
September 11, 2004 7:47 Proceedings Trim Size: 9.75in x 6.5in 126

EXACT ALGORITHMS FOR PLANTED MOTIF CHALLENGE PROBLEMS
�

SANGUTHEVAR RAJASEKARAN, SUDHA BALLA, AND CHUN-HSI HUANG

Dept. of Computer Science and Engineering
Univ. of Connecticut, Storrs, CT 06269-2155, USA

E-mail:
�
rajasek,ballasudha,huang�@engr.uconn.edu

The problem of identifying meaningful patterns (i.e., motifs) from biological data has been studied
extensively due to its paramount importance. Three versions of this problem have been identified in
the literature. One of these three problems is theplanted �� � ��-motif problem. Several instances of
this problem have been posed as a challenge. Numerous algorithms have been proposed in the liter-
ature that address this challenge. Many of these algorithmsfall under the category of approximation
algorithms. In this paper we present algorithms for theplanted �� � ��-motif problemthat always find
the correct answer(s). Our algorithms are very simple and are based on ideas that are fundamentally
different from the ones employed in the literature. We believe that the techniques we introduce in this
paper will find independent applications.

1. Introduction

Motif search is an important problem in biology. This problem in general requires finding
short patterns of interest from voluminous data. Three variants of this motif search problem
have been identified in the literature. In this paper we focusone of these problems (defined
below).

Problem (Planted Motif Search (PMS)) Input are� sequences of length	 each. Input
also are two integers
 and�. The problem is to find a motif (i.e., a sequence)� of length

. It is given that each input sequence contains a variant of� . The variants of interest are
sequences that are at a hamming distance of� from � .

Numerous papers have been written in the past on the topic of motif search (PMS).
Examples include Bailey and Elkan,
 Lawrence et al.,
� Rocke and Tompa.
� These algo-
rithms employ local search techniques such as Gibbs sampling, expectation optimization,
etc. These algorithms may not output the planted motif always. We refer to such algo-
rithms asapproximation algorithms. Algorithms that always output the correct answer are
referred to asexact algorithms.

More algorithms have been proposed for PMS by the following authors: Pevzner and
Sze,

 Buhler and Tompa.� The algorithm of Pevzner and Sze

 is based on finding cliques
in a graph and the algorithm of Buhler and Tompa� employs random projections. These

�
This work has been supported in part by the NSF Grants CCR-9912395 and ITR-0326155.

1



September 11, 2004 7:47 Proceedings Trim Size: 9.75in x 6.5in 126

2

algorithms have been experimentally demonstrated to perform well. These are approxima-
tion algorithms as well.

Algorithms for PMS can be categorized into two depending on the basic approach em-
ployed, namely, profile-based algorithms and pattern-based algorithms (see e.g., Price et
al.
�) Profilebased algorithms predict the starting positions ofthe occurrences of the mo-
tif in each sequence. On the other hand, pattern-based algorithms predict the motif (as a
sequence of residues) itself.

Several pattern based algorithms are known. Examples include PROJECTION,�
MULTIPROFILER,

�
MITRA,

�
and PatternBranching.
� PatternBranching (due to Price,

Ramabhadran and Pevzner
�) starts with random seed strings and performs local searches
starting from these seeds.

Examples of profile-based algorithms include CONSENSUS,
�

GibbsDNA,
� MEME,

and ProfileBranching.
� The performance of profile-based algorithms are specified with a
measure called “performance coefficient”. The performancecoefficient gives an indication
of how many positions (for the motif occurrences) have been predicted correctly. For the
(15, 4) challenge problem, these algorithms have the following performance coefficients
(respectively): 0.2, 0.32, 0.14, and 0.57. The run times of these algorithms for this instance
are (respectively, in seconds): 40, 40, 5, and 80.

A profile-based algorithm could either be approximate or exact. Likewise a pattern-
based algorithm may either be exact or approximate. Algorithms that are exact are also
known asexhaustive enumeration algorithmsin the literature.

Many exact algorithms are known. (See e.g., Blanchette et al.,
�

Brazma et al.,� Sinha
and Tompa,
� Staden,


�
Tompa,


�
and van Helden et al.


�
) However, as pointed out in

Buhler and Tompa,� these algorithms ”become impractical for the sizes involved in the
challenge problem”. One of the exceptions is the MITRA algorithm.

�
This algorithm is

pattern-based and is exact. It solves for example the
��� 	 
 �

instance in 5 minutes using
100 MB of memory.

�
This algorithm is based on the WINNOWER algorithm

 and uses

pairwise similarity information. A new pruning technique enables MITRA to be more
efficient than WINNOWER. MITRA uses a mismatch tree data structure and splits the
space of all possible patterns into disjoint subspaces thatstart with a given prefix.

2. New Results

In this paper we present pattern-based exact algorithms forthe planted
�
 	 ��-motif prob-

lem. The run time of our basic algorithm is� 
�	 ���� �� �� �� �. Most of the algorithms in

the literature are based on exploring the neighborhood of possible patterns. Our algorithm
also uses this basic approach. In addition, the existing algorithms use a subset of the fol-
lowing ideas: sampling, local search, pairwise similarityscoring, statistically or randomly
selecting potential candidates, expectation maximization, and random projections. On the
other hand, in this paper we present many ideas that are fundamentally different from the
ones found in the literature. We believe that these techniques will find independent appli-
cations. The ideas we propose are very simple. We have implemented our algorithms and
measured their performances. To the best of our knowledge, MITRA is the best performing



September 11, 2004 7:47 Proceedings Trim Size: 9.75in x 6.5in 126

3

exact algorithm in the literature before this paper. Remarkably, our algorithms are in gen-
eral faster than MITRA. For example, for the

��� 	 
�
instance, one of our algorithms takes

217 seconds and in comparison, MITRA takes 5 minutes. It has been pointed out Price et
al.
� that the

��
 	 
�
instance is more difficult than the

��� 	 
�
instance. Our algorithm takes

nearly the same time for the
��
 	 
�

instance as well. As another example, our algorithm
takes less than a second for the

���	 ��
instance and MITRA takes a minute.

�
When compared to MITRA, our algorithm is very simple and is based on fundamentally

different concepts. We only use arrays. MITRA uses the mismatch tree data structure. No
complexity analysis has been done for MITRA.

It is noteworthy here that the profile-based algorithms suchas CONSENSUS, Gibbs-
DNA, MEME, and ProfileBranching take much less time for the

��� 	 
 �
instance.
� How-

ever these algorithms fall under the approximate category and may not always output the
correct answer. Some of the pattern-based algorithms (suchas PROJECTION, MULTI-
PROFILER, and PatternBranching) also take much less time.
� However these are approx-
imate as well (though the success rates are close to 100%).

Some of the instances of PMS are difficult to solve as has been reported by
Pevzner and Sze

 and Rocke and Tompa.
� For example, the following instances
are difficult for the algorithms of Pevzner and Sze

 and Rocke and Tompa
� :�� 	 �� 	 ���	 �� 	 ��� 	 
 � 	 ��� 	 �� 	 ��� 	 � �

. One of the reasons for this difficulty is that the above
instances are expected to have spurious solutions (i.e., motifs other than the planted one).
Since our algorithms are exact, we report all such motifs. For example, our algorithms
solve the

�� 	 ��
-instance easily in 1.43 seconds.

3. Our Algorithms

In this section we present two straight-forward algorithms. The first algorithm has the
following steps: 1) Let the input sequences be� 


	 � � 	 � � � 	 ��. The length of each sequence
is 	. Form all possible
-mers from out of these sequences. The total number of
-mers is� �	. Call this collection of
-mers	 . Let the collection of
-mers in� 
 be	 
; 2) Let � be
an
-mer in	 
. For all� � 	 
 generate all the patterns
 such that� and
 are at a hamming
distance of�. The number of such patterns for a given� is ���� ��� � � ���

. Thus the total

number of patterns generated is� 
	 ���� �� ���. Call this collection of
-mers	 

. Note

that	 

 contains� , the desired output pattern (assuming that� does not occur in any of
the input sequences); 3) For every pair of
-mers

�� 	 
 � with � � 	 and
 � 	 

 compute
the hamming distance between� and
 . Output that
-mer of	 

 that has a neighbor (i.e.,
an 
-mer at a hamming distance of�) in each one of the	 input sequences. The run time

of this algorithm is� 
�	 � 
 ���� �� ���. If � occurs in one of the input sequences, then this

algorithm will run in time� ���	 � 
�.
The second algorithm considers every possible
-mer one at a time and checks if this


-mer is the correct motif� . There are�� �� possible
-mers. Let� 
 be one such
-mer. We
can check if� 
 � � as follows. Compute the hamming distance between� and� 
 for
every� � 	 . (Note that	 is the collection of all possible
-mers in the input sequences.)



September 11, 2004 7:47 Proceedings Trim Size: 9.75in x 6.5in 126

4

As a result we can check if� 
 occurs in each input sequence (at a hamming distance of
�). Thus we can identify all the motifs of interest in a total of� ��	 
 �� �� �. We get the
following Lemma.

Lemma 3.1. We can solve the planted
�
 	 � �-motif problem in� ��	 
 �� �� � time.

Now we present a different algorithm based on sorting. This sorting based algorithm
(Planted Motif Search 1 (PMS1)) takes the following form.

Algorithm PMS1

(1) Generate all possible
-mers from out of each of the� input sequences. Let	 � be
the collection of
-mers from out of� � for

� � � � �.
(2) For all

� � � � � and for all� � 	 � generate all
-mers
 such that� and
 are at a
hamming distance of�. Let the collection of
-mers corresponding to	 � be	 
� , for� � � � �. The total number of patterns in any	 
� is � 
	 ���� �� ���.

(3) Sort all the
-mers in every	 
� 	 � � � � �. Let �� be the sorted list corresponding
to 	 
� .

(4) Merge all the��s �� � � � �� and output the generated (in step 2)
-mer that occurs
in all the��s.

The following theorem results.

Theorem 3.1. Problem 1 can be solved in time� 
�	 ���� �� �� �� � where� is the word

length of the computer. A run time of� 
 ��	 � 	 ����� �� ���� �� � is also achievable.

4. Improved Algorithms

In this section we present techniques for improving the performance of the algorithm
PMS1.

The algorithm of Buhler and Tompa� is based on random projections. Let the motif
� of interest be an
-mer. Let	 be the collection of all the
-mers from all the� input
sequences. Project these
-mers along� randomly chosen positions (for some appropriate
value of�). A typical value used by Buhler and Tompa� is 7. In other words, for every

-mer � � 	 , generate a�-mer � 
 which is a subsequence of� corresponding to the�
random positions chosen. (The random positions are the samefor all the 
-mers). We can
think of each�-mer thus generated as an integer. We group the�-mers according to their
integer values. (I.e., we hash all the
-mers using the�-mer of any
-mer as its hash value).

If a hashed group has at least a threshold number of
-mers in it, then there is a good
chance that� will have its �-mer equal to the�-mer of this group. The threshold used
by Buhler and Tompa� is 3. We collect all the�-mers that pass the threshold and these are
processed further to arrive at the final answer� .

We now present a different algorithm for processing the potential �-mers. Let� 
 be
any 
-mer. We can check if� 
 � � as follows. Compute the hamming distance between
� 
 and� for every� � 	 . At the end we will know if� 
 is the correct answer or not.



September 11, 2004 7:47 Proceedings Trim Size: 9.75in x 6.5in 126

5

Thus testing if� 
 � � takes� ��	 
� time. As a corollary, we get the following Lemma
(c.f. Lemma 3.1).

Lemma 4.1. Given� residues in� (and their positions in� ), we can determine� in
time� ��	 
 �� ���� �.
4.1. Improvement 1

Lemma 4.1 can be used to improve Theorem 3.1 as follows. Note that if � occurs in
every input sequence, then every substring of� also occurs in every input sequence. In
particular, there are at least
 � � � � �-mers (for� � � � 
) such that each of these occurs
in every input sequence at a hamming distance of at most�. Let

�
be the collection of

�-mers that can be formed out of� . There are
 � � � � �-mers in
�

. Each one of these
�-mers will be present in each input sequence at a hamming distance of at most�.

In addition, in every input sequence� �, there will be at least one position
��

such that a
�-mer of

�
occurs starting from

��
; another�-mer of

�
occurs starting from

�� � �
;
� � �

; yet
another�-mer occurs starting from

�� � 
 � �. We can get an
-mer putting together these
�-mers that occur starting from each such

��
.

Possibly, there could be many motifs of length� that are in the positions starting from
each of

�� 	 �� � �	 � � � 	 �� � 
 � � such that all of these motifs are present in all of the input
sequences (with a hamming distance of at most�). Assume that� �� �� is one motif of
length� that starts from position

�� � � of � � that is also present in every input sequence
(for � � � � 
 � � �. If the last� � �

residues of� �� �� are the same as the first� � �
residues of� �� ��� 
 (for � � � � 
 � � � �

), then we can obtain an
-mer from these
motifs in the obvious way. This
-mer is potentially a correct motif. Also, note that to
obtain potential motifs (of length
), it suffices to process one of the input sequences (in a
manner described above). Now we are ready to describe our improved algorithm.

There are two phases in the algorithm. In the first phase we identify all
�� � 	�-mers

� ��
 (for some appropriate value	) that occur in each of the input sequences at a hamming
distance of at most�. We also collect potential
-mers (as described above) in this phase.
In the second phase we check, for each
-mer � 
 collected in the first phase, if� 
 is a
correct answer or not. Finally we output all the correct answers.

First we observe that the algorithm PMS1 can also be used for the case when we look
for a motif � that occurs in each input sequence at a hamming distance of atmost�. The
second observation is that if	 is large enough then there wont be many spurious hits. A
suggested value for	 is the largest integer for which PMS1 could be run (without exceeding
the computers core memory and within a reasonable amount of time).

We present more details on the two phases.

Algorithm PMS2

Phase I

Solve the planted
��� 	 	 � �-motif problem on the input sequences (with a hamming

distance of
� �, using e.g., a modified PMS1). Let� be the set of all motifs found.



September 11, 2004 7:47 Proceedings Trim Size: 9.75in x 6.5in 126

6

Let � be one of the input sequences. (� could be an arbitrary input sequence; it
could be chosen randomly as well.) Find all the occurrences of all the motifs of
� in � (with a hamming distance of up to�). This can be done, e.g., as follows:
form all the

�� � 	�-mers of� (keeping track of the starting position of each in
� ); For each� � � , find all the

�� � 	�-mers
 such that� and
 are at a hamming
distance of at most�. If � 
 is the collection of these

�� � 	�-mers, sort� and� 

and merge them; and figure out all the occurrences of interest.

Let � be of length	. For every position
�

in � , let �� be the list of all motifs
of � that are in� (with a hamming distance of

� �) starting from position
�
.

Let � be the
-mer of � that occurs starting from position
�
. Let �
 be a

member of��. If � � is a member of��� �� ���
� such that the last
� �� � 	� � 


characters of�
 are the same as the first
� �� � 	� � 
 characters of� � , then we

could get an
-mer� by appending the last
 � �� � 	� residues of� � to �
 (at
the end). If the hamming distance between� and� is �, then� is retained as a
candidate for the correct motif. We gather all such candidates and check if any of
these candidates are correct motifs. Details are given below.

for
� �� �

to 	 � 
 � �
do

for every� � �� do
for every
 � ��� �� ���
� do

Let the
-mer of� starting from position
�

be� . If the last� �� � 	� � 
 residues of� are the same as the first
� �� � 	� � 


residues of
 , then form an
-mer� by appending the last

 � �� � 	� residues of
 to �. If the hamming distance between
� and� is �, then add� to the list	 of candidates.

Phase II

for every
 � 	 do

Check if
 is a correct motif in� ��	 
� time.

For any node� of � there can be at most�� ��� ���
� candidate motifs. Thus the time

needed to process� to get all the candidate motifs is� 
� �� ���
�� 
�� 

��� ��� ��� ���
� 
�.

We arrive at the following Theorem.

Theorem 4.1. Problem 1 can be solved in time� 
�	 � �
��� ���
� � �� �� ��
� � � �	 
 � � �� ���
�� 
�� 


��� ��� ��� ���
� 
� where� is the num-

ber of potential 
-mers collected in the
first phase and� is the word length of the computer. If� � 	

��, then the run time is� 
�	 ���
� � �� �� ��
� � � �	 
 � � �� ���
�� 
�� 


��� ��� ��� ���
� 
�.

An Alternative Algorithm. We can modify the above algorithm as follows. We first find
the collection� of all the

��� 	�-mers that are present in every input sequence at a hamming



September 11, 2004 7:47 Proceedings Trim Size: 9.75in x 6.5in 126

7

distance of at most� as before. In the above version, we pick only one sequence� and find
all the candidate motifs arising out of� . An alternative is to find the candidate motifs from
each sequence and get the intersection of these sets. Let� � be the set of candidates from
� � �� � � � ��. Let � � � ��� 
 � �. We output� .

4.2. Further Improvements

We have devised three techniques to improve the performanceof PMS2 further. For exam-
ple, one of these improvements enables one to handle large values of�. Let � 
 � 	�
��.
Let � be the motif of interest with�� � � 
 � �
 
 for some integer
 
. Let �
 refer to
the first half of� and � � to the second half. We know that� occurs in every input
sequence. Let� � �


	 �� 	 � � � 	 �� be an arbitrary input sequence. Let the occurrence of�
(with a hamming distance of�) in � start at position

�
. Let � 
 � �� 	 � �� 


	 � � � 	 � �� ���
 and
� 

 � � �� � � 	 � � � 	 � �� ��
.

Then, clearly, either 1) the hamming distance between�
 and� 
 is at most� 
 or 2) the
hamming distance between� � and� 

 is at most� 
. Also, note that in every input sequence
either� 
 occurs with a hamming distance of at most� 
 or � � occurs with a hamming
distance of at most� 
. As a result, in at least� 
 sequences (where� 
 � ��
��) either� 

occurs with a hamming distance of at most� 
 or � � occurs with a hamming distance of at
most� 
. We have developed an algorithm (called PMS3) based on this observation. Details
are omitted due to space constraints.

5. Experimental Details

In this section we provide details on implementing our algorithms and the results of our
implementation. We have implemented PMS1 and PMS2. As in prior works, we use
� � �� and	 � ���. The input sequences were generated randomly. The motif� was
generated at random. Its occurrences in the sequences as well as the starting positions were
generated at random. Our algorithms have also been tested onthe biological data supplied
by Blanchette.�
5.1. Saving Memory

The way PMS1 is described, we first form all possible
-mers from out of all the input
sequences, generate all relevant neighbors of these
-mers, sort and merge all of them to
identify the generated
-mer(s) found in all the sequences. We can modify the algorithm as
follows so as to reduce the memory used.

Algorithm PMS1A

Generate all possible
-mers from out of the first input sequence� 
. Let	 
 be the collection
of these
-mers. For all� � 	 
 generate all
-mers
 such that� and
 are at a hamming
distance of�. Sort the collection of these
-mers and let� be the sorted collection.
for

� �� �
to � do



September 11, 2004 7:47 Proceedings Trim Size: 9.75in x 6.5in 126

8

(1) Generate all possible
-mers from out of the input sequence� �. Let 	 � be the
collection of these
-mers.

(2) For all� � 	 � generate all
-mers
 such that� and
 are at a hamming distance of
�. Let the collection of these
-mers be	 
� .

(3) Sort all the
-mers in	 
� . Let �� be the sorted list.
(4) Merge�� and� and keep the intersection in� . I.e., set� �� � � ��.

� now has the motif(s) of interest.

5.2. Implementation of PMS1

We represent every
-mer as a sequence of integers. If� 

	 �� 	 � � � 	 � � is an
-mer, it is repre-

sented as
��


	 �� 	 � � � 	 �� � where

�


	 �� 	 � � � 	 �� are integers, each integer corresponding to a

sequence of successive residues. When�� � � 

, we need two bits per residue. Thus a se-

quence of residues can be represented as an integer in the usual way. For example, we can
associate� with ��, 	 with � �, � with

�� and� with
��

. In this case at will be represented
as the integer

���� (i.e., 14). For instance when
 � ��
, if the size of an integer (on the

machine of interest) is 32 bits, then each
-mer is stored as an integer.

5.3. Implementation of PMS2

PMS1A is used to identify the collection� of all the
�� � 	�-mers present in all the input

sequences. One of the input sequences� is chosen arbitrarily. For every position
�

in
� �� � � � 	 �

, �� is the list of all the
�� � 	�-mers in� that occur in� (with a hamming

distance of
� �) starting from

�
.

We keep each�� �� � � � 	 � 
 � ��
in (lexicographically) sorted order.

One of the basic operations we have to perform on every� � �� is to check if there is
an entry
 � ��� �� ���
� such that� and
 form a candidate motif (of length
). The search
for 
 in ��� �� ���
� is done with a binary search on��� �� ���
�.


 � Time (Sec.) 
 � Time (Sec.) 
 � Time (Sec.)

9 2 1.44
10 2 0.84
11 2 0.78 11 3 19.84
12 2 0.84 12 3 15.53
13 2 0.70 13 3 20.98 13 4 228.94
14 2 1.05 14 3 20.38 14 4 226.83
15 2 1.33 15 3 20.53 15 4 217.34
16 2 2.61 16 3 21.20 16 4 216.92
17 2 2.56 17 3 20.89 17 4 216.08
18 2 2.64 18 3 20.50 18 4 217.75
19 2 2.80 19 3 20.22 19 4 216.30
20 2 2.69 20 3 20.31 20 4 217.08



September 11, 2004 7:47 Proceedings Trim Size: 9.75in x 6.5in 126

9

Two different versions of MITRA are reported in Eskin and Pevzner,
�

namely MITRA-
Count and MITRA-Graph. We provide some of the run times presented in Eskin and
Pevzner

�
for the purpose of comparisons. For the

���	 ��
instance, MITRA-Count and

MITRA-Graph take one minute each. On the other hand, our algorithm takes less than a
second for this instance. For the

��� 	 � �
instance MITRA-Count and MITRA-Graph take

one minute and four minutes, respectively. For the same instance our algorithm takes 15.53
seconds. For the

��
 	 
 �
instance MITRA-Count takes 4 minutes and MITRA-Graph takes

10 minutes. Our algorithm takes 226.83 seconds.

5.4. The Cases of � � � and � � �
Our experimental data shown in the previous section deal with � � 


. When� � �
or

� � �
, the memory needs of PMS1 and PMS2 exceed the core memory sizeof the machine

used. (We have employed a Pentium4 2.4 GHz machine with a corememory of 1GB.) We
are developing out-ofcore algorithms for these two cases. Our estimates indicate that� � �
is solvable in around 20 minutes and� � �

is solvable in a few hours.
When PMS3 is employed we estimate that the instances

�
 	 �� can be solved in a few
seconds when
 �

��
. Also, the instances

�
 	 �� can be solved in a few minutes when

 � ��

. These cases are solvable without employing out-of-core techniques.

6. Extensions

The planted
�
 	 ��-motif problem as has been defined (in Pevzner and Sze

 for example)

requires discovering a motif� that occurs in every input sequence at a hamming distance
of examctly�. Varitations of this problem can be conceived of. We cosidertwo variants in
this section.

Problem 1(a). Input are� sequences each of length	. The problem is to identify a motif
� of length
. It is given that each input sequence has a substring of length 
 such that the
hamming distance between this substring and� is at most �.

Problem 1(b). Input are� sequences each of length	. The problem is to find all motifs�
of length
. A motif � should be output if it occurs in at least�� of the input sequences at
a hamming distance of�. Here� is a fraction specified as a part of the input. (This variant
has been considered in Buhler and Tompa.� They use a value of 1/2 for�).

We have developed algorithms for the above variants, details of which have been omit-
ted due to space constraints.

7. Conclusions

In this paper we have presented exact algorithms for the planted
�
 	 ��-motif problem. Our

algorithms are in general faster than MITRA (the best known prior exact algorithm). How-
ever our algorithms are very simple and are based on different ideas. The techniques we



September 11, 2004 7:47 Proceedings Trim Size: 9.75in x 6.5in 126

10

introduce in this paper are of independent interest. The development of efficient parallel
algorithms for the planted motif problem is an interesting open problem. We believe that
the techniques introduced in this paper could yield superior results when combined with
existing techniques. We plan to explore this possibility.

Acknowledgements

We thank Blanchette� for supplying us with the biological data used in our experiment on
determining transcription factor binding sites.

References

1. T. L. Bailey and C. Elkan. Unsupervised learning of multiple motifs in biopolymers using ex-
pectation maximization.Machine Learning21(1-2), 1995, pp. 51-80.

2. M. Blanchette. Algorithms for phylogenetic footprinting. Proc. Fifth Annual International Con-
ference on Computational Molecular Biology, 2001.

3. M. Blanchette, B. Schwikowski, and M. Tompa. An exact algorithm to identify motifs in orthol-
ogous sequences from multiple species.Proc. Eighth International Conference on Intelligent
Systems for Molecular Biology, 2000, pp. 37-45.

4. A. Brazma, I. Jonassen, J. Vilo, and E. Ukkonen. Predicting gene regulatory elements in silico
on a genomic scale.Genome Research15, 1998, pp. 1202-1215.

5. J. Buhler and M. Tompa. Finding motifs using random projections.Proc. Fifth Annual Interna-
tional Conference on Computational Molecular Biology (RECOMB), April 2001.

6. E. Eskin and P. Pevzner. Finding composite regulatory patterns in DNA sequences.Bioinformat-
ics S1, 2002, pp. 354-363.

7. G. Hertz and G. Stormo. Identifying DNA and protein patterns with statistically significant align-
ments of multiple sequences.Bioinformatics15, 1999, pp. 563-577.

8. E. Horowitz, S. Sahni, and S. Rajasekaran.Computer Algorithms, W. H. Freeman Press, 1998.
9. U. Keich and P. Pevzner. Finding motifs in the twilight zone.Bioinformatics18, 2002, pp. 1374-

1381.
10. C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A.F. Neuwald, and J. C. Wootton.

Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment.Science
262, 1993, pp. 208-214.

11. P. Pevzner and S.-H. Sze. Combinatorial approaches to finding subtle signals in DNA sequences.
Proc. Eighth International Conference on Intelligent Systems for Molecular Biology, 2000, pp.
269-278.

12. A. Price, S. Ramabhadran and P. A. Pevzner. Finding subtle motifs by branching from sample
strings.Bioinformatics1(1), 2003, pp. 1-7.

13. S. Rajasekaran, S. Balla, C.-H. Huang, V. Thapar, M. Gryk, M. Maciejewski, and M. Schiller.
Exact algorithms for motif search.Proc. Asia-Pacific Bioinformatics Conference, 2005.

14. E. Rocke and M. Tompa. An algorithm for finding novel gapped motifs in DNA sequences.Proc.
Second International Conference on Computational Molecular Biology (RECOMB), 1998, pp.
228-233.

15. S. Sinha and M. Tompa. A statistical method for finding transcription factor binding sites.Proc.
Eighth International Conference on Intelligent Systems for Molecular Biology, 2000, pp. 344-
354.

16. R. Staden. Methods for discovering novel motifs in nucleic acid sequences.Computer Applica-
tions in the Biosciences5(4), 1989, pp. 293-298.

17. M. Tompa. An exact method for finding short motifs in sequences, with application to the ribo-



September 11, 2004 7:47 Proceedings Trim Size: 9.75in x 6.5in 126

11

some binding site problem.Proc. Seventh International Conference on Intelligent Systems for
Molecular Biology, 1999, pp. 262-271.

18. J. van Helden, B. Andre, and J. Collado-Vides. Extracting regulatory sites from the upstream re-
gion of yeast genes by computational analysis of oligonucleotide frequencies.Journal of Molec-
ular Biology281(5), 1998, pp. 827-842.


