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In this paper we study the problem of identifying meaningful patterns (i.e., motifs) from biological 
data. The general version of this problem is NP-hard. Numerous algorithms have been proposed in 
the literature to solve this problem. Many of these algorithms fall under the category of heuristics. 
We concentrate on exact algorithms in this paper. In particular, we concentrate on two different 
versions of the motif search problem and offer exact algorithms for them. 

1 Introduction 

The human genome project has resulted in the generation of voluminous biological data. 
Novel computational techniques are called for to extract useful information from this 
data. One such technique is that of finding patterns that are repeated over many 
sequences (and possibly over many species).  Several variants of this motif search 
problem have been identified in the literature (see e.g., [3][6][13]). In this section we 
define two versions of motif search and list some related publications. 

Problem 1. A pattern is a string of symbols (also called residues) and ?’s. A “?” 
refers to a wild card character. A pattern cannot begin or end with ?. AB?D, EB??DS?R, 
etc. are examples of patterns. The length of a pattern is the number of characters in it 
(including the wildcard characters). This problem takes as input a database DB of 
sequences. The goal is to identify all the patterns of length at most P (with anywhere 
from 0 to   wild card characters). In particular, the output should be all the 
patterns together with a count of how many times each pattern occurs. Optionally a 
threshold value for the number of occurrences could be supplied. 

 2/P 

                                                          

The above motif model has been derived as follows. We have generated a list of 312 
minimotifs (i.e., motifs of short length) that have defined biological functions. We have 
used this list to select parameters for a de novo analysis of novel minimotifs in the human 
proteome.  In this paper we choose to analyze novel motifs with a length (P) of 10 amino 
acids because 92% of the previously characterized minimotifs in our list are less than 10 
amino acids in length.  Another reason for choosing a length of 10 amino acids is based 
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on the function of minimotifs.  Most minimotifs are in binding domains or substrates of 
enzymes.  The peptide ligand binding surfaces on proteins in the Protein Data Bank is 
usually no longer than 35 angstroms. A 10 amino acid peptide would achieve a maximum 
of 35 angstroms in length if it were in a random coil or a beta-sheet structure.  Thus, the 
selection of a length of 10 amino acids is consistent with the length of peptides that 
interact with binding surfaces on protein domains. 

The average minimotif in our list has 2.1 wildcard positions for any amino acid.  
Wildcards  signify any of the 20 amino acids. Since only 13 % of minimotifs in our list 
have more than 50% wild card positions, we chose P/2 or 5 wild cards as the maximal 
number in the algorithm.   

The second version of motif search considered in this paper is defined next as 
Problem 2. The main focus of this paper is Problem 1. We provide algorithms, analyses, 
and experimental results for Problem 1. For Problem 2 we provide algorithms and 
analyses. Our algorithms for Problem 1 as well as Problem 2 employ radix sorting as the 
basic technique. We believe that similar techniques can be used for solving other 
variations of the motif search problem as well. For example, we have solved a variant 
called the planted motif search problem using similar techniques. 

Problem 2. The input is a database DB of sequences S1, S2, …, Sn. Input also are 
integers P, D, and q. Output should be all the patterns in DB such that each pattern is of 
length P and it occurs in at least q of the n sequences. A pattern U is considered an 
occurrence of another pattern V as long as the edit distance between U and V is at most 
D. 

The TEIRESIAS algorithm of Floratos and Rigoutsos [6] addresses a problem 
similar to Problem 1. The run time of this algorithm is Ω(PP/2MlogM), where M is the 
size of the database (i.e., the number of characters (or residues) in the database). An 
algorithm for Problem 2 has been given by Sagot [13] that has a run time of  O(n2mPD|Σ 
|D) where m is the average length of the sequences in DB. The space requirement of this 
algorithm is O(n2m). An algorithm with an expected run time of O(nm + 
D(nm)1+pow(ε)lognm) where PD /=ε   and pow(ε) is an increasing concave function 
has been proposed by Adebiyi and Kaufmann [2]. The value of pow(ε) is roughly 0.9 for 
protein and DNA sequences.   

2 Results of this Paper 

In this paper we present algorithms for Problems 1 and 2. All of our algorithms are 
elegant and use only such simple data structures as arrays. 

The goal of Problem 1 is to identify all the patterns of length at most P (with 
anywhere from 0 to |P/2| wild card characters) in a given database. In particular, the 
output should be all the patterns together with a count of how many times each pattern 
occurs. Optionally a threshold value for the number of occurrences could be supplied. 
Determining this threshold is a challenging task. One way of determining this threshold 
is to rank the motifs in the order of the number of their occurrences and choosing certain 
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number of them (either because they are over-represented or because they are under-
represented). Another way of determining the threshold is by analyzing the table of 
occurrences of all the patterns in the database together with a model for the biological 
sequences under concern. This differs from the first way in that here the number of 
occurrences of any motif will be weighted as dictated by the model. A typical value for P 
is 10. We present a simple sorting based algorithm for Problem 1 (in Section 4). This 
algorithm has been coded and experimental results have been obtained. The run time of 
this algorithm is O(PP/2M) for a given pattern length P, the number of wild cards being at 
most P/2. The number of residues in the database is M. In Section 5 we illustrate the 
usefulness of sampling in motif search. In Section 6 we present a randomized algorithm 
for Problem 2 that has the potential of performing better than the algorithms of [13] and 
[2]. This is a Monte-Carlo algorithm with a run time of O((Dn2m2logn)/q + gmnD), 
where g is the number of P-mers in the database DB that occur in around q or more 
sequences in DB. When q is large, the above run time could be 
o(mn+D(mn)1+pow(ε)logmn). In Section 7 we present our experimental results. Section 8 
concludes the paper. 

3 Previous Sorting Based Algorithm (Problem 1) 

The algorithm of Martinez [10] addresses a variant of Problem 1. In particular, the input 
is just one sequence. The output consists of all repeated patterns. The matches of interest 
are exact. Even if the input has many sequences, they can be concatenated to get a single 
sequence.  

The algorithm of [10] works as follows. Let S = x1x2…xn  be the input sequence. 
This sequence can be thought of as n sequences where each sequence corresponds to a 
`suffix’ of S. I.e., S1 is the same as S; S2 = x2x3…xn; and so on. These n sequences are 
then sorted one residue at a time. At any level of the sorting we have groups of 
sequences. In particular, after k levels of sorting, two sequences are in the same group, if 
the first k residues are the same in these two sequences. Sorting at any level is local to 
groups. A group will not be sorted further if it has only one element.  

The expected run time of the above algorithm is whereas its worst case 
run time is  Ω(n

)log( nnO
2).  

The above algorithm can be modified to have an expected run time of O by 
performing radix sorting with respect to the first 

)(n
)(log nΩ  residues of the n sequences 

(see e.g., [8]).  
 As another variant consider a problem where the input are a sequence S and an 

integer k. The goal is to report all repeats of length k. This variant can be solved in the 
worst case in time O , where w is the word length of the computer as follows. 
1) Form all k-mers of S. There are less than n such k-mers; 2) Sort these k-mers 
lexicographically in time ; and 3) Scan through the sorted list to identify the 
repeats.  

)/( wnk

(nkO )/ w
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Instead of the above algorithm one could also employ a prefix tree or a suffix array 
to get a run time of O(n). Depending on the underlying constant and the values of k and 
w, the above algorithm could be faster. 

4 Simple Motif Search (SMS) (Problem 1) 

As has been pointed out before, we are interested in identifying all the patterns of length 
at most P (with anywhere from 0 to |P/2| wild card characters). For every pattern, the 
number of occurrences should be output. How does a biologist identify biologically 
important patterns? This is a challenging task for biologists and will not be addressed in 
this paper.  

 Define a (u, v)-class as a class of patterns where each pattern has length u and has 
exactly v wild card characters. For example, GA??C?T belongs to (7, 3)-class. Note that 
there are   

vu

v
u −Σ







 −
||
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patterns in a (u, v)-class. Similar notations have been used before. 

To identify the patterns in a (u, v)-class, we perform  








 −
v

u 2
 sorts. More specifically, for each possible placement of v wild card characters 

(excluding at the end positions) in a sequence of length u, we perform a sorting. As an 
example, consider a case where u=5 and v=2. There are three possible placements: 
C??CC, CC??C, and C?C?C, where C corresponds to any residue. Call every placement 
as a (u, v)-pattern type.  

For every (u, v)-pattern type, we perform the following steps. 
Algorithm SMS 
For every (u, v)-pattern type do  

1. If R is a pattern type in (u, v)-class, we generate all possible u-mers in all the 
sequences of DB. If the sequences in DB have lengths l , respectively, 

then the number of u-mers from  is 
nll ,,, 21 K

iS ,1+− uli   for 1 .ni ≤≤    
2. Sort all the u-mers generated in step 1 only with respect to the non-wild card 

positions of R. For example, if the pattern type under concern is CC??C?C, we 
generate all possible 7-mers in DB and sort the 7-mers with respect to positions 
1,2,5, and 7. Employ radix sort (see e.g., [8]).  

3. Scan through the sorted list and count the number of occurrences of each pattern.  
 

The run time of the above algorithm is  
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 for a (u, v)-class, where M is the total number of residues in DB and 

w is the word length of the computer. 

Now we consider the problem of identifying all of the following patterns: The 
maximum length is 10. Pattern lengths of interest are: 3, 4, 5, 6, 7, 8, 9 and 10. The 
maximum number of wild cards are 1, 2, 2, 3, 3, 4, 4 and 5, respectively. In other words 
we are interested in: (10, 5)-class, (10, 4)-class, …, (10, 1)-class, (9, 4)-class, (9, 3)-class, 
…, (9, 1)-class, …, (4, 2)-class, (4, 1)-class, and (3,1)-class.   

Thus the total number of sorts done is  

 
Theorem 4.1. SMS algorithm runs in time O(PP/2M).  

5 Random Sampling   

Random sampling can be employed to speedup computations. In this section we describe 
a simple form of sampling as it applies to Problem 1. We prove the following Lemma, 
the proof of which is omitted due to space constraints.  

 Lemma 5.1. Consider the problem of identifying patterns in a database of n 
sequences. Each pattern of interest should occur in at least q of the input sequences. To 
solve this problem it suffices to use a random sample of size nε  and a sample threshold 
of .)1( qεα−

1(
 In this case, with high probability, no pattern that has an occurrence of 

less than )1/() αα +q− in DB will pass the sample threshold, provided  
+α ).lnln(

1
13

2 Mnq +
−

≥ β
αεα

 � 

6 Motif Search with Edit Distance (Problem 2) 

In this section we consider Problem 2. Here the input is a database DB of sequences S1, 
S2, …, Sn. Input also are integers P, D, and q. The output should be all the patterns in the 
DB such that each pattern is of length P and it occurs in at least q of the n sequences. A 
pattern U is considered an occurrence of another pattern V as long as the edit distance 
between U and V is at most D.  

 An algorithm for the above problem has been given by Sagot [13] that has a run 
time of O(n2mPD|Σ|D) where m is the average length of the sequences in DB. An 
algorithm with an expected run time of O(nm+D(nm)1+pow(ε)lognm) where PD /=ε  
and )(εpow   is an increasing concave function has been given in [2]. The value of 
pow(ε) is roughly 0.9 for protein and DNA sequences.   
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In the following discussion the word “occurrence” is used to denote occurrence 
within an edit distance of D, and the word “presence” is used to denote exact occurrence 
(i.e., occurrence with an edit distance of zero).  

In this section we present a simple randomized algorithm that has the potential of 
performing better than the algorithms of [13] and [2]. The algorithms in [13][2] employ 
suffix trees and our algorithm uses arrays.  

Before presenting the randomized algorithm we present a very simple algorithm. The 
randomized algorithm is based on this simple algorithm. This algorithm works as 
follows. 
1. Generate all possible P-mers in DB. Let the collection of these P-mers be C. There 

are at most mn elements in C. Duplicates in C could be eliminated by a simple radix 
sort. 

2. For every P-mer U in C, compute the number of occurrences of U in DB. This can 
be done in time O  using the algorithm of Galil and Park [7]. (See also [1] 
[9] [11] [12] [15]).  

)(nmD

Thus we get the following Theorem.  
Theorem 6.1. Problem 2 can be solved in time O(n2m2D). � 
A Randomized Algorithm. A randomized algorithm can be developed based on the 

above algorithm.   
1. Generate all possible P-mers in DB. Let C the collection of these P-mers. C has at 

most nm elements.   
2. For each element U in C, pick a random sample  from DB of US

qnn /)ln16( α sequences where α is the probability parameter (assumed to be a 

constant). Count the number of occurrences  of U in the sample. This will take 

time |  (using the algorithm of Galil and Park [7]) for a single U.  
UN

mDSU |
3. For each U in C such that ,ln34.10 nNU α>  compute the occurrences of U in 

the entire input DB. If the number of occurrences of U in DB is q or more, then 
output U.  

 
 Theorem 6.2. The above algorithm runs in time 

 







+ gmnDD

q
nmn log22

O   

where g is the number of P-mers that pass the test in step 3.  Also, the probability of 
an incorrect answer is no more than n . The space used is linear in the input size. nmα−

Proof. The run time is easy to see. Note that if a P-mer occurs in less than q input 
sequences, it will never be output. If a P-mer U occurs in at least q sequences of DB, then 
the number of occurrences of U in (i.e., the value of ) is lower bounded by a 
binomial random variable with mean 16

US UN
nlnα .  An application of the Chernoff bounds 

(second equation) with )22/(1=ε shows that the probability that is less than UN
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nln34.10 α is no more than n  On the same token, let U’ be a P-mer that occurs in 
at most (3/8)q of the input sequences. The number of occurrences of U’ in the 
sample is a binomial with mean 

.α−

'UN
nln6α . Using Chernoff bounds equation 3 with 

2/1=ε , probability that exceeds 10'UN nln25. α  is at most .n   α−

,nε

k ,, 21

.20|=Σ

[kc.1k ]i
≤≤ j

In summary, if a pattern occurs in q or more input sequences, it will pass the test of 
step 3 with high probability. Moreover, not many spurious patterns will pass the test of 
step 3. Also note that there at most nm patterns of interest.� 

Note that this algorithm has the potential of performing better than that of [2], 
especially for large values of q. When q is large ( for some constant fraction ε, for 
instance), g can be expected to be small and hence the entire run time could be 

o(D(nm)1+pow(ε) lognm) We have shown that the expected value of g is very small. 
The proof is omitted due to space constraints. 

7 Experimental Results 

We have implemented the algorithm SMS (for Problem 1) both sequentially and in 
parallel. In this section we describe the experimental results.  

 7.1.  Sequential Implementation  

We employ the following form of radix sort: Let k  be a sequence of keys to 
be sorted where each key is a string of residues. Sorting is done with respect to d residues 
at a time. The optimal value for d can be decided empirically. For the proteome database, 
a value of d=3 proved to be optimal. 

Nk,K

 When d=3, the algorithm runs as follows. The only data structures used are arrays. 
For the proteome database, |  We can think of each key to be sorted as an 
integer in the range [1, 8000]. An array c[1:8000] whose entries are initialized to zeros is 
employed. There are two phases in the algorithm each phase involving a scan through the 
input sequence. In the first phase input keys are processed one at a time starting from 

 When key  is processed,  is incremented by one. Thus at the end of the first 
phase, c[j] has the number of input keys whose value is j (for1

ik
8000 ). In the 

second phase prefix sums of the array c are computed. A second scan through the input 
sequence is done and each key is output in an array in an appropriate (stable-sorted) 
place. The prefix sums are useful in deciding an appropriate output index for each key.    

We have employed our algorithm SMS on various proteome sequences. As an 
example, we report the results pertaining to the Human proteome sequences (RefSeq 
database). This database has 10,046,356 residues and 19,244 sequences. The average 
length of the sequences in the database is 522.   

On a Pentium 4, 2.4 Ghz machine with 1 GB RAM, SMS takes around 7.25 hours. 
The following graphs show the distribution of patterns in RefSeq and a database of 
random sequences (of a comparable size). The patterns shown are for (7,3)-class and 
(9,4)-class. In the x-axis we show the ratio of the actual number of occurrences of a 
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pattern to the expected number of occurrences. In the y-axis we show the number of 
patterns that have a specific ratio.  

Threshold values selection chart : (7, 3)-class motifs
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Threshold Values Selection Chart : (9, 4)-class motifs
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7.2.  Speedup Techniques   
The run time of SMS can be improved using the fact that  

.
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We omit details due to space constraints. 
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We can speedup SMS further and also reduce the memory requirements as follows. 
Let S

1
, S

2
,…, S

n
 be the input sequences where S

i
 = s(i,1), s(i,2), …, s(i, l

i
),  l

i
 being the 

length of the sequence S
i
. Each residue in the database can be uniquely identified by a 

combination of the sequence index and the position of the residue in that sequence. 
  
Definition 7.1. : A position pair is defined as a pair of indices (i, j) and this pair 

represents the jth residue in S .  
iThe basic idea is to save memory by not explicitly generating all possible u-mers (as 

mentioned in step 1 of Algorithm SMS). We work with the position pairs to perform the 
sorts (mentioned in step 2 of Algorithm SMS). In particular, each position pair 
corresponds to a u-mer. Whenever any portion of a u-mer is needed, this portion is 
obtained from the list of position pairs. Details have been omitted due space limits. 

7.3.  Experimental Data  

We have employed our algorithm SMS on various proteome sequences. As an 
example, to report novel motifs in the Human proteome sequences of RefSeq database, 
that has 10,046,356 residues and 19,244 sequences, with the average length of the 
sequences as 522 amino acids, on a Pentium 4, 2.4 GHz machine with 1 GB RAM, SMS 
takes around seven hours.   

7.4.  Parallelism  

SMS is amenable to parallel implementations. One possibility is to partition the 
number of sorts equally among the processors. A second possibility is to partition the 
sequences as equally among the processors as possible and finally merge the occurrence 
numbers of patterns. A third possibility is to treat each sort as a job. We have employed 
the third approach to parallelize SMS. The speedups obtained have been very close to 
linear. We omit details due to space constraints.  

8 Conclusions 

In this paper we have considered two versions of the motif search problem and offered 
exact solutions for these versions. The algorithms presented have the potential of 
performing well in practice. An interesting open problem is to implement all the 
algorithms that have been proposed for Problem 2 in the literature and determine under 
what conditions which algorithms will perform better. 
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