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Identifying and assaying the relative abundance of membersof complex microbial communities is
an important problem in ecology. Sandberg et al.11 investigated the usage of genomic signatures to
provide high identification percentages from short sequence samples. In this paper we present an
improved naive Bayesian classification method using conditional probabilities, which can be used to
classify unsequenced bacterial species, as well as identify and predict the frequency of the dominant
species in mixed microbial populations.

1. Introduction

Microorganisms are the largest reservoir of genetic and biochemical diversity on earth.
Understanding the structure, functional roles, and diversity of complex communities of
microbes is key to using their wide-ranging capabilities. Microorganisms dominate the
biosphere, yet most have not been identified or studied. Traditional methods for culturing
and characterizing microorganisms limit analysis to thosethat will grow under laboratory
conditions, which represent less than 1% of all microorganisms.

There is currently no effective technology to assay the relative abundance of complex
microbial communities. Probe-based methods such as microarrays can only hope to detect
species which have already been at least partially sequenced; but these represent a vanish-
ingly small fraction of the millions of microbial species. Thegenomic sequence tag(GST)
approach, pioneered by Dunn et al.,3 promises to make such analysis possible for the first
time.

Genomic sequence tags (GSTs) are short (e.g. 21 base) sequence fragments sampled
more or less at random from microbial genomes in the given population. Such tags are
inexpensive to assay, yet long enough to allow for straightforward species identification
against sequence databases. However, such identification techniques cannot hope to iden-
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tify non-sequenced species, which will constitute the vastmajority of microbes into the
foreseeable future.

Hope comes from the intriguing results of Sandberg et al.,11 who investigated identify-
ing bacterial genomic sequences usingk-mer distributions instead of sequence matching.
They found that microbial species could be correctly identified with an accuracy of approx-
imately 85% fromk-mer distributions from sequence samples as short as 400 bases. In this
paper, we build on these observations in several directions:

• Improved Classification Method– We give a classification method based on condi-
tional probabilities which performs substantially betterthan the method of Sand-
berg et al.11 when using small amounts of sample sequence. In particular,our
conditional probability approach improved species identification accuracy by up
to 20% for short sequence segments (35bp) over the naive Bayesian classifier.
These results are significant, because the cost of an assay increases linearly with
the amount of required sequence.

• Accurate Recognition Using Fragmented Sequence Data– We demonstrate that
k-mer analysis of short sequence tags ismoreeffective than analysis of equivalent
amounts of contiguous sequence. These results are fortuitous, because they imply
that our results can be readily applied to GST and long SAGE12 assays. They
are also surprising, because (1) fragmentation inherentlyreduces the information
available fork-mer analysis, and (2) individual short tags have a low (between
5-8%) sequence-recognition specificity, as shown in Table 1.

• Signature Analysis for Unsequenced Species– Recognizing new and unsequenced
species is critical to tagging-based population analysis.Success depends upon the
extent to whichk-mer distribution is preserved among related strains and higher
order classifications (order and genus).

We demonstrate thatk-mer distributions are well-preserved among related
strains/species, by demonstrating that bacterial genomescan be clustered into nat-
ural groups according tok-mer distribution similarities.

In the full paper we give accurate methods of identifying theorder, genus
and species of unsequenced bacteria from short tags. In particular, we show that
unsequenced bacterial species can be accurately identifiedwith respect to the 16S
ribosomal RNA phylogenetic information on the basis of short tags.

• Frequency Analysis of Mixed Populations– We demonstrate that it is possible to
identify bacterial species from mixed populations viak-mer distributions using
modest amounts of sample sequence. Consider sequence tags collected from a
mixture of two equally-represented species: our clustering-based approach proves
capable of identifying at least one of two species 95% of the time.

Further, our methods extend beyond species identification to frequency anal-
ysis. By careful analysis of modest amounts of sequence data, we can predict the
frequency of the most dominant species in a population – evenfor unsequenced
organisms. Further, our predictions grossly match the actual population over wide
range of dominant-species frequencies.
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This paper is organized as following. Genomic sequence tag methods and previous
work on bacterial population assays are discussed in Section 1.1. In Section 2, we extend
the work of Sandberg et al.11 on k-mer recognition of contiguous sequence fragments. In
Section 3, we generalize this work to short sequence tags. Weconsider the clustering and
recognition of sequenced species with the respect tok-mer distribution and phylogenetic
classifications in Section 4. Finally, we consider the problem of deconvolving tags from
mixed species populations in Section 5.

1.1. Previous Work

Genomic Sequence Tags (GSTs) are short (21 base) fragments,product of a method for
identifying and quantitatively analyzing genomic DNAs without a priori knowledge of the
genome. The DNA is initially fragmented with a type II restriction enzyme. An olinu-
cleotide adaptor containing a recognition site for MmeI, a type IIS restriction enzyme, is
then used to release 21-bp tags from fixed positions in the DNArelative to the sites recog-
nized by the fragmenting enzyme. These tags are PCR-amplified, purified, concatenated
and sequenced, to create a high-resolution GST sequence profile of the genomic DNA.

The GST approach has proven efficient in providing quantitative information for sam-
ples of different microbe sequences, even from non-sequenced genomes. Tags that appear
in a sample with significantly different frequencies presumably come from organisms oc-
curring with different frequencies in the population. Difficulty arises when specific organ-
isms appear with similar frequency in the sample, or when tags appear with more than
singular multiplicity.

This approach for characterizing prokaryotic or eukaryotic genomes is similar to long
serial analysis of gene expression (long SAGE12) in that it produces large numbers of
positionally defined 21-bp tag sequences that can be used to examine intra-specific genomic
variation and, if genome information is available, provideimmediate species identity. Other
methods of large-scale scanning of microbial genomes on a quantitative and qualitative
basis include theNotI passporting14 and the restriction site tagged (RST) microarrays,15 as
well as the original SAGE procedure,13 which produces positionally defined short tags of
13 to 14 bp with an increased throughput.

Genomic signatures based on compositions of nucleotides have been proven useful in
identifying the origin of small sequences.6 Frequencies of short sequence motifs – down
to the level of dinucleotides – have shown great potential inproviding a way of distin-
guishing different genuses in a coarse level,4 but also differentiate between strains of the
same species in eubacterial organisms.7 Genomic signatures have been used for identifi-
cation/detection of pathogenicity islands,7 while differences in the use of mutually sym-
metric and complementary triplets distinguish between coding and non-coding genomic
sequences.10 Bacterial phage genome signatures are strongly correlatedwith the nature of
the host and the extent to which the phage uses the host-cell machinery.1 Intragenomically,
the dinucleotide relative abundance varies little between50 kilobase or longer windows on
a given genome,2 but is stable even in windows ranging in size from 50 kilobases down to
125 bases.5
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Table 1. Average Origin Identification accuracy of1000 randomly drawn20-mers for
varyingk-mer size

3-mer 4-mer 5-mer 6-mer 7-mer 8-mer
Recognition percentage 5.58% 6.03% 6.51% 6.68% 7.09% 8.16%

2. Identifying the Origin of Contiguous Sequence

Sandberg et al.11 developed a naive Bayesian classifier to investigate the possibility of pre-
dicting the genome of origin for a specific genomic sequence.They found that sequences
as short as 400 bases could be correctly classified with an accuracy of approximately 85%.
The classifier was applied to 25 fully sequenced genomes, allof which came from unrelated
species. The samples in all experiments originated from thesame set of organisms.

The Sandberg et al. classifier calculates the probability offinding a sequenceS of
lengthN in a genomeGi as the product of theN − (k− 1) probabilities of finding each of
theN − (k − 1) k-mers (motifs of lengthk, k ≤ N ) that constituteS in Gi. This is a valid
measure of relating a sequence with a genome which can effectively be used as a rating,
although it does not represent a correctly defined probability.

We propose a different method for classifying sequences. Instead of using the absolute
probability of ak-mer being drawn from a genomeGi, we calculate the conditional proba-
bility of the last character of ak-mer appearing after thek − 1 preceding characters of the
k-mer. This conditional probability takes into consideration the dependence of the overlap-
ping k-mers in a sequence, recognizing that the firstk−1 characters have already appeared
as a suffix of the previousk-mer, so it is the last character of thek-mer that will provide
new information. This modification overcomes thek-mer independency assumptions and
does not increase the order of needed computation. Further information can be found in the
context of statistical natural language processing.8

We say that a bacterial genome is identified when the Bayesian/conditional probability,
calculated as the product of the individualk-mer statistical probabilities, is the highest
among the 104 probabilities calculated for all the genomes.

In order to compare the two methods with respect to the original study of Sandberg
et al., we reproduced the original experiment conditions using 25 eubacteria and archea
species whose completely sequenced genomes were availablebefore September 2001.
Random pieces of different sizes were drawn from each of the 25 microbe sequences and
k-mer distributions used in calculating the probabilities for varying values ofk.

Figure 1 compares the results of the naive Bayesian classifier method and the condi-
tional probability method. We use whole genomic sequences to create thek-mer statistics
and also draw random sequences from the same genomes. For each point in the graphs, all
25 microbe sequences are sampled and10 samples are drawn in random. The classification
accuracy is then averaged over the250 cases.

Figure 1 shows that our conditional probability method performs consistently better,
with up to 20% improvement in short sequences of35 bases. Using the conditional prob-
ability method we can now identify short sequences of400 bases with more than 90%
accuracy using8-mer frequency distributions.
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Figure 1. Comparison of Naive Bayesian and Conditional Probability Classifiers.

The probabilities in both methods are calculated by multiplying overlappingk-mer
probabilities. One must be careful when handlingk-mers that do not appear in specific
distributions, since the frequency appears as0. Since we want to be able to classify se-
quences from unknown bacteria, we must be able to handlek-mers that do not appear in
some or all of the available genomes. For that reason, we discount the probabilities of find-
ing ak-mer by assigning a small portion of the probability space toevents that have not
been encountered. We use Lidstone’s Law8 for discounting:

P (w) =
C(w) + λ

N + Bλ

whereP is the assigned probability,w is a training instance,C(w) is the training instance
frequency,N is the number of training instances,B is the number of bin training instances
are divided into andλ is a constant.

2.1. Correcting for Repeated Strains

Sandberg et al.11 experimented on the28 different archea and eubacteria organism genomic
sequences available on May 2000. In September 2003, when we started our experiments,
104 full genome sequences were available from NCBI.

Although complete genome sequences are rapidly becoming available, the species di-
versity of available genomes is increasing at a slower rate because of research biases. Atten-
tion is concentrated on human pathogenic microbes, which results in different sequenced
strains of similar species.

The frequency profiles of short oligonucleotides (k-mers) of certain length for different
microbes, although providing enough specificity for distinguishing different species, be-
comes less effective for intra-species variation. Sandberg et al.11 dealt with the problem of
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reduced specificity by merging multiple strains of the same species in classes, resulting in
25 different classes, out of 28 available microbial sequences.

The104 available bacterial genomes we studied included several resequenced strains.
To eliminate this bias, we grouped bacteria into clusters based on correlation of thek-mer
frequency distributions. We found that partitioning into80 classes satisfied both a close
proximity in distribution correlation difference while retaining biological significance, and
so will use these classes in subsequent sections of this paper.

3. Dealing with Fragmented Sequences

The genomic sequence tag (GST) method results in fragments of approximately 20 bases
extracted from specific locations in a genome, relative to restriction sites. Using short
tags has the advantage of avoiding oversampling from repetitive or non-representative (in
a genomic signature sense) regions, but individually have low specificity, inadequate of
discriminating species, as seen in Table 1.

For a fixed size sample of sequence, fragmented sequences give a reduced amount of
k-mers over unfragmented sequences. For example, a sequenceof 400 bases can yield
396 5-mers if in one contiguous piece, but only 320 5-mers if the sequence is fragmented
into 20 pieces of size 20. Still, for the same sequence length, our methods prove better at
identifying fragmented sequences than contiguous sequences. Our results appear in Fig.
2(a). Here the contiguous and fragmented sequence experiment results are presented for
3-mer, 6-mer and 8-mer distributions.

To see how the tag size affects the recognition accuracy, we conducted an experiment
where we kept the amount of available sequence constant at 400bp and varied the tag size.
The results are shown in Fig. 2(b). We observe that the optimal tag size varies with the size
of thek-mers used to analyze the data. For distributions of trinucleotide frequencies, the tag
length where identification accuracy is maximized is around30bp, where the optimal tag
size is around 75bp for 8-mer frequency distributions. These experiments were performed
on all 104 bacteria, with random sampling of 400bp in tags of varying size, where each
data point represents 20 averaged repeats.

There are two reasons behind this surprising result. First,although the number ofk-
mers is reduced when using fragmented pieces, the size of thelargest independent set of
non-overlappingk-mers is not significantly smaller. With fragmented pieces we get at least
one new non-overlappingk-mer every time we have a new piece. Second, by sampling from
different locations of the genome we decrease the chance that the samples were drawn from
an area not representative of the frequency distribution for the specific bacteria.

4. Phylogenetic Classification fromk-mer Distributions

Estimates on the number of distinct bacterial species go into the millions, which makes it
unlikely an observed species will correspond to a sequencedorganism. In general, we are
interested in obtaining coarser identification than distinct species. Thus we seek to identify
which general class of bacteria our prediction indicates asthe origin of a sequence.
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Figure 2. Classification accuracy for single bacterial targets

In this section, we will show that sequenced bacteria can be identified with even greater
accuracy with respect to phylogenetic categorization.

We use a procaryotic phylogenetic listing of small subunit 16S rRNA found at the
Ribosomal Database Project Website.9 Each bacterial species has a unique index number,
consisting of a series of numbers separated by ‘.’, each indicating a different genealogic
attribute (kingdom, order, genus, species). We consider each of these numbers as branching
points in our inferred tree.

All experiments in this section, involving identifying bacteria based on 16S ribosomal
criteria, were averaged over 100 repeats, where fifty 20-mertags (1000 bp) were randomly
selected from each sampling bacteria.

4.1. Identifying bacteria with known k-mer statistical distributions

In this section, we analyze how often the top-scoring bacterium of our classifier happens
to match the order, genus, and species of the closest appropriate species in the 16S rRNA
database. We measure distance to our sampling bacteria using the inferred subtree (which
now contains only our 104 fully sequenced genomes). Closestto our sampling bacteria is
considered the species of the inferred subtree with the minimum distance in the number of
node traversals (hops) needed to reach the former in the 16S rRNA phylogenetic tree.

The bacterial samples were identified in the correct order with 99.98% accuracy, in
the correct genus with99.95% accuracy and in the correct species category with99.83%

accuracy. The exact strain of origin was identified correctly 99.42% of the time.
The higher than 99% positive identification exceeds even theclassification accuracy

using the statistically derived clustering tree by approximately 3%, for similar group sizes.
For classification in the corresponding order, 98% of all bacteria were correctly classified
100% of the time, where the percentages for perfect identification in the genus and species
categories were 97% and 87% respectively.
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5. Identifying bacteria from mixed samples

More than just identify the members of a complex microbial community, we seek to assay
their relative population frequency. We have shown that individual 20-mers identify the
correct species only 8% of the time, using8-mer frequencies, thus identifying the relative
frequencies of bacteria in a mixed sample is a difficult task.An easier problem is the
identification of a subset of species in the sample, especially the single most populous
member of the sample.

For this purpose we constructed20-mer tag data sets where half were derived from
one bacteria and half from another. To identify the appropriate species, we cluster the20-
mers according tok-mer similarity, as follows: First we create for each20-mer a vector
of size104, each position containing the conditional probability of the20-mer being origi-
nated from the corresponding known bacteria genome. Then wecluster the20-mers using
k-meansclustering into two clusters, according to the Euclidean distance of their corre-
sponding vectors. We then classify the20-mers of the two clusters separately, which gives
us two candidate bacteria.
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Figure 3. Recognition accuracy of pairs of equi-probable bacteria, averaged over500 different bacteria genome
pairs.

Figure 3 shows that we can identify both bacteria 50% of the time and one of the two
95% of the time, provided we sample a sufficient number of20-mers from each bacteria.

As a second experiment, we created samples where a specific percentagep is taken from
a primary bacteria that we want to identify, where the rest ofthe sample is populated with
20-mers from randomly selected bacteria genomes. Then we try to identify the specified
bacteria by creating a number of clusters and counting the total percentage of the identified
clusters that matches the primary sampled bacteria.

Results for three different bacterial strains (Thermotoga maritima, Pasteurella multo-
cida andStaphylococcus aureus subsp. aureus Mu50) are provided in Fig. 4. These three
bacteria were selected as random choices of a hard, medium and easy-to- recognize bac-
teria strains by theirk-mer distribution frequencies.T. maritimais pretty distant to other
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(b) Using 8 k-means clusters

Figure 4. Identifying bacteria from mixed sample containing percentagep of target bacteria, using8-mer fre-
quency distributions and variable cluster numbers

bacteria found in our database,P. multocidafrequency distribution resembles few other in
our database andS. aureushas another three relative strains present, which are divided in
two groups according to an 80-group clustering of the available genomic sequences.

In Fig. 4, we can observe that recognition accuracy when a specific bacteria is compris-
ing more than half of the sequence material in our sample is significant, especially when
compared with an expected recognition percentage of1.25% of a totally random sample.
As expected, the recognition rates forT. maritimadrop significantly faster than of the other
representative samples, since having related strains in the database gives a larger space for
recognition andT. maritimahas a pretty distantk-mer frequency distribution. All three
bacteria have a higher than 50% recognition percentage whenthey comprise more than
70% of the sample.

Comparing the results of clustering in 2 or 8 groups, we can see that 2-group clustering
performs generally better, which is expected considering we are seeking to identify only
one bacterial strain. The difference, though, diminishes (or even reverses, in the case of
distant bacteria likeT. maritima) when the bacteria comprises a smaller percentage of our
sample. This can be explained by the fact that the specificityof the existing 20-mers of
our target bacteria in the sample is absorbed by the noise of the other 20-mers in a larger
group, where the target 20-mers could actually form smallereasier to identify groups (given
enough 20-mers).

All majority-identifying experiments were performed 100 times for each bacteria to
create data points in our graph, for 100 20-mers drawn randomly from the target and ran-
dom other bacteria in our frequency distribution database,and averaged.

6. Conclusions

Through computational experiments, we have demonstrated that the analysis of short DNA
sequence reads or tags can be used to determine the composition of complex microbial
communities. Such methods hold particular promise as inexpensive, high-throughputmeth-



September 15, 2004 22:27 Proceedings Trim Size: 9.75in x 6.5in paper

10

ods of producing short sequence reads become available. Unlike microarray-based tech-
niques for population analysis, our approach appears capable of recognizing previously
unsequenced species. We are now applying these techniques to the analysis of actual se-
quence data from samples of the poplar rhizosphere grown under different environmental
conditions.
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