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In proteomics, tandem mass spectrometry is the key technology for peptide sequencing.
However, partially due to the deficiency of peptide identification software, a large portion
of the tandem mass spectra are discarded in almost all proteomics centers because they
are not interpretable. The problem is more acute with the lower quality data from low
end but more popular devices such as the ion trap instruments.

In order to deal with the noisy and low quality data, this paper develops a systematic
machine learning approach to construct a robust linear scoring function, whose coeffi-
cients are determined by a linear programming. A prototype, PRIMA, was implemented.
When tested with large benchmarks of varying qualities, PRIMA consistently has higher
accuracy than commonly used software MASCOT, SEQUEST and X! Tandem.
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1. Introduction

Proteomics aims at understanding proteins expressed in cells at different levels,

during different time and in different forms. This task is critical as changes in pro-

tein expression levels are often associated with disease states or the variations of
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metabolism. Mass spectrometers are currently the predominant tool to accomplish

some of the primary goals of proteomics 1: (1) identification of each protein in a cell;

(2) determination of expression level of each protein (which does not always corre-

late with mRNA level); and (3) determination of post-translational modifications

(PTMs), sites and types. However, due to the high-throughput capacity of mass

spectrometers, software tools become a bottleneck to success. Today, in proteomics

companies and academic consortiums worldwide, over half of the MS/MS data gen-

erated by mass spectrometers are rejected because they are not interpretable by

currently available software (e.g. MASCOT or SEQUEST). The interpretable parts

are further plagued by false positives. As pointed out in 2: “... our ability to gener-

ate data now outstrips our ability to analyze it.” Mass spectrometer accuracy and

sensitivity varies greatly and this problem is particularly prominent with low-end

but more popular ion trap devices.

This paper focuses on developing a robust and systematic method to deal with

the lower quality data produced by the popular ion trap devices, as well as the high

quality data consistently. There are two approaches for peptide identification from

MS/MS data: de novo sequencing and database searching. In order to deal with

the low quality data, we use the more popular database method. Using a linear

programming formulation, we optimize a scoring function to score the experimental

spectra against a protein sequence database. We have implemented the prototype

PRIMA and demonstrated the improved performance over both MASCOT and

SEQUEST on large spectrum benchmarks.

2. Background and related work

A protein sequence is a chain of amino acids connected by peptide bonds. Typi-

cally, peptide sequencing through tandem mass spectrometry follows a multistep

procedure. First, proteins are digested by enzyme such as trysin, and the resultant

peptides are separated by liquid chromatography. Then peptides undergo a frag-

mentation process to produce ions of different types (Fig. 1). Finally tandem mass

spectra are generated by recording the mass/charge (m/z) ratio and intensity of

each ion; and computer software are used to reconstruct the sequences from the

spectra.

There are two classes of approaches for peptide sequencing via tandem mass

spectrometry. De novo sequencing method determines the peptide sequence solely

from the experimental spectra without using databases 3. This method is useful

when the protein is not in the database. The mainstream de novo sequencing soft-

ware include program packages from mass spec vendors (MassLynx, BioAnalyst,

denovoX, etc), the free program Lutefisk 4, and commercial programs PEAKS 5,6

and SpectrumMill. The basic de novo sequencing dynamic programming techniques

were first introduced in 7,8.

Another approach is database search method, and it depends on the fact that

the target protein sequence is in the database. Given an experimental spectrum S,
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Fig. 1. Different ions produced by peptide fragmentation. a/x, b/y, c/z are complementary ions,
respectively. b/y ions are the most common ones. (source: Matrix Science Inc.)

this method searches through a protein sequence database to find a peptide whose

theoretical spectrum S′ matches S the best. The mainstream software using the

database method includes MASCOT 9 and SEQUEST 10,11. SEQUEST compares

the theoretical spectra against experimental spectrum using a correlation function

to determine the score. MASCOT computes the score based on the probability

that observed match of ions is a random event. Improvements to these programs

are claimed with various criteria: fewer false positives 12, less time 13, validation
14, simultaneous analysis of multiple spectra 15, and new approaches 16,17. Some

other recent research have been presented in 18,19,20,21,22,23,24,25,26 and an empirical

evaluation of various approaches was performed have in 27.

Since the coverage and quality of protein databases constantly improve, search-

ing against databases is commonly used in practice. This paper focuses on a robust

solution to the low quality spectra for database search.

Given a spectrum, we can find a set of candidate peptides from the protein

database whose masses are within a predefined mass error tolerance to the precursor

ion mass of the spectrum. For a large database (such as NCBInr), this list can be

as large as 100,000 tryptic peptides, using ±2 dalton error tolerance. A powerful

scoring function is then needed to single out the correct peptide from the entirety

of candidates.

Constructing a good scoring function is tricky due to multifold reasons. First, the

fragmentation of the peptides is determined by their physiochemical characteristics

as well as many other factors, resulting many problems listed below.

• A peptide may be broken more than once, resulting in ions of internal

fragmentations.

• Ions can be multiply charged (e.g. 2 or 3).

• Some ions may be missing in the experimental spectra, while noise peaks

correspond to non-existing ions.

• Isotopic peaks may exist.

• Other ions (a, c, x, z) appear at different rates with various types of mass
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spectrometers (See 28).

• Ions (such as b and y ions) can lose an ammonium or water group.

To make the matter worse, each type of mass spectrometer has its own sensi-

tivity and resolutions, the parameters of scoring function often need to be adjusted

to achieve the best performance 29. Further more, there are other problems such as

post-translational modification (PTM) of the proteins. As a result, the spectra gen-

erated from mass spectrometers often have little resemblance of the corresponding

theoretical spectra.

3. Constructing a linear scoring function

We are interested in designing a robust scoring function that is relatively insensitive

to machine types, noise levels, and error tolerances. Our approach is to first find

some features reflecting similarity between experimental and theoretical spectra

from different perspective, then build a strong scoring function upon the ensemble

of features.

3.1. Selecting features

Given the amino acid sequence of a peptide, its theoretical spectrum can be de-

rived to include all ion types of interests including a, b, c, x, y, and z ions and

their variants (losing water and ammonium groups, isotopes, multiple charges). A

simple algorithm is first applied to match each theoretical peak p′ with a closest

experimental peak, with the preference to b/y ions when there are multiple matches

within the m/z error tolerance.

Let I denote the intensity of p and E denote the m/z error between p and p′.

Assuming the m/z error tolerance is ∆, an experimental peak is a candidate to

match if | E |≤ ∆. Peak intensities in experimental spectra can vary drastically.

We have observed that they can vary by a multiplicative factor of 106. To minimize

this problem, an empirical formula below is used to adjust the intensity for each

candidate peak:

I∗ = e−c×(|E|/∆)2 ×
√

I (1)

where c and ∆ are empirically set to 3 and 0.5 dalton, respectively.

The following features are then extracted. These features are classified in to 4

groups.

(1) For each ion type, the sum of intensities (i.e. I∗ values) of all matched peaks

of this type. The types we consider include a, b, c, x, y, z ions, as well as all

internal fragmentations, b − NH3, y − H2O.

(2) The weighted sum of intensities of all matched peaks. In other words, this is

the weighted sum of all sums in Item 1. Each type of ions is assigned a weight.

For CID (collision induced dissociation), most of the fragmentation produces
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b-ions and y-ions. Therefore, higher weights (1.0) are given to b and y ions and

lower weights (0.1) to other types of ions.

(3) The sums of products of the intensities for the complementary pairs of each type.

These include: the sum of products of the intensities of all complementary b/y

ion pairs; the sum of products of the intensities of yi and yi+1 pairs; the sum of

products of the intensities yi and yi−H2O pairs for all i; the sum of products of

the intensities of bi and bi −NH3 pairs for all i, etc. For instance, the following

formula is used to compute the the b/y ion complementary pair intensities:

Iby =

n−1∑

i=1

Ib(i)
∗ × Iy(n − i)∗ (2)

where n is the peptide length.

(4) Average m/z error of the matched peaks for each ion type. The system error

due to instrument calibration needs to be removed. Assume there are n peaks

in the ion series. Let Ei be the error for each peak pi and Em be the mean of

errors of the matched peaks, then the average error is adjusted as below:

Eavg = −
∑n

i=1 | Ei − Em |
n

. (3)

Given an experimental spectrum and n candidate peptides, a set of feature

vectors {V1, V2, · · · , Vn} can be derived, each corresponding to one peptide. Let

Vi(j) be the value of j-th feature of i-th vector. Each feature value is normalized by

Vi(j)
∗ =

Vi(j)

max
k=1,2,···,n

| Vk(j) | (4)

According to the preceding formulation, each feature is a numerical value. It is

expected that the correct peptide is more likely to have high feature values than

incorrect ones. In practice some features are more distinguishing than others, due

to the noises and missing ions. Thus it is necessary to find an appropriate weights

for all the features to achieve the optimum discriminating capacity.

For each feature, given a training spectrum, the values for all candidate peptides

are calculated, and then sorted in descending order. The percentile rank of the

true peptide’s value is recorded. Averaging over all training spectra, this feature’s

percentile ranking is obtained. Those features whose percentiles rank at top 5% most

will be used to derive the final scoring function by a linear programming described

in the next subsection.

3.2. A linear programming formulation for the scoring function

Given a spectrum and the peptide, the values of l selected features form a vector

V = 〈v1, v2, · · · , vl〉. In this work, the scoring function is formulated as a weighted

sum of feature values. That is, we consider scoring functions of the form S(V ) =

C · V =
∑l

i=1 ci × vi, where C = 〈c1, c2, · · · , cl〉. Now the problem is to determine
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Fig. 2. An example of improving accuracy by bounding the functional margin. (a) Without the
bounding, one sample is misidentified; (b) with bounded functional margin, all 3 samples are
correctly identified.

values of ci to optimize the accuracy of identification. This is solved by a linear

programming.

Assuming a sequence of experimental spectra 〈s1, s2, · · · , sn〉 is produced by pep-

tides 〈p1, p2, · · · , pn〉, respectively. For each spectrum si, let Pi be the feature vector

for correct peptide pi. The negative peptides are selected in a protein database by

using the peptides with similar masses to pi. Assume that the number of nega-

tive peptides for each spectrum is K1, K2, · · · , Kn, respectively, and Nij is the i-th

feature of the j-th negative peptide for si. The linear programming formulation is

given below:

max

n∑

i=1

Mi

subject to

ci ≥ 0 i = 1, 2, · · · , l;
c1 + c2 + · · · + cl = 1;

Mi ≤ C · (Pi − Nij) j = 1, 2, · · · , Ki, i = 1, · · · , l;
Mi ≤ ε. (5)

The geometrical interpretation of inner product of two vectors X · Y is the pro-

jection of X onto Y when ‖ Y ‖= 1. In other words, it is the distance to a hyperplane

H which is perpendicular to Y . Thus the problem is equivalent to finding a good

linear boundary separating hyperplane in the <l to identify positives and negatives.

For i-th spectrum, the functional margin is minC · (Pi − Nij). Intuitively, an ideal

separating hyperplane leads to large margins for training samples. Nevertheless,

maximizing sum of margins may damage the overall accuracy of identification. Fig.

2 (a) provides an example, where the third sample is not identified correctly if the
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objective is to maximize the sum of functional margins.

To alleviate such problem, the forth constraint in Formula (5) is imposed to place

a bound of functional margin distance. Fig. 2 (b) shows improved hyperplane for

separation, where Mi/M
′

i , i = 1, 2, 3, are the functional margins for the individual

samples, respectively. Noticeably Formula (5) works well for the i such that the

function margin, min(C ·(Pi−Nij)), is positive; but has no effect when the function

margine is negative. However, when the training data are carefully selected and have

acceptable quality, the function margin usually cannot have big negative values.

The coefficients are determined when the linear programming formulation is

solved. As mentioned above, some samples cannot be recognized correctly, their

functional margins are negative. As the objective goal is to maximize the sum of

bounded functional margins, the overall identification accuracy might drop to offset

some big negative margins. To further improve this situation, we used a heuristics

to iteratively explore the proximity of the coefficients returned by LP solver. In

each iteration, we adjusted one coefficient by a small step δ to improve 1) the

identification accuracy or 2) the minimal functional margin of all samples without

decreasing the accuracy.

Prototype PRIMA was implemented based on this formulation and the opti-

mized coefficients.

4. Experimental results

We used three large third-party datasets to evaluate PRIMA. Dataset 1 contained

86 ion trap spectra from Richard Johnson.a These spectra served as training data.

Dataset 2 contained 266 ion trap spectra obtained from a Finnigan LCQ Deca mass

spectrometer 30, provided to us by Mark Cieliebak of ETH. Dataset 1 and 2 were

searched against NCBInr database. Dataset 3 was a well-known dataset of 37,071

low quality ion trap spectra aimed at providing a standard test benchmark for

researchers to compare their work with the SEQUEST program, given in 29. This

dataset was accompanied by a custom database. These spectra were produced by ion

trap mass spectrometers of different resolutions and from different organizations,

many not tryptic digested and many only tryptic digested at one end.

Since MASCOT and SEQUEST are the industrial standard and are most widely

used, we compared PRIMA with them b. In our experiments, MASCOT online

server at http://www.matrixscience.com/ was used for the experiments. Another

open source software X! Tandem 18 is becoming popular recently, therefore its latest

release (2005.06.01) was also downloaded from http://www.thegpm.org for testing

and comparison. In particular, X! Tandem ran in two modes. In the first mode

(default one), it only output the valid peptides whose scores were statistically sig-

aThis dataset originally has about 144 spectra. Many of the spectra had large precursor mass
discrepancies due to PTMs and these spectra are removed, with 86 left.
bFor datasets 1 and 2, all the spectra were selected based on the criteria that their SEQUEST
results are correct. Therefore, it is meaningless to compare with SEQUEST on these two datasets.
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Table 1. Subset of selected features and their discriminating capacity. The second
and third columns give the numbers of spectra where the corresponding feature
ranks the correct peptides to top 5% and top 1 of all peptides with similar precursor
mass, respectively.

Feature # of top 5% # of No. 1
sum of intensity for all ions 85 73
sum of intensity for y ions 84 68

sum of intensity product for complementary b/y ions 84 43
sum of intensity for b ions 74 10

average m/z error for y ions 56 5

Table 2. Training: Identification accuracy compari-
son between PRIMA, MASCOT and X! Tandem over
dataset 1

ratio of No.1 ratio of top 10
PRIMA 90.7% 97.7%

MASCOT 84.9% 93.0%
X! Tandem (mode 1) 55.6% 58.1%
X! Tandem (mode 2) 77.9% 83.7%

Note: In mode 1, X! Tandem did not return any pep-

tides for 36 lower-quality spectra.

nificant, while it may not return any peptides for certain lower-quality spectra.

However, in the second mode, X! Tandem returned all top ranked peptides for each

spectrum.

In the training process, we identified the features used in the scoring functions.

Table 1 displays the main features selected to form the scoring function, along with

their discriminating capacity. With the selected features, the LP formulation in

Section 3.2 is used to derive the linear scoring function. As observed by many prior

researchers, for example in 6 and 24, b/y ions are the most common and valid peaks

for mass spec analysis for all types of instruments. Focusing on the features mainly

related to b/y ions makes the scoring function more instrument neutral.

After coefficients were determined, the scoring function was then applied to

dataset 1 to assess its effectiveness. For each spectrum, the top ranked 10 pep-

tides from PRIMA were output. As shown in Table 2, PRIMA outperformed both

MASCOT and X! Tandem in identification accuracy.

PRIMA was then tested using datasets 2 and 3. Table 3 gives the performance of

PRIMA, MASCOT and X! Tandem performance on dataset 2. It shows that PRIMA

achieves better results than MASCOT and X! Tandem. For a closer look, Table 4

presents some peptides which were not correctly recognized either by PRIMA or

MASCOT in the columns 2 and 3. However, for some of these peptides, correct

sequence tags were identified and underlined in the table.

Dataset 3, from 29, provides a perfect benchmark for comparing PRIMA with
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Table 3. Identification accuracy comparison between
PRIMA and MASCOT, X! Tandem over dataset 2

ratio of No.1 ratio of top 10
PRIMA 92.0% 94.7%

MASCOT 90.4% 91.2%
X! Tandem (mode 1) 67.4% 72.4%
X! Tandem (mode 2) 77.9% 83.7%

Note: In mode 1, X! Tandem did not return any pep-
tides for 66 spectra.

Table 4. Peptides in dataset 2 incorrectly identified by either PRIMA or MASCOT.

Correct peptides PRIMA MASCOT

KQTALVELLK QEDGPDMHSK (*)
DLGEQHFK DLGEEHFK (*)

KVPQVSTPTLVEVSR KVPEVSTPTLVEVSR (*)

FKDLGEEHFK (*) AGYVLELLDKK
KTGQAPGFTYTDANKNK (*) KLSNLIGLLWETDPNK
TGQAPGFTYTDANKNK VQMDDAMVIHADTIR (*)

HPYFYAPELLYYANK CDLFKTEEYCLVGLTR (*)
INPDKIKDVIGK (*) LFGHLTKIVAK

HPYFYAPELLYYANK YPHMFINHNQQVSFK (*)
DGISALQMDIK DGISTGCSPARK (*)
PSEGETLIAR (*) VSEGEFNHR

PGQDFFPLTVNYQER (*) IAQIIGPVLDVFFPPGK
PSEGETLIAR (*) AIEGSSGPKAR

DGISALQMDIK KRSGKEEDNK (*)
EIMQVALNQAK (*) TKTELAVEIIK
PSEGETLIAR (*) VSEGEFNHR

YSEIYYPTVPVK LDNVEEGKENWK NPETEWPPFLTK
PGQDFFPLTVNYQER (*) IAQIIGPVLDVFFPPGK
PGQDFFPLTVNYQER (*) VQLAGSHILEALRLHR

PSEGETLIAR (*) VSEGEFNHR
VISWYDNEWGYSNR (*) LVSWYDNEWGYSNR

Note: An asteroid (*) indicates that the peptide was correctly identified.

SEQUEST. This dataset contains 37,071 spectra of low quality, measured from

tryptic digestions of mixtures of 18 proteins. Using a specialized protein database

(human plus the 18 proteins plus common contaminants), SEQUEST has correctly

identified 2784 spectra. Among the 2784 spectra, which were corrected identified by

SEQUEST, 2057 are fully tryptic, 646 are semi tryptic (one end of the peptide is cut

at R/K), and 81 are non-tryptic. Because MASCOT online server and X! Tandem

did not have an option to specialize on peptides that were only tryptic digested at

one end, it was impossible to make a fair comparison between them and PRIMA.

Therefore, we only used dataset 3 to compare SEQUEST with PRIMA. As summa-

rized in Table 5, PRIMA correctly identified 3,090 spectra with highest scores, and

4,585 spectra with correct peptides ranked among top 10. Among the SEQUEST’s
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Table 5. Identification accuracy comparison between
SEQUEST and PRIMA over dataset 3

Number of No. 1 Number of top 10
SEQUEST 2,784 Unknown

PRIMA 3,090 4,585

2,784 correct spectra, PRIMA has correctly identified 2,295 peptides as No. 1 and

2,497 of them as top ten. PRIMA also correctly identified extra 795 spectra with

the highest scores and 2,088 spectra with top 10 scores from the remaining 34,287

spectra that have failed by using SEQUEST.

We have further conducted limited test over higher quality data to evaluate

the robustness of PRIMA. 17 spectra generated by Q-TOF were used as dataset

4 and they were provided by Bioinformatics Solutions Inc. These spectra are more

accurate in m/z measurement and subject to less noise. Searching against NCBInr

protein database, both PRIMA and MASCOT online server correctly identified 14

spectra, and all 17 positives were among top 10 ranked peptides. For this dataset,

X! Tandem did not output any peptides for 9 spectra in first mode, and correctly

recognized all the 8 positives for the rest. When it ran in second mode, X! Tandem

successfully recognized 12 positives.

Besides the accuracy, a practical concern is the reliability of the scores. In gen-

eral, the scores of positives in PRIMA were significantly high. For instance, given

one spectrum in dataset 4, PRIMA ranked the positive peptide as No.1 with score

0.82, the distribution of scores for this spectrum is demonstrated in Fig. 3.

To further study the reliability of scores, we define confidence index for each

spectrum as

CI =
s1 − s2

s2 − s3
(6)

where s1, s2, s3 are the highest, second and third highest scores of candidate peptides

returned by PRIMA.

Fig. 4 (a) shows the scores and their confidence indices for all datasets 1, 2 and

4. Generally, for true positives, PRIMA returns high scores with high confidence;

whereas either scores or confidence indices are low for false positives. Fig. 4 (b)

depicts the ROC curve for the trade-off between sensitivity and specificity. The

area under ROC curve was 0.96, therefore it provided low ratios for both false

positive and false negative in classification.

The complete list of all results for all spectra can be found at

http://monod.uwaterloo.ca/∼jianliu.

5. Discussions and future work

Our goal of this research was to design a robust scoring function and a prototype

system to deal with the low quality data that flood the proteomics industry and
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mass spectrometry research consortiums. We have presented a technique to con-

struct a linear scoring function for MS/MS spectrum interpretation via a database.

Some empirical values and formulas were used to normalize spectra and assign-

ing weights to ions. Tests with over 30,000 spectra, produced from different centers,

show that our prototype system PRIMA outperforms the mainstream software tools

MASCOT, SEQUEST and X! Tandem on low quality ion trap data. This work also
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provides a framework to effectively construct such a scoring function. For exam-

ple, in contrast to collision induced dissociation, spectra generated from electron

transfer dissociation have different patterns of ions. Therefore, it is necessary to

reselect features and determine the coefficients during the training process. It was

also noticed that a good selection of features can reduce the candidate peptide

sets to manageable sizes, otherwise it will be computationally infeasible and fail

conventional classification techniques like SVMs.

Further research is underway to deal with the post translational modifications,

increase search speed, and effectively combine de novo sequencing with database

search methods.
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