper devices such as the ion
trap instruments. In order to deal with the noisy and low quality data, this paper develops a systematic
approach to construct a robust linear scoring function, whose coefficients are determined by a linear
program. A prototype, PRIMA, is implemented. When exhaustively tested with large benchmarks
of varying qualities, PRIMA consistently outperforms the commonly used software MASCOT and
SEQUEST with higher accuracy.

1. Introduction

Proteomics aims at understanding proteins expressed in cells at different levels, during
different times, and in different forms. These questions are critical steps connecting the
genomes to drug discovery and modern medical advances. Massspectrometers are cur-
rently the predominant tool to accomplish some of the primary goals of proteomics: (1)
identification of each protein in a cell; (2) determination of expression level of each pro-
tein (which does not always correlate with mRNA level); and (3) determination of post-
translational modifications (PTMs), sites and types. However, due to the high-throughput
capacity of mass spectrometers, software tools become a bottleneck to success. Today, in
proteomics companies and academic consortiums worldwide,over half of the MS/MS data
generated by mass spectrometers are rejected because they are not interpretable by cur-
rently available software (e.g. MASCOT or SEQUEST). The interpretable parts are further
plagued by false positives. Mass spectrometer accuracy andsensitivity varies greatly and
this problem is particularly prominent with low-end but more popular ion trap devices.

This paper focuses on developing a robust and systematic method to deal with the
lower quality data produced by the popular ion trap devices.There are two approaches to
do peptide identification from MS/MS data:de novosequencing and database searching. In
order to deal with the low quality data, we use the more powerful database method. Using a
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Figure 1. Different ions produced by peptide fragmentation. a/x, b/y, c/z are complementary ions, respectively.
b/y ions are the most common ones.

linear programming formulation, we optimize a scoring function to score the experimental
spectra against a protein sequence database. We have implemented the prototype PRIMA
and demonstrated the supremacy of PRIMA over both MASCOT andSEQUEST on large
spectrum benchmarks.

2. Background and related work

Tandem mass spectrometry (MS/MS) is currently the method ofchoice for high through-
put identification of proteins due to its speed and high sensitivity. In such an approach,
a protein is digested or chemically cleaved into many peptides. These peptides are frag-
mented and ionized to carry one or more units of charge. Peptides typically break at the
peptide bonds, forming b-ions and y-ions, as shown in Fig. 1.The ions are then separated
according their mass/charge ratios in the mass analyzer. Finally ions are collected by ion
detector to produce mass spectra. Each spectrum includes a sequence of peaks indicating
the mass/charge ratios and abundance of ions.

Software tools, database search method orde novosequencing, are finally applied to
interpret each MS/MS spectrum to infer the peptide sequence, and then the protein which
contains the peptide.

De novosequencing method determines the peptide sequence solely from the exper-
imental spectra without using databases.

�
This method is useful when the protein is not

in the database. The mainstreamde novosequencing software include program packages
from mass spectrometry vendors (MassLynx, BioAnalyst, denovoX, ���), the free program
Lutefisk

��
and commercial programs PEAKS

��
and SpectrumMill. The basicde novose-

quencing dynamic programming techniques were first introduced by Dancik�� ��
.	 and

Chen�� �� 
�
The database search method is more powerful, but it depends on the fact that the tar-

get protein sequence is in the database. Given an experimental spectrum� , this method
searches through a protein sequence database to find a peptide whose theoretical spectrum
�  matches� the best. The mainstream software using the database methodare MASCOT��

and SEQUEST.� ��� SEQUEST compares the theoretical spectra against real spectrum
using a correlation function to determine the score. MASCOTcomputes the score based
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on the probability that observed match of ions is a random event. Recent research have
been reviewed recently by Chamrad.

�
Improvements to these programs are claimed with

various criteria: fewer false positives
�

less time
�
, validation�, and new approaches.

��
This paper focuses on the database method in order to obtain arobust solution to the

low quality spectra. We aim at developing a theoretically sound and practically feasible
approach, avoiding currently infeasible problems such as computing the probability of each
spectrum given a peptide.

�
At the heart of all search methods is a scoring mechanism to rank the candidate pep-

tides. Constructing a good scoring function is tricky. The fragmentation of the peptides is
determined by their physiochemical characteristics as well as many other factors, resulting
many problems listed below.

� Internal fragmentations. A peptide may be broken more than once.
� Some ions may be missing in the experimental spectra. The intensity of same ion

may vary greatly for different runs.
� Isotopes. For example

� ��
adds one dalton. Furthermore if the ion has charge 2,

then the distance is only 0.5 on the m/z axis.
� Other ions: a-ions, c-ions, x-ions, z-ions. They appear at different rates with

different types of mass spectrometers.
� Each N-terminal ion (a-, b-, c-ions) can lose an ammonium group (� � � , -17

daltons); each C-terminal ion (x-, y-, z-ions) can lose a water (� �� , -18 daltons).
� Multiply charged ions. Noise peaks that correspond to nothing.

As the result, the spectra generated from mass spectrometers often have little resem-
blance of the corresponding theoretical spectra. For example, Fig. 2 illustrates an experi-
mental and a theoretical b/y ion peak spectrum for peptide LVTDLTK. To make the matter
worse, each type of mass spectrometer has its own sensitivity and resolutions, the scoring
function often needs to be adjusted to achieve the best performance.

��
Given a spectrum, we can find a list of candidate peptides fromthe protein database

whose masses are within a predefined mass error tolerance to the precursor ion mass (i.e.
the peptide mass measured by the mass spectrometer) of the spectrum. For a large database,
this list can be as large as 100,000 tryptic peptides, using�� dalton error tolerance. A
scoring function is then needed to find the correct peptide.

3. Constructing a linear scoring function

We are interested in designing a robust scoring function that is relatively insensitive to
machine types, noise levels, and error tolerances.

3.1. Selecting features

Given the amino acid sequence of a peptide, its theoretical spectrum can be derived to
include all ion types of interests including a-, b-, c-, x-, y-, and z- ions and and their variants
(losing water and ammonium groups, isotopes, multiple charges). A simple algorithm is



September 16, 2004 9:47 Proceedings Trim Size: 9.75in x 6.5in ion-trapAPBC

4

 0  100  200  300  400  500  600  700  800

mass/charge ratio

Peptide LVTDLTK: b-ion/y-ion spectrum

L V T D L T K

K T L D T V L

"bpk.dat"
"ypk.dat"

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 0  100  200  300  400  500  600  700  800

in
te

ns
ity

mass/charge ratio

peptide LVTDLTK: experimental Ion-trap spectrum

"spec.dat"

Figure 2. The theoretical b/y ion spectrum, top, and an experimental spectrum from [11], bottom, for peptide
LVTDLTK.

first applied to match each theoretical peak�  with a closeby experimental peak, with the
preference to b-/y- ions when there are multiple matches within the mass error threshold.

Let � denote the intensity of� and� denote the m/z error between� and� . Assuming
the m/z error tolerance is� , an experimental peak is a candidate to match if� � �� � .
Peak intensities in experimental spectra can vary drastically. We have observed that they
can vary by a multiplicative factor of���. To minimize this problem, an empirical formula
below is used to adjust the intensity for each candidate peak:

� � � �	
� � � ��� �� � �� (1)

where
�

and� are empirically set to 3 and 0.5 dalton, respectively.
The following features are then extracted to indicate the similarity between theoretical

and experimental spectrum. These features are classified into 4 groups:

(1) For each ion type, the sum of intensities,� �
values, of all matched peaks of this

type. The types we consider include a-, b-, c-, x-, y-, z-ions, as well as all internal
fragmentations, b-� � �, y-� �� .

(2) The weighted sum of intensities,� �
values, of all matched peaks. I.e., this is the

weighted sum of all sums in Item 1. Each type of ions is assigned a weight. Higher
weights (1.0) are given to� and� ions and lower weights (0.1) to other types of
ions.

(3) The sums of products of the intensities for the complementary pairs of each type.
These include: the sum of products of the intensities of all complementary b/y-
ion pairs; the sum of products of the intensities of� � and��� � pairs; the sum of



September 16, 2004 9:47 Proceedings Trim Size: 9.75in x 6.5in ion-trapAPBC

5

products of the intensities�� and�� � � �� pairs for all
�
; the sum of products of

the intensities of�� and�� � � � � pairs for all
�
, ���. For instance, the following

formula is used to compute the the b/y ion complementary pairintensities:

��� � �	��
�� � �� ���� 	 �� �
 � ���

(2)

where
 is the peptide length.
(4) Average m/z error of the matched peaks for each ion type. The system error due to

instrument calibration needs to be removed. Assume there are 
 peaks in the ion
series. Let�� be the error for each peak� � and�� be the mean of errors of the
matched peaks, then the average error is adjusted as below:

� �� � � � 	 ���� � � � � � �� �

 


(3)

Given an experimental spectrum and
 candidate peptides, a set of feature vectors�� � � �� � � � � � �� � can be derived, each corresponding to one peptide. Let
� � �� � be the

value of
�
-th feature of

�
-th vector. Each feature value is normalized by

� � �� �� � � � �� �� ���� � �� ���� �� � �� �� � � (4)

According to the preceding formulation, each feature is a numerical value. It is ex-
pected that the correct peptide is more likely to havehigh feature values than incorrect
ones. In practice some features are more distinguishing than others, due to the noises and
missing ions. Thus it is necessary to find an appropriate weights for all the features to
achieve the optimum discriminating capacity.

For each feature, given a training spectrum, the values for all candidate peptides are
calculated, and then sorted in descending order. The percentile rank of the true peptide’s
value is recorded. Averaging over all training spectra, this feature’s percentile ranking is
obtained. Those features whose percentiles rank at top 5% most are used to derive the final
scoring function by a linear program described in the next section.

3.2. A linear programming formulation for the scoring function

Given a spectrum and the peptide, the values of
�

selected features form a vector
� ��� � � �� � � � � � � � �. In this work, the scoring function is formulated as a weighted sum of

feature values. That is, we consider scoring functions of the form � �� � � � � � �
��

�� � � � 	 � �, where
� � ��� � �� � � � � � �� �. Now the problem is to determine values of

� � to
optimize the accuracy of identification. This is solved by a linear programming.

Assuming a sequence of experimental spectra
��� � �� � � � � � �� � is produced by peptides�� � �� � � � � � �� � �, respectively. For each spectrum
� �, let  � be the feature vector for correct

peptide� �. The negative peptides are selected in a protein database byusing the peptides
with similar masses to� �. Assume that the number of negative peptides for each spectrum
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is � � �� � � � � � �� � , respectively, and� �� is the feature vector of the
�
-th negative peptide

for
� �. The linear programming formulation is given below:

��� ��
�� �

� �
subject to� � � � � � � � � � � � � � � ��� � �� � � � � � �� � � �� � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � � �� � � � 
 (5)

separating hyperlane
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Figure 3. An example of improving accuracy by bounding the functional margin. (a) Without the bounding, one
sample is misidentified; (b) with bounded functional margin, all 3 samples are correctly identified.

The geometrical interpretation of inner product of two vectors� � � is the projection
of � onto� when 	 � 	� �. In other words, it is the distance to a hyperplane� which
is perpendicular to� . Thus the problem is equivalent to finding a good linear boundary
separating hyperplane in the
 � to identify positives and negatives. For

�
-th spectrum,

the functional margin is��� � � � � � � �� �. Intuitively, an ideal separating hyperplane
leads to large margins for training samples. Nevertheless,maximizing sum of margins may
damage the overall accuracy of identification. Fig. 3 (a) provides an example, where the
third sample is not identified correctly if the objective is to maximize the sum of functional
margins.

To alleviate such problem, the forth constraint in Formula 5is imposed to place a bound
of functional margin distance. Fig. 3 (b) shows improved hyperplane for separation, where� ��� �� , � � � � � � , are the functional margins for the individual samples, respectively.

The coefficients are determined when the linear programmingformulation is solved.
Some samples cannot be recognized correctly, their functional margins are negative. As
the objective goal is to maximize the sum of bounded functional margins, the overall iden-
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tification accuracy might drop to offset the big negative margins. To further improve the
situation, we use a heuristics to iteratively explore the proximity of the coefficients returned
by LP solver. In each iteration, we adjust one coefficient by asmall step� to improve 1)
the identification accuracy or 2) the minimal functional margin of all samples without de-
creasing the accuracy.

Prototype PRIMA is implemented based on this formulation and the optimized coeffi-
cients.

4. Experimental results

We used three large third-party datasets to evaluate PRIMA.Dataset 1 contains 86 ion trap
spectra from Richard Johnson.� Dataset 2 contains 266 ion trap spectra obtained from
a Finnigan LCQ Deca mass spectrometer

��
, provided to us by Mark Cieliebak of ETH.

Dataset 3 is a well-known dataset of 37,071 low quality ion trap spectra aimed at provid-
ing a standard test benchmark for researchers to compare their work with the SEQUEST
program, given by Keller�� �� 
��

These spectra were produced by ion trap mass spectrom-
eters of different resolutions and from different organizations, many not tryptic digested
and many only tryptic digested at one end.

Since MASCOT and SEQUEST are the industrial standard, are recognized as
the leading database search programs and are most widely used, we compare
PRIMA with these two programs. In our experiments, MASCOT online server at
http://www.matrixscience.com/ is used for dataset 1 and 2.For dataset 3, as MASCOT
online server does not accept external databases and does not have an option to special-
ize on peptides that are only tryptic digested at one end, it was impossible to make a fair
comparison with PRIMA. We were only able to use dataset 3 to compare SEQUEST with
PRIMA. On the other hand, for datasets 1 and 2, although we know partial SEQUEST
results, it was impossible to make a fair comparison. Thus, dataset 1 is used for training.
Dataset 2 is used to compare MASCOT with PRIMA, and dataset 3 is used to compare SE-
QUEST with PRIMA. In our experiment,� of in Formula 5 was set to 1.0001 empirically;
precursor error tolerance was set to� � 
��� 
� daltons for training and testing, respectively.

In the training process, we identified the features used in the scoring functions. As
observed by many prior researchers, b/y ions are the most common and valid peaks for
mass spec analysis for all types of instruments. Focusing onthe features mainly related to
b/y ions makes the scoring function more instrument neutral. Table 1 displays the features
selected to form the scoring function, along with their discriminating capacity. For each
feature, the second column and the third column provide numbers of spectra for which the
positive peptide feature value is ranked among top 5% and as No.1 among all candidate
peptide feature values. With the selected features, the LP formulation in Section 3.2 is then
used to derive the linear scoring function.

After coefficients are determined, the scoring function wasthen applied to dataset 1 to

�
This dataset originally has about 144 spectra. Many of the spectra have large precursor mass discrepancies due

to PTMs and these spectra are removed, with 86 left.
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Table 1. Training with dataset 1 (86 spectra, NCBI NR proteindatabase): Subset of
selected features and discriminating capacity of each feature

Feature # of top 5% # of No. 1
sum of intensity for all ions 85 73
sum of intensity for y ions 84 68

sum of intensity product for complementary b/y ions 84 43
sum of intensity for b ions 74 10

average m/z error for y ions 56 5

Table 2. Training: Identification accuracy com-
parison between PRIMA and MASCOT, both us-
ing NCBI non-redundant protein database.

ratio of No.1 ratio of top 10
PRIMA 90.7% 97.7%

MASCOT 84.9% 93.0%

assess its effectiveness. For each spectrum, the top ranked10 peptides from PRIMA were
output. Table 2 provides a comparison between PRIMA and MASCOT.

PRIMA was then tested using datasets 2 and 3. Table 3 gives thePRIMA and MASCOT
performance on dataset 2. It shows that PRIMA achieves better results than MASCOT. For
a close look, Table 4 presents some peptides which are not correctly recognized either by
PRIMA or MASCOT. In the columns 2 and 3, an asteroid (*) indicates that the peptide is
correctly identified.

Table 3. Identification accuracy comparison be-
tween PRIMA and MASCOT, dataset 2, 266
spectra, both using NCBI non-redundant protein
database.

ratio of No.1 ratio of top 10
PRIMA 92.0% 94.7%

MASCOT 90.4% 91.2%

Dataset 3, provides a perfect benchmark for comparing PRIMAwith SEQUEST. This
dataset contains 37,071 spectra. According to Keller�� �� 
��

SEQUEST has correctly
identified 2784 spectra. Among the 2784 spectra, which were corrected identified by SE-
QUEST, 2057 are fully tryptic, 646 are semi tryptic (one end of the peptide is cut at R/K),
and 81 are non-tryptic. 125 of them are charge 1, 1649 of them are charge 2 and 1010 of
them are charge 3. Among the rest of 34287 spectra, 379 of themare charge 1, 16856 of
them are charge 2 and 17052 of them are charge 3. Among the charge 2 and 3 spectra, there
are 15435 duplicates, That is, these spectra have been savedin both charge 2 and 3 status.

After removing duplicates, PRIMA correctly identifies 3,090 spectra, with highest
scores, and 4,585 spectra with correct peptides ranked among top 10. These are sum-
marized in Table 5. Among the SEQUEST’s 2,784 correct spectra, PRIMA has correctly
identified 2,295 of them with the highest scores and 2,497 of them as top ten. Note that
among the 2,784 spectra, 72 spectra have precursor mass error beyond PRIMA’s precursor
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Table 4. Peptides in dataset 2 incorrectly identified by either PRIMA or MASCOT.

Correct peptides PRIMA MASCOT
KQTALVELLK QEDGPDMHSK (*)
DLGEQHFK DLGEEHFK (*)
KVPQVSTPTLVEVSR KVPEVSTPTLVEVSR (*)
FKDLGEEHFK (*) AGYVLELLDKK
KTGQAPGFTYTDANKNK (*) KLSNLIGLLWETDPNK
TGQAPGFTYTDANKNK VQMDDAMVIHADTIR (*)
HPYFYAPELLYYANK CDLFKTEEYCLVGLTR (*)
INPDKIKDVIGK (*) LFGHLTKIVAK
HPYFYAPELLYYANK YPHMFINHNQQVSFK (*)
DGISALQMDIK DGISTGCSPARK (*)
PSEGETLIAR (*) VSEGEFNHR
PGQDFFPLTVNYQER (*) IAQIIGPVLDVFFPPGK
PSEGETLIAR (*) AIEGSSGPKAR
DGISALQMDIK KRSGKEEDNK (*)
EIMQVALNQAK (*) TKTELAVEIIK
PSEGETLIAR (*) VSEGEFNHR
YSEIYYPTVPVK LDNVEEGKENWK NPETEWPPFLTK
PGQDFFPLTVNYQER (*) IAQIIGPVLDVFFPPGK
PGQDFFPLTVNYQER (*) VQLAGSHILEALRLHR
PSEGETLIAR (*) VSEGEFNHR
VISWYDNEWGYSNR (*) LVSWYDNEWGYSNR

error tolerance�� 
� daltons and 81 are non-tryptic, hence these 153 spectra are automat-
ically not identifiable by PRIMA,a priori. PRIMA correctly identified extra 795 spectra
with the highest scores and 2,088 spectra with top 10 scores,duplicates removed, from the
remaining 34,287 spectra that have failed SEQUEST.

Table 5. Identification accuracy comparison between SEQUEST and PRIMA, dataset
3, 37,071 spectra both using the database given in 11.

Total number of spectra Number of correct Number of top 10
SEQUEST 37,071 2,784 Unknown

PRIMA 37,071 3,090 4,585

A complete result list for all spectra can be found at
http://monod.uwaterloo.ca/� jianliu.

5. Conclusions and future work

Our goal of this research is to design a robust scoring function and a prototype system to
deal with the low quality data that flood the proteomics industry and mass spectrometry
research consortiums. We have presented a technique to construct a linear scoring func-
tion for MS/MS spectrum interpretation via a database. Tests with over 30,000 spectra,
produced from three different centers, show that our prototype system PRIMA consistently
outperforms the mainstream software tools MASCOT and SEQUEST on low quality ion
trap data. This work also provides a framework to effectively construct such a scoring
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function.
Further research is underway to deal with the post translation modifications, increase

search speed, and effectively combinede novosequencing with database search methods.
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