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To construct a phylogenetic tree or phylogenetic network for describing the evolutionary history of a
set of species is a well-studied problem in computational biology. One previously proposed method
to infer a phylogenetic tree/network for a large set of species is by merging a collection of known
smaller phylogenetic trees on overlapping sets of species so that no (or as little as possible) branching
information is lost. However, little work has been done so far on inferring a phylogenetic tree/network
from a specified set of trees when in addition, certain evolutionary relationships among the species are
known to be highly unlikely. In this paper, we consider the problem of constructing a phylogenetic
tree/network which is consistent with all of the rooted triplets in a given set C and none of the rooted
triplets in another given set F . Although NP-hard in the general case, we provide some efficient exact
and approximation algorithms for a number of biologically meaningful variants of the problem.

1. Introduction

The evolutionary relationships among a set of species S are commonly described by a phy-
logenetic tree or a phylogenetic network. A phylogenetic tree is a rooted, unordered tree
whose leaves are distinctly labeled by S and where each internal node represents an an-
cestral species and each edge represents the evolution from one species to another (see,
e.g., [19, 25]). However, scientists have observed that certain evolutionary events cannot
be described properly using the treelike model; examples of these so-called recombination
events include horizontal gene transfer and hybrid speciation [10, 12, 20, 21, 23, 27]. Phy-
logenetic networks were proposed as a way to represent non-treelike evolution by extending
the definition of phylogenetic trees to allow nodes to have more than one parent.

One approach to constructing large phylogenetic trees/networks is by combining a set
of known trees into one supertree/network [3, 4, 11, 12, 14, 17, 18, 21, 22, 24, 26]. In this
paper, we focus on the problem of constructing a phylogenetic tree/network from rooted
triplets (i.e., binary phylogenetic trees with exactly three leaves each). Variants of this prob-
lem have been studied previously in [1, 5, 8, 9, 11, 13, 14, 15, 16, 17, 28]. The motivation
for the rooted triplets approach is that a highly accurate tree for just three species can be
obtained through maximum likelihood-based methods [6] or Sibley-Ahlquist-style DNA-
DNA hybridization experiments (see [17]). Moreover, when applying those methods, apart
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from obtaining a set of reliable rooted triplets, we may also discover some rooted triplets
(referred to as forbidden rooted triplets) which are very unlikely to appear as induced sub-
graphs in the true tree/network. Other than [5, 22], little work has been done to study
whether the extra information provided by forbidden rooted triplets can be used in phylo-
genetic reconstruction. Therefore, in this paper, we investigate some problems related to
constructing a phylogenetic tree or a phylogenetic network from a given set C of “good”
rooted triplets and a given set F of forbidden rooted triplets.

1.1. Problem definitions and summary of our results

A phylogenetic tree is a rooted, unordered tree whose leaves are labeled in such a way
that all leaf labels are disjoint, and furthermore, all of its internal nodes have outdegree
at least 2. A rooted tree is binary if all of its internal nodes have precisely outdegree 2.
A binary phylogenetic tree with three leaves is called a rooted triplet. The unique rooted
triplet on a leaf set {x, y, z} in which the lowest common ancestor of x and y is a proper
descendant of the lowest common ancestor of x and z (or equivalently, where the lowest
common ancestor of x and y is a proper descendant of the lowest common ancestor of y

and z) is denoted by ({x, y}, z). A binary caterpillar tree is a rooted binary tree where
every internal node has at least one child which is a leaf.

A phylogenetic network is a generalization of a binary phylogenetic tree formally de-
fined as a rooted, directed acyclic graph where: (1) exactly one node has indegree 0 (the
root); (2) all other nodes have indegree 1 or 2; (3) all nodes with indegree 2 (referred to
as hybrid nodes) have outdegree 1, and all other nodes have outdegree 0 or 2; and (4) all
nodes with outdegree 0 (the leaves) are distinctly labeled. For any phylogenetic network N ,
let U(N) be the undirected graph obtained from N by replacing each directed edge by an
undirected edge. N is said to be a galled phylogenetic network (or galled network, for
short) if all cycles in U(N) are node-disjoint. Galled networks form an important class
of phylogenetic networks and have attracted special attention in the literature [7, 10, 21,
27] due to their biological significance and their simple, almost treelike, structure. When
the number of recombination events is limited and most of the recombination events have
occurred recently, a galled network may suffice to accurately describe the evolutionary
process under study [10]. Galled networks are also known in the literature as topologies
with independent recombination events [27], galled-trees [10], gt-networks [21], and level-
1 phylogenetic networks [7, 16].

Let N be a phylogenetic network. A rooted triplet t is said to be consistent with N if
t is an induced subgraph of N , and a set C of rooted triplets is consistent with N if every
rooted triplet in C is consistent with N . The set of all rooted triplets which are consistent
with N is denoted by R(N), and we let N(C) be the subset of C containing all rooted
triplets from C that are consistent with N , i.e., N(C) = C ∩ R(N).

Denote the set of leaves in a phylogenetic tree/network N by Λ(N), and for any set C
of rooted triplets, define Λ(C) =

⋃
t∈C Λ(t). Given a leaf set L, a set C of rooted triplets is

called dense (with respect to L) if Λ(C) = L and for each {x, y, z} ⊆ L, at least one of the
three possible rooted triplets ({x, y}, z), ({x, z}, y), and ({y, z}, x) belongs to C. Finally,
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for any set C of rooted triplets and L′ ⊆ Λ(C), we define C |L′ as the subset of C consisting
of all rooted triplets ({x, y}, z) with {x, y, z} ⊆ L′.

Given two sets C andF of rooted triplets, we study the following problems. Throughout
this paper, we let L represent the leaf set Λ(C) ∪ Λ(F) and we write n = |L|.

• The mixed triplets problem (MT): Construct a phylogenetic network N with
Λ(N) = L such that C ⊆ R(N) and F ∩ R(N) = ∅, if such an N exists;
otherwise, output null. In Section 3.1, we show that this problem is NP-hard in its
general form. In Section 3.2, we investigate a restricted case of the problem where
F consists of disjoint rooted triplets, i.e., where Λ(t)∩Λ(t′) = ∅ for any t, t′ ∈ F
with t 6= t′, and show how to solve this case efficiently in O(n log n) time.

• The mixed triplets problem restricted to trees (MTT): Construct a phylogenetic
tree T with Λ(T ) = L such that C ⊆ R(T ) and F ∩R(T ) = ∅, if such a T exists;
otherwise, output null. Note that T is not required to be a binary phylogenetic tree
here. In Section 2.1, we describe an O(|C| ·n+ |F| ·n log n+n2 log n)-time algo-
rithm for MTT. We also study a corresponding maximization problem that we call
MMTT which asks for a phylogenetic tree T that maximizes |T (C)| − |T (F)|.a
MMTT is NP-hardb, so we present a polynomial-time algorithm for inferring a
phylogenetic tree T that guarantees |T (C)| − |T (F)| ≥ 1

3 · (|C| − |F|) in Sec-
tion 2.2.

• The mixed triplets problem restricted to galled networks (MTG): Construct a
galled network N with Λ(N) = L such that C ⊆ R(N) and F ∩ R(N) = ∅,
if such an N exists; otherwise, output null. This problem is NP-hard even if
restricted to F = ∅ [15]; therefore, MTG for arbitrary F is also NP-hard. In
Section 4, we study the maximization version of MTG called MMTG and give
a polynomial-time algorithm for inferring a galled network N that guarantees
|N(C)| − |N(F)| ≥ 5

12 · (|C| − |F|).
Below, the elements in F are called forbidden rooted triplets.

1.2. Related results

Several papers have previously studied MT, MTT, MMTT, MTG, MMTG, and some of
their variants for the special case F = ∅. Aho, Sagiv, Szymanski, and Ullman [1] presented
an O(|C| · n)-time algorithm for determining whether a given set C of rooted triplets on
n leaves is consistent with some rooted, distinctly leaf-labeled tree, and if so, returning one
(i.e., MTT restricted to F = ∅)c. Henzinger, King, and Warnow [11] later showed how
to implement the algorithm of Aho et al. to run asymptotically faster. Ga̧sieniec, Jansson,
Lingas, and Östlin [8] considered a version of the problem where the leaves in the output

aThis problem is useful when there is no phylogenetic tree T such that C ⊆ R(T ) and F ∩R(T ) = ∅.
bWhen F = ∅, Bryant [5] showed that this problem is NP-hard, so the problem is also NP-hard for any F .
cIn contrast, the analog of this problem for unrooted trees is NP-hard, even if all of the input trees are quartets
(unrooted, distinctly leaf-labeled trees each having four leaves and no nodes of degree two) [26]. See also [18].
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tree are required to comply with a left-to-right leaf ordering given as part of the input.
Related optimization problems where the objective is to construct a rooted tree consistent
with the maximum number of rooted triplets in the input (i.e., MMTT with F = ∅) or
to find a maximum cardinality subset L′ of Λ(C) such that C |L′ is consistent with some
tree have been studied in [5, 9, 13, 28] and [14], respectively. We remark that MMTT
with F = ∅ is NP-hard (see [5], [13], or [28]) and approximable within a factor of 1

3 in
polynomial time [9] (meaning that the approximation algorithm in [9] always outputs a
phylogenetic tree which is consistent with at least 1

3 · |C| of the rooted triplets in C).
As for inferring a phylogenetic network from a given set of rooted triplets on n leaves

(i.e., MT with F = ∅), Jansson and Sung [16] proved that if no restrictions are placed on
the structure of the output phylogenetic network then the problem always has a solution
which can easily be obtained from any given sorting network for n elements. [16] also
presented an O(n6)-time algorithm for inferring a galled network (if one exists) consistent
with a given dense set of rooted triplets on n leaves; Jansson, Nguyen, and Sung [15]
subsequently reduced its running time to O(n3), which is optimal since the size of the
input is O(n3) in the dense case. In [15], it was also proved that the problem becomes NP-
hard for non-dense inputs (i.e., MTG with F = ∅), and that the corresponding optimization
problem (MMTG with F = ∅) is approximable within a factor of 5

12 in polynomial time.
Also in the context of inferring a phylogenetic network from a set of trees, Nakhleh,

Warnow, and Linder [21] gave an algorithm for inferring a galled network from two bi-
nary phylogenetic trees with identical leaf sets. In addition, they studied the case where the
input trees may contain errors but where only one hybrid node is allowed in the network.
Huson, Dezulian, Klöpper, and Steel [12] addressed a similar problem for constructing an
unrooted phylogenetic network from a set of unrooted, distinctly leaf-labeled trees.

For the case F 6= ∅, much less is known. Bryant [5] showed that MTT restricted to
C = ∅ is NP-hard if the output is required to be a binary tree, but solvable in polynomial
time if we further restrict the solution to be a binary caterpillar tree. However, given a set S
of binary phylogenetic caterpillar trees whose leaf sets are subsets of a label set L, it is
NP-hard to determine if there exists a binary tree T with Λ(T ) = L such that no tree in S
is an induced subgraph of T , even if T is restricted to be a binary caterpillar tree [22].

1.3. The algorithm of Aho, Sagiv, Szymanski, and Ullman

Here, we briefly review the algorithm of Aho et al. [1] for determining if a given set C of
rooted triplets with leaf set L is consistent with a rooted tree, and if so, constructing one.
(Please refer to [1] for correctness proofs.) For any subset L′ of the leaves in L, define the
auxiliary graph for L′, denoted by G(L′), as the undirected graph with vertex set L′ and
edge set E(L′), where for every ({i, j}, k) ∈ C that satisfies i, j, k ∈ L′, the edge {i, j} is
included in E(L′).

Given a set C, the algorithm of Aho et al. builds G(L) and calculates the connected
components A1, . . . , Aq of G(L). If q ≥ 2, the algorithm recursively constructs a tree for
each connected component, attaches these trees to a common parent node, and returns the
resulting tree; the q recursive calls to itself are done on the sets C1,. . . , Cq obtained by
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scanning C (for 1 ≤ p ≤ q, let Lp be the set of leaves in Ap, and for each ({i, j}, k) ∈ C,
if {i, j, k} ⊆ Lp then ({i, j}, k) is placed in Cp; otherwise it is deleted). Otherwise, there
is just one connected component A1. If A1 consists of a single leaf i, the algorithm returns
a tree with one leaf labeled by i. If A1 contains more than one leaf, the algorithm aborts its
execution and returns null since no tree can be consistent with all of the rooted triplets in
this case.

At each of the O(n) recursion levels, the total time required to build all auxiliary graphs
and to find their connected components is O(|C|). Scanning the rooted triplets to compute
the sets Cp also takes O(|C|) time on each level. Therefore, this implementation has a
running time of O(|C| · n).

2. Algorithms for MTT and MMTT

In Section 2.1, we present a polynomial time algorithm for MTT. Then in Section 2.2, we
describe an approximation algorithm for the corresponding maximization problem MMTT.

2.1. A polynomial time algorithm for MTT

Our algorithm is a generalization of the algorithm of Aho et al. [1] (see Section 1.3) for
determining if a given set C of rooted triplets is consistent with a rooted tree and if so,
constructing one. We extend their algorithm to deal with a nonempty set F of forbidden
rooted triplets. Note that if the output tree is constrained to be binary then the problem
becomes NP-hard even if C = ∅ (see Section 1.2).

To handle forbidden rooted triplets, for any subset L′ of L, we define the auxiliary
partition D(L′) of L′ as follows:

i. Initially, let D = {D1, . . . ,Dq} be a partition of L′ such that each subset Di consists
of the set of nodes in one connected component of the auxiliary graph G(L′) for L′

(the auxiliary graph is defined in Section 1.3).
ii. While there exists some ({i, j}, k) in F|L′ such that i and j are in one subset Da ∈ D

and k is in another subset Db ∈ D, let D = (D \ {Da,Db}) ∪ {Da ∪ Db}.
iii. Set D(L′) = D.

Our algorithm proceeds as follows. Given C and F , we build D(L) for L. Let D(L) =
{D1, . . . ,Dr}. If r ≥ 2, we recursively construct a tree for each subset Di, then attach
these trees to a common parent node, and return the resulting tree. Otherwise, there is just
one component D1. If D1 consists of a single leaf i, we return a tree which is a leaf labeled
by i. If D1 contains more than one leaf, we return null and conclude that there is no tree
that is consistent with all of the rooted triplets in C and none of the rooted triplet in F . The
algorithm is shown in Figure 1.

Lemma 1. Let T be any tree that is consistent with all rooted triplets in C and no rooted
triplet inF . Then two leaves in the same set inD(L) cannot be descendants of two different
children of the root of T .
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Algorithm MTT

Input: A set C and a set F of rooted triplets and a leaf set L.

Output: A phylogenetic tree distinctly leaf-labeled by L that is consistent with all of the rooted
triplets in C and none of the rooted triplets in F , if one exists; otherwise null.

1 Construct the auxiliary partition D(L). Write D(L) = {D1, . . . ,Dr}.
2 If r = 1 and D1 consists of exactly one leaf i then return a tree with a single leaf labeled

by i. If r = 1 and D1 contains more than one leaf then return null. Otherwise, for each
i ∈ {1, . . . , r}, let Ti = MTT (C|Di, F|Di, Di); if all Ti-trees are not null then attach all
of these trees to a common parent node and return the resulting tree, else return null.

End MTT

Fig. 1. An exact algorithm for solving MTT.

Proof. We prove by induction on the construction of D(L). Right after Step (i) in the
construction, two leaves in the same set in D belong to the same connected component in
G(L). Therefore, by the correctness of Aho et al. algorithm, they cannot be descendants of
two different children of the root of T ; otherwise, T would be not consistent with all rooted
triplets in C.

At Step (ii), suppose that we are considering a rooted triplet ({i, j}, k) in F such that i

and j belong to the same set Da in D and k belongs to a different set Db and hence, we are
going to merge Da and Db into one single set. By induction, leaves i and j (and all other
leaves in Da) must be descendants of a child c of the root of C. If k is not a descendant of c

in T , then T would be consistent with ({i, j}, k). Hence, k is a also a descendant of c and
so are all other leaves in Db. Thus, all leaves in Da and Db are descendants of the same
children of the root of T .

Lemma 2. Suppose there exists a tree T that is consistent with all rooted triplets in C and
no rooted triplet in F . Let L′ be any nonempty subset of L, then there exists a tree T ′ that
is consistent with all rooted triplets in C|L′ and no rooted triplet in F|L′.

Proof. Let T ′ = T |L′. It is easy to see that a rooted triplet t with Λ(t) ⊆ L′ is consistent
with T if and only if it is consistent with T ′. Then all rooted triplets in C|L′ are consistent
with T ′ while no rooted triplet in F|L′ is consistent with T ′.

Lemma 3. The auxiliary partitionD(L) can be constructed in O(|C|+|F|·log n+n log n)
time.

Proof. Step (i) of the construction of D(L) can be done in O(|C|) time as in the algorithm
of Aho et al. [1] (see Section 1.3). To do Step (ii), we maintain a set S containing a subset
of F such that S =

{
({x, y}, z) | ({x, y}, z) ∈ F and x and y are in one subset Da ∈ D

and z is in another subsetDb ∈ D
}

. While S is nonempty, we choose any triplet ({x, y}, z)
in S, combine the two corresponding subsets in D that contain x, y, and z, and update S

accordingly. When S is empty, Step (ii) is done.
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To maintain S in Step (ii), we just need to update S whenever we combine two subsets
in D into a single set, since this is the only time that rooted triplets in F may need to
be removed from or inserted into S. Associated with each leaf u in L is a list L(u) of all
forbidden rooted triplets inF that u belongs to (thus, every forbidden triplet occurs in three
different lists and the total length of all lists is O(|F|)). When two subsetsDa andDb are to
be combined, we update all leaves in the smaller of the two subsets, sayDa, so that they all
belong to Db. Moreover, by traversing L(u) for all u that belonged to Da, we locate every
rooted triplet in F that might need to be removed from or inserted into S, and update S

accordingly. Every leaf is updated at most O(log n) times in total since we always update
the smaller subset, and hence, every list is traversed at most O(log n) times throughout the
construction. Therefore, Step (ii) can be done in O(|F|·log n + n log n) time.

The lemma follows.

Theorem 1. Algorithm MTT outputs a phylogenetic tree T distinctly leaf-labeled by L

that is consistent with all rooted triplets in C and no rooted triplets in F , if one exists, in
O(|C|·n + |F|·n log n + n2 log n) time.

Proof. If Algorithm MTT outputs a non-null tree T then by the correctness of the algo-
rithm of Aho et al., T is consistent with all rooted triplets in C (since for any L′ ⊆ L,
the set of nodes in any connected component of G(L′) is a subset of some set in D(L′)).
Next, let f = ({i, j}, k) be any rooted triplet in F and assume that f is consistent with T .
Then, at some recursion level of the algorithm where i, j, k are still in the same leaf set,
i and j will belong to one subset Da while k is in another subset Db. But this is impossible
by Step (ii) in the construction of D(L). Hence, we arrive at contradiction and f is not
consistent with T .

Similarly, if the algorithm outputs null then at some recursion level, D(L) has just one
element D1, where D1 contains at least two leaves. Suppose there exists a phylogenetic
tree T ∗ such that all rooted triplets in C|D1 are consistent with T ∗ while no rooted triplets
in F|D1 is consistent with T ∗. By Lemma 1, two leaves in the same set Da cannot be
descendants of two different children of the root of T ∗. But since there is just one set D1,
the root of T ∗ would only have one child, which is a contradiction. Hence, there is no such
T ∗. By Lemma 2, there is no phylogenetic tree that is consistent with all rooted triplets in C
and no rooted triplets in F .

There are O(n) recursion levels, each of which is taken care of in O(|C|+ |F|·log n +
n log n) time by Lemma 3. Thus, the algorithm’s total running time is O(|C| ·n + |F| ·
n log n + n2 log n).

2.2. A polynomial-time approximation algorithm for MMTT

MMTT restricted to F = ∅ is NP-hard (see [5, 13, 28]), so it follows trivially that the
unrestricted version of MMTT is NP-hard. Therefore, we provide a polynomial-time ap-
proximation algorithm for MMTT, which generalizes the following result from [9].

Lemma 4. [9] Given a set C of rooted triplets with leaf set L, a phylogenetic tree distinctly
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leaf-labeled by L that is consistent with at least one third of the rooted triplets in C can be
constructed in O((|C|+ n) · log n) time.

Theorem 2. Given two sets C andF of rooted triplets with leaf set L, a phylogenetic tree T

distinctly leaf-labeled by L such that |T (C)|−|T (F)| ≥ 1
3 ·(|C|−|F|) can be constructed

in O((|C|+ |F|+ n) · log n) time.

Proof. We describe an algorithm to construct such a tree T . For every v ∈ L, we associate
a score with v, denoted by s(v). Initially, s(v) is set to zero for every v ∈ L. Then, for
every ({a, b}, c) ∈ C, we increase s(c) by one and decrease each of s(a) and s(b) by 1

2

and for every ({a′, b′}, c′) ∈ F , we decrease s(c′) by one and increase each of s(a′) and
s(b′) by 1

2 . Next, assume u ∈ L has the largest score. Let L′ = L \ u. Then we recursively
construct a tree T ′ with leaf set L′ such that |T ′(C|L′)|− |T ′(F|L′)| ≥ 1

3 (|C|L′|− |F|L′|)
(if L′ consists of only two leaves L′ = {v, w}, then we construct T ′ to be a binary tree on
these two leaves), attach the root of T ′ and leaf u to a common parent node and let T be
the resulting tree.

To prove the correctness of the algorithm, let Cu = {t | t ∈ C and u ∈ Λ(t)} and
Fu = {t | t ∈ F and u ∈ Λ(t)}. It remains to show that |T (Cu)| − |T (Fu)| ≥ 1

3 ·
(|Cu| − |Fu|). Let C′u = T (Cu), C′′u = Cu \ C′u, F ′u = T (Fu), and F ′′u = Fu \ F ′u. Hence
C′u =

{
({x, y}, u) | ({x, y}, u) ∈ C} and F ′u =

{
({x, y}, u) | ({x, y}, u) ∈ F}

. Thus,
we can write s(u) = |C′u| − 1

2 · |C′′u | − |F ′u|+ 1
2 · |F ′′u |. Since we choose a leaf u which has

the largest score, it is easy to see that s(u) ≥ 0. Therefore, |C′u|−|F ′u| ≥ 1
2 ·(|C′′u |−|F ′′u |).

By adding 1
2 · (|C′u| − |F ′u|) to both sides of the inequality and using |C′u| + |C′′u | = |Cu|

and |F ′u|+ |F ′′u | = |Fu|, we obtain |T (Cu)| − |T (Fu)| ≥ 1
3 · (|Cu| − |Fu|).

We can use a heap data structure to keep track of the changes in the scores of the leaves
throughout the algorithm. The total running time becomes O((|C|+ |F|+ n) · log n).

Also note that any phylogenetic tree produced by the algorithm above is always
a binary tree (in fact, a binary caterpillar tree) and that any binary phylogenetic tree
whose leaf set includes {a, b, c} is consistent with exactly one of ({a, b}, c), ({a, c}, b),
and ({b, c}, a). This means that if C =

{
({a, b}, c), ({a, c}, b), ({b, c}, a) | ({a, b}, c) ∈

S
}

and F =
{
({a, b}, c), ({a, c}, b), ({b, c}, a) | ({a, b}, c) ∈ S′

}
, where S, S′ ⊆{

({a, b}, c) | a, b, c ∈ L
}

, then |T (C)| = 1
3 |C| and |T (F)| = 1

3 |F|. Hence, |T (C)| −
|T (F)| = 1

3 · (|C| − |F|) for any binary phylogenetic tree T with leaf set L. In this sense,
the approximation algorithm is worst-case optimal. d

Note that for the special case where C is empty, we have |T (F)| ≤ 1
3 · |F|, i.e., the

algorithm produces a binary tree that is consistent with at most one third of the rooted
triplets in F .

dBryant [5] shows that the mixed triplet problem is NP-hard when C = ∅ and the phylogenetic structure is
restricted to binary tree. Hence this restricted case is also NP-hard for any C.
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3. NP-hardness of MT and a polynomial-time algorithm for a special case

Section 3.1 shows the NP-completeness of MT. Then in Section 3.2, we show that a re-
stricted case of MT can be solved efficiently.

3.1. NP-hardness of MT

To prove the NP-hardness of the general case of MT, we give a polynomial-time reduction
from the following problem called the forbidden rooted triplets problem (FT): Given a
set S of rooted triplets, is there a binary, rooted, distinctly leaf-labeled tree T that satisfies
Λ(T ) = Λ(S) and S ∩R(T ) = ∅? FT was shown to be NP-hard by Bryant [5].

Theorem 3. MT is NP-hard.

Proof. For any instance S of FT, construct an instance of MT by setting C = ∅ and F = S .
We claim that there exists a solution T for FT if and only if there exists a solution N for MT.

(→) If the first part of the statement holds, then the second part is trivially true because
T is also a phylogenetic network.

(←) From N , we construct T as follows: For each hybrid node in N , remove one of
its two incoming edges. Then, for each node with outdegree 1 and indegree less than 2,
contract its outgoing edge. Let T be the obtained tree. It is easy to see thatR(T ) ⊆ R(N).
Then since N is consistent with no triplet in F , so is T and the claim follows.

3.2. An O(n log n)-time algorithm for MT with disjoint forbidden rooted triplets

Although MT is NP-hard, this section shows that it can be solved efficiently if the forbidden
rooted triplets are disjoint (meaning that Λ(t) ∩ Λ(t′) = ∅ for any t, t′ ∈ F with t 6= t′).
Our algorithm is based on the following lemma from [16].

Lemma 5. [16] For any set L of n leaf labels, a phylogenetic network N satisfying
R(N) =

{
({x, y}, z) | x, y, z ∈ L

}
can be constructed in O(s(n)) time, where s(n)

is the time required to construct a sorting network for n elements.

By employing, e.g., an AKS sorting network (see [2]), we obtain s(n) = O(n log n) in
Lemma 5 above. Now, suppose F is a given set of f disjoint forbidden rooted triplets and
write F =

{
({a1, b1}, c1), . . . , ({af , bf}, cf )

}
. Let P = {p1, q1, . . . , pf , qf} be a set of

labels not belonging to L. We build a phylogenetic network N as follows.

(1) Use Lemma 5 to construct a phylogenetic network N ′ which is consistent with all
rooted triplets in

{
({x, y}, z) | x, y, z ∈ ((L \ Λ(F)) ∪ P )

}
in O(n log n) time.

(2) For each ({ai, bi}, ci) ∈ F , make ai be a child of pi, bi a child of qi, and ci a child of
both pi and qi in N ′. Let N be the resulting network.

Then, N can be constructed in O(n log n) time and has the following property.

Lemma 6. For any C ⊆ {
({x, y}, z) | x, y, z ∈ L

} \ F , C ⊆ R(N). Furthermore, F ∩
R(N) = ∅.
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Proof. Let t be any rooted triplet in the set C. There are three possible cases.

•
∣∣Λ(t) ∩ {ai, bi, ci}

∣∣ ≤ 2 for any 1 ≤ i ≤ |F|. Note that, by the construction of N , for
any S ⊂ {ai, bi, ci} and |S| ≤ 2, there are always |S| disjoint paths from {pi, qi} to S

in N . Since any rooted triplet on the leaf set (L \Λ(F))∪P is consistent with N ′, t is
consistent with N .

• t = ({bi, ci}, ai) for some 1 ≤ i ≤ |F|. Since both bi and ci are children of qi and ai

is a child of pi, t is consistent with N .
• t = ({ai, ci}, bi) for some 1 ≤ i ≤ |F|. Since both ai and ci are children of pi and bi

is a child of qi, t is consistent with N .

Since t ∈ R(N) for any t ∈ C, we have C ⊆ R(N).
Next, we show that F ∩R(N) = ∅. Consider any ({ai, bi}, ci) ∈ F . By the construc-

tion of N , the lowest common ancestor of ai and bi is the lowest common ancestor of pi

and qi. Since pi and qi are the only parents of ci, the lowest common ancestor of ai and bi

cannot be a descendant of that of ai and ci. Hence, ({ai, bi}, ci) is not consistent with N .

Hence, we have the following result.

Theorem 4. MT with disjoint forbidden triplets can be solved in O(n log n) time.

4. A polynomial-time approximation algorithm for MMTG

Here, we need the following additional terminology. Let N be a phylogenetic network and
let h be a hybrid node in N . Every ancestor s of h such that h can be reached using two
disjoint directed paths starting at the children of s is called a split node of h. If s is a split
node of h then any path starting at s and ending at h is called a merge path of h or a merge
path from s. Observe that in a galled network, each split node is a split node of exactly
one hybrid node, and each hybrid node has exactly one split node. For any node u in N ,
N [u] denotes the subnetwork of N rooted at u, i.e., the minimal subgraph of N which
includes all nodes and directed edges of N reachable from u. N [u] is called a side network
of N if there exists a merge path P in N such that u does not belong to P but u is a child
of a node belonging to P . In this case, N [u] is also said to be attached to P .

Jansson, Nguyen and Sung [15] proposed a 5
12 -approximation algorithm for a restricted

case of MMTG where F = ∅. In this section we extend their algorithm to arbitrary F .
Given two sets of rooted triplets C and F , this section presents an algorithm for inferring a
galled phylogenetic network N such that |N(C)| − |N(F)| ≥ 5

12 (|C| − |F|). We describe
the algorithm first and then present the analysis.

Similar to the original algorithm in [15], our algorithm MMTG(C,F) is recursive in
nature. It is shown in Fig. 2. First, it partitions the set of leaves L into 3 subsets A,B,C

such that none of them equals L using algorithm LeafPartition (also shown in Fig. 2 and
described in detail later). Then, for each X ∈ {A,B, C}, it recursively infers a galled
network KX by calling MMTG(C|X,F|X). Next, for each X ∈ {A,B, C}, it generates a
galled network NetworkX such that the root node is a split node whose hybrid node is the
parent of KX , and the other two networks in {KA,KB ,KC} \ {KX} are side networks
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attached to both side of the merge paths of h. Finally, we return the network NetworkZ

that maximizes |NetworkZ(C)| − |NetworkZ(F)|.
To partition L into three sets A, B, and C in Step 1 of the algorithm, we partition L so

that a special condition 4(N1 − M1) + 7(N2 − M2) + 12(N3 − M3) ≥ 5 · (|C| − |F|)
holds, where for i ∈ {0, 1, 2, 3}, we define Ni = |Xi(A,B, C)| and Mi = |Yi(A, B,C)|
and where Xi(A,B, C) and Yi(A,B, C) are sets defined as follows:

• X0(A,B, C) = {({x, y}, z) ∈ C|x and z are in one set and y is in another or y and z

are in one set and x is in another },
• X1(A,B, C) = {({x, y}, z) ∈ C|x, y and z are in one set },
• X2(A,B, C) = {({x, y}, z) ∈ C|x, y and z are in three different sets }, and
• X3(A,B, C) = {({x, y}, z) ∈ C|x and y are in one set and z is in another }.

Yi(A,B,C) is defined analogously, using F instead of C. We use a greedy algorithm to
perform the partitioning. It first randomly divides L into three arbitrary subsets. Then, the
algorithm keeps moving leaves from one subset to another until the score score(A,B, C)
cannot be further improved, where we define score(A,B,C) = 4(N1 −M1) + 7(N2 −
M2)+12(N3−M3). After finished moving the leaves, if one of the set, says A, equals L, we
move the node u that maximizes pC(u)−pF (u)

cC(u)−cF (u) from A to B, where cG(u) = |{({u, x}, y) ∈
G}| and pG(u) = |{({x, y}, u) ∈ G}| and G ∈ {C,F}. This step is to ensure that none of
the three sets equals L. The algorithm is called Algorithm LeafPartition and is also shown
in Fig. 2.

The rest of this section analyzes the Algorithm MMTG. The lemma below analyzes the
greedy partitioning algorithm.

Lemma 7. Algorithm LeafPartition partitions the set L into three subsets A, B,C such
that score(A, B,C) cannot be further improved by moving exactly one element from one
subset to another.

Proof. After Step 2 of Algorithm LeafPartition, if none of the 3 subsets equals L, the
lemma follows. Assume that after Step 2, one of the subsets, says A, equals L. We only need
to show that Step 3 does not decrease score(A, B,C). When u is moved from A to B, all
triplets in {({u, x}, y) ∈ C} are moved from X1 to X0 and all triplets in {({x, y}, u) ∈ C}
are moved from X1 to X3. Similarly, all triplets in {({u, x}, y) ∈ F} are moved from
Y1 to Y0 and all triplets in {({x, y}, u) ∈ F} are moved from Y1 to Y3. Thus score(A −
{u}, {u}, ∅)− score(A, ∅, ∅) = (pC(u)− pF (u))(12− 4)− (cC(u)− cF (u))4. Given the
fact that pC(u)− pF (u) ≥ 1/2(cC(u)− cF (u)), Step 3 does not decrease score(A,B, C).

Lemma 8. When Algorithm MMTG finishes the partitioning in Step 1, we have 5
12 (|C| −

|F|) ≤ 5
12 (N1 −M1) + 2

3 (N2 −M2) + (N3 −M3).

Proof. Let score(A, B,C) = x(N1−M1)+y(N2−M2)+z(N3−M3). When algorithm
LeafPartition terminates, for any {U, V } ⊆ {A, B,C}, moving a leaf m from U to V

cannot increase score(A,B, C). Considering moving m from A to B, we can deduce a
formula to compute the change of score with respect to C and F . Since moving m cannot
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Algorithm LeafPartition
Input: Sets of rooted triplets C and F with leaf set L.

Output: A partition of L into 3 sets A, B, C such that none of them equals L and such that
4(N1 −M1) + 7(N2 −M2) + 12(N3 −M3) ≥ 5 · (|C| − |F|).

1 Arbitrarily partition L into 3 sets A, B, C.
2 while moving an element m from one set to another increases score(A, B, C) do
2.1 move m accordingly.

endwhile
3 if one of the subsets, says, A equals L then
3.1 choose u ∈ A that maximizes pC(u)−pF (u)

cC(u)−cF (u)
and move it to B.

3.2 go to Step 2.
else

3.3 return A,B,C.
endif

End LeafPartition

Algorithm MMTG
Input: Sets of rooted triplets C and F
Output: A galled network N such that |N(C)| − |N(F)| ≥ 5

12 (|C| − |F|)
1 Partition Λ(C) ∪ Λ(F) into A, B, C by LeafPartition
2 Let KZ =MMTG(C|Z,F|Z) for Z ∈ {A, B, C}
3 For Z ∈ {A, B, C}, generate a galled network NetworkZ in which the root node is

a split node whose hybrid node h is the parent of KZ , and the other two networks in
{KA, KB , KC} \ {KZ} are side networks attached to both sides of the merge paths of h.

4 Among Z ∈ {A, B, C}, return NetworkZ with the largest |NetworkZ(C)| −
|NetworkZ(F)|.

End MMTG

Fig. 2. An approximation algorithm for MMTG.

increase the score, the change of score must be nonpositive. By summing all possible ways
of moving m, we can derive the inequality (2z−6x)(N1−M1)+(z+2y+x)(N0−M0)+
(2z−6y)(N2−M2)+(2y+x−5z)(N3−M3) ≤ 0. By substituting N0 = |C|−N1−N2−N3

and M0 = |F| − M1 − M2 − M3 and replacing x = 4, y = 7, z = 12, we have
5(|C| − |F|) ≤ 5(N1 −M1) + 8(N2 −M2) + 12(N3 −M3).

Let denote NL′ be the galled network returned by MMTG(C|L′,F|L′).

Lemma 9. If |NX(C|X)| − |NX(F|X)| ≥ t(|C|X| − |F|X|) ∀X ∈ {A,B, C} then
|NL(C)| − |NL(F)| ≥ t(N1 −M1) + 2

3 (N2 −M2) + (N3 −M3).

Proof. First, note that |NL(C|A ∪ C|B ∪ C|C)| − |NL(F|A ∪ F|B ∪ F|C)| ≥ t(|C|A| −
|F|A|+|C|B|−|F|B|+|C|C|−|F|C|) = t(N1−M1). Next, according to the algorithm in
Fig. 2, three networks NetworkA, NetworkB , and NetworkC are generated. Every triplet
t in X2 and Y2 should be consistent with two of these three networks. In addition, all triplets
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in X3 and Y3 are consistent with all three networks. So, NL, which is NetworkX for some
X ∈ {A,B, C}, must have |NL(X2 ∪X3)| − |NL(Y2 ∪ Y3)| ≥ 2

3 (N2−M2) + N3−M3.
Thus, in total, |NL(C)| − |NL(F)| ≥ t(N1 −M1) + 2

3 (N2 −M2) + (N3 −M3).

Given the above lemmas, the next lemma follows.

Lemma 10. |NL(C)| − |NL(F)| ≥ 5
12 (|C| − |F|).

Proof. The lemma is proved by induction on |L| where L = Λ(C). Base case (|L| ≤ 3):
If |L| ≤ 3, we can give a network N that has |N(C) − N(F)| ≥ 2

3 (|C| − |F|). Thus,
|N(C)| − |N(F)| ≥ 5

12 |C|. Inductive case (|L| > 3): Step 1 of Algorithm Approximate
partitions L into 3 subsets A,B, C and Step 2 computes the three networks KA,KB ,KC .
By the induction assumption, |KX(C|X)| − |KX(F|X)| ≥ 5

12 (|C|X| − |F|X|) for X ∈
{A,B, C}. By Lemmas 8 and 9, |NL(C)| − |NL(F)| ≥ 5

12 (N1 −M1) + 2
3 (N2 −M2) +

N3 −M3 ≥ 5
12 (|C| − |F|).

Finally, the next two lemmas are devoted to analyzing the time complexity.

Lemma 11. Algorithm LeafPartition runs in O(|L||C|(|C|+ |F|)) time.

Proof. Steps 1 can be easily implemented in O(|L|) time. As score(A,B, C) is increased
by at least 1 for every iteration and score(A,B, C) ≤ 12|C|, the while loop in Step 2
executes for at most 12|C| times and Step 3 is also executed for at most 12|C| times. Each
iteration of the while loop needs to compute O(|L|) scores and each score can be computed
in O(|C|+ |F|) time. Thus, Step 2 takes O(|L||C|(|C|+ |F|)) time. Similarly, Step 3 also
takes a total of O(|L||C|(|C|+ |F|)) time throughout the algorithm.

Lemma 12. Algorithm MMTG(C,F) runs in O(|L|2|C|(|C|+ |F|)) time.

Proof. Let t(C,F) be the running time of MMTG(C,F) and f(C,F) be the running time
of LeafPartition(C,F). We have t(C,F) = f(C,F) + t(C|A,F|A) + t(C|B,F|B) +
t(C|C,F|C). By Lemma 11, f(C,F) = O(|L||C|(|C| + |F|)). By solving the recursive
equation, t(C,F) = O(|L|2|C|(|C|+ |F|)).

In conclusion, we have the following theorem.

Theorem 5. Given two sets C and F of rooted triplets, a galled network N such that
|N(C)| − |N(F)| is at least 5

12 (|C| − |F|) can be constructed in O(|L|2|C|(|C| + |F|))
time.

5. Concluding remarks

In this paper, we have investigated the polynomial-time computability of MT and several
of its variants, and proposed some new exact and approximation algorithms. In the future,
we plan to further improve the performance of the approximation algorithms and the time
complexity of our algorithms.
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