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PRIMA: PEPTIDE ROBUST IDENTIFICATION FROM MS/MS SPECTRA

JIAN LIU *and BIN MA tand MING LI #

In proteomics, tandem mass spectrometry is the key tecgpdlar protein identification from the
cells. However, partially due to the deficiency of peptidenitfication software, over half of the
tandem mass spectra are discarded in almost all proteoenitsrs because they are not interpretable.
The problem is more acute with the lower end data from lowitulalit cheaper devices such as the ion
trap instruments. In order to deal with the noisy and low ifyaiata, this paper develops a systematic
approach to construct a robust linear scoring function, sehmoefficients are determined by a linear
program. A prototype, PRIMA, is implemented. When exhaedfi tested with large benchmarks
of varying qualities, PRIMA consistently outperforms thenumonly used software MASCOT and
SEQUEST with higher accuracy.

1. Introduction

Proteomics aims at understanding proteins expressed Is atetlifferent levels, during
different times, and in different forms. These questiores @itical steps connecting the
genomes to drug discovery and modern medical advances. $pastrometers are cur-
rently the predominant tool to accomplish some of the pringrals of proteomics: (1)
identification of each protein in a cell; (2) determinatidregpression level of each pro-
tein (which does not always correlate with mRNA level); aB)l determination of post-
translational modifications (PTMs), sites and types. Hatedue to the high-throughput
capacity of mass spectrometers, software tools becometlarmtk to success. Today, in
proteomics companies and academic consortiums worldwidgsg, half of the MS/MS data
generated by mass spectrometers are rejected becauseehmyt anterpretable by cur-
rently available software (e.g. MASCOT or SEQUEST). Theiiptetable parts are further
plagued by false positives. Mass spectrometer accuracgamsltivity varies greatly and
this problem is particularly prominent with low-end but reqropular ion trap devices.
This paper focuses on developing a robust and systematicoahéd deal with the
lower quality data produced by the popular ion trap deviddgere are two approaches to
do peptide identification from MS/MS datde novesequencing and database searching. In
order to deal with the low quality data, we use the more pawelidtabase method. Using a
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Figure 1. Different ions produced by peptide fragmentat@fi, bly, c/z are complementary ions, respectively.
bly ions are the most common ones.

linear programming formulation, we optimize a scoring fiimie to score the experimental
spectra against a protein sequence database. We have iempéghthe prototype PRIMA
and demonstrated the supremacy of PRIMA over both MASCOTSEEQUEST on large

spectrum benchmarks.

2. Background and related work

Tandem mass spectrometry (MS/MS) is currently the methadhofce for high through-
put identification of proteins due to its speed and high s$iftgi In such an approach,
a protein is digested or chemically cleaved into many pegtidrhese peptides are frag-
mented and ionized to carry one or more units of charge. @eptypically break at the
peptide bonds, forming b-ions and y-ions, as shown in FiglHe ions are then separated
according their mass/charge ratios in the mass analyzeallfrions are collected by ion
detector to produce mass spectra. Each spectrum includzpiarsce of peaks indicating
the mass/charge ratios and abundance of ions.

Software tools, database search methodenovosequencing, are finally applied to
interpret each MS/MS spectrum to infer the peptide sequemmkthen the protein which
contains the peptide.

De novosequencing method determines the peptide sequence saalytlie exper-
imental spectra without using databadeghis method is useful when the protein is not
in the database. The mainstreds novosequencing software include program packages
from mass spectrometry vendors (MassLynx, BioAnalystodeiX, etc), the free program
Lutefisk'® and commercial programs PEAKSand SpectrumMill. The baside novose-
quencing dynamic programming techniques were first intteduoy Danciket al.” and
Chenet al.*

The database search method is more powerful, but it depentteedact that the tar-
get protein sequence is in the database. Given an expeshsg@ctrums, this method
searches through a protein sequence database to find agoeptide theoretical spectrum
S’ matchesS the best. The mainstream software using the database mathddASCOT
14 and SEQUEST:!> SEQUEST compares the theoretical spectra against rearspec
using a correlation function to determine the score. MASQ@Omputes the score based
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on the probability that observed match of ions is a randonmtevRecent research have
been reviewed recently by Chamradimprovements to these programs are claimed with
various criteria: fewer false positivekess timé, validatiorf, and new approaché$.

This paper focuses on the database method in order to obtalvuat solution to the
low quality spectra. We aim at developing a theoreticallyraband practically feasible
approach, avoiding currently infeasible problems sucloagoiting the probability of each
spectrum given a peptide.

At the heart of all search methods is a scoring mechanismniottee candidate pep-
tides. Constructing a good scoring function is tricky. Thegimentation of the peptides is
determined by their physiochemical characteristics asagainany other factors, resulting
many problems listed below.

¢ Internal fragmentations. A peptide may be broken more thmae o

e Some ions may be missing in the experimental spectra. Thasity of same ion
may vary greatly for different runs.

e Isotopes. For exampl@'? adds one dalton. Furthermore if the ion has charge 2,
then the distance is only 0.5 on the m/z axis.

e Other ions: a-ions, c-ions, x-ions, z-ions. They appearifférdnt rates with
different types of mass spectrometers.

e Each N-terminal ion (a-, b-, c-ions) can lose an ammoniunugr@V Hs, -17
daltons); each C-terminal ion (x-, y-, z-ions) can lose aaw@tl>0, -18 daltons).

e Multiply charged ions. Noise peaks that correspond to mothi

As the result, the spectra generated from mass spectraradten have little resem-
blance of the corresponding theoretical spectra. For el@rRjy. 2 illustrates an experi-
mental and a theoretical b/y ion peak spectrum for peptidERNTK. To make the matter
worse, each type of mass spectrometer has its own senséivit resolutions, the scoring
function often needs to be adjusted to achieve the bestpeafucel!

Given a spectrum, we can find a list of candidate peptides frmrprotein database
whose masses are within a predefined mass error toleranice fwecursor ion mass (i.e.
the peptide mass measured by the mass spectrometer) oétttasp. For a large database,
this list can be as large as 100,000 tryptic peptides, usidglalton error tolerance. A
scoring function is then needed to find the correct peptide.

3. Constructing a linear scoring function

We are interested in designing a robust scoring function ithaelatively insensitive to
machine types, noise levels, and error tolerances.

3.1. Selecting features

Given the amino acid sequence of a peptide, its theoretmatteum can be derived to
include all ion types of interests including a-, b-, ¢c-, %5,8nd z- ions and and their variants
(losing water and ammonium groups, isotopes, multiplegggr A simple algorithm is
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Peptide LVTDLTK: b-ion/y-ion spectrum
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Figure 2. The theoretical b/y ion spectrum, top, and an éxyertal spectrum from [11], bottom, for peptide
LVTDLTK.

first applied to match each theoretical peékvith a closeby experimental peak, with the
preference to b-/y- ions when there are multiple matchdsimvthe mass error threshold.

Let I denote the intensity gf and E denote the m/z error betwegrandp’. Assuming
the m/z error tolerance iA, an experimental peak is a candidate to matghff |< A.
Peak intensities in experimental spectra can vary drdistidd/e have observed that they
can vary by a multiplicative factor afo®. To minimize this problem, an empirical formula
below is used to adjust the intensity for each candidate:peak

I* = e~ c*(IBI/D)? o /T (1)

wherec andA are empirically set to 3 and 0.5 dalton, respectively.
The following features are then extracted to indicate thalarity between theoretical
and experimental spectrum. These features are classif®d groups:

(1) For each ion type, the sum of intensitié$, values, of all matched peaks of this
type. The types we consider include a-, b-, c-, x-, y-, z-i@sswell as all internal
fragmentations, bV Hs, y-H-O.

(2) The weighted sum of intensitief’ values, of all matched peaks. l.e., this is the
weighted sum of all sums in Item 1. Each type of ions is assigneeight. Higher
weights (1.0) are given tb andy ions and lower weights (0.1) to other types of
ions.

(3) The sums of products of the intensities for the compldargrpairs of each type.
These include: the sum of products of the intensities of @thglementary b/y-
ion pairs; the sum of products of the intensitiesypfand ;41 pairs; the sum of
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products of the intensitieg andy; — H»O pairs for allé; the sum of products of
the intensities ob; andb; — N H3 pairs for alli, etc. For instance, the following
formulais used to compute the the b/y ion complementaryipgensities:

n—1
Iy =Y Iy(i)* x Iy(n —i)* @)
=1

wheren is the peptide length.

(4) Average m/z error of the matched peaks for each ion type.system error due to
instrument calibration needs to be removed. Assume there peaks in the ion
series. LetE; be the error for each peak and E,,, be the mean of errors of the
matched peaks, then the average error is adjusted as below:

Ein:l | Ei _Em |
" .

Epvg = —1x 3)

Given an experimental spectrum andcandidate peptides, a set of feature vectors
{V1,V2,---,V,} can be derived, each corresponding to one peptide. V@) be the
value ofj-th feature ofi-th vector. Each feature value is normalized by

Vi(j)
max | Vi(j) |

k=1,2,,n

Vi(g)* = )

According to the preceding formulation, each feature is menical value. It is ex-
pected that the correct peptide is more likely to hhigh feature values than incorrect
ones. In practice some features are more distinguishingdtizers, due to the noises and
missing ions. Thus it is necessary to find an appropriate meifpr all the features to
achieve the optimum discriminating capacity.

For each feature, given a training spectrum, the valueslf@maadidate peptides are
calculated, and then sorted in descending order. The pileceank of the true peptide’s
value is recorded. Averaging over all training spectras feature’s percentile ranking is
obtained. Those features whose percentiles rank at top 58bar®used to derive the final
scoring function by a linear program described in the nestice.

3.2. Alinear programming formulation for the scoring function

Given a spectrum and the peptide, the value$ sélected features form a vectbr =
(v1,v2,- -+ ,u). In this work, the scoring function is formulated as a wegghsum of
feature values. That is, we consider scoring functions effirm S(V) = C -V =
Zizl ¢; xv;, whereC = (c1, ¢z, -+, ¢;). Now the problem is to determine valuespto
optimize the accuracy of identification. This is solved byna&r programming.

Assuming a sequence of experimental spe@trass, - - - , s,,) is produced by peptides
(p1,p2,- -+ ,pn), respectively. For each spectrum let P; be the feature vector for correct
peptidep;. The negative peptides are selected in a protein databassify the peptides
with similar masses tp;. Assume that the number of negative peptides for each sectr
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is K1, K, -, Ky, respectively, andv;; is the feature vector of thgth negative peptide
for s;. The linear programming formulation is given below:

n
ma,xZMi
sulbjéctto
¢i>0 i=1,2,---,1[;
aatet-ta=1
M;<C-(P,—Ny) j=1,2,--- ,K;,i=1,---,1;
M; <e. (5)

O  positive

e negative

— separating hyperlane

Figure 3. An example of improving accuracy by bounding thecfional margin. (a) Without the bounding, one
sample is misidentified; (b) with bounded functional maygith3 samples are correctly identified.

The geometrical interpretation of inner product of two westX - Y is the projection
of X ontoY when|| Y ||= 1. In other words, it is the distance to a hyperpldheavhich
is perpendicular t&”. Thus the problem is equivalent to finding a good linear baumnd
separating hyperplane in tH to identify positives and negatives. Féth spectrum,
the functional margin isnax C' - (P; — N;;). Intuitively, an ideal separating hyperplane
leads to large margins for training samples. Neverthetaagjmizing sum of margins may
damage the overall accuracy of identification. Fig. 3 (a)vgles an example, where the
third sample is not identified correctly if the objectiveasmhaximize the sum of functional
margins.

To alleviate such problem, the forth constraint in Formukifhposed to place a bound
of functional margin distance. Fig. 3 (b) shows improveddmptane for separation, where
Mi/sz, i = 1,2,3, are the functional margins for the individual samplespeesively.

The coefficients are determined when the linear programiargulation is solved.
Some samples cannot be recognized correctly, their fumatimargins are negative. As
the objective goal is to maximize the sum of bounded funetiomargins, the overall iden-
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tification accuracy might drop to offset the big negative gias. To further improve the
situation, we use a heuristics to iteratively explore thaxpnity of the coefficients returned
by LP solver. In each iteration, we adjust one coefficient lsyrall stepd to improve 1)
the identification accuracy or 2) the minimal functional giarof all samples without de-
creasing the accuracy.

Prototype PRIMA is implemented based on this formulatiod #re optimized coeffi-
cients.

4. Experimental results

We used three large third-party datasets to evaluate PRD&faset 1 contains 86 ion trap
spectra from Richard JohnsénDataset 2 contains 266 ion trap spectra obtained from
a Finnigan LCQ Deca mass spectrom&gprovided to us by Mark Cieliebak of ETH.
Dataset 3 is a well-known dataset of 37,071 low quality i@ptspectra aimed at provid-
ing a standard test benchmark for researchers to comparenibr with the SEQUEST
program, given by Kelleet al.!! These spectra were produced by ion trap mass spectrom-
eters of different resolutions and from different orgatiaas, many not tryptic digested
and many only tryptic digested at one end.

Since MASCOT and SEQUEST are the industrial standard, ategrézed as
the leading database search programs and are most widely, wse compare
PRIMA with these two programs. In our experiments, MASCOTliran server at
http://www.matrixscience.com/ is used for dataset 1 andr@r dataset 3, as MASCOT
online server does not accept external databases and dbkawsoan option to special-
ize on peptides that are only tryptic digested at one enda# impossible to make a fair
comparison with PRIMA. We were only able to use dataset 3 topgare SEQUEST with
PRIMA. On the other hand, for datasets 1 and 2, although wevkpartial SEQUEST
results, it was impossible to make a fair comparison. Thatgset 1 is used for training.
Dataset 2 is used to compare MASCOT with PRIMA, and dataset8ed to compare SE-
QUEST with PRIMA. In our experimeng,of in Formula 5 was set to 1.0001 empirically;
precursor error tolerance was setttd.0/2.0 daltons for training and testing, respectively.

In the training process, we identified the features used énsttoring functions. As
observed by many prior researchers, bl/y ions are the mostoonand valid peaks for
mass spec analysis for all types of instruments. Focusirtefeatures mainly related to
b/y ions makes the scoring function more instrument neutiable 1 displays the features
selected to form the scoring function, along with their disinating capacity. For each
feature, the second column and the third column provide reusntif spectra for which the
positive peptide feature value is ranked among top 5% andcat &mong all candidate
peptide feature values. With the selected features, theitrRulation in Section 3.2 is then
used to derive the linear scoring function.

After coefficients are determined, the scoring function s applied to dataset 1 to

2This dataset originally has about 144 spectra. Many of tieetsp have large precursor mass discrepancies due
to PTMs and these spectra are removed, with 86 left.
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Table 1. Training with dataset 1 (86 spectra, NCBI NR prottabase): Subset of
selected features and discriminating capacity of eaclifeat

Feature #oftop 5% | # of No. 1
sum of intensity for all ions 85 73
sum of intensity for y ions 84 68
sum of intensity product for complementary b/y ions 84 43
sum of intensity for b ions 74 10
average m/z error for y ions 56 5

Table 2. Training: Identification accuracy com-
parison between PRIMA and MASCOT, both us-
ing NCBI non-redundant protein database.

ratio of No.1 | ratio of top 10
PRIMA 90.7% 97.7%
MASCOT 84.9% 93.0%

assess its effectiveness. For each spectrum, the top rafkeeptides from PRIMA were
output. Table 2 provides a comparison between PRIMA and MBEC

PRIMA was then tested using datasets 2 and 3. Table 3 giv&RRHdA and MASCOT
performance on dataset 2. It shows that PRIMA achievesrretalts than MASCOT. For
a close look, Table 4 presents some peptides which are naatigrrecognized either by
PRIMA or MASCOT. In the columns 2 and 3, an asteroid (*) indésathat the peptide is
correctly identified.

Table 3. Identification accuracy comparison be-
tween PRIMA and MASCOT, dataset 2, 266
spectra, both using NCBI non-redundant protein

database.
ratio of No.1 | ratio of top 10
PRIMA 92.0% 94.7%
MASCOT 90.4% 91.2%

Dataset 3, provides a perfect benchmark for comparing PRWNitA SEQUEST. This
dataset contains 37,071 spectra. According to Ketteal.!! SEQUEST has correctly
identified 2784 spectra. Among the 2784 spectra, which wenected identified by SE-
QUEST, 2057 are fully tryptic, 646 are semi tryptic (one ehthe peptide is cut at R/K),
and 81 are non-tryptic. 125 of them are charge 1, 1649 of thenslzarge 2 and 1010 of
them are charge 3. Among the rest of 34287 spectra, 379 of #heroharge 1, 16856 of
them are charge 2 and 17052 of them are charge 3. Among thgechand 3 spectra, there
are 15435 duplicates, That is, these spectra have beenigadweith charge 2 and 3 status.

After removing duplicates, PRIMA correctly identifies 3(08pectra, with highest
scores, and 4,585 spectra with correct peptides ranked @ropn10. These are sum-
marized in Table 5. Among the SEQUEST's 2,784 correct speBtRIMA has correctly
identified 2,295 of them with the highest scores and 2,49 heifntas top ten. Note that
among the 2,784 spectra, 72 spectra have precursor masbeyomd PRIMA's precursor
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Table 4. Peptides in dataset 2 incorrectly identified byeeitPRIMA or MASCOT.

Correct peptides PRIMA MASCOT
KQTALVELLK QEDGPDMHSK ®

DLGEQHFK DLGEEHFK ®
KVPQVSTPTLVEVSR KVPEVSTPTLVEVSR *

FKDLGEEHFK *) AGYVLELLDKK
KTGQAPGFTYTDANKNK | (*) KLSNLIGLLWETDPNK
TGQAPGFTYTDANKNK VQMDDAMVIHADTIR *
HPYFYAPELLYYANK CDLFKTEEYCLVGLTR | (*

INPDKIKDVIGK *) LFGHLTKIVAK
HPYFYAPELLYYANK YPHMFINHNQQVSFK | (*)

DGISALQMDIK DGISTGCSPARK *

PSEGETLIAR *) VSEGEFNHR
PGQDFFPLTVNYQER ® IAQIIGPVLDVFFPPGK
PSEGETLIAR *) AIEGSSGPKAR
DGISALQMDIK KRSGKEEDNK ®

EIMQVALNQAK *) TKTELAVEIIK
PSEGETLIAR *) VSEGEFNHR
YSEIYYPTVPVK LDNVEEGKENWK NPETEWPPFLTK
PGQDFFPLTVNYQER ® IAQIIGPVLDVFFPPGK
PGQDFFPLTVNYQER ® VQLAGSHILEALRLHR
PSEGETLIAR *) VSEGEFNHR
VISWYDNEWGYSNR *) LVSWYDNEWGYSNR

error tolerancet2.0 daltons and 81 are non-tryptic, hence these 153 spectraitmmat-
ically not identifiable by PRIMAa priori. PRIMA correctly identified extra 795 spectra
with the highest scores and 2,088 spectra with top 10 scdugdicates removed, from the
remaining 34,287 spectra that have failed SEQUEST.

Table 5. Identification accuracy comparison between SEQU&E® PRIMA, dataset
3, 37,071 spectra both using the database given in 11.

Total number of spectra Number of correct
37,071 2,784
37,071 3,090

Number of top 10
Unknown
4,585

SEQUEST
PRIMA

A complete result list for all found at

http://monod.uwaterloo.cajfianliu.

spectra can be

5. Conclusions and future work

Our goal of this research is to design a robust scoring fancind a prototype system to
deal with the low quality data that flood the proteomics iriduand mass spectrometry
research consortiums. We have presented a technique ttruozires linear scoring func-

tion for MS/MS spectrum interpretation via a database. sTesth over 30,000 spectra,
produced from three different centers, show that our pyp®msystem PRIMA consistently
outperforms the mainstream software tools MASCOT and SE®U&n low quality ion

trap data. This work also provides a framework to effecyivenstruct such a scoring
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function.
Further research is underway to deal with the post traeslatiodifications, increase
search speed, and effectively combiteenovosequencing with database search methods.

6. Acknowledgements

The authors would like to thank Richard Johnson for pro\gdiataset 1, Mark Cieliebak,
Franz Roos and Sacha Baginsky for providing dataset 2, afeBouza, Gilles Lajoie,
and Michael K.W. Siu for their help on various aspects of mgssctrometry. The lin-
ear programs was solved by software packfgeolve, version 2.0, downloaded from
ftp://ftp.es.ele.tue.nl/pub/lpolve.

References

1. V.Bafnaand N. Edwards. SCOPE: a probabilistic modeldoriag tandem mass spectra against
a peptide databasBioinformatics 17(2001), S13-S21.

2. C. Bartels. Fast algorithms for peptide sequencing bysreaptrometryBiomedical and Envi-
ronmental Mass Spectrometrd9(1990), 363-368.

3. D. Chamrad. Evaluation of algorithms for protein idengfion form sequence databases using
mass spectrometriProteomics4(2004), 619-628.

4. T.Chen, M-Y. Kaoet al. A dynamic programming approachde novopeptide sequencing via
tandem mass spectrometdpurnal of Computational Biolog$:3(2001), 325-337.

5. J. Colinge, A. Masselott al. Olav: Towards high throughput tandem mass spectrometsy da
identification.Proteomics 3(2003), 1454-1463.

6. R. Craig and R. Beavis. A method for reducing the time nexglito match protein sequences
with tandem mass specti@apid Communications in Mass Spectromdiry2003), 2310-2316.

7. V.Danck, T. Addona, K. Clauser, J. Vath, and P. PevAzbenovaprotein sequencing via tandem
mass-spectrometryournal of Computational Biolog§(1999), 327-341.

8. J.S. Eddes, E.A. Kapp, S.F. Frecklingtehal. CHOMPER: A bioinformatic tool for rapid val-
idation of tandem mass spectrometry search resutls agsweidth high-throughput proteomic
strategiesProteomic2(2002), 1097-1103.

9. J.K. Eng, A.L. McCormack, and J.R. Yates. An approach toetate tandem mass spectral data
of peptides with amino acid sequences in a protein databasmal of Ammerican Society Mass
Spectrometry5(1994), 976-989.

10. E. A. Kapp, F. Schutzt al. Mining a tandem mass spectrometry database to determéne th
trends and global factors influencing peptide fragmematfnalytical Chemistry75(2003),
6251-6264.

11. A. Keller, S. Purvineet al. Experimental protein mixture for validating tandem masscéral
analysisOMICS: A Journal of Integrative Biolog:2(2002), 207-212.

12. J. GrossmantRrotein identification using mass Spectrometry: develagragan approach for
automated de novo sequencifdaster thesis, ETH Zurich, Department of Biology, 2003.

13. B. Ma, K. Zhang, C. Liang. An efficient algorithm for pef#tide novesequencing from MS/MS
spectrumpProc. Conference on Combinatorial Pattern Match2@03, 266-278.

14. D.N. Perkins, J.C. Pappin, D.M. Creasy, and J.S. CbtRebbability-based protein identifica-
tion by searching database using mass spectrometrytlatarophoresi20(1999), 3551-3567.

15. R. Sadygov, H. Liu, J.R. Yates. Statistical models fotgin validation using mass spectral data
and protein amino acid sequence databa&ealytical Chemistry(76)2004, 1664-1671.

16. J.A. Tayor, R.S. Johnson. Sequence database searaliesndavopeptide sequencing by mass
spectrometryRapid Communications Mass Spectromgetrd(1997), 1067-1075.



