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Transmembrane proteins affect vital cellular functions and pathogenesis, and are a focus of drug 
design.  It is difficult to obtain diffraction quality crystals to study transmembrane protein structure.  
Computational tools for transmembrane protein topology prediction fill in the gap between the 
abundance of transmembrane proteins and the scarcity of known membrane protein structures.  Their 
prediction accuracy is still inadequate: TMHMM, the current state-of-the-art method, has less than 
52% accuracy in topology prediction on one set of transmembrane proteins of known topology.  
Based on the observation that there are functional domains that occur preferentially internal or 
external to the membrane, we have extended the model of TMHMM to incorporate functional 
domains, using a probabilistic approach originally developed for computational gene finding.  Our 
extension is better than TMHMM in predicting the topology of transmembrane proteins.  As 
prediction of functional domain improves, our system’s prediction accuracy will likely improve as 
well.  

Keywords: transmembrane protein topology prediction; functional domains; PROSITE; hidden 
Markov models; TMHMM. 

1. Introduction 

 About 20% to 25% of the proteins encoded by a typical genome are membrane 
proteins.1, 2, 3  These include both integral (transmembrane or TM) and peripheral 
membrane proteins.  There are two known classes of integral membrane proteins: those 
with α-helical structure and those with β-barrel structure.  Alpha-helical membrane 
proteins are the predominant type; thus, they are the focus of our modeling.  Figure 1 
illustrates a model for the topology of a hypothetical TM protein.  Typical computational 
programs often fail to infer the correct topology.1, 4, 5  Our goal in this work is to improve 
a standard hidden Markov model approach for TM protein topology prediction, by 
incorporating probabilistically the presence of sequence tags that are preferentially 
internal to or external to membranes.   
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Figure 1: A model to illustrate the topology of a hypothetical transmembrane protein, with six helices, three 

extracellular loops (A, C and E) and two intracellular loops (B and D).  On loop E, there is an external 

functional domain; on loop B, there is an internal functional domain.  The N- and C-terminus are both internal 

to the membrane. 

2. Computational Prediction of TM Protein Topology 

The basic problem in TM protein topology prediction is to find the location and 
orientation (sidednessa) of the membrane spanning segments (helices).  Local and global 
approaches are used for this problem.  The local approach looks at local features of 
sliding windows of the amino acid sequence, such as hydrophobicity, and identifies likely 
helixes and loops based on these properties.  Global approaches, instead, look to identify 
all helixes and loops as a group, optimizing a global criterion.  A canonical example of 
this approach is the use of hidden Markov model (HMM)-based prediction methods.  The 
main weakness of the local approach is the lack of specificity: it predicts too many false 
helices. On the other hand, the global approach examines sequences as a whole and does 
not set any empirical cutoffs and rules.1   

2.1 Features of TM Proteins for in silico Modeling  

Several features of TM proteins help in predicting topology.  For example, helices are 
more hydrophobic than loops of TM proteins.  The positively charged residues arginine 
(R) and lysine (K) are mainly found on the cytoplasmic side of TM proteins (the Positive-

                                                           
a We define the “outside” of a TM protein as the part external to the membrane, while the “inside” of the TM 
protein is the region interior to the membrane. 
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Inside Rule of von Heijne6), and play a major role in determining orientation.  
Hydrophobicity and the Positive-Inside Rule have been used widely in TM protein 
topology prediction methods.  

2.2 Hidden Markov Model 

A hidden Markov model is a probabilistic generative finite automaton.  Widely used in 
bioinformatics,7 it allows the representation of sequence features by states in the 
automaton, where each state emits residues based on a probabilistic distribution, and then 
transitions to another state based on another state-specific distribution.  HMMs produce 
sequences for which the generating state is hidden, but the standard Viterbi decoding 
algorithm7 can identify for a sequence the maximum probability sequence of states that 
could give rise to the sequence.  The states of this sequence correspond to the features 
annotated by the HMM on a given sequence.  HMMs easily model both the lengths of 
features in TM protein sequences, such as loops and helices, and their sequence content. 

2.3 Review of Existing HMM Models 

2.3.1 Transmembrane HMM (TMHMM) 

TMHMM’s model contains seven different types of states: one for the core of 
transmembrane helices, two for caps on either side, one for loops on the cytoplasmic side, 
two for short and long loops on the non-cytoplasmic side, and one for ‘globular domains’ 
in the middle of a loop.  Because of the limited number of proteins of known topology for 
training, for each state type, many states of that type have the same emission probability 
distribution, to avoid overfitting.  The transition matrix is a sparse matrix.  There is no 
difference in the models of TMHMM 1.08 and TMHMM 2.02 (collectively known as 
TMHMM in this paper), but TMHMM 2.0 was retrained on the same data set, and has 
higher prediction accuracy.1  TMHMM’s HMM can model helices 15–35 residues long, 
which is the longest among current HMM models. 

2.3.2 HMM for topology prediction (HMMTOP) 

HMMTOP9 is based on the idea that sequences found in different parts of the cell should 
have dramatically different residue contents, but the resultant model is largely a 
straightforward HMM with five types of states: inside and outside loops, inside and 
outside tails and transmembrane helices.  Two tails between adjacent helices form a short 
loop and tail-loop-tail form a long loop.  Since it has only five types of states, rather than 
TMHMM’s seven, its performance may be poorer, as seven types of states may give 
greater sensitivity to the variation of the amino acid compositions.10   

HMMTOP’s creators found that short loops with lengths between 5 and 30 amino 
acid residues appeared significantly more often than expected (a different distribution 
than geometric distribution).9  Consequently, they modeled the length of a tail of 1–15 
residues.   



2.4 Newly developed techniques 

Two recently developed methods, ENSEMBLE11 and Phobius12, and PRODIV-
TMHMM, a recent expansion of TMHMM to include sequence profiles13 combine 
multiple approaches and add more information into the system to aid prediction.  These 
more contemporary methods parallel methods in other areas of sequence analysis, such as 
gene finding, where external information such as alignments or repeats are incorporated 
into probabilistic gene finders, or where multiple gene finders have their results joined.14, 

15, 16 

2.4.1 ENSEMBLE  

ENSEMBLE explicitly combines a neural network and two HMMs to make 
predictions.  One HMM models the hydrophobicity of TM helices, and the other models 
the amphipathicity of TM helices.  ENSEMBLE stresses the amphipathicity of TM 
helices since some TM helices in multispanning TM proteins are not entirely exposed to 
the lipid bilayer. Instead, they are partially or completely shielded by other TM helices. 11, 

12, 17  The neural network uses a local approach with a certain size of window to make 
predictions.  ENSEMBLE takes the local average of the results of all three approaches to 
predict each residue’s state, unlike consensus methods18, 19 which simply take a majority 
vote from a pool of selected algorithms.   

However, ENSEMBLE must make ad hoc compromises in the presence of loop 
clashes, or helix deletions.  In addition, ENSEMBLE combines only advanced 
approaches (HMM and neural networks) whereas some previous consensus methods also 
use some simple methods such as TopPredII.20, 21   

2.4.2 Phobius 

Current TM protein topology prediction methods are effective at discerning globular 
proteins from TM proteins and transit peptides from TM helices.2, 4, 22  However, 
discernment between signal peptides and signal anchors (TM helices) is far from ideal.2, 4, 

5, 11, 12, 22   Lao et al. pointed out that the presence of signal peptides significantly degrades 
the performance of TM protein topology prediction methods.22  SignalP23 is an HMM 
which discriminates signal peptides from signal anchors.  Recently, a method called 
Phobius combined TMHMM with SignalP to try to overcome the problem. 

The rationale behind Phobius is that if a TM protein contains a signal peptide that is 
predicted by SignalP, the sidedness of the N-terminal of the mature protein will be 
predicted correctly as well.  Phobius makes some small modifications on both TMHMM 
and SignalP, and incorporates some newly trained transition probabilities to join the two 
models together.  In essence, with a transition from the last state of SignalP to the outer 
loop state in the TMHMM, Phobius connects two HMMs sequentially, one for signal 
peptide prediction, and one for the following TM helix prediction. 
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2.4.3 Multiple sequence alignment information in new methods 

Evolutionary information is also being incorporated into TM protein topology prediction 
via multiple alignments.  ENSEMBLE uses sequence profile information from multiple 
sequence alignments in training all predictors.  More specifically, it modifies the 
emission probabilities of an HMM by the use of a position specific score matrix obtained 
from multiple sequence alignments.  This seems to help to improve TM protein topology 
prediction accuracy.  Phobius also makes attempt to include homolog information in the 
prediction.  PRODIV-TMHMM calculates the geometric mean of the joint probability of 
the aligned sequences.  This makes the amino acids in each column of the profile be 
emitted by the same state.  The authors noted that the prediction accuracy of PRODIV-
TMHMM on a set of multispanning sequences increased by approximate 10% compared 
with methods based on single sequences.  Nevertheless, the authors also indicated that the 
performance of a profile-based HMM method depends on the quality of the profile.   

To incorporate multiple sequence alignment information into TM protein topology 
prediction is not a new idea.  PHDhtm24 has implemented this approach, and achieves 
better performance than methods with no multiple sequence alignment information.  
However, recently the author of PHDhtm also claimed that membrane helices are not 
entirely conserved among species.  The divergence could cause the methods which force 
maintenance of this property to fail.5 

2.4.4 Helix length 

Most methods (including TMHMM 2.0) do not model helices longer than 35 residues.  
However, helix lengths longer than 35 residues have been seen in high- resolution 
structures of TM proteins.21, 25  ENSEMBLE has addressed this issue by making the 
maximum length unbounded.  Phobius still has not. 

In addition, prediction preference for certain TM segment lengths is shown in 
methods such as TMHMM2.0 and PHDhtm.11, 12, 22  Käll et al. claimed that the bias 
towards certain length of TM helix resulted from overtraining.12  Phobius seems to rectify 
this problem by training on nearly twice as many sequences as TMHMM 1.0.  
ENSEMBLE avoids this overtraining by postprocessing the prediction results with a 
dynamic programming algorithm. 

2.4.5 Current programs do not incorporate functional domains  

HMMTOP 2.09 added some preliminary experimental information (including pattern 
predictors) on top of the HMMTOP 1.0 to help improve prediction accuracy.  It allows 
the user to localize one or more sequence segments in any of the five structural regions 
used in HMMTOP.  Möller et al. also suggested using additional information such as 
protein domains or post-translational modifications when the prediction from TMHMM 
is in doubt.1  However, information on protein domains or post-translational 
modifications has not been automatically implemented into any of current programs. 



3. Adding Functional Domains to TMHMM to Improve the Prediction 
Accuracy 

Here, we introduce AHMM, our extension of TMHMM.  It uses a probabilistic technique 
to incorporate pattern and domain predictors externally into TMHMM’s HMM by 
adjusting the probabilities of certain topologies at certain positions in a sequence.  We 
hypothesize that this incorporation will improve the prediction accuracy of TMHMM.   

3.1 Method  

There are exponentially many state paths π  through the hidden Markov model that 
correspond to a given sequence x .  We use the Viterbi algorithm to find the most 
probable state path *π  for a given sequence, which maximizes ),( πxP  over all paths. 

We have changed the way TMHMM computes the Viterbi probability of the possible 
topologies of an input sequence, by taking advantage of the presence of sequence 
signatures and predicted domains in the sequence.  We boost the probability of topologies 
that predict common internal functional domains as internal, and common external 
functional domains as external to the membrane, and decrease the probability of other 
topologies accordingly.  The functional domains we use are described in detail in Section 
3.2. 

For a signature, the topology probabilities are modified only at its start position.  For 
a domain, the topology probabilities are modified at both the start position and end 
position of the domain. 

Our augmented model uses a technique first implemented in the gene finder 
GenomeScan14 to modify the HMM probabilities when a signature or predicted domain is 
encountered.  Consider a sequence x that has a signature H  typically found internal to 
the membrane.  Suppose  is a supplied estimate of the probability that the signature is 

found internally.  Let  be the set of all topologies through the HMM where 
HP

HΦ H  is 

found internally, and  be the probability given )( HP Φ HΦ  by the HMM: it is the sum 

of the probabilities of the topologies π  in HΦ , where ),(P xπ  is the probability of a 
given topology π , as calculated by the Viterbi decoding algorithm.  Following the 
procedure initiated in GenomeScan, we boost the probability of the topologies in  by 

the factor 

HΦ

)1(
)( H

H

H P
P

P
−+

Φ
, which is always greater than 1, and reduce the 

probability of the other topologies, by multiplying their probability with .  
Specifically, after our changes, if we are given a signature 

)1( HP−
H , then the posterior 

probability of a topology π  is:   
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This change to the probabilities is easily incorporated into the decoding process, with 
neglible increase in runtime. 

For example, from position 240 to position 440 of sequence ENVZ_ECOLI, there 
exists a predicted histidine kinase domain.  Such domains are typically found internal to 
membranes, and this is in fact the correct topology for this protein.  TMHMM predicts 
this region as external, and gives the wrong prediction.  However, AHMM boosts the 
probability of topologies that are internal at both position 240 and 440, using the first part 
of the formula, and lowers the probability of topologies that are external at either of the 
two positions by using the second part of the formula.  With this change, AHMM gives 
the correct prediction (Figure 2). 

 

 

Figure 2: Topologies of ENVZ_ECOLI predicted by TMHMM and AHMM respectively. 
 

3.2 Definition of Pattern and Domain Predictors 

A particular cluster of amino acid types in a protein sequence is known as a pattern, 
motif, signature, or fingerprint.  It represents a conserved region of several proteins.  In 
this paper, we use “signature” to emphasize a PROSITE26 specific pattern versus its 
consensus pattern.   

Domains refer to functional or structural domains that are not detected by patterns 
because of their extreme sequence divergence.  PROSITE identifies domains with 



position specific score matrices (PSSM7, also known as profiles).  We use the term 
“functional domains” in this paper to refer to PROSITE signature and domain predictors. 
 
3.3 Selection of Pattern and Domain Predictors  
We use a computational approach to choose specific signatures and domains that are 
located preferentially internal or external to the membrane.  We identify them in a three-
step process.     

First, we use ps_scan27, a perl program found in the PROSITE package, to find 
PROSITE signatures and domains in each training sequence with profile cut-off level L = 
0 (trusted cut-off for positive matches).  Next, for each PROSITE signature or domain 
detected in the training sequences, we check which side of the membrane it falls upon, 
and how many non-redundant sequences contain it.  If a signature or domain appears 
exclusively on one side of the membrane, and at least three times, we select it for further 
test.  Finally, we incorporate all the signatures and domains selected into the Viterbi 
algorithm using the probabilistic method described above, and use the augmented Viterbi 
algorithm to re-predict the topology of the training sequences; we exclude any signatures 
and domains that cause a prediction error. 

The remaining signatures and domains are then used to predict the topology of test 
sequences.  In this experiment, we arbitrarily set PH to 0.6 because we do not know its 
true value for an arbitrary predictor.  The minimum number of times a signature or 
domain must appear, which in our case is three, is also empirically chosen; we expect it 
will increase as we have more sequences of known topology. 

4. Experimental Results 

We conducted the following experiments to test the robustness of AHMM as well as its 
sensitivity and specificity on helix and sidedness prediction.  

4.1 Data Sets 

We obtained our data set from three sources:  the TMHMM training set8, the non-D trust 
level sequences from the collection of Möller et al.28 and sequences from 3D_Helix and 
1D_Helix sets of the Membrane Protein Topology (MPtopo) database25 of May 17, 2005.  
Most of them have experimentally known topology.  We excluded all sequences from the 
TMHMM training set and the non-D trust level sequences of Möller et al. collection that 
are present in MPtopo sets.   

The TMHMM training set includes both eukaryotic, prokaryotic and organelle TM 
proteins.  From the Möller et al. collection, we excluded organelle membrane proteins 
(due to the annotation issue) and incompletely annotated ones.  We filtered the data set 
following the approach of Hobohm et al.29, which guarantees no more than 30% identity 
among any sequences in the test set; this was done using the needle program from the 
EMBOSS 3.0.030 package.  This left us with 245 sequences.   
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The topology prediction accuracy (the percentage of correctly predicted complete 
topologies) for TMHMM 2.0 on the 245 proteins is approximately 55%.       

4.2 Robustness test for AHMM 

In order to test the robustness of the method, we re-sampled and evaluated the 245 
sequences twenty times.  That is, we randomly selected 165 sequences from the 245 
sequences as training sequences and used the rest 80 sequences as test sequences.  Then, 
we conducted the computational selection of signatures and domains from the training 
sequences, using PROSITE31 data file release 19.0 of 26-Apr-2005 with profile cut-off 
level L = 0, and tested them on the test sequences.  We repeated this twenty times.  We 
evaluated the performance of AHMM by looking at both the per-residue level, which 
computes the fraction of amino acids that are predicted in the same position as in the 
reference topology, and the whole topology level, where a prediction is counted as 
correct if the N-terminus sidedness is correct and if every helix in the reference topology 
overlaps in at least five amino acids with the corresponding predicted helix.  The test 
results are shown in Table 1.  The comparison between AHMM and TMHMM is made 
only on the test sequences with identified PROSITE functional domains. 
 
Table 1.  Comparison between AHMM and TMHMM at both per-residue and per-sequence levels for test 
sequences with functional domains from 20 resamplings.  The first group of columns shows prediction accuracy 
of the three methods at the per-residue level.  The second group of columns considers the sequence as a whole 
and shows comparison between AHMM and TMHMM 2.0 only.  The final line gives the weighted average of 
the twenty tests, with each row weighted proportional to the number of amino acids or sequences found to 
contain a functional domain.  
   

per-residue accuracy per-sequence accuracy run sequences  
TMHMM2.0 TMHMM1.0 AHMM no 

change 
made 
correct 

made 
incorrect 

functional 
domains 

1 7 0.7572 0.7620 0.8705 6 1 0 7 
2 2 0.0611 0.0571 0.9817 0 2 0 2 
3 6 0.7322 0.4870 0.9859 3 3 0 6 
4 2 0.7580 0.7585 0.7585 2 0 0 2 
5 2 0.6133 0.6124 0.9845 1 1 0 2 
6 4 0.7528 0.5245 0.9955 2 2 0 4 
7 4 0.4333 0.4312 0.9744 2 2 0 4 
8 1 0.0844 0.3511 0.9756 0 1 0 1 
9 4 0.7834 0.7853 0.9857 3 1 0 4 
10 2 0.9764 0.4532 0.9924 1 1 0 2 
11 2 0.6605 0.0485 0.9838 0 2 0 2 
12 3 0.9838 0.5625 0.9967 2 1 0 3 
13 6 0.5191 0.5088 0.8608 4 2 0 6 
14 3 0.9901 0.9901 0.9901 3 0 0 3 
15 4 0.7355 0.7362 0.9944 3 1 0 4 
16 5 0.4534 0.4369 0.9835 3 2 0 5 
17 4 0.8128 0.8141 0.9803 3 1 0 4 
18 2 0.9973 0.9973 0.9973 2 0 0 2 
19 5 0.9581 0.9796 0.9796 5 0 0 5 
20 3 0.9632 0.6956 0.9909 2 1 0 3 

wavg  0.7311 0.6245 0.9561  33.8%  0 %  



 
At the per-residue level, we computed the weighted average for sequences with 

functional domains at each run and over all twenty runs (Table 1).  We calculated the 
mean of the differences between AHMM and TMHMM for 20 runs and its confidence 
interval (C.I.) at both the per-residue and whole sequence levels.  On average, AHMM 
predicted correctly 22.5% more residues, with 95% C.I. = (22.09%, 22.91%) and 38.96% 
more topologies correct, with 95% C.I. = (24.11%, 53.82%) than TMHMM, for 
sequences that include predicted functional domains.  AHMM also has smaller standard 
deviation (SD) than TMHMM (data not shown) for prediction at the per-residue level. 

We conducted statistical tests to test the results from our 20 runs of resampling at the 
per-residue level, to test the significance of the difference between AHMM and 
TMHMM.  Since the population of TM proteins might not be normally distributed, we 
used the non-parametric sign and Wilcoxon Matched-Pairs Signed-Ranks test to compare 
the weighted averages between TMHMM and AHMM for sequences with functional 
domains, using SPSS 13, which found that the results are significant at the 0.01 
probability level, and that AHMM gives better results at the per-residue level than both 
versions of TMHMM for sequences with functional domains. 

4.3 Sensitivity and Specificity of TMHMM and AHMM on Helix and Sidedness 
Prediction 

In addition to the experiments above, we further tested the sensitivity and specificity of 
TMHMM2.0 and AHMM on helix and sidedness prediction on test sequences with 
functional domains from the twenty-time resampling (Table 2).  We define the sensitivity 
to be the fraction of true helices/sidedness correctly identified, and the specificity to be 
the fraction of predicted helices/sidedness that are true helices/sidedness. 
 
Table2.  Comparison of mean of weighted average and standard deviation of sensitivity and specificity between 
TMHMM2.0 and AHMM on helix and outsidedness prediction for test sequences with functional domains from 
20 resamplings. 
 

SEH SPH SEO SPO run 
TMHMM AHMM TMHMM AHMM TMHMM AHMM TMHMM AHMM 

mean .9205 1.000 .9080 .9742 .8156 .9887 .6569 .9630 
SD .0974 .0000 .1258 .0779 .2882 .0108 .2999 .0779 

 
SEH: sensitivity for helix at per-sequence level 
SPH: specificity for helix at per-sequence level 
SEO: sensitivity for outsidedness at per-residue level 
SPO: specificity for outsidedness at per-residue level 
 

We computed the weighted average of the performance for all 20 runs; the mean of 
weighted average improvement of AHMM over TMHMM for sequences with PROSITE 
functional domains is 7.95% in sensitivity (95% C.I. = (3.39%, 12.51%)) and 6.63% in 
specificity (95% C.I. = (1.27%, 11.98%)) for helix prediction, and 17.31% in sensitivity 
(95% C.I. = (4.15%, 30.47%) and 30.61% in specificity (95% C.I. = (16.24%, 44.98%)) 



11 

for sidedness prediction.  AHMM has smaller standard deviation than TMHMM for all 
the tests. 

5. Discussions and Conclusion 

AHMM can improve TM protein topology prediction accuracy at both per-residue and 
per-sequence levels.  Furthermore, it improves both sensitivity and specificity on helix 
and sidedness prediction.  It fixes errors in the prediction of the orientation of the 
membrane protein, and also fixes helix number errors.  Following are some discussions 
on PH of the formula, the scope of AHMM, and functional domains. 

5.1 The Value of  HP

There is subjectivity in the choice of the value of the prior probability PH used for 
functional domains in the HMM extension formula.  We set PH  = 0.6 for all functional 
domains incorporated into AHMM, and also tried PH  = 0.9, which made no difference 
compared to 0.6.  This might suggest that the functional domains in the experiment are 
fairly specific.      

5.2 The Scope of AHMM 

Patterns and domains studied in AHMM were derived from native integral membrane 
protein, and as such, AHMM is not valid for predicting the topology of artificial 
membrane proteins, which are used to study membrane protein biogenesis32 and design 
artificial membrane protein receptors33.  By redistributing positively charged amino acids 
in the loops, the topologies of artificially engineered membrane proteins are altered, so 
functional domains that typically reside on one side of the membrane could end up on the 
different side of the membrane.  For example, the  fusion protein LEP-LEP, which is 
constructed from E.coli inner membrane leader peptidase (LEP), demonstrates this 
limitation. 

LEP has two TM segments and a Nout-Cout toplogy (both N- and C-terminus reside on 
the periplasmic side of the TM protein).  The loop containing the PROSITE signature 
SPASE_I_3 (Signal peptidases I signature 3) of LEP is on the external side of the 
membrane.  However, by introducing 3 lysines (K) to the second loop of LEP-LEP, the 
topology changes to one where the loop containing this signature now appears on the 
internal side of the membrane.32   

5.3 Functional Domains and Prediction Accuracy 

Using the Sequence Retrieval System SRS Release 7.1.1, there are 29488 entries in 
UniProtKB/Swiss-Prot34 Release 47.7 of 16-Aug-2005 and 175405 entries in 
UniProtKB/TrEMBL34 Release 30.7 of 16-Aug-2005 with keyword “transmembrane” 
search.  We found 6.5% of Swiss-Prot entries and 0.65% of TrEMBL entries having 



signatures and domains extracted from the 245 sequences without counting the amino 
acid RICH domains. 

Only a fraction of sequences have PROSITE functional domain predictors.  As more 
and more sequences with known topology are available, we expect that more useful 
predictors (including those which were filtered out at present) could be found in the 
future.  We also would expect that as more and more signatures and domains are 
available, the prediction accuracy would be further improved with more potential 
predictors.   
In summary, even with the current updates in TM protein topology prediction, 
incorporation of protein functional domain information remains a viable approach that 
could still be incorporated on top of an HMM, such as Phobius, to assist prediction.  For 
example, we may search a query sequence for possible functional domain predictor and 
add available functional domain predictor information into its HMM to make better 
predictions.  We could also incorporate domains selected in SMART35 by Bernsel and 
von Heijne36 to AHMM.  The prediction accuracy can be further improved if the domains 
are very specific.  The AHMM server is available at 
http://genome.math.uwaterloo.ca/ahmm/. 
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