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New peptide encoding schemes are proposed to use with support vector machines for the
direct recognition of T cell epitopes. The methods enable the presentation of information
on (1) amino acid positions in peptides, (2) neighboring side chain interactions, and
(3) the similarity between amino acids through a BLOSUM matrix. A procedure of
feature selection is also introduced to strengthen the prediction. The computational
results demonstrate competitive performance over previous techniques.
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1. Introduction

Computational T cell epitope identification currently relies on the prediction of pep-
tide binding to major histocompatibility complex (MHC) molecules. In the pathway
of antigen processing and presentation, antigens are degraded into a set of peptide
fragments through the action of the proteasome and the resulting peptides presented
by MHCs are recognized by one or few of a large set of T cell receptors (TCRs).
Methods for the prediction of MHC binding peptides have been developed based on
structural binding motifs'3'4:24:25:26:27 or quantitative matrices,'®?2 Artificial Neu-
ral Networks (ANNs) 31216 and Support Vector Machines (SVMs).” On the other
hand, research has indicated that T cell epitopes are not always high affinity MHC
binders, and only a few of the potential MHC-binding peptides are T cell epitopes for
a specified T cell receptor. Identification of good binders for specific MHC molecules
may not provide accurate information on T cell epitopes, since a functional T cell
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response requires adequate MHC-peptide binding as well as proper interaction of
the MHC-peptide ligand with a specific T cell receptor. The approaches mentioned
above do not discriminate between T cell epitopes and non-epitopes which are both
MHC binders.'' The methods of direct prediction developed in 1980s were based
on the structural analysis of T cell epitopes.%:10:28:29

Recently, techniques for the direct prediction of T cell epitopes based on machine
learning techniques such as SVMs and ANNs with the use of sequence information
have been proposed.!! Bhasin and Raghava' compared the performance of ANNs
and SVMs with the use of the amino acid (AA) indicator vector in which each
amino acid of a peptide is represented by a 20-dimensional vector. Zhao et al.3!
employed 10 physical properties of the 20 amino acids to encode each residue of a
peptide. These 10 properties include alpha-helix or bend-structure preference, bulk,
beta-structure preference, hydrophobicity, normalized frequency of double bend,
normalized frequency of alpha region, and pK-C.® This encoding represents a better
class of information in comparison with the AA indicator vector for a peptide. Both
studies have demonstrated that the SVMs have the potential to make relatively
accurate prediction based on training with small data sets.

In this work, a new encoding scheme of peptides that combines the BLOSUM
matrix'® with the AA indicator vectors for the direct prediction of T cell epitopes
was first investigated. Our method replaces each nonzero entry in the AA indicator
vector by the corresponding value appeared in the diagonal entries in a BLOSUM
matrix. This is different from other encoding methods in which each amino acid is
simply represented by its BLOSUM score.?! The characteristic of the new encoding
method is the joint representation of information on both the position and similarity
of the amino acids.

The above approach is based on the assumption of independent contribution of
amino acids within a peptide to the TCR recognition. Interactions of the side chains
of adjacent amino acids also exist and their effect was investigated by extending our
new encoding scheme. Specifically, interaction indicator vectors of the side chains
of adjacent amino acids are formed first, followed the extended Free-Wilson’s addi-
tive concept of possible interactions between amino acid side chains.?® Then each
nonzero entry in the vector is replaced by the sum of values of the two corresponding
residues appeared in diagonal entries in the BLOSUM matrix. It is noted that the
additive concept has been explored in the affinity analysis of MHC binders based
on quantitative structure-activity relationship (QSAR) studies by Doytchinova and
Flower.3:?

The new encoding methods combined with SVMs were evaluated on two data
sets: one used in Zhao et al.?!, and the other derived from the MHCBN database.?
The computational results demonstrated competitive performance of the new meth-
ods in comparison with those using the indicator vector and the 10 physical prop-
erties of the amino acids.?!
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2. System and Method
2.1. Training and testing data

Two data sets were utilized in this experiments. The first data set is the one used
in Zhao et al.'. As described,®' the Melan-A-specific Cytotoxic T lymphocytes
(CTL) clone LAU203-1.5 was derived from the tumor-infiltrated lymph node cells
of a melanoma patient and the antigen recognition was assessed using a chromium-
release assay (see details in Zhao et al.>') Among the 203 synthetic peptides, 36
were tested stimulatory (positive) and 167 were tested non-stimulatory (negative).
These peptides have 10 amino acids. The second data set was extracted from the
MHCBN database developed by Bhasin et al.? The set comprises 80 HLA-A*0201
restricted T cell epitopes and 140 peptides that are neither MHC binders nor T cell
epitopes with respected to HLA A2 supertype (A*0201-07, A*0209, A*6802). These
peptides consist of 9 amino acids. Since the numbers of the positive and negative
peptides are unbalanced in both data sets, the numbers of positive and negative
peptides in the training and testing sets were maintained in a similar ratio in our
cross-validation procedure. It is noted that although the T cell epitopes in the two
data sets are both HLA-A*0201 restricted, they are mutually distinctive, i.e., any
epitope from the first data set does not overlap with any epitope from the second
data set.

2.2. Peptide encoding methods

One of the important elements that influence the effectiveness of a SVM model
is the design of the encoding method for training data. The AA indicator vector
(1 present or 0 absent of an amino acid at a particular position) for a peptide
has been used intensively. It provides very precise information on the position of
each amino acid in a peptide. In order to consider the evolutionary relationship
between residues occurring at the same position in peptides, Nielsen et al.?' have
employed the BLOSUM score to represent each amino acid. More specifically, given
a peptide, each amino acid is simply represented by its BLOSUM score. In this case,
the encoding vector is of dimension s for a peptide with length s. The BLOSUM
score contains prior knowledge about which amino acids are similar or dissimilar
to each other in distantly related proteins. However, it is clear that this encoding
method loses some information. For example, the hydrophilic amino acids Arg, Asn,
Gln and the hydrophobic amino acid Met all have the same BLOSUMS50 score 7. If
they appear at the same position in the peptides, the method would not be able to
discriminate them, although they may have different contribution to the recognition.

We introduce novel encoding techniques that combine the amino acid substitu-
tion matrix BLOSUM with the indicator vector at each position or indicator vector
representing interactions of the adjacent or second adjacent residues. The first new
encoding method replaces each non-zero value in the AA indicator vector by the
BLOSUM score of the corresponding amino acid. By doing so it avoids the ambigu-
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ity of the BLOSUM encoding method mentioned above. For a peptide with length
s, the dimension of the encoding vector is thus 20s. Obviously, this scheme encodes
not only the position of residues but also the similarity scores. Therefore, the entire
vector provides more accurate information about a peptide.

The second encoding method is based on the model of Doytchinova and Flower®:
in which the additive concept with terms accounting for the possible interactions
between the side chains of adjacent amino acids was considered for the contribution
to the MHC-peptide binding affinity, in addition to the independent contribution
from each residue’s backbone. Each adjacent pair of amino acids is represented by
a 400-dimensional vector with each entry corresponding to one of the combinations
of the 20 residue pairs. This vector is concatenated to the 20s-dimensional encoding
vector in the first method, resulting in a total number of 20s + 400(s — 1) for each
peptide. In order to combine information from the BLOSUM matrix, each “1” in
the vector representing the side chain interaction is replaced by the sum of the
BLOSUM scores of the two corresponding residues.

The third method is to consider interactions of every second side chains in
the model of Doytchinova and Flower,3°
position ¢ and i +2,i = 1,...,s — 2. Use the same 400 combinations of amino acids,

9

i.e., the interactions between residues at

this part of information can be encoded with a 400(s — 2)-dimensional vector for
a peptide. Therefore, the overall dimension of the vector in this encoding method
is 20s + 400(s — 2). Likewise, each “1” in the vector is replaced by the sum of two
corresponding BLOSUM scores.

2.3. Feature ranking

Since the feature vectors obtained from the encoding methods are sparse, a feature
selection procedure is used to exclude the features that appear less frequently and
less discriminative. Here a simple procedure for feature selection is carried out based
on Fisher’s score of each feature.

Let n1 and ns2 be the numbers of vectors in the positive (Pos) and negative (Neg)
training sets, respectively. Denote an encoding vector of peptide by @x. Fisher’s score
for each feature j is defined as

N
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A feature with a higher Fisher’s score is considered as more discriminative. The

features are then assembled according to their scores in a descending order.
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2.4. Training with support vector machines

Suppose that we are given a set of m points x; (1 < ¢ < m) in an n-dimensional
space. Each point «; is labeled by y; € {1,—1} denoting the membership of the
point. An SVM is a learning method for binary classification. Using a nonlinear
transformation ¢, it maps the data to a high dimensional feature space in which a
linear classification is performed. It is equivalent to solving the quadratic optimiza-
tion problem:

1 S
w7b7rg11171_1"7£m W w + C’;&

subject to y;(d(x;) - w+b)> 1-& (i=1,...,m),

gi Z 0 (’L = 1,...,m),

where C' is a parameter. The decision function is defined as f(xz) = ¢(x) - w + b,
where w = 7", a;¢(x;) and o; (i = 1,...,m) are constants determined by the
dual problem of the optimization defined above. Therefore, the function can be
represented as

m m
fl@) = aid(m) - d(x) + b= ;K (wi, ) +b
i=1 i=1
through the definition of a kernel function K (-, -). For details of SVMs please refer
to Cristianini and Shawe-Taylor.*

According to our preliminary study, the linear kernel (¢(x) = x) in SVMs gives
the best performance. This could be due to the sparsity of encoding vectors and the
small number of training points. Therefore, we used the linear SVM model in the
present experiment.

In order to handle the unbalancedness between the numbers of peptides in the
positive and negative training sets, different parameters C'; and C'_ were associated
with the positive and negative training errors respectively. That is, the objective
function in the above quadratic programming is replaced by

%w-w-kCJr.Z G+C- Y &
iryi=1 igi=—1
The ratio of C_ to C is bounded by the value of n2/n; in general,?® however, the
best ratio is usually determined through cross-validations by searching in the range
of [1,n2/n1]. Accordingly, two parameters associated with a SVM model need to be
optimized:

(1) C4 : the trade-off between the positive training error and class separation;
(2) J : the ratio of C_ to Cy, ie., J=C_/C4.

Since the identification of positive peptides is of great interest, the quality of
the SVMs was evaluated by the precision (positive prediction value)
tp

precision = ————,
tp+ fp
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and recall (sensitivity):

tp
tp+ fn’
where tp (resp. tn) is the number of predicted positive (resp. negative) peptides
which are true positive (resp. negative), and fp (resp. fn) is the number of predicted
positive (resp. negative) peptides which are true negative (resp. positive).

The F'-score, given by

recall =

2 x precision * recall

F-score = — ,
precision + recall

was employed as a criterion for the determination of the SVM parameters in the
cross-validation. These criteria provide a more accurate evaluation of the classifier
when dealing with unbalanced positive and negative data sets.

Procedures. The experimental protocol is a 5-fold cross-validation (CV). Each
time one fold was set aside as a testing set and the remaining 4 folds were used as
the training set. The features were ranked according to their Fisher’s scores in a
descending order based on the training set. For a fixed number of features, a 10-fold
cross-validation on the training set was used to optimize the parameters Cy and J
in terms of F-scores. To obtain the final classifier for the training set, the training
was carried out again by using the optimal parameters on the entire training set
and evaluated on the testing set for recall and precision. This process was repeated
5 times with different testing and training folds; the average values of recall and
precision were calculated. The flowcharts of the procedures are shown in Fig. 1.

A greedy strategy was designed for the search of the best F-score and the corre-
sponding pair of parameters within the given range of C'y and .J in the 10-fold CV
on a training fold. More precisely, the search starts with a randomly selected pair
(Cy,J) on a coarsely defined grid for the area determined by the ranges of C and
J. The neighboring pair of the current parameters (C,.J) is chosen if it is associ-
ated with a better F-score. The search stops if no any neighboring pair can improve
the F-score. A smaller area consisting of the current stopping grid point and its
four neighboring grid points is identified. Then a refined grid, usually by taking half
of the current grid size, is constructed for the new area. The above local search is
repeated until a prescribed grid size is reached. The entire local search procedure
is run for a few hundred times to ensure the identification of the best F-score. It
is noted from our preliminary study that this local search can successfully find a
F'-score very close to the one obtained from an exhaustive search on all grid points
with the prescribed grid size.

Experimental setting. In our experiment, the number of random starts for the
local search is 250. The ranges of C'y and J are [0.0001, 5] and [1, 5], respectively;
the final grid sizes are 0.0001 for C'y and 0.05 for J, respectively. Denote vy and vy
the numbers of minimum and maximum features selected, respectively; and A the
incremental step size for the number of features. The values of vy, v1, and A for
the first encoding are respectively 60, 20s (the number of total features), and 20.
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Training and testing folds sets
and the number of features |V|

Y

Sort the list of features on the
training set

Find the best F-score and the
parameters C 4, J through 10-fold
CV with thetop |V| features on
the training fold

Split the data set
into 5 training and
testing folds

A\

M=y, Identify the best F-score and
the associated C*. and J*

For each training and
testing pair call Procedure 2|

A 4
CompiteThe averages of The Train the entire training set

recall and precision from withV, C% and J*
the 5 testing folds

Y

no
VEV+A @ Compuite recall, precision and

or VY ves F-score for the test set using
if vy -V <=0 End the classifier

Fig. 1. Left. Procedure 1: the overall procedure of the training and testing. The numbers vg and
v1 are the minimum and maximum numbers of features selected respectively; A is the incremental
step size for the number of features. All these numbers are prescribed. Right. Procedure 2: the
flowchart of the training and testing with a fixed number features. The 10-fold cross-validation
for the identification of the best pair of parameters (C_j_, J*) is carried out by a local optimization
procedure.

The values of vg and v; for the second and third encoding methods are respectively
60 and the number of features remained after the execution of the feature removal
procedure described below; and the value of A is 40.

For the second and third encoding methods, many pairs of residues only occur
rarely due to the small number of training peptides. Therefore, those features that
appeared less than 3 times in the training set were removed to avoid overfitting.
This procedure reduced the feature numbers to approximately 270 for both sets. The
BLOSUMS50 matrix and the SVMLight package!” were used in our experiments. The
other BLOSUM matrices were also attempted, however, no significant difference in
performance has been observed (results not shown).



August 9, 2005 14:15 WSPC/INSTRUCTION FILE

8 Huang and Dai

huangDai

In order to provide performance statistics of the proposed methods, the ex-
periments were repeated 5 times for the 5-fold CV. The average values of recall,

precision and the corresponding standard deviations were calculated.

3. Results

For each encoding method, the results with and without feature selection are re-

ported. Only the best results with feature selection are presented here. For compari-

son, the experiment with the AA indicator vector was also performed. The notations
for the different encoding methods are summarized in Table 1; and results are shown

in Tables 2 and 3.

Table 1. The legends used in Table 2.

Legend  Encoding Method

AA-B AA indicator vector with BLOSUM scores

AA-B-s AA-B with feature selection

SI1-B adjacent interaction indicator vector with BLOSUM scores
SI1-B-s  SI1-B with feature selection

SI2-B second adjacent interaction indicator vector with BLOSUM scores
SI2-B-s  SI2-B with feature selection

AA AA indicator vector

AA-s AA indicator vector with feature selection

Zhao encoding method by Zhao et al.3!

Table 2. Summary of the comparison of proposed methods to ex-
isting methods for Zhao’s data set.

Method Precision Recall #Features
AA-B 0.798 (0.038) 0.775 (0.033) 200
AA-B-s 0.835 (0.057)  0.790 (0.051) 140
SI1-B 0.857 (0.033) 0.800 (0.038) 263
ST1-B-s 0.873 (0.028)  0.825 (0.028) 220
SI2-B 0.764 (0.047) 0.775 (0.041) 220
SI2-B-s 0.788 (0.043)  0.775 (0.064) 100
AA 0.707 (0.033) 0.730 (0.029) 200
AA-s 0.714 (0.076)  0.745 (0.026) 140
Zhao 0.716 0.763 100

%Zhao : The results are taken from Zhao et al.3!

> The values in parentheses stand for standard deviations.

It is observed from Table 2 that all three new encoding methods with or without
feature selection outperform Zhao’s and the AA indicator vector methods. Feature
selection has positive effect on performance. In comparison to the findings of Zhao
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Table 3. Summary of the comparison of proposed methods to ex-
isting methods for the second data set.

Method Precision Recall #Features
AA-B 0.764 (0.009) 0.770 (0.039) 180
AA-B-s 0.779 (0.021)  0.813 (0.029) 100
SI1-B 0.756 (0.028) 0.733 (0.045) 250
SI1-B-s 0.751 (0.038)  0.778 (0.034) 100
SI2-B 0.768 (0.046) 0.765 (0.031) 235
SI2-B-s 0.768 (0.017)  0.828 (0.031) 100
AA 0.759 (0.016) 0.775 (0.039) 180
AA-s 0.784 (0.015)  0.825 (0.034) 100

et al., the AA-B-s encoding method improved the recall from 0.763 to 0.790 and
enhanced precision from 0.716 to 0.835, a substantial improvement.

The encoding methods with the additive contribution from the side chain inter-
action effect positively to prediction with different magnitude. The SI1-B-s method
demonstrated superior performance; it improved recall from 0.763 to 0.825 and pre-
cision from 0.716 to 0.873. Nevertheless, the SI2-B-s performed only slightly better
than the AA-B method. These observations imply that interactions of side chains
of the adjacent residue pairs may be more important than those from the second
adjacent residue pairs.

However, the new encoding methods did not demonstrate evidence of the im-
proved performance over the 0-1 encoding methods for the second data set (see
Table 3). Nevertheless, the evidence of improvement made through feature selec-
tion can be observed. For example, with the use of 100 selected features for each
encoding method, it reaches a similar or an enhanced performance.

In order to further compare the performance with other direct T cell prediction
methods, we obtained predicting results from the web server CTLPred developed
by Bhasin and Raghava,! which is the only publicly available direct T cell predictor.
This system was trained based on all 9 amino acid long CTL epitopes extracted
from MHCBN database? and an equal number of CTL non-epitopes. It has several
predictors including the QM, ANN, and SVM. The consensus method constructed
from the ANN and SVM models was selected in our test, since it has the best
reported performance.! In this framework, peptides which are predicted as epitopes
by both methods are considered as epitopes; otherwise they are considered non-
epitopes. We have tested several combinations of threshold values for the ANN and
SVM models. For the first data set, the best performance indicates a precision value
of 0.24 and a recall value of 0.5 for Zhao’s data set; both are significantly lower in
comparison with those obtained from the proposed methods in this paper. For the
second data set, the predictor produced a precision value of 0.8 and a recall value
of 0.65. Note that these peptides were actually used in training. This fact may
contribute positively to the performance.
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Fig. 2. The sequence logos obtained for the 36 positive peptides (left) and the 167 negative peptides
(right) of Zhao’s data.

4. Discussion

The sequence logos of peptides for each data set are respectively provided in Figs.
2 and 3 to facilitate the discussion.? It is obvious that the sequence logos for these
two datasets are very different. The new encoding methods appear to be more
suitable for Zhao’s data set, which comprises synthetic peptides. Note that the
T cell epitopes are not necessarily MHC binders. Conversely, the new methods
appear to have limited impact on the performance for the second data set. It may
be explained by the nature of the T cell epitopes. They are MHC binders and
possess strong motifs at the anchor positions P2 and P9. The signals are so intense
and discriminative so that the BLOSUM encoding methods could not enhance the
prediction further. However, the feature selection still contributes positively to the
prediction.

The detail analysis of the top 140 features for Zhao’s data set suggested that
Fisher’s scores do provide raking of the importance of positions on peptides and the
hydrophobic residues occurred in these positions. The top features on the sorted
list imply the existence of a correlation between the peptide sequences and their
stimulatory activity. For example, Gly, which appears most frequently at position 6
in positive peptides, ranks first in the sorted list. Phe, often observed at position 3 in
negative peptides, was ranked in the second position in the list. Other top features
include Lys (position 1 in negative peptides), Ile (positions 5 and 7), and Phe
(position 4). The two latter residues are frequently seen in the positions involved in
TCR recognition according to Zhao et al.. It was also suggested residues at positions
4-8 to be primarily involved in TCR recognition.??

In order to analyze the contribution from each amino acid at different positions,
the average of the weight vectors w in the SVMs for the optimized classifiers was
calculated for the AA-B encoding method (see Fig. 4). It is observed that Ile at
positions 5 and 7, and Gly at position 6 have very high positive values; and Phe at
positions 3 and 4 contribute negatively. These weights match well to the sequence
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Fig. 3. The sequence logos obtained for the 80 positive peptides (left) and the 140 negative peptides
(right) of the second data set.

P1 (P2 :P3: P4 P5:P6: P7: P8 : P9 : P10:

-0.2

0.3

Oy

230 430 630 8:0 100 120 140 160 180 200

Fig. 4. The average weight values w; (i = 1,...,200) determined from the optimal classifiers with
the AA-B method for Zhao’s data set.
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logos. The comparison of our findings with those of Zhao’s is detailed in Table 4.
Specifically,

Position 9: our method reaches a similar conclusion as that of Zhao’s, except Leu
has a negative contribution in our case.

Position 2: our method found no weight for Cys and Glu. This seems to be con-
sistent to the sequence logos, where no significant information is presented for
Cys and Glu. In addition, Thr was found with positive weight in our method,
but was reported having negative contribution in Zhao’s method. Examination
of the logos indicates that Thr appears more often in positive set than in the
negative set, which seems to support our results.

Position 4: both methods agree on the positive contribution from Arg, Ser and
Thr.

Positions 5 and 7: both methods found Ile and Phe contribute positively. Particu-
larly, Ile has the highest weight from our method, consisting perfectly with the
sequence logo. However, Ala was reported with a negative weight in our method
and positive in Zhao’s method.

Position 6: the highest positive contribution from Gly and the negative contribu-
tion of Pro were confirmed from both methods.

Position 8: both methods agree on Phe’s positive contribution; however, our
method also indicates a positive contribution from Asn.

Further investigation of the weight vector obtained from the SI1-B-s method
reveals that the weights for Ile (position 5) and Gly (position 6) pair, Gly (position
6) and Ile (position 7) pair, Gly (position 4) and Ile (position 5) pair are 0.637, 0.393,
and 0.239, respectively. These features are also among the top features ranked by
Fisher’s score. It is not surprising that these features have large weights since their
positions are involved in the TCR recognition. Furthermore, for pairs contain amino
acids at position 2 and position 9, most of the corresponding features have be ranked
relatively high compared to those in other positions (e.g. pairs of Lys (position 1)
and Lys(position 2), Lys (position 2) and Phe (position 3), and Phe (position 8)
and Pro (position 9); with weights -0.0222, -0.0253, and 0.2017 respectively). These
findings imply that the combination of feature selection and the SVM may capture
the important information for the prediction of T cell epitopes.

5. Conclusion

New encoding methods for the direct recognition of T cell epitopes and non-epitopes
through support vector machines have been developed. These encoding methods
combine information in the conventional sparse encoding vector and BLOSUM
scores. The superiority of the encoding methods and the effectiveness of the fea-
ture selection procedure were demonstrated for the data set comprising synthetic
peptides. Our results suggest that the feature selection may extract the most im-
portant information that contributes to the stimulatory activity of T cell epitopes
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Table 4. Comparison of the analysis of residue contributions at different positions.

Zhao et al.

Ours

Substitution of Thr in position 9 with
hydrophobic residues Phe, Leu and Ile yielded
the highest SVM scores.

Phe(0.185) and Ile(0.066) have positive
weights; while Leu(-0.001) has negative weight.

At position 2, Cys, Arg, Glu, Met, and Thr
yielded higher SVM scores while Leu kept
almost the same score as Ala.

Substitution with polar residues Ser, Thr,
and Asn at position 2 would yield negative
SVM scores.

Met(0.169), Arg(0.122), Thr(0.080), and
Leu(0.059) have positive weights,

while Ala(-0.002) negative.

No weights for Cys and Glu.

Ser (-0.071), Thr(0.080), Asn (-0.003)

At position 4, Arg, Ser, and Thr doubled
the SVM scores compared to Ala in the
template.

At Position 4, Arg(0.085), Ser(0.137) and
Thr(0.007) are positive; Ala(-0.019) negative.

Gly was the only amino acid to be allowed
at position 6 in order to keep the peptide to
be predicted positive. The nonpolar residue
Pro is the least favored one.

At position 6, Gly(0.364) has the highest
positive weight; Pro(-0.062) negative.

Hydrophobic residues were favored at
position 5 (Ile, Phe, Ala, Val) and 7 (Ala,
Ile, Leu, Val).

At position 5, Phe(0.061) and Ile(0.357) have
positive weights; Ala(-0.019) negative.

No weight for Val.

At position 7, Leu(0.002) and Val(0.125) have
positive weights, and Ala(-0.006) negative.

Replacing Leu with hydrophobic residues Phe
or Ile at position 8 leads to increase of
SVM scores.

At position 8, no weight for Ile.
Leu(0.62), Phe(0.62), and Asn(0.20) have
positive weights.

@Zhao’s findings are based on the SVM prediction of the single amino acid substitutions of a
synthetic decapeptide EAAGIGILTV, a predicted T cell epitope by their method. The SVM score

means the value of the decision function.

bpositions 2,9, and 10 are considered to be the putative MHC anchors.?
“Residues at positions 4-8 were suggested to be primarily involved in TCR recognition.2

and non-epitopes.
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