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The full sibship reconstruction (FSR) problem is the problem of inferring all groups of full siblings 
from a given population sample using genetic marker data without parental information. The FSR 
problem remains a significant challenge for computational biology, since an exact solution for the 
problem has not been found. The new algorithm, named SIMPSON-assisted Descending Ratio 
(SDR), is devised combining a new Simpson index based O(n2) algorithm (MS2) and the existing 
Descending Ratio (DR) algorithm. The SDR algorithm outperforms the SIMPSON, MS2, and DR 
algorithms in accuracy and robustness when tested on a variety of sample family structures. The 
accuracy error is measured as the percentage of incorrectly assigned individuals. The robustness of 
the FSR algorithms is assessed by simulating a 2% mutation rate per locus (a 1% rate per allele).   

1 Introduction 

Let population sample  be a collection N 1 2( , ,..., )nX X X  of  diploid genotypes n

 ( 1 1 2 2( , ), ( , ),..., ( , )i i i i i iL iLX x x x x x x )′ ′= ′ , (1) 

where each locus  is described by an unordered pair of alleles ( ,l )il ilx x′  and L  is the 
total number of loci which are assumed to be unlinked. Each locus  is a set of l lλ  
codominant alleles

l1{ ,..., }l la a λ . The full sibship reconstruction (FSR) problem is the 
problem of finding the best partition B  from the set of available partitions{ }jP , where 
each  jP  represents the partitioning of  into groups of full siblings without the 
availability of parental information. In order to find partition 

N
B , th partitions are ranked 

by a scoring function which is algorithm specific. Currently there are a number of 
heuristic FSR algorithms

e 

1-7 employing a variety of scoring functions and techniques for 
searching the partition space { }jP .  

Some FSR algorithms1,5,3 utilize the Mendelian rules of inheritance in determining 
the full sibling groups. For example, Butler et al.3 devised the so-called SIMPSON 
algorithm which used the Simpson index  
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as the scoring function, where  is partitioned into  sib groups with group  
containing  individuals. The SIMPSON algorithm is a brute force heuristic which 
searches for the best partition 

N r k
kg

B  by starting from all given genotypes being placed in 
different groups of size one. The algorithm then searches the available partition space by 
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randomly moving one individual into a different group if the newly enlarged group 
passes the Mendelian sibship test. The test is passed if all individuals in the group could 
be generated from the same pair of parental genotypes strictly obeying the Mendelian 
rules of inheritance. The number of random moves (iterations) is limited by the 
algorithm’s parameter, . The SIMPSON formulation of the FSR problem 
(FSR-S) has the partition search space at least exponential in ,

100000nT =
n 8 limiting the applicable 

range of the SIMPSON algorithm or any other “random-walk” based algorithms for that 
matter. For example, even a relatively small sample of 10 individuals restricted to being 
either full siblings or unrelated is estimated to yield 115  partitions.975 6 The estimation 
is provided by the Bell number and is an upper bound of the actual partition space size.8       

Another class of algorithms, notably the GRAPH2 and DR4 algorithms, use the 
pairwise likelihoods of Goodnight and Queller9 in construction and assessment of the sib 
groups. The important difference between the Mendelian sibship test and likelihood-
based tests is the ability of likelihoods to accommodate the presence of genotype errors. 
Essentially the Mendelian sibship test is likely to fail for a previously valid sib group3 if 
even one allele is mutated, while the likelihood-based sibship tests are expected to be 
more robust.7 The interest in the errors is not purely academic. The discovery of 
microsatellite markers revolutionized10 conservation biology and molecular ecology as 
well as medical, forensic and population genetics, to name a few. However, markers may 
suffer from a wide range of error types with drastic consequences: a relatively “small 1% 
error rate in allele calling would lead to almost a quarter of 12-locus genotypes 
containing at least one error”.11 In the important case of noninvasive genotyping the 
situation is even more error-prone due to the small amount of target DNA further 
affecting the reliability of polymerase chain reaction (PCR) to correctly amplify all 
alleles.12 In addition, microsatellite markers could be highly susceptible to mutation.13    

In this study we compare the two existing algorithms; the SIMPSON3 algorithm 
representing the class of algorithms based on the Mendelian sibship test and the 
Descending Ratio4 (DR) algorithm which is purely likelihood based. We show that the 
SIMPSON algorithm could be replaced by a more efficient new algorithm, 
named the Modified SIMPSON (MS2) algorithm. We also present a new algorithm, 
named the SIMPSON-assisted Descending Ratio (SDR) algorithm, which combines the 
advantages of the MS2 algorithm when there are no genotype errors with the robustness 
of DR to the errors. 

2( )O n

2 Method 

2.1 Accuracy 

Normally3 a sample with known sib groups (partition A ) is generated by simulation 
(each such simulation is called a FSR trial). The sample is then presented to an FSR 
algorithm yielding the best (according to the algorithm) partition B . The known 
partition A  and reconstructed partition B  are compared and the accuracy measure for 
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the given trial (and sample structure) is calculated. The accuracy measure is then 
averaged over a number of trials, as large as one hundred2 or as small as six3. However, 
the measures of accuracy were defined differently in the published algorithms making 
them difficult (if not impossible) to compare. For example, the following measures 
currently exist: the minimum number of moves ( , )A Bξ  required to convert B  into 
A ;3,2 the percentage of trials where A B= ;2 | |( ) /fs fs fs ur fsS S T− , where |fs fsS  is the 

total number of correctly reconstructed full-sib pairs, |fs urS  is the total number of 
incorrectly reconstructed full-sib pairs, and fsT  is the total number of full-sib pairs in 
A ;6 the number of full-sib families being completely recovered relative to the actual 

numbers in a sample.7 
For this study, the accuracy-error is adopted as the accuracy measure. The error 

equals the percentage of incorrectly assigned individuals14  ( , ) /A B nξ ξ=    and is 
equivalent to the partition-distance which has known theoretical properties15 and could 
be efficiently calculated via the maximum15 or minimum16 assignment problem for 
bipartite graphs. In addition the accuracy-error is directly comparable8 to the 

( , )A Bξ results of GRAPH2 and the four algorithms studied by Butler et al.,3 i.e. the 
AF,1 Full Joint Likelihood (FJLa),5 SC5 and SIMPSON3 algorithms. The available 
measures of accuracy compare the known partition A  to the reconstructed partition B , 
while the ultimate goal of the FSR algorithms is to provide B  together with its 
confidence level17 for a given population sample with an unknown structure. While, at 
present, the assessment of the confidence levels for the FSR remains unexplored, the 
accuracy-error could provide consistent initial comparisons between the FSR algorithms. 

2.2 Simulations 

There are a number of sample family structures that are used for testing of the FSR 
algorithms. For example, while testing their GRAPH algorithm, Beyer and May2 used 
four family distributions for the population sample of 50n = individuals with the 
following family sizes: (5×10),b (20,10,10,5,5), (30,5,5,5,5) and (40,5,2,2,1). They also 
used  where all family sizes from their 500n = 50n =  testing set were multiplied by 
10. Butler et al.3 used the (50×1),c (5×10), (25,10,10,4,1) and (45,1,1,1,1) family sizes 
for  and (20×10), (5×40), (100,40,40,16,4) and (196,1,1,1,1) for . The 
JW

50n = 200n =
7 algorithm was tested on the simulated samples with family sizes following Poisson 

or negative binomial distributions. The reconstructions of empirical data sets were also 
carried out to assess or illustrate the accuracy of the algorithms under consideration.3,5,7 
However, any conclusions drawn from what are normally a very limited number of 
empirical trials are statistically questionable and hence such cases are not considered 
here. 

                                                           
a denoted by Likelihood in [3]. 
b Five families containing 10 full siblings each. 
c Fifty unrelated individuals. 
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The fixed family sizes2,3,5 are not scalable between different values of  while the 
distribution based

n
7 sizes may be prone to misinterpretation. Eventually it would be 

desirable to reach a consensus on family structure benchmarks that are easy to reproduce, 
exactly defined, and scalable to a wide range of . The benchmarks could be used in the 
reporting of an algorithm’s accuracy, allowing for consistent comparison between 
different algorithms. Two such benchmarks are proposed below and used for the testing 
of the FSR algorithms in this study: 

n

• The uniform distribution benchmark (inspired by the (5×10)3,2 and (50×1)3 distri-
butions) is defined by a partition , where  is the number of families (sib 
groups) and  is the size of each family, giving the population size . This 
benchmark tests how well an FSR algorithm performs as the amount of genetic 
information is gradually reduced: the number of families  increases maintaining 
the constant population sample size  and reducing each group size .  

( , )nU r g r
g n rg=

r
n /g n r=

• The skewed distribution is defined by , where q  is the skewing factor such 

that group  contains  full siblings and the size of the first 

group is given by . This benchmark is essential since the 
accuracy of some FSR algorithms deteriorates as the skewing increases, e.g. 
GRAPH,

( , )nS r q
k 1 ( 1kg g q k= + − )

21 / ( 1) /g n r q r= − −

2 SC,3 and FJL.3 

Any allelic mutation in an individual genotype (Eq. 1) may lead to misclassification of 
that individual and is referred to as the genotype error. The error could be due to a 
variety of factors, e.g. mutation, plain human error,18 PCR missprinting11,7 and allelic 
dropout (null allele).12 Most of the existing sources of error manifest themselves on the 
per allele basis, making it natural to specify the errors as the error rate per allele or 
locus.7,11 In this study the following error model is used capturing the majority of the 
biologically occurring errors in one parameter, the locus error rateε . The error is applied 
by collecting all available loci from all the individuals from a given sample, obtaining 

 loci. Next, nL nLε different loci are randomly selected and one allele at each of the 
loci is mutated into a randomly chosen different (change into itself is prohibited) allele 
from the same locus. Since a common misprinting error is relatively small (between 0.3% 
and 11% per allele)12 the mutation of both alleles at the same locus is omitted from 
consideration.  

3 Algorithms 

3.1 The Modified SIMPSON (MS2) Algorithm 

Let  be the number of alleles in an individual ( , )ld X Y X  which are not present in an 
individual Y  at locus . The locus  and genotype  distances could 
be defined by   

l ( , )lD X Y ( , )D X Y
( )( , ) max ( , ), ( , )l l lD X Y d X Y d Y X= , 
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( , ) min ( , )lD X Y D X Y= , respectively.8  The Modified SIMPSON (MS) algorithm 
significantly improved the SIMPSON3 heuristic in speed while maintaining low 
accuracy-error using the genotype distances and achieving  running time.3( )O n 8 The 
following algorithm, named MS2, is derived from the original MS algorithm 
utilizing the local-minimum property of the Simpson index. The MS steps (1-4) remain 
unchanged:

2( )O n

8 steps (1) and (2) - calculate and sort the list of genotype distances in 
ascending order; step (3) - create a pool of unassigned individuals; step (4) – repeat this 
and the following steps; select the next unassigned individual from the list of distances 
until all individuals are assigned. The new MS2 steps: step (5) - place the next individual 
into the first group that passes the sibship test;d step (6) - sort the available sib groups in 
the descending order of their sizes.  

 
Figure 1. Runtime efficiency (in seconds per trial on a 3GHz PC) and the accuracy-error (%) of the MS ( ) and 
MS2 (●) algorithms. Each FSR trial is performed on a freshly generated population sample genotyped for L=5 
loci, each locus containing NA=10 equifrequent alleles. The sample consists of r groups each containing 5 full 
siblings, giving the population size n=5r. The MS results are obtained with the window parameter w=2. The 
cubic and square powers of n are denoted by the dash-dot and dotted lines in the subfigure (a), respectively. 

 
Figure 1(a) verifies that the complexity of the MS2 algorithm is , further 

improving the MS’s . By the definition of the MS2 algorithm, the lower bound of 
its accuracy-error is the accuracy-error of the original MS algorithm when the MS’s 
window parameter is . Figure 1(b) indicates that any potential loss of accuracy 
could be insignificant. The efficiency improvement is due to the Simpson index (Eq. 2) 
which is maximized on the local scale by increasing the largest group. To illustrate that, 
let two available groups have sizes and 

2( )O n
3( )O n

1w =

g 1g − . Assuming that the next individual 
could be added to both groups, the Simpson index is maximized by placing the individual 
into the -group since . However the greedy method is still 
only a heuristic even on the local scale since two or more largest groups may have the 
same size. On the global scale this greedy approach has no guarantee in achieving the 
maximum value of the index, e.g. the partition with the group sizes (8,3,2) has a smaller 
index than the partition with (7,6) sizes.  

g 2 2( 1) ( 1) 2g g+ + − > 2g

                                                           
d The sibship test is performed on the newly created group containing the next individual 
and the existing group. 
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Figure 1(b) verifies that the MS2 algorithm is as accurate as the MS algorithm 
However the MS2 algorithm is superior in run-time efficiency, e.g. Figure 1(a) shows 
that MS2 takes the same amount of computer time to reconstruct 500 individuals as for 
MS to reconstruct 150 individuals. The absolute terms, MS2 requires only a fraction of a 
second to perform the full sibship reconstruction of 500 individuals on a 3GHz Pentium 
4 PC. 

3.2 The SIMPSON-assisted Descending Ratio (SDR) Algorithm 

Figure 2 compares the DR,4 SIMPSON3 and MS2 algorithms. Figure 2(a) for 50 
unrelated individuals stands out as a reminder that the Simpson index based formulation 
(FSR-S) is still only an approximation of the FSR problem. The MS2 correctly finds the 
partition with the largest Simpson index (as does SIMSPON) by placing the individuals 
in groups of size two or larger (any two individuals always pass the sibship test). While 
the Simpson index as the scoring function is biologically incorrect in this instance, the 
likelihood based DR algorithm makes sense biologically by becoming more accurate as 
the amount of genetic information increases (larger L ). The DR results are obtained 
with the null and primary hypothesese being the unrelated and diploid full-sibling 
relationships, respectively.  

 
Figure 2. The accuracy-error of the SDR (●), DR (dashed line), MS2 (dotted line) and SIMPSON ( ) 
algorithms as the function of the number of loci L and family structure in the absence of genotype errors. The 
subfigures are titled by the uniform distribution Un(r,g), e.g. the subfigure (a) displays the FSR results for 50 
unrelated individuals. 

 
Figure 3(c-f) verifies that the Mendelian sibship test based MS2 and SIMPSON 

algorithms are not robust to the presence of a realistic12 error rate of 2% per locus or 1% 
per allele confirming the serious concern raised by Hoffman and Amos11 who criticized 

                                                           
e null and primary are from the terminology of the KINSHIP [9] and KINGROUP [4] 
programs 
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the current common practice of reporting genotype inferred results without the error 
analysis. However in the absence of errors the MS2 and SIMPSON algorithms are more 
accurate than DR (Figure 2).  

The MS2 accuracy in the absence of genotype errors and the DR robustness  to the 
errors prompts the following SIMPSON-assisted Descending Ratio (SDR) algorithm: 
step (1) - perform the reconstruction using MS2 algorithm; step (2) - retain one largest 
group with size 3 or larger; step (3) - assign the remaining unassigned individuals as per 
the DR4 algorithm. Only one largest group is retained in step (2) since the MS2 (and 
hence MS and SIMPSON) algorithm tends to break up a true sib group into a number of 
smaller sib groups in the presence of mutated alleles.     

 
Figure 3. The same as in Figure 2 but with a 2% locus (1% allele) error rate applied to the generated population 
samples. 

4 Results and Discussion 

For this study the genotypes (Eq. 1) are considered with the same number of equifrequent 
alleles 10l ANλ = =  at each of the L  loci. The number of loci L  is chosen as a 
varying parameter since biologists would normally have a choice in the number of loci 
(e.g. microsatellite markers) but not their heterozygosity. Already having L  as a 
parameter the variations in the number of alleles A  are not considered since it is well 
understood that the increase in either A , 

N
N L  or both improves the accuracy of an FSR 

algorithm.2,3 The SIMPSON results are calculated with 10  iterations. All 
presented results are averaged over 100 trials. 

0000

Figure 2 and Table 1 demonstrate that with 10 equifrequent alleles and in the 
absence of genotype errors: the SDR algorithm is as accurate as MS2 and SIMPSON 
from about 5L =  loci onwards; the MS2 and SIMPSON algorithms are essentially 
identical in accuracy. Figure 2(b) shows, however, that in the case of 25 families of two 
full siblings each, the MS2 algorithm is as accurate as DR while SIMPSON fails to 
distinguish correct sib groups.  
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In the presence of a 2% locus (1% allele) error rate (Figure 3): both MS2 and 
SIMPSON fail to deal with the errors, effectively arriving at proportionally worse 
partitions as the absolute number of errors increases with the increase of L ; SDR is 
more accurate than the MS2, SIMPSON and DR algorithms, starting from about  
loci; the SDR algorithm outperforms DR for all considered number of loci and family 
structures verifying the value of the MS2 preprocessing. The  cost of the MS2 
preprocessing is negligible in comparison to the  cost

6L =

2( )O n
3( )O n 8 of the DR algorithm 

making SDR run in  and be feasible for practical applications.  3( )O n
Since SDR retains the largest sib group reconstructed by MS2, it may be expected 

that the effect of just one sib group should be proportionally small when a large number 
of groups is present, as in the case of 10 groups of 5 individuals each, see Figure 2(c). 
Surprisingly, Figure 2(c) demonstrates that the accuracy-error is reduced 
disproportionally, showing that the DR algorithm works significantly better if at least one 
“seed” sib group is supplied. This suggests a new approach which has a potential to 
resolve the current problem with the widely used KINSHIP9 program. Using simulations, 
the program determines the pairwise likelihood ratios (the same ratios are used in the DR 
algorithm) for the given significance levels but then it is up to the user to manually assign 
individuals into sib groups based on their pairwise ratios. The problem arises when the 
same individual is significantly likely to be in the full sibling relationship with a number 
of individuals from different sib groups.19 An algorithm similar to the SDR algorithm 
could accept all sib groups reconstructed by KINSHIP without conflict and then 
complete the reconstruction using the DR algorithm which, as shown here, becomes 
significantly more accurate once at least one seed group is supplied. 

Figure 4 verifies that the SDR algorithm is robust to the mutation errors for skewed 
family structures. In particular, the accuracy-error SDR results in Figure 3(d) for 5 
uniform groups are very similar to the results in Figure 4(b) for 5 skewed groups. 

 

 
Figure 4. The same as in Figure 3 but for skewed family distributions: (a) 50 individuals distributed in 14 sib 
groups with (20, 5, 5, 5, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1) sizes; (b) 50 individuals distributed in 5 sib groups with (2, 6, 
10, 14, 18) sizes. 

In conclusion, given a population sample without genotype errors and in the absence 
of unrelated individuals, the new MS2  algorithm solves the FSR problem to the 
near-optimal level in speed and accuracy. On the other hand, the presented preliminary 

2( )O n
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results suggest that the new SDR  algorithm could solve the FSR problem to a 
high level of accuracy even in the presence of unrelated individuals and genotype errors.  

3( )O n

 
Table 1. The accuracy-error (percentage of incorrectly classified individuals) achieved by the DR, MS2, SDR 
and SIMPSON algorithms for 50 individuals uniformly distributed in r groups of g size each. The family 
distributions are denoted by (r, g). Each of the L loci is simulated with 10 equifrequent alleles. 

Algorithm U50(r,g) L=1 2 3 4 5 6 8 10 12 14 
DR (50,1) 84.6 71.2 63.8 57 50.7 43.3 35.6 23.9 20.9 13.6 
DR (25,2) 74.8 59.2 50.2 40.9 33.6 28.8 16.4 10.6 6 3.3 
DR (10,5) 58.5 40.6 31 23.7 16 12.5 5.4 2.9 1.9 1 
DR (5,10) 44.9 28.2 19.5 13.2 6.4 6.5 2.2 0.9 1.2 0.2 
DR (2,25) 31.1 19.2 9.7 3.9 4 1.6 0.6 0.4 1 0 
DR (1,50) 30 15.4 5.1 3.2 1.8 1.5 0.2 0.2 0.1 0 
MS2 (50,1) 77 62.9 54.9 51.3 50.1 50 50 50 50 50 
MS2 (25,2) 67 49.2 40.3 34.3 31.8 27.6 18.4 9.2 3.2 1.2 
MS2 (10,5) 52.2 15 2.6 0.4 0.1 0 0 0 0 0 
MS2 (5,10) 27.2 3.2 0.5 0 0 0 0 0 0 0 
MS2 (2,25) 5 0.8 0.1 0 0 0 0 0 0 0 
MS2 (1,50) 0 0 0 0 0 0 0 0 0 0 
SDR (50,1) 83.9 71.2 63.7 56.7 49.7 44.2 36.2 24.3 21.2 14 
SDR (25,2) 74.4 58.2 49.9 41.8 32.8 28 17.6 10.7 6.3 3.2 
SDR (10,5) 57.7 40.7 13.4 2.6 0.7 0 0 0 0 0 
SDR (5,10) 40.8 13.5 2.8 0.5 0 0 0 0 0 0 
SDR (2,25) 8.3 2.1 0.1 0 0 0 0 0 0 0 
SDR (1,50) 0 0 0 0 0 0 0 0 0 0 
SIMPS (50,1) 79.6 67.1 58.4 53.4 50.3 50 50 50 50 50 
SIMPS (25,2) 70.4 56.5 48.6 45.6 45.7 46.7 48 48.9 48.8 48.9 
SIMPS (10,5) 58 28.3 6.2 1.2 0.3 0 2.4 2.3 4.6 2.4 
SIMPS (5,10) 37.4 5 0.9 0.1 0 0 0 0 0 0 
SIMPS (2,25) 11.4 1.3 0 0 0 0 0 0 0 0 
SIMPS (1,50) 0 0 0 0 0 0 0 0 0 0 
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