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Accurate cancer prediction is important for treatment of cancers. The combination of two dimension 
reduction methods, partial least squares (PLS) and singular value decomposition (SVD), with the 
penalized logistic regression (PLR) has created powerful classifiers for cancer prediction using 
microarray data. Comparing with support vector machine (SVM) on seven publicly available cancer 
datasets, the new algorithms can achieve very good performance and run much faster. They also 
have the advantage that the probabilities of predictions can be directly given. PLS based PLR is also 
combined with recursive feature elimination (RFE) to select a 16-gene subset for acute leukemia 
cancer classification. The testing error on this subset of genes is empirically zero.  

1 INTRODUCTION 

The advent of DNA microarray and protein mass spectra has enabled us to measure 
thousands of expression levels of genes simultaneously. These gene expression profiles 
can be used to classify different types of tumors and there have been a lot of activities in 
this area of cancer classification.  

One problem often encountered is that there are a huge number n  (thousands) of 
features but relatively small number  (tens or hundreds) of samples or arrays due to the 
high cost of microarray experiment. Since the data dimension is very large, SVM has 
been found to be very useful for this classification problem [1]. Apart from the 
classification task, it is also important to eliminate the irrelevant genes from the dataset 
and select a small subset of marker genes which discriminate between different types of 
tissue samples.  

m

The penalized logistic regression (PLR) has been proposed by other authors for 
cancer classification [2-4]. It has been shown to be a powerful classifier in this field. We, 
however, combined this method with the dimension reduction method known as partial 
least squares (PLS) and singular value decomposition (SVD). We will illustrate that the 
new algorithm is computationally efficient and comparing with SVM on seven publicly 
available cancer datasets, the performance of PLS and SVD based PLR is very good and 
competitive. But we also indicate that PLS based PLR generally performs better than 
SVD based PLR and uses significantly fewer components.  

Feature selection is another very important part in the field of cancer classification. 
Instead of ranking the relevance of genes with the cancers individually, recursive feature 
elimination (RFE) which was first proposed by Guyon et al. [5] is used in this paper. PLS 
based PLR was combined with RFE to select a small 16-gene subset for classification. 
The testing error on this subset using random partition method turns out to be zero. Some 
of the genes selected in this subset overlap with the genes selected by other authors.  



2 METHODS 

2.1.  Penalized Logistic Regression 

Assume we have a number of cancer classification samples from microarray experiments. 
Each sample can be in one of two classes, e.g. class 0 and class 1. A rule based on 
logistic regression is to be determined, which uses the gene expression profiles on an 
array to determine the probability that a sample belongs to one of the two classes. A 
training dataset of samples with known class labels is present to derive the rule and the 
rule derived should be able to classify any new sample that comes along.  

Let a variable  indicate the class of a microarray sample: y 0y =  means the sample 
belongs to class 0;  means the sample belongs to class 1. Let 1=y jx  indicate the th 
gene expression level of the sample. We are trying to find a formula that gives us the 
probability  that the sample with its all measured expression 
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represents a class 1 case. Since only two classes are considered, the probability of the 
sample representing class 0 is consequently 1 p− . The normal logistic regression model 
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where α  and 1 2, , nβ β Kβ  are parameters and they could be estimated by maximum 
likelihood (ML) criterion. Then the curve that computes  from p η :  
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is called the logistic curve, hence the name logistic regression.   
In the setting of microarray experiments, the number of samples, m , is usually on 

the order of tens or hundreds but the number of variables, n , is usually on the order of 
thousands or even tens of thousands. So the number of samples is much less than the 
number of variables. There are three problems in this situation when we are trying to 
build a logistic regression rule:  

• If , there will be more unknowns than equations, possible solutions are 
infinite.  

m n<

• Data overfitting may occur. That means, we may have zero errors on training 
data but very poor performance on new samples.  

• Multicollinearity largely exists: many genes will show nearly identical patterns 
across the samples, so they supply no new information to the data; some gene 
profiles can be linear combinations of the other gene profiles.  

These problems can be solved by introducing a penalty into the logistic regression 
formulation. The regularization on the sum of the squares of the regression coefficients is 
known as ridge regression [6]. It has been applied to logistic regression by [7]. The 
penalized logistic regression is now given in the following.  

Let  indicate the class of the i th sample and  the probability that . Let iy ip 1iy =

ijx  indicate the th gene expression level of the i th sample. The model is  j
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where iη  is called the linear predictor in the jargon of generalized linear models, as it is a 
linear combination of the explanatory variables. It is connected to p  by a non-linear 
(logarithm) so-called link function. The log-likelihood is  
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The penalized log-likelihood is  
*
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where λ  is called the penalty parameter. The larger λ , the stronger its influence and the 
smaller the 2

jβ 's are forced to be. The value of λ  can be determined by cross-validation. 
The ML method estimates the parameters by maximizing Eq. (3). Let u  be a m -vector 
of ones; y ; ; 1 2[ , , , ]T

my y yK= 1 2[ , , , ]p p=p K T
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matrix so that . Now we take the derivatives of  against 

X m n×
( , ) iji j x=X α  and jβ  so that:  

* 0 ( )TL α∂ ∂ = ⇒ − =u y p 0                                                (4) 
* 0 ( )TL λ∂ ∂ = ⇒ − =β X y p β                                              (5) 

Eqs. (4) and (5) are non-linear because of the non-linear relationship between p  and α  
and β . To get a set of linear equations, we take the first order Taylor expansion of ,  ip
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where a tilde indicates an approximate solution. Now  
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Using this and introducing , , we have  (1 )i i iw p p= −% % % 1 2diag( , , , )mw w w=W% % % %K
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for . Now Eqs. (9) and (10) constitute a linearized system and iterating with 
it generally leads to a solution quickly. In most cases ten iterations are enough. Suitable 
starting values are 

1,2, ,i = K m

log[ (1 )]y yα = −%  with 
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 and , Eqs. (9) and (10) can be written as  [ | ]T Tα=γ β [ | ]=Z u X
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where  is a  identity matrix with R ( 1) ( 1n n+ × + (1,1) 0=R  to reflect that there is no 
penalty on α .  

2.2. Partial Least Squares and Singular Value Decomposition 

The linear system of Eqs. (9) and (10) is huge: thousands of equations with an equal 
number of unknowns. Solving this could be computationally problematic and storing all 
the equations takes a substantial amount of memory space. PLS and SVD are both very 
popular dimension reduction methods and they have been successfully applied to the 
field of gene expression based cancer classification. In this paper, both of these methods 
are proposed to undertake the task of solving Eqs. (9) and (10). For an updated survey of 
PLS, readers can refer to [8]. For definition and computation of SVD, readers can refer to 
[9]. We would not go into details of these two techniques here.  

First, assume the m  matrix  stores all of the gene expression data with its 
rows being the microarray samples and its columns being the gene profiles, the 
formulations of PLS and SVD give the decomposition of :  
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X
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where  is P m p×  matrix,  is V n p×  matrix and  is R m n×  matrix.  is the number 
of PLS components or singular values and 

p
p m≤ .  is the residual matrix and can be 

considered as containing no useful information. Therefore,  can be approximated as  
R

X
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In PLS, the columns of P  are called score vectors and the columns of V  are called 
loading vectors. In SVD, the usual formulation of decomposition of  is  X

T≈X USV                                                         (14) 
where  is mU p×  matrix,  is S p p×  diagonal matrix and V  is also n p×  matrix. For 
convenience, let P  for SVD and use score vectors and loading vectors to name the 
columns of  and . Hence we can use Eq. (13) to represent the decomposition of both 
PLS and SVD. The loading vectors produced by PLS and SVD are always mutually 
orthogonal and they are assumed to be normalized in PLS so that 

= US
VP
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I
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Multiplying Eq. (16) by  we get  V
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Redefine Z u  and  so that we have  [ | ]= P [ |α=γ
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Thus the system of Eqs. (17) and (18) can also be represented by Eq. (12).  

The length of θ  is , the number of score vectors. Therefore, the total equations in 
Eqs. (17) and (18) is . Since p m

p
p +1 n≤ << , the order of the system of Eqs. (9) and 

(10) is now effectively reduced from thousands to tens. Only a small amount of memory 
space is required and the equations can be solved quickly.  

2.3. Feature Selection 

RFE tries to find a subset of genes which are most relevant with the cancers instead of 
evaluating the importance of each gene individually. Firstly, we need to define the ranks 
of the genes by:  

  (20) =β Vθ% %

where β  gives the estimates of the regression coefficients and its absolute values indicate 
the relative importance of the genes in the subset. The RFE procedure is designed as:  

%

• For a subset of genes, leave-one-out cross-validation (LOOCV) is performed to 
find the λ  which corresponds to the minimum LOOCV error. 

• The averaged regression coefficients β  are calculated using 100 bootstrap 
samples from the original data with the λ  fixed.  

• The genes with the smallest jβ  are eliminated to obtain a smaller subset.  

• Evaluate the performance of the new subset of genes. 
This procedure can be iterated for many times until there is only one gene left. An 
optimal subset of genes can be finally chosen.  

3 RESULTS 

3.1. Evaluation of classifier accuracy 

For convenience, name the PLS based logistic regression as PLS-LOG and the SVD 
based logistic regression as SVD-LOG. The specifications of seven publicly available 
cancer datasets are listed in Table 1, which were chosen from [10]. A MATLAB version 
SVM [11] was also used to compare with the two methods. For each of these datasets, 
100 random partitions were performed and each dataset was separated into a training 
dataset and a testing dataset. The means and standard deviations of testing errors and total 
time cost of the three classifiers were then recorded and listed in Table 2. The programs 
were all written in MATLAB and running on an ALPHA machine. In construction of the 
PLS-LOG and SVD-LOG, the number of components are empirically set to fifteen.  

The classification accuracy of PLS-LOG and SVM are very similar and they both 
show minor advantage over SVD-LOG except on the lung cancer dataset. Though PLS-
LOG generally runs faster than SVD-LOG, both of them cost much less time than SVM. 
We did not get results on prostate cancer data for SVM because the training appears to be 



endless. Solving the quadratic programming problem for SVM depends on the 
characteristics of different datasets and there seems to encounter some problem in 
convergence on this dataset.  

 
Table 1 Description of the datasets. 
Dataset Genes Partition Setting 
Breast Cancer 24481 60 training v.s. 37 testing 
Central Nervous System 7129 40 training v.s. 20 testing 
Colon Tumor 2000 40 training v.s. 22 testing 
Acute Leukemia 7129 40 training v.s. 32 testing 
Lung Cancer 12533 100 training v.s. 81 testing 
Ovarian Cancer 15154 150 training v.s. 103 testing 
Prostate Cancer 12600 100 training v.s. 36 testing 

 
Table 2 The means and standard deviations of testing errors of PLS-LOG, SVD-LOG and SVM on the seven 
datasets. The minimum testing errors and time cost are indicated in bold font.  

Testing Errors Time Cost Dataset 
PLS-LOG 

,µ σ  
SVD-LOG 

,µ σ  
SVM 

,µ σ  
PLS-LOG 
(s) 

SVD-LOG  
(s) 

SVM  
(s) 

Breast Cancer 12.88, 2.89 13.50, 2.58 13.09, 2.70 4602 5656 32615 
Central Nervous System 7.68, 1.76 8.14, 2.58 7.76, 2.06 930 924 2297 
Colon Tumor 3.97, 1.62 4.26, 1.55 3.78, 1.23 404 419 1577 
Acute Leukemia 1.94, 1.82 2.74, 1.88 1.57, 1.33 937 1210 2363 
Lung Cancer 0.83, 0.71 0.52, 0.61 0.83, 0.82 5443 7565 23245 
Ovarian Cancer 0.08, 0.42 1.29, 1.26 0.22, 0.50 14962 17010 37931 
Prostate Cancer 4.68, 1.77 5.38, 1.75 NA 5419 7200 NA 

3.2. Choosing λ  

In this and the following sections, the acute leukemia dataset is used for all data analysis 
and comparisons, which consists of two classes: acute lymphoblastic leukemia (ALL) 
and acute myeloid leukemia (AML). This dataset was given by Golub et al. [12] and has 
totally 72 samples (47 ALL and 25 AML).  

The estimates of the regression coefficients β  are affected by % λ  significantly. A 
direct way is to select the penalty parameter by cross-validation. To find an optimal value 
of λ , it was varied in steps over a large range: 152 152− − , using 31 linearly spaced values 
for 2glo λ . Fig. 1 shows the LOOCV errors v.s. lo 2g λ . For both PLS-LOG and SVD-
LOG, the minimum LOOCV error is 3, which happens when lo 2g λ  is relatively small: 
about −  to 14 7− . The LOOCV error turns out to be 25, which is the number of AML 
samples,  when lo 2g λ  is and larger than 0. The values of log-likelihood v.s. lo 2g λ  are 
also shown in the right panel of Fig. 1. The minimum log-likelihood is nearly zero. It 
indicates a successful training has been done.  

Fig. 2 shows the probabilities, , of prediction for ALL (AML is thus 1 ). The 
results by PLS-LOG and SVD-LOG are given in the left and right panels, respectively. 
When 

p p−

λ  becomes large, the probabilities of all samples converge to a fixed value, which 
equals the percentage of ALL in all samples. Another thing which should be noticed is 
that the curves given by PLS-LOG in the left panel overlap. That means, the probabilities 
given by PLS-LOG have much smaller deviance than SVD-LOG.  



  
Fig. 1 LOOCV errors (left panel) and log-likelihood (right panel) v.s. log2 λ  for both PLS-LOG and SVD-
LOG. 

  
Fig. 2 Probability v.s. 2log λ  for both PLS-LOG (left panel) and SVD-LOG (right panel). 

3.3. Components selection 

Another important issue for PLS-LOG and SVD-LOG is the number of components used 
for training and testing. Because there is always noises in microarray cancer data, the 
maximum number of components that can be extracted from PLS and SVD is equal to the 
number of samples in the dataset. It is not necessary to use all of these components. Since 
we always sort these components according to their variances in descending order, only 
the first a few components are needed and the other components can be considered as 
noises. To determine the effect of components selection, we set 0λ =  and then perform 
LOOCV on the acute leukemia data while the number of components varies from 1 to 20. 
Fig. 3 illustrates this.  

PLS-LOG achieves the minimum LOOCV error using only 5 components. It can 
even reaches 4 LOOCV errors using only 2 components. More components used than 5 
did not help PLS-LOG to make better results. For SVD-LOG, the minimum LOOCV 
error appears when 10 components are used. The results of LOOCV begins to stabilize 
when 15 and more components are used for SVD-LOG. It is convincing that PLS 
produces components that are of more quality than SVD from this comparison. This 
condition can be further shown in Fig. 4, where we plot all samples using 2 components 
from PLS and SVD in the left and right panels, respectively. Two PLS components are 



enough to nicely separate all acute leukemia samples while the two clusters in the plot of 
SVD components overlap heavily.  
 

 
Fig. 3 LOOCV errors of PLS-LOG and SVD-LOG v.s. components. 

  
Fig. 4 Scatter plot of all acute leukemia samples using two components from PLS (left panel) and SVD (right 
panel).  

3.4. Feature selection 

Feature selection has been done on the acute leukemia data using RFE. Assume the 
number of genes in the subset is . The optimal way to do RFE is to eliminate the least 
important gene one at each time but this can cost enormous time to complete. An eclectic 
method is to eliminate a large amount of genes at each time when n  is large and less 
amount of genes when  becomes small. We design the RFE procedure in a way so that 

 is fixed for each subset, thus a series of nested subsets can be obtained and n  would 
be 4096, 2048, 1024, 512, and so on. Each time  is halved until it is less than 10, then 
one gene is eliminated at each time. PLS-LOG was used to do RFE and the training and 
testing errors of each subset are listed in Table 3.  

n

n
n

n

There are five subsets whose testing errors are zero. They are denoted as bold face in 
Table 3. Denote the subsets by their iterations, the smallest subset among them is subset 
10 which has 16 genes. Also, very good results can be achieved by the subsets with less 
than 10 genes. We list the gene accession number, gene description and the averaged 
regression coefficient in Table 4 for the 16 genes in subset 10. Some of these genes 
overlap with the genes that were selected by other authors [5,12].  

 



Table 3 Recursive feature elimination for acute leukemia data using PLS-LOG.  
Iteration Genes Training µ  Training σ  Testing µ  Testing σ  
1 7129 2.920000 1.495313 1.190000 1.541972 
2 4096 0.790000 0.714850 0.270000 0.468287 
3 2048 0.180000 0.386123 0.050000 0.219043 
4 1024 0.030000 0.171447 0.000000 0.000000 
5 512 0.090000 0.287623 0.000000 0.000000 
6 256 0.010000 0.100000 0.010000 0.100000 
7 128 0.000000 0.000000 0.000000 0.000000 
8 64 0.230000 0.446196 0.150000 0.385992 
9 32 0.080000 0.307482 0.000000 0.000000 
10 16 0.080000 0.272660 0.000000 0.000000 
11 10 0.080000 0.272660 0.040000 0.196946 
12 9 0.250000 0.500000 0.120000 0.383498 
13 8 0.110000 0.345096 0.060000 0.277798 
14 7 0.140000 0.376588 0.080000 0.307482 
15 6 0.560000 0.715203 0.420000 0.622475 
16 5 0.670000 0.697108 0.500000 0.703526 
17 4 1.100000 0.703526 0.640000 0.718022 
18 3 1.720000 0.877093 0.940000 0.930081 
19 2 2.290000 0.924362 1.210000 1.148517 
20 1 3.330000 1.198105 1.530000 0.926108 

 
Table 4 Sixteen genes selected by RFE for acute leukemia data.  
Gene description Accession number  β  
ALDH1 Aldehyde dehydrogenase 1, soluble M31994 0.352435   
CTSD Cathepsin D (lysosomal aspartyl protease) M63138 0.288498   
Zyxin X95735 0.240914   
MPO Myeloperoxidase M19507 0.251528   
CD33 CD33 antigen (differentiation antigen) M23197 0.200143   
Azurocidin gene M96326 0.235837   
GB DEF = CD171 protein Y10207 0.179925   
Tryptase-III mRNA, 3' end M33493 0.128311   
Heat-stable enterotoxin receptor mRNA M73489 0.190334   
Methyl sterol oxidase (ERG25) mRNA U60205 0.159493   
BGLAP Bone gamma-carboxyglutamate (gla) protein (osteocalcin) X04143 0.176478 
Biliverdin-IXalpha reductase mRNA U34877 0.160293   
Liver mRNA for interferon-gamma inducing factor(IGIF) D49950 0.158959   
S100A2 gene, exon 1, 2 and 3 Y07755 0.152358   
GLUTATHIONE S-TRANSFERASE, MICROSOMAL U46499 0.150263   
A-Myb (Gb:X13294) HG2562 0.146328   

4 DISCUSSIONS 

From the experiments, the penalty parameter λ  chosen by PLS-LOG and SVD-LOG 
tends to be zero. This indicates that the first components contain little redundance. Larger 
λ  were selected by other authors [2] who used all the original data for penalized logistic 
regression.  

PLS generates components in the direction that maximizes the covariance between 
 and  while SVD components are in the direction that maximizes the variance of . 

Therefore, the PLS components already contain information about the class labels of the 
X y X



samples. Our results show that PLS-LOG generally performs better than SVD-LOG. The 
PLS components also show higher quality than SVD components.   

There is no standard criterion to evaluate the quality of the subset of genes. One 
direct way is to look at the testing accuracy on the subset but the genes that distinguish 
well between two classes do not necessarily be the causes of the cancers. The 16-gene 
subset selected by PLS-LOG has achieved zero testing accuracy but further study are 
required to learn the roles that  these genes play in causing the cancers.  
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