September 11, 2004 7:47 Proceedings Trim Size: 9.75in r 6.5i 126

EXACT ALGORITHMSFOR PLANTED MOTIF CHALLENGE PROBLEMS*

SANGUTHEVAR RAJASEKARAN, SUDHA BALLA, AND CHUN-HSI HUANG

Dept. of Computer Science and Engineering
Univ. of Connecticut, Storrs, CT 06269-2155, USA
E-mail: {rajasek,ballasudha,huag@engr.uconn.edu

The problem of identifying meaningful patterns (i.e., gtifrom biological data has been studied
extensively due to its paramount importance. Three vessigrihis problem have been identified in
the literature. One of these three problems isptanted (!, d)-motif problem Several instances of
this problem have been posed as a challenge. Numerousthigsrhave been proposed in the liter-
ature that address this challenge. Many of these algorifathender the category of approximation
algorithms. In this paper we present algorithms for plented(Z, d)-motif problemthat always find
the correct answer(s). Our algorithms are very simple aadased on ideas that are fundamentally
different from the ones employed in the literature. We lvelithat the techniques we introduce in this
paper will find independent applications.

1. Introduction

Motif search is an important problem in biology. This prahlen general requires finding

short patterns of interest from voluminous data. Threeawdsiof this motif search problem
have been identified in the literature. In this paper we fanesof these problems (defined
below).

Problem (Planted Motif Search (PMS)) Input aret sequences of length each. Input
also are two integerisandd. The problem is to find a motif (i.e., a sequengé)of length

l. Itis given that each input sequence contains a varia®f off he variants of interest are
sequences that are at a hamming distane&fodm M.

Numerous papers have been written in the past on the topicotif search (PMS).
Examples include Bailey and Elkar,awrence et al'® Rocke and Tomp&! These algo-
rithms employ local search techniques such as Gibbs sagn@ipectation optimization,
etc. These algorithms may not output the planted motif abwag/e refer to such algo-
rithms asapproximation algorithmsAlgorithms that always output the correct answer are
referred to agxact algorithms

More algorithms have been proposed for PMS by the followinthars: Pevzner and
Sze!! Buhler and Tompa.The algorithm of Pevzner and S2ds based on finding cliques
in a graph and the algorithm of Buhler and Torfigemploys random projections. These

*This work has been supported in part by the NSF Grants CCR38land ITR-0326155.

September 11, 2004 7:47 Proceedings Trim Size: 9.75in r 6.5i 126

algorithms have been experimentally demonstrated to parfeell. These are approxima-
tion algorithms as well.

Algorithms for PMS can be categorized into two dependinghenitasic approach em-
ployed, namely, profile-based algorithms and patterndasgorithms (see e.g., Price et
al.'?) Profilebased algorithms predict the starting positionthefoccurrences of the mo-
tif in each sequence. On the other hand, pattern-basedtaigsrpredict the motif (as a
sequence of residues) itself.

Several pattern based algorithms are known. ExamplesdacRROJECTION,
MULTIPROFILER? MITRA,® and PatternBranchint. PatternBranching (due to Price,
Ramabhadran and Pevzhdrstarts with random seed strings and performs local searche
starting from these seeds.

Examples of profile-based algorithms include CONSENS@EhbsDNA® MEME,!
and ProfileBranching? The performance of profile-based algorithms are specifi¢il avi
measure called “performance coefficient”. The performamedficient gives an indication
of how many positions (for the motif occurrences) have beedipted correctly. For the
(15, 4) challenge problem, these algorithms have the fatigyperformance coefficients
(respectively): 0.2, 0.32,0.14, and 0.57. The run timebe$¢ algorithms for this instance
are (respectively, in seconds): 40, 40, 5, and 80.

A profile-based algorithm could either be approximate orcexdikewise a pattern-
based algorithm may either be exact or approximate. Algoitthat are exact are also
known asexhaustive enumeration algorithnmsthe literature.

Many exact algorithms are known. (See e.g., Blanchette &tBriazma et al?, Sinha
and Tompd? Staden'? Tompa!” and van Helden et af) However, as pointed out in
Buhler and Tomp4, these algorithms "become impractical for the sizes invilirethe
challenge problem”. One of the exceptions is the MITRA aiyon.8 This algorithm is
pattern-based and is exact. It solves for example(ibed) instance in 5 minutes using
100 MB of memory This algorithm is based on the WINNOWER algorithinand uses
pairwise similarity information. A new pruning techniqueabdles MITRA to be more
efficient than WINNOWER. MITRA uses a mismatch tree datacitme and splits the
space of all possible patterns into disjoint subspacessthetwith a given prefix.

2. New Results

In this paper we present pattern-based exact algorithmthéoplanted, d)-motif prob-
lem. The run time of our basic algorithm@(tn(fi) |E|di). Most of the algorithms in
the literature are based on exploring the neighborhood sdipte patterns. Our algorithm
also uses this basic approach. In addition, the existingriifigns use a subset of the fol-
lowing ideas: sampling, local search, pairwise similasitpring, statistically or randomly
selecting potential candidates, expectation maximinagod random projections. On the
other hand, in this paper we present many ideas that are fugrdtally different from the
ones found in the literature. We believe that these tectasiguill find independent appli-
cations. The ideas we propose are very simple. We have ingplegd our algorithms and
measured their performances. To the best of our knowledgeRKis the best performing

September 11, 2004 7:47 Proceedings Trim Size: 9.75in r 6.5i 126

exact algorithm in the literature before this paper. Rermallk our algorithms are in gen-
eral faster than MITRA. For example, for tfig5, 4) instance, one of our algorithms takes
217 seconds and in comparison, MITRA takes 5 minutes. It bas Ipointed out Price et
all? that the(14, 4) instance is more difficult than th{&5, 4) instance. Our algorithm takes
nearly the same time for th@4, 4) instance as well. As another example, our algorithm
takes less than a second for {&, 2) instance and MITRA takes a minute.

When compared to MITRA, our algorithm is very simple and isdzhon fundamentally
different concepts. We only use arrays. MITRA uses the mismgiee data structure. No
complexity analysis has been done for MITRA.

It is noteworthy here that the profile-based algorithms akliCONSENSUS, Gibbs-
DNA, MEME, and ProfileBranching take much less time for (i, 4) instance:? How-
ever these algorithms fall under the approximate categodymaay not always output the
correct answer. Some of the pattern-based algorithms @sicPROJECTION, MULTI-
PROFILER, and PatternBranching) also take much less fnitowever these are approx-
imate as well (though the success rates are close to 100%).

Some of the instances of PMS are difficult to solve as has beeorted by
Pevzner and SZ& and Rocke and Tompd. For example, the following instances
are difficult for the algorithms of Pevzner and $zeand Rocke and Tompé
(9,2),(11,3),(13,4), (15,5), (17,6). One of the reasons for this difficulty is that the above
instances are expected to have spurious solutions (i.¢ifsmther than the planted one).
Since our algorithms are exact, we report all such motifst éxample, our algorithms
solve the(9, 2)-instance easily in 1.43 seconds.

3. Our Algorithms

In this section we present two straight-forward algorithnihe first algorithm has the
following steps: 1) Let the input sequences$ieS,, ..., S;. The length of each sequence
is n. Form all possiblé-mers from out of these sequences. The total numb&nudrs is

< tn. Call this collection of-mersC. Let the collection of-mersinS; beC’; 2) Letu be
anl-merinC’. For allu € C' generate all the patteresuch that, andv are at a hamming
distance ofl. The number of such patterns for a giveis (}) (S| — 1)¢. Thus the total
number of patterns generated@s(n(é)|2|d). Call this collection ofl-mersC”. Note
thatC" containsM, the desired output pattern (assuming thatdoes not occur in any of
the input sequences); 3) For every paii-ghers(u,v) with u € C andv € C" compute
the hamming distance betweerandv. Output that-mer of C” that has a neighbor (i.e.,
anl/-mer at a hamming distance @f in each one of the input sequences. The run time
of this algorithm isO (tnzl(fi) |Z|d). If M occurs in one of the input sequences, then this
algorithm will run in timeO (t2n?1).

The second algorithm considers every possihiger one at a time and checks if this
I-mer is the correct moti#Z. There areX|' possibld-mers. LetM’ be one such-mer. We
can check ifM' = M as follows. Compute the hamming distance betweamd M’ for
everyu € C. (Note thatC' is the collection of all possiblEmers in the input sequences.)

September 11, 2004 7:47 Proceedings Trim Size: 9.75in r 6.5i 126

As a result we can check i/’ occurs in each input sequence (at a hamming distance of
d). Thus we can identify all the motifs of interest in a total®@f(tnl|X|'). We get the
following Lemma.

Lemma 3.1. We can solve the plantéd d)-motif problem inO(tnl|%|!) time.

Now we present a different algorithm based on sorting. Tbitirey based algorithm
(Planted Motif Search 1 (PMS1)) takes the following form.

Algorithm PMS1

(1) Generate all possiblemers from out of each of theinput sequences. Lé&f; be
the collection of-mers from out ofS; for 1 < < ¢.

(2) Foralll <14 <tandforallu € C; generate all-mersv such that: andv are at a
hamming distance af. Let the collection of-mers corresponding 16; beC}, for
1 < i < t. The total number of patterns in a6y is O (n(é) |E|d).

(3) Sort all thel-mers in evenyC;,1 < i < ¢. Let L; be the sorted list corresponding
to C}.

(4) Merge allthel;s(1 < i < t) and output the generated (in sted-2her that occurs
in all the L;s.

The following theorem results.

Theorem 3.1. Problem 1 can be solved in tim@ (tn(”j)|2|dé) wherew is the word

length of the computer. A run time@f([tn + n(fi)2|2|2d] %) is also achievable.

4. Improved Algorithms

In this section we present techniques for improving the grarnce of the algorithm
PMS1.

The algorithm of Buhler and Tompas based on random projections. Let the motif
M of interest be ardi-mer. LetC be the collection of all thé-mers from all thet input
sequences. Project thelsmers alongk randomly chosen positions (for some appropriate
value ofk). A typical value used by Buhler and Ton¥p 7. In other words, for every
I-meru € C, generate &-meru’ which is a subsequence afcorresponding to thé
random positions chosen. (The random positions are the &amaél thel-mers). We can
think of eachk-mer thus generated as an integer. We groupkth@ers according to their
integer values. (l.e., we hash all theners using thé&-mer of anyl-mer as its hash value).

If a hashed group has at least a threshold numbémaérs in it, then there is a good
chance that\/ will have its k-mer equal to thé&-mer of this group. The threshold used
by Buhler and Tompais 3. We collect all théi-mers that pass the threshold and these are
processed further to arrive at the final answér

We now present a different algorithm for processing the mitaek-mers. LetM’ be
anyl-mer. We can check if’ = M as follows. Compute the hamming distance between
M' andw for everyu € C. At the end we will know ifM' is the correct answer or not.

September 11, 2004 7:47 Proceedings Trim Size: 9.75in r 6.5i 126

Thus testing ifM’ = M takesO(¢nl) time. As a corollary, we get the following Lemma
(c.f. Lemma 3.1).

Lemma 4.1. Givenk residues in}M (and their positions in/), we can determiné/ in
time O(tnl|X|' %),

4.1. Improvement 1

Lemma 4.1 can be used to improve Theorem 3.1 as follows. Nhateift A/ occurs in
every input sequence, then every substrind6filso occurs in every input sequence. In
particular, there are at ledst k + 1 k-mers (ford < k < I) such that each of these occurs
in every input sequence at a hamming distance of at mhostet () be the collection of
k-mers that can be formed out 8f. There ard — k + 1 k-mers inQ). Each one of these
k-mers will be present in each input sequence at a hammingndistof at mosd.

In addition, in every input sequenég, there will be at least one positiéhsuch that a
k-mer of) occurs starting fromy;; anotherk-mer of) occurs starting fromi; + 1;.. .; yet
anotherk-mer occurs starting frony + [— k. We can get af-mer putting together these
k-mers that occur starting from each sugh

Possibly, there could be many motifs of lengtkhat are in the positions starting from
each ofi;,i; +1,...,4; + 1 — k such that all of these motifs are present in all of the input
sequences (with a hamming distance of at mf)stAssume thatV/;, ., is one motif of
lengthk that starts from positios; + » of S; that is also present in every input sequence
(for0 < r <1 —k). If the lastk — 1 residues ofM;, . are the same as the firkt— 1
residues ofMf;; 1,41 (for 0 < r < I —k — 1), then we can obtain alkmer from these
motifs in the obvious way. Thigmer is potentially a correct motif. Also, note that to
obtain potential motifs (of length, it suffices to process one of the input sequences (in a
manner described above). Now we are ready to describe ououag algorithm.

There are two phases in the algorithm. In the first phase wifgall (d + c¢)-mers
Mgy . (for some appropriate valug that occur in each of the input sequences at a hamming
distance of at mos{. We also collect potentidimers (as described above) in this phase.
In the second phase we check, for edgher M’ collected in the first phase, /' is a
correct answer or not. Finally we output all the correct agrsw

First we observe that the algorithm PMS1 can also be usethéocdse when we look
for a motif M that occurs in each input sequence at a hamming distancenafsit!. The
second observation is thatdfis large enough then there wont be many spurious hits. A
suggested value fafis the largest integer for which PMS1 could be run (withowssding
the computers core memory and within a reasonable amouinte.t

We present more details on the two phases.

Algorithm PMS2
Phasel|

Solve the plante¢i+c¢, d)-motif problem on the input sequences (with a hamming
distance oK d, using e.g., a modified PMS1). LAtbe the set of all motifs found.

September 11, 2004 7:47 Proceedings Trim Size: 9.75in r 6.5i 126

Let S be one of the input sequences. ¢ould be an arbitrary input sequence; it
could be chosen randomly as well.) Find all the occurrenéadl the motifs of

R in S (with a hamming distance of up). This can be done, e.g., as follows:
form all the (d + ¢)-mers ofS (keeping track of the starting position of each in
S); For eachs € S, find all the(d + ¢)-mersv such that, andv are at a hamming
distance of at most. If R’ is the collection of thes@l + ¢)-mers, sortR andR’
and merge them; and figure out all the occurrences of interest

Let S be of lengthn. For every positiori in .S, let L; be the list of all motifs
of R that are inS (with a hamming distance &f d) starting from positior.

Let A be thel-mer of S that occurs starting from positiolh Let M, be a
member ofL;. If M, is a member of;;;_(44.) such that the laf2(d + ¢) — [
characters of\/; are the same as the fi4{d + ¢) — [characters of\f,, then we
could get arl-mer B by appending the lagt— (d + ¢) residues of\, to M, (at
the end). If the hamming distance betweémandB is d, thenB is retained as a
candidate for the correct motif. We gather all such candilahd check if any of
these candidates are correct motifs. Details are givembelo

fori:=1ton—1I7+1do
for everyu € L; do
for everyv € Ly (44.) doO
Let thel-mer of S starting from position be A. If the last
2(d + ¢) — I residues ot; are the same as the fil&d + ¢) — |
residues ofy, then form arl-mer B by appending the last
I — (d + ¢) residues ot to u. If the hamming distance between
A andB isd, then addB to the listC of candidates.

Phasel|

for everyv € C do
Check ifv is a correct motif inO(¢nl) time.
For any node: of G there can be at mo$E|'~(?+¢) candidate motifs. Thus the time

needed to process to get all the candidate motifs & (Zﬁ;g‘”c)ﬂ |L,~||E|’—(d+c)l).
We arrive at the following Theorem.

Theorem 4.1. Problem 1 can be solved in time
0 (tn SL o (FTO) [& 4 ztnl + YT | L))i (de) l) wherez is the num-
ber of potential l-mers collected in the

first phase andv is the word length of the computer. df< [1/2], then the run time is
O (tn(d-(ii-c)|2|d % + ztnl + Ei;gd+c)+l |Li||2|l_(d+c) l).

An Alternative Algorithm. We can modify the above algorithm as follows. We first find
the collectionr of all the(d+c)-mers that are presentin every input sequence at a hamming

September 11, 2004 7:47 Proceedings Trim Size: 9.75in r 6.5i 126

distance of at most as before. In the above version, we pick only one sequérare find
all the candidate motifs arising out 8f An alternative is to find the candidate motifs from
each sequence and get the intersection of these setsi; lbet the set of candidates from
Si (1<i<t). LetA =i, 4;. We outputd.

4.2. Further Improvements

We have devised three techniques to improve the perforn@diS2 further. For exam-
ple, one of these improvements enables one to handle lahgesvafd. Letd' = |d/2].
Let M be the motif of interest withM | = [= 21’ for some integet’. Let M; refer to
the first half of M and M, to the second half. We know that occurs in every input

sequence. Le$ = s, 59, ..., 8, be an arbitrary input sequence. Let the occurrendd of
(with a hamming distance af) in S start at position. Let S’ = s;, sj41,. .., Si+rr—1 and
S” = Sitl'y- -3 Sitl—1-

Then, clearly, either 1) the hamming distance betwigrandS’ is at mosd’ or 2) the
hamming distance betweéi; andS” is at most’. Also, note that in every input sequence
either My occurs with a hamming distance of at mdstor M, occurs with a hamming
distance of at mosf'. As a result, in at leagt sequences (wheré = [t/2]) either M
occurs with a hamming distance of at mdsbr M5 occurs with a hamming distance of at
mostd'. We have developed an algorithm (called PMS3) based onisisreation. Details
are omitted due to space constraints.

5. Experimental Details

In this section we provide details on implementing our alpons and the results of our
implementation. We have implemented PMS1 and PMS2. As ior pvorks, we use
t = 20 andn = 600. The input sequences were generated randomly. The mbtifas
generated at random. Its occurrences in the sequenceslaswe starting positions were
generated at random. Our algorithms have also been testi diplogical data supplied
by Blanchetté.

5.1. Saving Memory

The way PMS1 is described, we first form all possibimers from out of all the input
sequences, generate all relevant neighbors of thesers, sort and merge all of them to
identify the generatetimer(s) found in all the sequences. We can modify the algoris
follows so as to reduce the memory used.

Algorithm PMS1A

Generate all possiblemers from out of the first input sequengg LetC; be the collection
of thesel-mers. For allu € Cy generate all-mersv such that, andv are at a hamming
distance ofi. Sort the collection of thedemers and lef. be the sorted collection.
fori:=2totdo

September 11, 2004 7:47 Proceedings Trim Size: 9.75in r 6.5i 126

(1) Generate all possiblemers from out of the input sequenég. Let C; be the
collection of thesé-mers.

(2) Forallu € C; generate all-mersv such thats andv are at a hamming distance of
d. Let the collection of thesemers beC;.

(3) Sortall thel-mersinCj. Let L; be the sorted list.

(4) MergeL; andL and keep the intersectionin l.e., setl := LN L;.

L now has the motif(s) of interest.

5.2. Implementation of PMS1

We represent evetiymer as a sequence of integersrilfra, .. ., r; is anl-mer, it is repre-
sented agi1, 42, . .,i) Whereiy, is,. .., i, are integers, each integer corresponding to a
sequence of successive residues. WHn= 4, we need two bits per residue. Thus a se-
guence of residues can be represented as an integer in thlenssu For example, we can
associatg with 00, ¢ with 01, ¢ with 10 anda with 11. In this case at will be represented
as the integet110 (i.e., 14). For instance when= 16, if the size of an integer (on the
machine of interest) is 32 bits, then edefmer is stored as an integer.

5.3. Implementation of PMS2

PMS1A is used to identify the collectiaR of all the (d + ¢)-mers present in all the input
sequences. One of the input sequengds chosen arbitrarily. For every positianin
S(1 <i < n), L; is the list of all the(d + ¢)-mers inR that occur inS (with a hamming
distance oK d) starting from.

We keep eaclil;(1 < i <n+1— 1) in (lexicographically) sorted order.

One of the basic operations we have to perform on euesyL; is to check if there is
anentryv € L;y;_(a4c) Such that: andv form a candidate motif (of lengtf). The search
forvin L (44.) is done with a binary search dp;_(44)-

| 1 |d]|Time(Sec)|| ! [d] Time(Sec)|| I |d] Time (Sec.)]

912 1.44

10| 2 0.84

11| 2 0.78 11| 3 19.84

12| 2 0.84 12| 3 15.53

13| 2 0.70 13| 3 20.98 13| 4 228.94
14| 2 1.05 14 | 3 20.38 14| 4 226.83
15| 2 1.33 15| 3 20.53 15| 4 217.34
16| 2 2.61 16 | 3 21.20 16 | 4 216.92
17| 2 2.56 17| 3 20.89 17| 4 216.08
18| 2 2.64 18| 3 20.50 18| 4 217.75
19| 2 2.80 19| 3 20.22 19| 4 216.30
20| 2 2.69 20| 3 20.31 20| 4 217.08

September 11, 2004 7:47 Proceedings Trim Size: 9.75in r 6.5i 126

Two different versions of MITRA are reported in Eskin and Besr® namely MITRA-
Count and MITRA-Graph. We provide some of the run times presein Eskin and
Pevznet for the purpose of comparisons. For tfi,2) instance, MITRA-Count and
MITRA-Graph take one minute each. On the other hand, ourrilgo takes less than a
second for this instance. For tii&2, 3) instance MITRA-Count and MITRA-Graph take
one minute and four minutes, respectively. For the samangstour algorithm takes 15.53
seconds. For thel4,4) instance MITRA-Count takes 4 minutes and MITRA-Graph takes
10 minutes. Our algorithm takes 226.83 seconds.

54. TheCasesofd = 5andd = 6

Our experimental data shown in the previous section dedl &vik 4. Whend = 5 or
d = 6, the memory needs of PMS1 and PMS2 exceed the core memowyf simmachine
used. (We have employed a Pentium4 2.4 GHz machine with anceneory of 1GB.) We
are developing out-ofcore algorithms for these two cases eGtimates indicate thdt= 5
is solvable in around 20 minutes addd= 6 is solvable in a few hours.

When PMS3 is employed we estimate that the instafié$ can be solved in a few
seconds whei > 22. Also, the instance§l,6) can be solved in a few minutes when
[> 26. These cases are solvable without employing out-of-cataiigues.

6. Extensions

The planted(, d)-motif problem as has been defined (in Pevzner and'Spe example)
requires discovering a motif/ that occurs in every input sequence at a hamming distance
of examctlyd. Varitations of this problem can be conceived of. We cosidervariants in

this section.

Problem 1(a). Input aret sequences each of length The problem is to identify a motif
M of lengthl. Itis given that each input sequence has a substring ofliérsgich that the
hamming distance between this substring &hds at most d.

Problem 1(b). Input aret sequences each of lengthThe problem is to find all motifd/
of lengthl. A motif M should be output if it occurs in at leagtof the input sequences at
a hamming distance @f. Heree is a fraction specified as a part of the input. (This variant
has been considered in Buhler and TorAf¥ey use a value of 1/2 faj.

We have developed algorithms for the above variants, deshivhich have been omit-
ted due to space constraints.

7. Conclusions

In this paper we have presented exact algorithms for thetgrdfy d)-motif problem. Our
algorithms are in general faster than MITRA (the best knoviorgxact algorithm). How-
ever our algorithms are very simple and are based on diffégdleas. The techniques we

September 11, 2004 7:47 Proceedings Trim Size: 9.75in r 6.5i 126

10

introduce in this paper are of independent interest. Theldpment of efficient parallel
algorithms for the planted motif problem is an interestipgo problem. We believe that
the techniques introduced in this paper could yield supegsults when combined with
existing techniques. We plan to explore this possibility.

Acknowledgements

We thank Blanchetfefor supplying us with the biological data used in our expemitnon
determining transcription factor binding sites.

References

1.

2.

3.

©

10.

11.

12.

13.

14.

15.

16.

17.

T. L. Bailey and C. Elkan. Unsupervised learning of mitimotifs in biopolymers using ex-
pectation maximizatiorMachine Learnin@21(1-2), 1995, pp. 51-80.

M. Blanchette. Algorithms for phylogenetic footprirgirProc. Fifth Annual International Con-
ference on Computational Molecular Biolg@3001.

M. Blanchette, B. Schwikowski, and M. Tompa. An exact alttpon to identify motifs in orthol-
ogous sequences from multiple speciésc. Eighth International Conference on Intelligent
Systems for Molecular Biolog2000, pp. 37-45.

A. Brazma, |. Jonassen, J. Vilo, and E. Ukkonen. Predjajiene regulatory elements in silico
on a genomic scalé&enome Researdb, 1998, pp. 1202-1215.

J. Buhler and M. Tompa. Finding motifs using random priges. Proc. Fifth Annual Interna-
tional Conference on Computational Molecular Biology (REMB), April 2001.

E. Eskin and P. Pevzner. Finding composite regulatotgpat in DNA sequenceBioinformat-
ics S1, 2002, pp. 354-363.

G. Hertzand G. Stormo. Identifying DNA and protein pattawith statistically significant align-
ments of multiple sequenceBioinformaticsl15, 1999, pp. 563-577.

E. Horowitz, S. Sahni, and S. Rajaseka@oamputer Algorithmsw. H. Freeman Press, 1998.
U. Keich and P. Pevzner. Finding motifs in the twilight edRioinformatics18, 2002, pp. 1374-
1381.

C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu,FANeuwald, and J. C. Wootton.
Detecting subtle sequence signals: a Gibbs sampling giréte multiple alignmentScience
262, 1993, pp. 208-214.

P. Pevzner and S.-H. Sze. Combinatorial approachegitodisubtle signals in DNA sequences.
Proc. Eighth International Conference on Intelligent ®yss for Molecular Biology2000, pp.
269-278.

A. Price, S. Ramabhadran and P. A. Pevzner. Findingesuiutifs by branching from sample
strings.Bioinformatics1(1), 2003, pp. 1-7.

S. Rajasekaran, S. Balla, C.-H. Huang, V. Thapar, M. GW¥kMaciejewski, and M. Schiller.
Exact algorithms for motif searcPRroc. Asia-Pacific Bioinformatics Conferen@905.

E. Rocke and M. Tompa. An algorithm for finding novel gappwtifs in DNA sequence®roc.
Second International Conference on Computational MokcBiology (RECOMB)1998, pp.
228-233.

S. Sinha and M. Tompa. A statistical method for findinggription factor binding site®roc.
Eighth International Conference on Intelligent SystemisMolecular Biology 2000, pp. 344-
354.

R. Staden. Methods for discovering novel motifs in niecheid sequence€omputer Applica-
tions in the Biosciences(4), 1989, pp. 293-298.

M. Tompa. An exact method for finding short motifs in sewes, with application to the ribo-

September 11, 2004 7:47 Proceedings Trim Size: 9.75in r 6.5i 126

18.

11

some binding site probleniProc. Seventh International Conference on Intelligent&ys for
Molecular Biology 1999, pp. 262-271.

J. van Helden, B. Andre, and J. Collado-Vides. Extrgatagulatory sites from the upstream re-
gion of yeast genes by computational analysis of oligoraile frequencieslournal of Molec-
ular Biology 281(5), 1998, pp. 827-842.

