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Abstract A new peptide encoding scheme is proposed to use with support vector machines for the
direct recognition of T cell epitopes. The method enables the presentation of information on both (1)
amino acid positions in peptides and (2) the similarity between amino acids through the use of sparse
indicator vectors and the BLOSUM�� matrix. A procedure of feature selection is also introduced. The
computational results demonstrate superior performance over previous techniques.
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1. Introduction

In Silico T cell epitope identification currently relies on the prediction of peptide binding
to major histocompatibility complex (MHC) molecules. Antigens are degraded into a set
of peptide fragments through the action of the proteasome and the resulting peptides pre-
sented by MHCs are recognized by one or few of a large set of T cell receptors (TCRs).
Methods for the prediction of MHC binding peptides have been developed based on struc-
tural binding motifs���������������� or quantitative matrices,����� Artificial Neural Networks
(ANN),��������� and Support Vector Machines (SVM).� These techniques, however, do not
discriminate between T cell epitopes and non-epitopes which are both MHC binders. � The
methods of direct prediction developed in 1980s were based on the structural analysis of T
cell epitopes.������	

Recently, methods of direct prediction of T cell epitopes based on machine learn-
ing techniques such as SVM and ANN with the use of sequence information have been
proposed.���� In Zhao et al.,�� each amino acid in a peptide was encoded by �� physical
properties of the �� amino acids. These �� properties include alpha-helix or bend-structure
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preference, bulk, beta-structure preference, hydrophobicity, normalized frequency of dou-
ble bend, normalized frequency of alpha region, and pK-C. �� These properties represent a
better class of information in comparison with the amino acid indicator variables. Bhasin
and Raghava� encoded each peptide using only the amino acid indicator vector. That is,
each amino acid of a peptide is represented by a ��-dimensional vector. They tested this
encoding method by SVM and ANN. In both of the studies, SVM was demonstrated as a
potential machine learning method to make relatively accurate predictions based on train-
ing with small data sets.

In this work, a new encoding scheme of peptides for the direct prediction of T cell
epitopes is investigated. This encoding method combines the BLOSUM�� matrix �� with
the amino acid indicator vector. This is achieved by replacing each nonzero entry in the
vector by the corresponding value appeared in diagonal entries in the BLOSUM matrix.
This is different from other encoding methods using the BLOSUM matrix in which each
amino acid is simply represented by its BLOSUM score.�� The new encoding method
simultaneously incorporates information on both the position and similarity of the amino
acids.

The new method was evaluated on a data set employed by Zhao et al. �� with the use of
SVM. The computational results demonstrate the superior performance of this method in
comparison with the methods using the indicator vector or the �� physical properties of the
amino acids.��

2. System and Method

2.1. Training and testing data

The data set used in Zhao et al.�� was utilized in this experiment. T cell clone and antigen
recognition assay Melan-A-specific CTL clone LAU203-1.5 were derived from the tumor-
infiltrated lymph node cells of a melanoma patient and antigen recognition was assessed
using a chromium-release assay (see details in Zhao et al.��) Among the ��� synthetic
peptides, �� were tested stimulatory (positive) and ��� were tested non-stimulatory (neg-
ative). Since the numbers of the positive and negative peptides are unbalanced, in our
cross-validation, the numbers of positive and negative peptides in the training and testing
sets were maintained in a similar ratio. These peptides consist of �� amino acids.

2.2. Peptide encoding method

One of important elements that influence the effectiveness of a SVM model is the design
of the encoding method for the training data. In this study, we introduce an encoding
technique that combines the amino acid substitution matrix BLOSUM�� �� together with
the conventional ��-dimensional indicator vector (� present or � absent of an amino acid) at
each position. The representation of each amino acid by an indicator vector has been used
extensively. It provides very precise information about the peptide, such as the position
of each amino acid in the peptide. The use of BLOSUM matrix in this study, however, is
different from the way it has been used before.����� Usually, given a peptide, each amino
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acid is simply represented by its BLOSUM score. In this case, the encoding vector is
of dimension � for a peptide with length �. The BLOSUM score contains prior knowledge
about which amino acids are similar or dissimilar to each other in distantly related proteins.
However, it is clear that this encoding method loses some information about each amino
acid. For example, the hydrophilic amino acids Arg, Asn, Gln and the hydrophobic amino
acid Met all have the same BLOSUM score �. If they appear at the same position in
the peptides, this encoding method would not be able to discriminate. Our new encoding
method avoids this ambiguity by replacing each non-zero value in the indicator vector by
the BLOSUM score of the corresponding amino acid. For a peptide with length ��, the
dimension of the encoding vector is thus ���. This scheme encodes not only the position of
residues but also the similarity scores. Therefore, the entire vector provides more accurate
information about a peptide.

2.3. Feature ranking

Since the feature vectors are relatively sparse, a feature selection procedure is used to ex-
clude the features that appear less frequently and less discriminative. A simple procedure
for feature selection is carried out based on the Fisher’s score of each feature.

Let �� and �� be the numbers of vectors in the positive (Pos) and negative (Neg) train-
ing sets, respectively. Denote an encoding vector of peptide by �. The Fisher’s score for
each feature � is defined as
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A feature with a higher Fisher’s score is considered as more discriminative. The features
are then assembled according to their scores in a descending order.

2.4. Training with support vector machine

Suppose that we are given a set of � points �� �� � 	 � �	 in an �-dimensional space.
Each point �� is labeled by 
� � ������ denoting the membership of the point. An SVM
is a learning method for binary classification. Using a nonlinear transformation �, it maps
the data to a high dimensional feature space in which a linear classification is performed.
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It is equivalent to solving the quadratic optimization problem:
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where � is a parameter. The decision function is defined as ���	 � ���	 �� 
 �, where
� �
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� ������	 and �� �	 � �� �����	 are nonnegative constants determined by the
dual problem of the optimization defined above. Therefore, the function can be represented
as
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through the definition of a kernel function ���� �	. For details of SVMs refer to Cristianini
and Shawe-Taylor.�

According to our preliminary study, the linear kernel (���	 � �) in SVM gives the best
performance. This could be due to the sparsity of encoding vectors and the small number
of training points. Therefore, we used the linear SVM model in the present experiment.

In order to handle the unbalancedness between the numbers of peptides in the positive
and negative training sets, different parameters �� and �� were associated with the pos-
itive and negative training errors respectively. That is, the objective function in the above
quadratic programming is replaced by
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The ratio of �� to �� is bounded by the value of ����� in general,�	 however, the best
ratio is usually determined through cross-validation by searching in the range of ��� � �����.
Accordingly, there are two parameters associated with a SVM model:

(1) �� : the trade-off between the negative training error and class separation;
(2) � : the ratio of �� to ��.

From the above discussion, �� � �� � � .
Since the identification of positive peptides is of great interest, the quality of the SVMs

was evaluated by the precision (positive prediction value)

����	�	�� �
��
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and recall (sensitivity):
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where �� (resp. ��) is the number of predicted positive (resp. negative) peptides which
are true positive (resp. negative), and �� (resp. ��) is the number of predicted positive
(negative) peptide which are true negative (resp. positive).
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The � -score, given by

������ �
� � ����	�	�� � ������
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was employed as a criterion for the determination of the SVM parameters in the cross-
validation. These criteria will also provide a more accurate evaluation of the classifier
when dealing with unbalanced positive and negative data sets.

An experimental protocol similar to the one used in Zhao et al. �� was employed in our
study in order to conduct a valid comparison. A ��� fraction of the data was set aside as
a testing set for positive and negative sets, respectively. The remaining ��� fraction of the
data was used as the training set. The number of features and the parameters associated with
the SVM were optimized through a ��-fold cross-validation on the training set. The final
classifier was obtained by training a SVM on the whole training set again with the selected
features and optimized parameters. The classifier was then evaluated on the reserved ���

testing set. This entire process was repeated �� times with different random splittings of
the training and testing data sets; the final results were averaged over �� runs. Note that a
leave-one-out cross-validation was used to optimize the classifier in Zhao et al. ��

The details of the ��-fold cross-validation on the ��� of training data are as follows.
For each training set, the order of the features was rearranged by the Fisher’s scores. Select-
ing a small set of features from the top of the sorted feature list, the averaged � -score was
calculated through the ��-fold cross-validation for a pair of parameters ���� �	. Searching
through all possible values of the parameters in a given range will identify the best � -score
and the corresponding pair of parameters for the fixed set of features.

In our experiment, this process was repeated from �� to ��� features from the sorted
list, each time with an incremental step of �� features. The optimal number of features and
the best parameter pair associated with the best � -score were identified. A summary of the
procedure is shown as follows.

Procedure

(1) Prepare the sorted list of features according to their Fisher’s scores for the given
training data set.

(2) Choose the initial set of features � ��� � � ��	 from the top of the sorted list.
(3) Identify the best pair of parameters ���� �	 through a ��-fold cross-validation and

store the corresponding ������.
(4) If there is no feature left for inclusion, then go to (5). Otherwise, add the next ��

features from the sorted list and go to (3).
(5) Identify the best ������ and its associated feature set and parameter pair.
(6) Use the optimized feature set and parameter pair to train the full set of training data.
(7) Calculate the recall and precision of the testing set using the classifier obtained in

the previous step (6).

The basis of the selection of the first �� features from the sorted list to serve as a start
is as follows. Since the encoded sequences are relatively sparse, we have to include a
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sufficient number of features to guarantee that no peptide will be associated with an empty
vector of features.

The parameter searches were conducted as follows:

(1) �� : ������� ���� with a step size of �����.
(2) � : ����� ���� with a step size of ���.

3. Results and Discussion

The SVMLight package�� was used in the implementation. We report the recall and the
precision of testing data sets (��� of the data) for �� runs. The results of the SVM trained
with the original ��� features are shown in Table 1. The results of the SVM in conjunction
with the feature selection are shown in Table 2. For comparison, the method of SVM with
peptides encoded with the amino acid indicator vectors was also implemented. This result
is presented in Table 3. Finally we summarize our results and compare to those reported in
Zhao et al.�� in Table 4.

In the comparison to the findings of Zhao et al., we observe that our encoding method
without feature selection improved the recall from ����� to ����� and enhanced precision
from ����� to �����, both substantial improvements. It is further shown that with feature
selection, a similar level of recall ������	 and precision ������	 can be reached with the
use of an average of �� selected features. In the comparison to the results of SVM with
indicator vector, we observe that our encoding method without feature selection improved
the recall from ����� to ����� and enhanced precision from ����� to �����. The ROC curve
corresponding to the classifier obtained from the full set of features is shown in Figure 1.
The area under the ROC was ������, which compares favorably to ����� in Zhao et al. The
substantial improvements in the recall, precision and area under the ROC demonstrated the
effectiveness of the new encoding technique.

The top features on the sorted list imply the existence of a correlation between the
peptide sequences and their stimulatory activity. For example, Gly, which appears most
frequently at position � in positive peptides, ranks first in the sorted list. Phe, often observed
at position � in negative peptides, was ranked in the second position in the list. Other top
features include Lys (position � in negative peptides), Ile (positions � and �), and Phe
(position �). The two latter residues are frequently seen in the positions involved in TCR
recognition according to Zhao et al.

Our results suggest that the feature selection may extract the most important informa-
tion that contributes to the stimulatory activity of T cell epitopes and non-epitopes. The
combination of feature selection and SVM can be further explored in prediction of T cell
epitope with a more complex encoding scheme.

4. Conclusion

A new encoding method for the direct recognition of T cell epitopes and non-epitopes
through support vector machine has been developed. This encoding method combines
the information in the conventional sparse encoding vector and BLOSUM scores. The
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Table 1. Result of the proposed SVM without feature selection
in the ten test datasets.

Test Set Recall Precision

1 7/8 7/8

2 7/8 7/7

3 8/8 8/10

4 5/8 5/5

5 5/8 5/8

6 8/8 8/12

7 7/8 7/7

8 6/8 6/7

9 6/8 6/7

10 6/8 6/9

avg 0.813 0.835

Table 2. Result of the proposed SVM with feature selection in the ten test datasets.

Test Set Recall Precision #Features

1 6/8 6/8 160

2 7/8 7/7 120

3 8/8 8/12 60

4 6/8 6/6 60

5 4/8 4/7 160

6 8/8 8/9 80

7 7/8 7/7 80

8 6/8 6/7 80

9 5/8 5/6 60

10 7/8 7/11 100

avg 0.800 0.820 96

superiority of this encoding method and the effectiveness of the feature selection procedure
were demonstrated.

Acknowledgments

The authors are thankful to Sarat Chandra Maruvda and Deepa Vijayraghavan for the as-
sistance with computing environment. They would also like to express their gratitude to
anonymous referees for useful comments.



September 16, 2004 23:24 Proceedings Trim Size: 9.75in x 6.5in Huang-Dai

8

Table 3. Result of SVM with the amino acid indicator vectors
in the ten test datasets.

Test Set Recall Precision

1 6/8 6/10

2 6/8 6/6

3 8/8 8/10

4 7/8 7/10

5 5/8 5/9

6 5/8 5/12

7 8/8 8/15

8 5/8 5/8

9 5/8 5/8

10 5/8 5/5

avg 0.750 0.686

Table 4. Summary of the proposed methods to Zhao et al.

Method Recall Precision #Features

method 1 0.813 0.835 200

method 2 0.800 0.820 96

method 3 0.750 0.686 200

method 4 0.763 0.716 100

method 1: proposed encoding method without feature selection.
method 2: proposed encoding method with feature selection.
method 3: encoding method with amino acid indicator vectors.
method 4: method by Zhao et al.. The results are taken from Zhao et al.��
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