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Genome rearrangement is an important area in computatimolalgy. There are three basic opera-
tions, reversal translocation andtransposition Here we study the translocation operations. Multi-
chromosomal genomes frequently evolvettanslocationevents that exchange genetic material be-
tween two chromosomes. We focus on the signed case, whedéréfodion of each gene is known.
The signed translocatiorproblem asks to find the minimum number of translocation aig@ns as
well as the sequence of translocation operations to tramséme genome into the other. A linear-
time algorithm that computes the the minimum number of tcaragion operations was given in Li et
al., 200414 However, that algorithm cannot give the optimum sequendeaoflocation operations.
The best known algorithm that can give the optimum sequehtaumslocation operations for signed
translocation problem runs i#(n? log n) time. In this paper, we design &(n?2) algorithm.

1. Introduction

Genome rearrangementis a new and rapidly developing aoeariputational biology?:1°

It contains rich results in terms of both computation anddgjp. More than sixty years
ago, Dobzhansky and Sturtevant published a milestone pathean evolutionary tree pre-
senting a rearrangement scenario with 17 reversal opesata the species Drosophila
pseudoobscura and MiranélaGenome rearrangement is a common mode of molecular
evolution in plants, mammals, viral, and bactérfa’-%-8:13,11,12,18,19 Although the rear-
rangement process is very complicated, there are three bpsrationsteversal translo-
cation and transposition In this paper, we study the translocation operations. Mult
chromosomal genomes frequently evolve by translocati@mtsvthat exchange genetic
material between two chromosomes. A genome is a set of crsmmes and a chromo-
someX = z1,z2,...,Tp IS a Sequence of genes, whexds a signed integer representing
agene.
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Let X = z1,...,%p—1,%p,...,Zp aNAY = y1,...,Yc—1,Yc,.--,Yq D€ two chro-
mosomes in a signed genome. A translocation swaps the séginaghe chromosomes
and results two new chromosomes. Foprefix-prefixtranslocation, the new chromo-
somes areX’ = zi,...,Zp—1,Yc, .-, Yg ANAY" = y1, .., yc_1,Zs,...,zp. FOr aprefix-
suffix translocation, the new chromosomes &€ = z1,...,2p-1, —Yc—1,---, —y1 and
Y'=—2p, o, —Zp, Yoy ooy Yg-

Note that the choices qdrefix-prefixand prefix-suffixtranslocations implies that one
can change the direction of a chromosome without incredbimtranslocation distance. A
chromosomeX is identicalto chromosomé@” if either X =Y or X = —Y. Genome4 is
identicalto genomeB if and only if the sets of chromosomes fdrand B are the same.

The translocation distancdetween genomed and B, denoted asl(A4, B), is the
minimum number of translocations required to transfotrmto B. Given two genomes,
thesigned translocation probleiis to find the minimum number of translocations as well
as the sequence of translocation operations to transfoensigned genome into the other.

The signed translocation problem was first studied in Kexguiand Ravi, 19953
Hannenhalli gave the first polynomial time algorithm to sollie problemt® The running
time is O(n?®), wheren is the total number of genes in the genome. @m? logn) al-
gorithm was given in Zhu and Ma, 2062 A linear-time algorithm that computes the the
minimum number of translocation operations was given intldlg 200414 However, that
algorithm cannot give the optimal sequence of translonatjgerations. In this paper, we
present ar®)(n?) algorithm that can compute the optimum sequence of traastotoper-
ations and thus improves upon the best known algorithm.

It seems that it is common to have linear-time algorithm®topute the distance values
for various kinds of rearrangement operations. Howevegkes more time to give an
optimal sequence of operations. For example, for the sigeeersal distance, a linear-
time algorithm that computes the reversal distance valigegien in Bader et al., 200'%.
However, the best known algorithms to give an optimal seqeef reversal operations
still take O(n2) time16:45:2 (Tesler, 2002) dealed with minimum number of reversals,
translocations, fissions and fusiorisThe value can be computed in linear-time. However,
it still takesO(n?) time to give the sequence of the four operatibhFhe translocation
distance is different from the the distance studied in Te&@02!7 Our algorithm makes
use of some new and non-trival properities and structures.

2. Preliminaries

In this section, we give some basic definitions and descobgesprevious results that are
necessary to present our new algorithm.

2.1. Thecyclegraph

For a genomel, we will construct a graptir 4. For each chromoson€ = z1,z2,...,%;
in genomeA, we have2p vertices inG 4, two verticese?, zt for each gene; in X. The
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2p vertices are arranged in a linear order from left to right as

Hza)r(z)l(z2)r(z2) .. . U(zp)r(zp), Q)
where ifz; is a positive integer, thel(z;) = z! andr(z;) = z!; and ifz; is a negative
integer, therl(z;) = z andr(z;) = x!. For eachi € {1,2,...,n — 1}, there is a black
edge(r(x;),l(x;+1)) iIn Ga. Verticesu andv areneighborsn G 4 if there is a black edge
connectingw andv in G 4.

Given two genomes! and B, we can construct theycle graphG g from G4 by
adding agreyedge to every pair of verticasandv, whereu andv are neighbors ift7 5.
The graphG 4p contains two kinds of edgeblack edge andyrey edge. Each vertex in
G 4B (exceptthe first and the last in a chromosome) is incidentéostdges, one black and
one grey. Thus, each vertex is in a unique cycl€'ins. From the construction, each black
edge in the cycle is followed by a grey edge and vice visa. Aecigdong if it contains at
least two black edges. Otherwise, the cyclstisrt If A = B, then all cycles irG 4p are
short.d(A, B) is closely related to the number of cycleGiy p.

Let X = =z,z,...,z, be a chromosome iMd. A sub permutationis an in-
terval z;, z;y1,..., T;y; IN X containing at least three genes such that there is an-
other interval of the same length, yx+1,---,¥x+ In @ chromosom&” of B satisfy-
ing {|zil; [Zis1ls -5 [ziral} = {ykls [Yrals - lveal}s v& = =i, Yot = @ipr, and
s Lid 1y ooy ikl 1 7 Ykt1,- -+, Ykti_1. T; aNdx;y; are called thendinggenes of the sub
permutation.

Let] = z;, %41, ..., z; be an interval for chromosond€ in A. V(1) = {af, 2, 2t ,,
93?+1a . ,xﬁ-,x?} be the set of vertices i6f45. The leftmost vertex and the rightmost
vertex in I are referred to a& EFT(I) = I(z;) and RIGHT(I) = r(z;). Define
IN(I) = V(I) — {LEFT(I),RIGHT(I)}. An edge(u,v) is insidethe intervall if
bothu andv are inIN(I). A sub permutatiod can be viewed as a sub gra@gh g (I) of
G 4B containing the vertex sdtV (I) such that

(1) thereis no edgéu,v) such thats € IN(I) andv & IN(I).
(2) the sub graph correspondingkdas at least one long cycle.

A minimal sub permutatiofminS P for short) is a sub permutation such that any other
interval in the minimal sub permutation is not a sub perniomat

Let w andwv be two vertices in (1).u is on the left ofv in X. A segmenfu,v] on
chromosomeX contains all the vertices in (1) starting@tand ending av. A segment
[u, v] isinsidea segmenfz, y] if both w andv are in[z, y].

The following lemma is used to prove other lemmas, e.g., La8.

Lemma 2.1. '° Cutting aminSP into two segments and R, there must exist a grey edge
(u,v) such thatw € V(L),v € V(R) and(u,v) # (RIGHT (L), LEFT(R)).

There exists aeven isolationin G 4 g if the following three conditions hold: (1) there
are even number ahinSP's in G 4p, (2) all theminSP’s are on a single chromosome
of A, and (3) all theninSP’s are contained in a single sub permutation. Note thatether
is at most one even isolation. Defifgs = 1 if there is an even isolation and otherwise,
iap =0.
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oap is defined a® 4 g = 1 if the number ofminSP is odd and otherwise,p = 0.

sap denotes the number of minimal sub permutation&ins andcap denotes the
number of cycles inG 45. The following theorem gives the value of the translocation
distance and is the key to design polynomial time algoritbinisg the problenmt?®

Theorem 2.1.1° Letn be the number of genes in the genomes anthe number of
chromosomes in the genomes. The translocation distaneebettwo signed genomds
andB is

d(A,B) =n—m —cAB + SAB + 04B +2-isB. (2)

2.2. The existing algorithms

Consider two black edgea:, v) and (f, g) in a long cycle inG g, where(u,v) is in
chromosomeX in A and(f,g) is in chromosom&” in A. Consider a translocation
acting onX andY cutting the two black edgéu, v) and(f, g). p is apropertranslocation

if the cycle containingu, v) and(f, g) in G 4 g becomes two cycles in the new cycle graph.
Otherwise p is improper. Sometimes, the two black edges that a translocation cightmi
be in different cycles ilG 4. In that case, a translocation merge the two cycles into one.
A bad translocation merges two cycles into one.

The formula (2) gives the value of the translocation distdnetween two genomes. We
want to find translocations such that after applying suclamasiocation, the translocation
distance is reduce by one. Define functibap = ¥4, 5] = cAB — 54B —04AB —2-i4B-

A translocationp is valid if A¥ap = ¥4., 51 — Y[a,5) = 1, WhereA - p is the new
genome aftep is applied.

It is proved that (1) if there are proper translocations@yg, there must be a valid
proper translocation fof 4 5; and (2) if there is no proper translocation, there must be a
valid bad translocatiot’ The algorithm is given in Figure 1.

while A is not identical taB do
if there is a proper translocation f@ra 5 (V, E) do
select a valid proper translocatipn
elseselect a valid bad translocatign
A«—A-p
endwhile

ok wbhE

Figure 1. Algorithm 1: The old algorithm.

Suppose there are genes in the genomesd(A, B) is at mostO(n). The method in
Hannenhalli, 1995 can find a bad valid translocatio®ifn) time when no proper valid
translocation is availabl¥. Thus, the running time depends on the time to find a proper
valid translocation. For the best known algorithm, it takEsilogn) time to find a valid
proper translocatiof! Thus the total time complexity of the algorithm in Zhu and Ma,
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20029 is O(n%logn). Here we propose a faster algorithm that taks) time to find a
proper valid translocation.

3. Computing the translocation distance

We have designed an algorithm that computega@h.SP’s in O(n?) time. This algorithm
will be used in section 4. Due to space limit, we omit it here.

Theorem 3.1. There exists an algorithm that computesralin S P's in O(n?) time.

After all the minSP’s are determined, it is easy to test if there are odd number of
minSP’s and if there is an even isolation M(n) time. Thus by now, translocation dis-
tance between two signed genomes can be comput@¢if) time. The remaining work
is to find all the valid translocation operations to transfot into B in time O(n?).

It is worth to point out that Algorithm 2 is important for th@(n) algorithm that
finds a valid proper translocation described in Section £rehve assume that all the old
minSP’s have been found by Algorithm 2. Since Algorithm 2 (running)(n?) time)
is called once in the whole algorithm, solving the signedstacation problem requires
O(n?) time in total.

4. Finding a valid proper translocation in O(n) time

A grey edge igroperif its two ends are in different chromosomes. For a propey goge
(u,v), there are two translocations (prefix-prefix and suffix-pdetd cut the two black
edges adjacent to the grey edge. One of the two translosdif@aks a long cycle into two
and thus is a proper translocation and the other is impréem now on, we use a proper
grey edge(u, v) to refer to its proper translocation, denotedpés, v). We use the two
terms interchangeably.

Note that some proper translocation may not cut two blaclesdgljacent to a proper
grey edge. However, whenever there is a proper translocatithere must be a proper
grey edge in the long cycle thatbreaks. In our algorithm, we always focus on the proper
translocations indicated by proper grey edges.

If a proper grey edge (translocation) does not produce améws P, then it is valid.
Otherwise, it is not valid. The following lemma shows thattiis case, we can find a valid
proper grey edge inside the newinSP.

Lemma 4.1. 2 If a proper translocation foiG 4 g produces a newninSP, say, P, then
there must be a proper grey edge insile¢hat is valid forG 4p.

4.1. Finding the new minS P

Let min = {P,Ps,..., P} be the set of allminSP’s for G4p. Let X;Y; be a
new chromosome produced by a proper grey edgé& jis, where X; is from chro-
mosome X in genomeA and Y; is from chromosoméY” in A. The black edge
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(RIGHT (X,1), LEFT(Y1)) connecting the two partX; andY; is called theconnect-
ing edgein X;Y;. Obviously, a newninS P must contain the connecting edge.

We can find whether a neminSP is produced inX;Y; in O(n) time. The idea of
our algorithm is to search the new chromosoMg; starting from the two ends of the
connecting edge to left and right, respectively. Lahdr be the vertices itk; andY; that
we are going to checld, denotes the leftmost vertex &, that a newnin.SP could reach
andR denotes the rightmost vertexfj that a newninS P could reachleft(u)/right(u)
denotes the vertex that is on the left/right of vertei the cycle grapiiz 4. See Figure
2.

1. Initialize L = [ to indicate the rightmost vertex ok in a long cycle.Initialize
R = r to indicate the leftmost vertex ik, in a long cycle. if there is no long
cycle in Xy or Yy, then returm “no newminSP is found”.)

2. Let (I,u) and(r,v) be the grey edges incidenttandr, respectively.

(a) if v € V(X1) andv is on the left ofL then setL = v.

() if v € V(Y1) andv is on the right ofR then setR = v

(¢) if u € V(X1) andu is on the left ofL then setL = u.

(d) if u € V(Y1) andu is on the right ofR then setR = u

(e) if worvisnotinV(X;Y7) thenreturn “no newminSP is found”.

If I # Lthenl =left(l). If r # Rthenr = right(r).

If I # L orr # R goto Step 2.

5. If [L, R] does not contain anyinSP in min thenreturn[L, R)
else return“no newminSP is found”.

P w

Figure 2. Algorithm 3: Testing whether a newin S P exists inO(n) time.

In Step 5, we have to test if an oldin.SP is in [L, R]. This can be done i®(n) time
by looking at all the oldninSP’s in min produced by Algorithm 2.

A new sub permutatioi in X;Y; containing the connecting edge imestedsub per-
mutation ifI does not contain any sub permutati®hc I such thatP’ C X; or P! C Y.

Theorem 4.1. Algorithm 3 correctly tests whethé¥;Y; contains a newninSP and if
yes, outputs the neminSP. Algorithm 3 runs inD(n) time.

4.2. Partition of the new minSP

Let X andY be two chromosomes od. Let e be a proper grey edge amdandc the
two black edges adjacent toin G 45. Suppose the proper translocation cuttingndc
produces two new chromosom&y, X Yy Ygr andYr Xg such thatP = XYy is a
newminSP, whereX), is from X andY), is fromY. See Figure 3. We ugéb) andr(b)
to represent the left and the right ends of etigéhus, we havdlRIGHT (X ) = I(b) and
LEFT(Yr) =r(c).
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1 x. | Xu | X 1

[ ] *—o *—e *—e *—e .b—. *—o *—o *—O [ ] Chromosome >
I(b) 1(b)
c
[ ] *—e *—o *—o *—o *—e *—e *—o [ ] Chromosome Y
I©) | r©
| v | YM v ]

[ ] *—o *—e *—e *—o *—e *—e *—e *—o [ ]

I X | X | Y | YR
[ - I " I " I "

One of the new chromosomes containing a new SP XMYM

Figure 3. A proper grey edge (translocation) actingXrandY generates a newwinSP in the resulting
chromosomes. The bold parts represent segments in thewiew P.

From Lemma 4.1, we only have to consider the grey edges inXigé&y;. How-
ever, this grey edge cannot YRIGHT (X ), LEFT (Yyr)), since if such a grey edge
(RIGHT (X)), LEFT(Y)yr)) exists, then(RIGHT (X ), LEFT (Yyy)) is the grey
edge (translocation) resulting in the two new chromosoMeX 5, Yy Yr andYz Xg. See
Figure 3. Thus, we want to find a grey ed@e;, ur) # (RIGHT(X ), LEFT (Yy))
such thawg € V(Xum),ur € V(Yu) andp(ur,vr) is a valid proper translocation for
Gas(V,E).

Lemma 4.2. Let p be a proper translocation acting on chromosondésandY that pro-
duces the two new chromoson®ésX ;Y Yr andYy X g such thatP = X, Yy, is anew
minSP. Let(u,v) be a grey edge insid& », Y. p(u, v) acting onX andY produces two
new chromosomeX’ = X; XYy Y; andY’ = X5 Xy YyYs such thatV (Xy Yy ) # 0,
V(XuYy) # 0, Xy and Xy form X, andYy andYy formYy,. If X’ or Y’ contains a
newminSP, say,P, thenP must be insidé(y Yy or Xy Yy.

Lemma 4.1 does not tell us how to find such a valid grey edge. ¥We wse
findEdge(X pY)r) to find a proper grey edge that can produce at most onemiw P
though it may not be valid.

Algorithm 4: findEdge(X mYar).
We can start from the right erigh) of X, go to the left inX,; and find the first
vertexvg in V(X ) satisfying
(1) vg is connected to vertexg € V(Y)) via a grey edg€ug, vg) in Gag.
(2) (vg,ur) # (I(b),r(c)). (RIGHT(Xy) = I(b) and LEFT (Yy) =
r(c).)

Figure 4. Algorithm 4: Finding a grey edge Xi,, Y, such that at least one of the new chromosomes does not
contain anyminSP.

Lemma 4.3. Let Xy Yy be the newninSP. The grey edgdugr,vg) is found in
findEdge (XpYar). (ur,u) and (vg,v) denote the two black edges adjacent to the



September 11, 2004 14:18 Proceedings Trim Size: 9.75inix 6.5 main

grey edggug,vRr) in Gap. XN = v1,v9,...vx, Wherev, = [(b) if Xy is not empty, is

the segment of vertices (not including) in X s checked infindEdge(X YY) before
vertexvg is found inX,,. At most one of the two new chromosomes produced by translo-
cation p(ug,vg) contains a newninSP. In particular, if Xy is not empty, then the new
chromosomeX’ containing the segmet¥ ; does not contain any neminS P.

Corollary 4.1. Lemma 4.3 still holds if the inpuX Y, of findEdge() is a nested sub
permutation, but not aninSP.

Let X' = X; Xy YyY; be the new chromosome produced by translocaiian, vg)
that does not contain any newinSP, whereX; N Xy = 0, Y1 NYy =0, Xy C Xy
andYy C Y)ys. LetY”’ be the other new chromosome producedbyr, vg). According
to Lemma 4.3Y’ may contain a newninSP, say,P. Lemma 4.1 says that a valid proper
translocation can be found iR then. Next, we design a method to repeatedly reduce the
size of the newninS P and eventually find the valid proper grey edge.

4.3. Finding the valid proper grey edge in the new minS P

Let (ug,vgr) be selected iffindEdge(X ;Yas). One of the two new chromosomas =
X1 XvYyY; does not contain any newinS P. The other chromosoni€ = X, XYy Ys
(call it crucial chromosome) that may contain a newinSP. Note that the two segments
Xy and Xy form X, andYy andYy form Yy, (the order may not be fixed). From
Lemmas 4.2 and 4.3, the newinSP P in Y' must be inside the segmek, Y. Next,
we try to reduce the range iy Yy that the newninSP could be. SinceXy C Xy,
Yu C Yy and XYy, is aminSP at the very beginning, for any grey edge with one end
in Xy Yy, the other end must be W( Xy Yyr) = V(Xy) UV(Xy) UV (Yy) UV (Yy).
Thus, it is enough to consider the verticedi(X ) UV (Xy) UV (Yy) U V(Yy).

A vertex isignorableif itis in V(XyYy), but not in the newninSP in Y'. We need
the following lemma to prune segmeki Yy .

Lemma 4.4. If there is a grey edg€u;,v;) such thatu; € V(XyYy) andv; €
V(XvYy), thenvy is ignorable.

By the definition ofminS P, the following lemma holds.

Lemma 4.5.If u € V(Xy) is ignorable, then any vertex on the left ofu in Xy is
ignorable. Ifu € V(Yy) is ignorable, then any on the right ofu in Yy is ignorable.

Lemma 4.6. Let(u,v) be an grey edge insid&; Yy . If u is ignorable then is ignorable.

We can reduce the range &fy Yy based on Lemmas 4.4-4.6. Leandr be the
rightmost vertex inXy; and the leftmost vertex ili; such that there are grey eddes, /)
and (vs,r) with v; € V(XyYy) andvy, € V(XyYy). Let L and R be the vertices in
Xy andYy that we are going to check (based on Lemma 4.6). Initially,seel =
right(LEFT (Xy)) andR = left(RIGHT (Yy)). We can use the algorithm in Figure 5
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to prune the segmefy Yy in Y'. We claim that there always exists a grey edggv)
with u € V(XyYy) andv € V(Xy Yy ). The proof is left to interested readers.

Algorithm 5: prune( Xy, Yy, Xv, Yy)
Setl = right(LEFT(Xy)) andr = left(RIGHT (Yy)).
Search every vertaxe V(Xy Yy ) and find the the rightmost vertéin X
and the leftmost vertexin Yz such that there are grey eddes, ) and(va, r)
with v; € V(XyYy) anduy € V(XyYy).
LetL = right(LEFT(Xy)) andR = left(RIGHT (Yv)).
Consider the grey edgés, u) and(R,v). if u € V(Xy) (v € V(Yy)) andu
(v) is onthe rightof,, thenl = u (I = v). if u € V(Yy) (v € V(Yy)) andu
(v) is on the left ofr, thenr = u (r = v).
if I # L)then L = right(L). if (r # R)then R = left(R). if (I # L or
r # R) then goto Step 4.
I = right(l) andr = left(r).
Mover to the left until no short cycle is on the left ofin Y;;. Movel to the
right until no short cycle is on the right éin Xys.

output:[l, r].

Figure 5. Algorithm 5: Reducing the range of th&n.S P in the crucial chromosome.

Theorem 4.2. If algorithm prune(Xy, Yy, Xv,Yy) returns! andr as the two ends of
the connecting edge N> Xy Yy Ya, thenp(ug,vg) is valid. If] or r is not the end of the
connecting edgen(ug,vg) is not valid. In this casep(ug, vg) produces a newninSP
contained in the intervdl, r]. Moreover]l, r] is a nested sub permutation in this case.

Now, we can usg¢indEdge() andprune() to find a valid grey edge as in Figure 6.

3.

e

Algorithm 6: findValid( G4g)

Output (ug,vR).
1.
2.

Arbitrarily select a proper grey ed¢e, v) in G 4 5 and apply the translocatio
Use algorithm 3 to test if any of the two new chromosomedaing a new
minSP. if no newminSP is foundthen return(u, v) and stop.

Let XY be the newninS P found in Step 2.

Call findEdge(X pYar) to get(ur,vg), and determin&y, Yy, Xv, Yy .
Call prune(Xy, Yy, Xv,Yy) to get[l,r]. if | = RIGHT(Xy) andr =
LEFT(Yy) thenreturn(ug,vgr) and stop.

UpdateXys = [, z] andYys = [y, r], wherez andy are the two ends of th
connecting edge and goto Step 4.

N

117

Figure 6. Algorithm 6: Finding a valid proper grey edge (giagation) inO(n) time.

Theorem 4.3. Algorithm 6 finds a valid proper grey edge (translocationyi(n) time.
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