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This paper presents CIS, a biomedical simulation frameworkbased on the markov random field (MRF).
CIS is a discrete domain 2-D simulation framework emphasizing on the spatial interactions of biomed-
ical entities. The probability model within the MRF framework facilitates the construction of more
realistic models than deterministic differential equation approaches and cellular automata. The global
phenomenon in CIS are dictated by the local conditional probabilities. In addition, multiscale MRF is
potentially useful for the modelling of complex biomedicalphenomenon in multiple spatial and time
scales. The methodology and procedure of CIS for a biomedical simulation is presented using the sce-
nario of tumor-induced hypoxia and angiogenesis as an example. The goal of this research is to unveil
the complex appearances of biomedical phenomenon using mathematical models, thus enhancing our
understanding on the secrets of life.

1. Introduction

Computational cell biology is an emerging discipline wherebiomedical simulations are
employed for the study of cells and their microenvironmentsin various spatio-temporal
scales.

����
The E-cell

��
and the Virtual Cell

�
projects focus on the molecular and bio-

chemical level within cells, addressing the dynamics of signal transductional, regulatory
and metabolic networks. The sub-cell compartmental model are constructed and inte-
grated gradually so as to simulate a particular facet (or pathway) of cells. The Epitheliome
project is an example of tissue-level simulation, aiming todepict the epithelial cell growth
and the social behavior of cells in culture.

��
Simulations on higher-level systems include

Physiome,
�

and the modelling of many organs such as heart.
��

Each scale of simulation
shed light on different aspects of life.

��

Biomedical simulations have been conducted in both the continuous and discrete do-
mains. Differential equations are the key elements of continuous domain simulation,

�

where the concentration of particular receptors, ligands,enzymes or metabolites are mod-
elled at various spatial and temporal scales. This approachis limited by the fact that many
biomedical phenomena are too complex to be described by setsof differential equations.

��

In addition, the deterministic differential equations arenot adequate for describing many
biological phenomenon with a stochastic nature. Alternatively, discrete domain simula-
tion are processed on a spatio-temporal discrete lattice. The combination of Pott’s model
and Metropolis algorithm have been used to simulate cell sorting,

��
morphogenesis,

��
the

behavior of malignant tumor
��

and the Tamoxifen treatment failure of cancer.
��
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This paper presents cells in silico (CIS), a biomedical simulation framework based
on markov random field (MRF). The local interactions betweencells, various cytokines
and the microenvironments dominates many biomedical phenomenon, including chemo-
taxis, the morphogenesis of neural systems, tumor angiogenesis and invasion. Thus, CIS
is proposed with an emphasis on (i) the spatial modelling andvisualization; (ii) the com-
plex interactions between cells and microenvironments; (iii) non-deterministic (stochastic)
modelling; and (iv) a general framework with solid mathematicalfoundation applicable to
many biomedical applications.

MRF is a spatial stochastic framework in either the continuous or discrete domain.
���

It
has been applied to the modelling of protein-protein interaction networks

�
and for solving

various global optimization problems.
����

MRF is closely related to the Pott’s model, the
Ising model in statistical mechanics, and cellular automata,

��
in the sense that all these

models address the local interactions between spatially adjacent entities. The Ising model is
in fact a sub-class of MRF (see Section 2). Compared with cellular automata, the stochastic
nature of MRF enables the construction of more realistic biomedical models. In addition,
MRF is extendable to a multiscale framework which facilitates the simulation of complex
biomedical phenomenon on multiple degrees of details. Hence, it is adequate to serve as
the basis of a biomedical simulation framework.

2. Markov Random Fields and CIS

Cells in Silico (CIS) is a discrete, stochastic framework for the modelling of cells, cy-
tokines, extra cellular matrix and their spatial interactions. CIS employs a bottom-up ap-
proach. The biomedical phenomenon shown in CIS is not dictated by global deterministic
equations, rather, it emerges when the local interactions of entities are computed iteratively,
enabling the study of biological self-organization.

CIS is constructed upon a discrete domain MRF defined on a regular lattice of 2-D
space. The lattice

�
represents a physical space of interest, such as the microenvironment

of a tumor clump, or a certain type of tissue in culture,in vitro or in vivo. A random field� � ��� � � 	 
 	 �� 
  ���
(
�

denotes the integer) is a family of
�

discrete or
continuous random variables defined on

�
. Each random variable

��
assumes a value��

in the state space��, ��  � � ��� �� 	 
 	 ��
  ���
. Each

����� represents the
characteristic at a particular spatial location�� �  �

. It could be either a real biomedical
characteristic (such as the neoplastic state of a cell, or the physical pressure induced by cell
proliferation in a small space) or a hidden state which dictates a real characteristic as in a
hidden Markov model. In this paper, a symbol in the upper caserepresents either a random
field, a random variable or a set, while the lower case represents a particular realization of
a random variable.�

is a MRF if and only of (i) all its realizations have positive probability, and (ii) the
local conditional probability of its realizations manifest the Markov property:

������� � ��� � ��� �  �� � ������� � ��� � ��� �  ���  �� (1)

where
�

denotes the neighborhood.
�

For example, the second order neighborhood system
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is
� � ������� � � 	 ��� 	 �����  �� ����� �� ������ (2)

where a site� has 8 isotropic neighboring sites. The second order neighborhood system
is adopted in this paper if not indicated specifically. The left-hand side of equation (1)
shows that, in general, the state of a site is conditionally dependent on the state of all the
sites except itself. The right-hand side indicates that it is only dependent on its neighbors.
The equivalence of (1) forces the state of a site to be dictated by the local property in the
neighborhood. Long range interactions of entities can still be achieved through the iteration
of the local process.

The realization of
����� in a MRF follows a Gibbs distribution :

�������� � ��� � ��� � ���	
��� (3)

where� is the parameter of temperature which is generally set as
�
, unless a simulated

annealing strategy is adopted in the algorithm.�� is the energy (������ cost) function
associated with a particular realization of

�����. �� is determined by
����� and

���� � ��
according to the application. The definition of�� determines the relative probabilities of a
state, thus dictates the interaction of a site� and its neighboring sites. Different definitions
of �� results in different classes of MRF, such as the Gaussian MRF, the Ising model, the
multi-level logistic model, etc. (cf. Li

��
for a complete review). The normalization factor� (������partition function) is defined as

��� � �
�����

���	
��� (4)

This is to guarantee the sum of probabilities of all the possible realizations of
����� to be

1, i.e.

�
�����

�������� � ��� � �
(5)

A random variable
�� ��� may be conditionally dependent on another random variable������ depending on the application. The conditional probabilityhas been modelled in

many applications as a multivariate normal, which also follows a Gibbs distribution (cf.
Li

��
for proof):

����� ��� � ������ � ��� � ���	
�� 
	 � ��
	� (6)

In several occasions, the posterior probability
�������� � �� ���� can be obtained using

the Bayesian law, when the prior probability
���������� the probability of

�� ��� and the
likelihood probability

����� ��� � �� ���� are all available:

�������� � �� ���� � ����� ��� � �� ������������������ ���� (7)

The prior probability
��������� reflects the prior knowledge (i.e. assumptions) about a

particular random variable
������
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In CIS, all the probability models of equations (3), (6) and (7) can be used to represent
various biomedical properties such as cell-cell or cell-matrix interactions. The probability
model could be either homogeneous (i.e. consistent in the entire S) or regionally homoge-
neous (i.e.

�
comprise regions with different sets of probability models). We will show in

the following applications how these probability models are constructed.
An important class of applications of MRF is for global optimization, where a state

with minimal global energy��� is pursued

� � ��������� �
��	 �

� (8)

The realization
�

is optimal with respect to either the maximum likelihood (ML)
��

or the
maximum a posteriori (MAP)

�
estimations using the probability model of (6) or (7) re-

spectively. Due to the large solution space in all the non-trivial applications,
�

cannot be
obtained analytically. An iterative state updating procedure is thus used, in either a deter-
ministic or stochastic fashion. Deterministic methods update each site with the state which
is associated to the largest probability. In contrast, stochastic relaxation methods (������
Markov Chain Monte Carlo methods) first randomly assigns a legitimate state for updat-
ing, computed the associate probability, then use a random number generator to determine
whether the state updating action should take place under such a probability. The Gibbs
distribution in (3) thus plays the role of the state transition Boltzmann probability in the
simulated annealing algorithms (a.k.a. Metropolis algorithms), where� is gradually de-
creased, representing an annealing, stabilizing behaviorof the system. The state updating
procedure could proceed either with a random site visit or a raster scan. The simulated
annealing algorithms are beneficial for searching the equilibrium states of the optimization
problems.

CIS employs a stochastic relaxation strategy, which is advantageous for the modelling
of a complex biomedical phenomenon. Since the aim of CIS is tostudy the dynamic,
evolving behavior of life,� is defined as

�
in this paper, which is consistent with typical

MRF approaches.
��

3. Tumor, hypoxia and angiogenesis

A tumor is a clump of cancerous cells with distinct characteristics, such as the self-
sufficiency in growth signals, capability of inducing angiogenesis, and metastasis.

��
The

proliferation of tumor cells results in the lack of oxygen and nutrients in the center area of
the tumor clump, inducing a high survival pressure and even necrosis. tumor cells are capa-
ble of secreting tumor angiogenic factors (TAFs) for attracting new capillaries from nearby
blood vessels (i.e. angiogenesis). This capability of inducing angiogenesis is strengthened
when the tumor cells are lack of oxygen (i.e. hypoxia).

��
Angiogenesis enables the tumor

to obtain nutrients/oxygen and get rid of wastes via the circulatory system.
�

Angiogenesis is an important characteristic of a malignanttumor, hence, the under-
standing of angiogenesis is very important for devising newmethods for cancer prognosis
and treatment. These new capillaries not only sustain the tumor growth but also provide
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a gateway for metastasis. Known TAFs includes the vascular endothelial growth factor
(VEGF), the basic and acidic fibroblast growth factors (FGF), scatter factors and many
others. tumors have an increased expression of angiogenic factors, such as VEGF and
FGFs, compared to their normal tissue counterparts.

��
In the mean time, the endogenous

inhibitors such as thrombospodin-1 or
�

-interferon are down regulated.
��

At the beginning
of angiogenesis, the subendothelial basement membrane of the nearby capillary vessels are
degraded.

��
The endothelial cells are stimulated by the TAFs and grow toward the tumor

clump, forming new capillary sprouts with the branching structure and anastomosis (i.e.
loops).

��
The anastomosis structure enables blood circulation. Finally, these endothelial

cells synthesize a new basement membrane.
��

Research has shown that the hypoxia state of tumor cells can (i) stimulate the secretions
of TAFs so as to invoke angiogenesis;

���
and (ii) transform the cell to be more invasive.

� ��
The reason of (ii) is because the hypoxia inducible factors (HIFs) within the cell detect the
low oxygen levels, and therefore induce the high expressionof c-Met protein, a receptor
of hepatocyte growth factor (HGF,������ scatter factor-1). On binding the HGF expressed
by the nearby stromal cells, c-Met triggers a signal transduction cascade which results in
the increased cell motility, invasion and metastasis.

��
This explains why an antiangiogenic

treatment could risk to induce cancer cells to be prone to metastasis.
��

The simulation on
angiogenesis has been conducted using the combination of differential equations and the
random walk method (e.g. Plank et al.

��
and Stokes et al.

��
).

3.1. CIS Methodology

3.1.1. Define key entities as random variables.

The cell space
�

in this application is set as��� ���� sites to simulate an
��� � ���

microenvironment of a tumor clumpin situ. The tumor, the blood vessel (comprising both
the endothelial cells and the basement membrane of the vessel) and tumor angiogenic fac-
tors (TAF) are identified as the key entities of a site, denoted as� ����� ��� and����
respectively. Hence, the random field

� � �� ����� ����������  ��
represents this mi-

croenvironment. The variable� ��� has discrete states
�� ����� ��� � �� ���� ����� where

� ��� � �
denotes the non-neoplastic state and� ��� � �

denotes the degree of hypoxia in
this neoplastic site, which is mainly caused by the excessive oxygen consumption caused
by the neighboring proliferating tumor cells. The larger the number, the higher the degree
of hypoxia. The variable

� ��� � ��� �����where
� ��� � �

denotes no vessel in this site;� ��� � �
denotes the vessel at� being capable of sprouting new branches;

� ��� � �
denotes the vessel being quiescent and not sprouting new branches. Those sites where both� ��� and� ��� are

�
represents either normal cells or extra cellular matrix. The variable

����� a positive real number, represents the concentration of allthe angiogenesis factors in
this current study, as has been used in many research (e.g., Plank et al.

��
). More elaborated

simulation could be conducted where each angiogenesis factor is represented individually.
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3.1.2. States initialization.

The tumor clump is a circle shown in light green in Figure 1(a). In these regions,� ��� � �
and other regions� ��� � �

. The radius of this tumor clump is 14 pixels. Four vessels are
in the nearby regions of this tumor clump. Each of these vessels is a circle with a radius
of 7 pixels and shown in red in Figure 1(a). In these regions,

� ��� is randomly assigned
as

�
or � at the probability of

���
and��� respectively. The other regions

� ��� � ��
The TAF concentration���� is assumed to be 0 in the initial state. Note that each site is
a geometrical location which is not necessarily a complete cell. Locating each single cell
is not the main interest of this current simulation. An alternative way of initialization for
a biomedical simulation is cell-based, where a template of cell is randomly placed in the
tumor clump area. This could be achieved by the object-oriented programming technique.
The cell-based simulation is exemplified by the Pott’s model, where each generalized cell
(an artificial unit which represents either real cells, extra cellular matrix or medium) are
specified individually.

��
In such a cell-based simulation, a more sophisticated set ofrandom

variables, such as the elaborated� ��� and����� should be introduced.

3.1.3. Define interactions between sites

The local conditional probability of the random variables defines the interactions between
sites, which is very important for the modelling of biomedical properties. As is described
in Section 2, the interactions are modelled using the local energy function��, which de-
termines the conditional probability of a particular realization of the random field. Apart
from MRF, the traditional approach utilizing differential(and difference) equations is very
suitable for describing physical processes such as diffusion. A combination of both MRF
and difference equations is therefore advantageous for CIS.

First, the tumor survival pressure� ��� is modelled, which is an indication of hypoxia
and pertains to the necrosis of tumor cells. The survival pressure and hypoxia are caused
by the surrounding cells to the central area of the tumor clump, hence,� ��� is determined
using a multiscale neighborhood system, denoted as

����� :

����� � ������� �� 	 ��� 	� �� ����  �� ����� �� ������ (9)

�����, ������ ����� and
����� are used so as to construct the gradient of survival

pressure of the tumor clump. The interior area of the tumor clump suffer from more severe
hypoxia. The probability of increasing the tumor survive pressure is defined as :

���� ��� � � ��� � �� � �
����

	� � 
�� �� � ���� 	
�� �� � ��� (10)

where



is the Kronecker delta. The above equation specifies that thepresence of tumor
cells in a neighborhood increases the hypoxia. In addition,the presence of blood vessels in
the neighborhood alleviates the condition of hypoxia.

Second, the flow of TAF concentration������ is modelled. A tumor clump secretes
TAF in a paracrine fashion, thus, a high concentration of TAFis assumed in the regions
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adjacent to the tumor clump (i.e.� ��� � �
). The secreted TAF gradually diffuse through

the space
�

, which is modelled using the diffusion equation, i.e.
��������� � ���

������ (11)

where
�

is the diffusion parameter defined as 1.
Third, the directional growth of a blood vessel is modelled to be dictated by the concen-

tration of TAF which exceed a threshold��. Define a thresholding function����� which
reports 0 if its variable� 	 ��

���� �
�
�
	�� ���������� (12)

Given a site�where
� ��� � �

, the energy function� �� � ��� �  �
is defined as

� �� � �� � � �����	��� � �� � ���� (13)

Hence, the conditional probability

���� �� � �� � �������� ���� � �	��� � �� � ���
���� �	��� � �� � ���


�� ��� � �� (14)

Equation (12) specifies the probability of a site adjacent toa vessel being an extension of
this vessel. The higher the TAF concentration������� the higher the probability of vessel
growth toward this direction. This is a simplified model. In reality, many other factors,
such as the fibroblast cells and the extra cellular matrix in the connective tissue, also play
important roles in determining the directional vessel growth.

3.1.4. Proceed Simulation.

A positive integer
�� ��  ���

is used to represent the discrete time points. Every interac-
tion model is associated to a particular time step� . All the sites in S need to be updated
when

� � � . The states in the current time step depends on the state in the previous time
step. CIS is programmed in the C++ object oriented style.

3.2. Results and Observations

Two simulations are conducted to manifest the angiogenesisand hypoxia occurred in the
microenvironment of a tumor clump. The first simulation is a simple model where the
hypoxia are not modelled. The initial states is shown in Figure 1(a) when

� � �
. The time

step is set as� � �
for all the rules. The 2D visualization of the results when

� � ��� ���
and	�� are shown in Figure 1(b)-(d), respectively. The TAF (depicted in blue) are diffused
away from the tumor. The new capillary grows toward the tumor, forming a network with
the branching and joining structure (i.e. anastomosis). The shape of these capillaries is
visually similar to the results in Plank et al.

��
which employs complex differential equations

and a random walk approach. Note that the method in Plank et al.
��

is more or lessad
hoc, i.e. specific to a particular biomedical problem such as angiogenesis, while CIS is a
general framework and paradigm which could be employed in many applications. Different
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simulations using the identical parameter setting producedifferent yet similar pattern of
capillary formation (data not shown). This is due to the stochastic nature of the algorithm.

(a) (b) (c) (d)

Figure 1. The 2-D visualization of CIS on tumor-induced angiogenesis (a) The initial condition of the simulation.
The green region represents the tumor clump and the red regions represent the blood vessel. (b)-(d) CIS results
when� � ��� ��� and���, respectively.

(a) (b) (c)

(d) (e) (f)

Figure 2. (a)-(f) The 2-D visualization of CIS of tumor-induced angiogenesis and hypoxia when� � �� �������� ���� 	��� 
��, respectively.

In the second simulation, the random field
�

simulates a cross sectional slice of the
epithelium (top of Figure 2(a)) and connective tissue (bottom of Figure 2(a)) separated by
the basal lamina (depicted in cyan). The tumor clump is situated in the epithelium, shown
as a green circle with a radius of 20 pixels in Figure 2(a). Four blood vessels, shown as
red circles with the same radius of 7 pixels, are situated in the connective tissue area. The
interaction model of tumor hypoxia is employed. The time step is set as� � ��� for the
hypoxia model

� � � � for the angiogenesis, and� � �
for all the other rules. The results

when
� � 	��� ���� ���� ��� and��� are shown in Figure 2(b)-(f), respectively. The value

of � ��� indicates the degree of hypoxia of a site. It shows that the color in the core are of
the tumor clump turns from green to black, representing the gradual elevation of hypoxia.
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A few new vessels begin to sprout on Figure 2(b). Several new vessels penetrate the tumor
clump, preventing further necrosis on their adjacent siteson Figure 2(d)-(f).

4. Discussions and Conclusions

CIS, as well as all the other biomedical simulations, plays acomplementary role to wet-lab
experiments. It is evident that without solid biomedical knowledge acquired from wet-
lab research and clinical observations, we cannot even starts to identify the key entities
for a simulation. An ideal simulation is conducted in concert with wet-lab experiments,
starting with real data and finishing with real data. The biomedical models fill up the
gaps of unknown knowledge between the two sets of real data. This gives rise to the
systems biology, where a biomedical phenomenon is envisioned as a system of complicate
interactions of many entities.

One of the plausible realization of the above notion of systems biology is, for example,
quantize a histopathology image of a cancerous tissue as theinitial condition, replacing
the procedure in section 3.1.2. The various parameter values, such as the time step� � are
also set according to the wet-lab measurements and observations. CIS are thus proceeded.
The result of CIS are then compared with another set of microscopic image qualitatively or
quantitatively.

CIS is extensible in terms of the complexity of simulation. The above example on
tumor-induced hypoxia and angiogenesis can be elaborated by adding a variety of (i) en-
tities, such as scatter factors, various cytokines, and theconcentrations of oxygen and nu-
trient; (ii) interaction models, such as the tumor cell growth model on the presence of new
blood vessels, and (iii) advanced data types such as the generalized cells.

��

A further extension of CIS is toward multiscale simulation,addressing the complex,
multi-level nature of biomedical phenomenon. The framework of Multiscale MRF has
been well established (e.g. Wilson et al.

��
). A multiscale simulation can illustrate both the

between cell interactions and the within cell interactionsunder the same framework. For
example, 2-D spatial grids of two different scales can be constructed, where each site in
the first scale corresponds to�� ��� (e.g. 4 or 16) sites in the second scale, as in a normal
quad-tree structure. The first scale addresses the between cell interactions and the second
scale addresses the within cell interactions. Activities in the two scales may take place
in different paces, reflected as their distinct time steps� . A multiple scale representation
facilitates the incorporation of multiple levels of data, resulting a realistic model. The
hypoxia model in Section 3 employs multiple neighborhood sizes, which is an example of
multiscale realizations.
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