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Finding common patterns, motifs, in a set of DNA sequences is an important problem in 
bioinformatics. One common representation of motifs is a string with symbols A, C, G, T and N 
where N stands for the wildcard symbol. In this paper, we introduce a more general motif discovery 
problem without any weaknesses of the Planted (l,d)-Motif Problem and also a set of control 
sequences as an additional input. The existing algorithms using brute force approach for solving 
similar problem take O(n(t+f)l5l) times where t and f are the number of input sequences and control 
sequences respectively, n is the length of each sequence and l is the length of the motif. We propose 
an efficient algorithm, called VAS, which has an expected running time O(nfl(nt)k(4k-1+1/4k-1)l) 
using O((nt)k(4k-1+1/4k-1)l) space for any integer k. In particular when k = 3, the time and space 
complexities are O(nlf (nt)3(1.0625)l) and O((nt)3(1.0625)l) respectively. This algorithm makes use 
of voting and graph representation for better time and space complexities. This technique can also 
be used to improve the performances of some existing algorithms. 

1 Introduction 

A genome is a DNA sequence consisting of four types of nucleotides (symbols): A, C, G 
and T. During the gene expression process, some substrings of the genome, called genes, 
are decoded to produce proteins. In order to start the gene expression process, a molecule 
called transcription factor binds to a binding site, represented by a short substring, in the 
promoter region of the gene. Genes seldom work alone. One kind of transcription factor 
may bind to the binding sites of several genes, allowing the genes to be decoded together. 
Such binding sites should then have the same length and similar patterns. Finding the 
common pattern, motif, of the binding sites from a set of sequences representing the 
promoter regions is an important problem for understanding how gene expression works. 

A motif is usually represented by a string [3,4,7,8,12,14-23] or a matrix [1,2,5,6,9-
11,13]. When a motif is represented by a 4 × l probability matrix M, where l is the length 
of the binding sites, the i-th column of M represents the occurrence probabilities of A, C, 
G and T at the i-th position of a binding site. Although many real biological motifs can be 
better represented by a matrix, most existing algorithms [1,2,5,6,9,10,13] cannot 
guarantee finding the optimal matrix-represented motif from a given set of sequences and 
those algorithms that can may take a prohibitively long time to do so when l is large [11]. 

When a length-l string P is used to represent the motif, all binding sites are length-l 
strings similar to P with at most d point substitutions. In other words, the Hamming 
distance between the motif and each binding site is at most d. Since there are a finite 
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number of length-l strings (4l possible strings), many algorithms [4,8,12,15,17-19,21-23] 
can guarantee finding the best string motif. The drawback is that some real biological 
motifs cannot be represented by strings. 

Pevzner and Sze [17] define a precise version of motif discovery problem using 
string representation which has been considered in [4,12,14,15,18,19]. 

Planted (l,d)-Motif Problem: Suppose there is a fixed but unknown 
nucleotide sequence P (the motif) of length l. Given t length-n nucleotide 
sequences and each sequence contains a planted variant of P, we want to 
determine P without knowing the positions of the planted variants. A variant is 
a substring derivable from P with at most d point substitutions. 

Many algorithms have been developed to solve this problem [4,14,15,18]. However, this 
problem makes various assumptions and has the following weaknesses.  

1. Because of experimental error and noise, some input sequences may not contain any 
variants of P. On the other hand, some promoter regions may contain more than one 
binding site [5,10,11,13,20]. 

2. Although the binding sites of a transcription factor may be different from each other, 
in real biological data, there are some conserved positions where all binding sites 
have the same nucleotides. The Planted (l,d)-Motif Problem does not exploit this 
property, making the defined problem more difficult than the actual problem [11,23]. 

3. It is difficult for biologists to determine the parameter d without any knowledge 
about the motif and the binding sites. 

4. There are some patterns which are not motifs, but occur frequently in some parts of 
the genome, inside and outside the promoter regions. Algorithms for solving the 
Planted (l,d)-Motif Problem may mistakenly find these patterns as motifs [2]. 

Many algorithms [12,18,20-22] have been studied to solve the motif discovery problem 
without these weaknesses. Sinha and Tompa [21] modified the planted (l,d)-motif 
problem to overcome the first three weaknesses. In their model, a sequence may contain 
zero or more variants of the motif which is represented by a length-l sequence, called 
pattern, consisting of symbols {A, C, G, T, N}. A variant of a pattern P is a substring 
exactly the same as P except that each wildcard symbol N is replaced by A, C, G, or T 
where d is the number of wildcard symbols N in P. Patterns with different d values are 
compared by their z-scores (the number of standard deviations by which the number of 
variants of a pattern in the input sequences exceeds its expected number). Patterns with 
higher z-scores are more likely to be the correct motifs and the optimal motif is the pattern 
with the highest z-score. 

During experiments, biologists usually get a set of sequences (control set) that do not 
contain many binding sites of the transcription factors as a by-product [2]. Takusagaw and 
Gifford [2,22] also considered motifs with wildcard symbols but with a set of control 
sequences as an additional input to overcome the last weakness. Patterns with relatively 
more variants in the input sequences than in the control set are likely to be the correct 
motifs. 
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There are a number of algorithms [8,20] which can find motifs with wildcard 
symbols, a similar problem model as given in [21,22]. However, all these algorithms find 
the motif by brute force. Since there are 5l possible motifs (patterns), the running times of 
these algorithms increase exponentially with l.  

In this paper, we give the first algorithm which solves the motif discovery problem 
without any of the above weaknesses, an extension of the motif discovery problem stated 
in [22]. Our algorithm called VAS (stands for Voting Algorithm from sets of Substrings) 
uses a new technique based on voting to find the maximum clique of a graph constructed 
from the set of sequences. Algorithm VAS can effectively find the optimal motif, in a few 
seconds/minutes instead of hours/days before. This new technique, when applied to some 
existing algorithms, should be able to greatly improve their performances too. In [17], a 
graph is constructed for solving the Planted (l,d)-Motif Problem. Each length-l substring 
in the input sequence is represented by a vertex, and an edge between two vertices exists 
if the two corresponding substrings differ by no more than 2d point substitutions. The 
Planted (l,d)-Motif Problem can be reduced to the finding of the maximum clique of the 
constructed graph, which takes O((nt)(t-1)+2.376) time when d is large and O((nt)2) space. In 
[4], a voting algorithm was introduced for finding the motif. This algorithm, through some 
heuristics, can solve the Planted (l,d)-Motif Problem for large l and d with a high 
probability. However, its time and space complexity are O(nt(3l)d) and (O(n(3l)d) if we 
want to find the motifs with 100% certainty. 

Algorithm VAS, based on voting from k similar substrings (when k = 2, the two 
similar substrings form an edge), has the merits of voting and graph representation and 
has better expected time and space complexities. For example, when k = 2, the expected 
time complexity and space complexity of VAS are O(nlf (nt)2(1.25)l) and O((nt)2(1.25)l) 
respectively; when k = 3, VAS takes O(nlf (nt)3(1.0625)l) time and O((nt)3(1.0625)l) space, 
where n is the length of the input sequences, t is the number of the input sequences, f is 
the number of the sequences in the control set and k can be any positive integer. 
Experimental results show that VAS has good performances on both simulated data and 
real biological data. 

This paper is organized as follows. In Section 2, we define the extended motif 
discovery problem with control set. In Section 3, we describe VAS for solving this 
extended motif discovery problem. Experimental results on both simulated data and real 
biological data are shown in Section 4 followed by a conclusion in Section 5. 

2 The Motif Discovery Problem 

In order to address the weaknesses of the Planted (l,d)-Motif Problem, we define the 
motif discovery problem without any of these weaknesses as long as P has relatively more 
variants in the set of input sequence T than in the set of control sequences F. Before 
proceeding further, we have to formally define the meaning of “P has relatively more 
variants in T than in F ” in the above problem definition. 
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Let t and f be the number of length-n sequences in T and F respectively. Barash et al. 
[2] determined whether a pattern P is the motif by considering the “random selection null 
hypothesis” that sequences in T are randomly selected from all the t + f sequences. P is 
the motif if this hypothesis is false. However, they assumed that each sequence contains 
only one binding site and did not consider sequences with zero or multiple binding sites. 
Similar approach has also been used in [22]. In this paper, we verify whether P has 
relatively more variants in T than in F using a similar hypothesis as Barash et al. with the 
extra assumption that each sequence may contain zero or more variants of the motif. 

Similar to [3,10], we break down the sequences in T and F into � = t(n – l + 1) and � 
= f(n – l + 1) length-l substrings. Assume that T and F contain kt and kf variants of a motif 
with pattern P, consider the null hypothesis that the sequences in T are constructed by 
combining � substrings randomly selected from the � + � substrings without replacement 
(we may not be able to combine � substrings to construct t length-n sequences). Given a 
pattern P with kt + kf variants in set T and F respectively, the probability that kt of them 
are in set T is  
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followed from the hyper-geometric probability distribution. The p-value that the null 
hypothesis is true can be calculated by summing up the tail of the probability distribution 
for kt’ > kt. 
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A pattern P with a small p-value means the null hypothesis is unlikely, i.e. P is likely 
to be the motif. Based on what we have discussed, we give the formal definition of the 
extended motif discovery problem without any of the above weaknesses as follows: 

Extended Motif Problem with Control Set: Suppose there is a fixed but 
unknown pattern P (the motif) of length l with symbols A, C, G, T and N. 
Given kt variants of P in the t length-n nucleotide sequences in T and kf 
variants of P in the f length-n nucleotide sequences in F, where kt/t >> kf/f in 
the sense that P has a small p-value,we want to determine P with knowledge of 
the motif length l only. 

In practice, there might be a few patterns with small p-values. Our algorithm will 
find the optimal motif which is the pattern with the smallest p-values. Note that the 
input of d is not necessary in the above problem definition because the correct 
pattern P should include the knowledge of d. Our algorithm will exhaust all values 
of d to find the pattern P with the smallest p-value. 
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3 Algorithm 

Since there are 5l possible length-l patterns and checking which pattern has the smallest p-
value by brute force takes O(5lnl(t + f)) time which can be extremely long for large l. 
Existing algorithms for solving the planted motif problem, like WINNOVER [17], 
PROJECTION [3] and SPELLER [19], cannot be extended to solve the extended motif 
discovery problem easily because they either do not guarantee finding the motifs or need 
a long running time when d is large. 
 
Algorithm 1: VAS when k = 1. 

1 Create a hash table V with zero at each entry                       {V stores the number votes for each pattern} 
2 minp � 1                                                                                                                                    {minp is the minimum p-value} 
3 For each length-l substring S in T 
4 For d � 0 to l 
5 For each pattern P with exactly d symbol Ns such that S is a variant of P  
6 V(H(P)) �V(H(P)) + 1                                                              {H(P) is the hash value of P} 
7 sort the patterns in V in non-increasing order of the number of votes V(H(P)) 
8 For each pattern P 
9 kt �V(H(P))                     
10 If P(kt, 0, �, �) < minp 
11 count the number of variants kf of P in F 
12 If P(kt, kf, �, �) < minp 
13 minp �P(kt, kf, �, �) 
14 motif � P 
15 Else output motif 

 

We might apply the basic idea of the Voting algorithm [4] to solve the extended 
motif discovery problem (Algorithm 1). For each length-l substring S in the input 
sequence, one vote is given to patterns P such that S is a variant of P. Note that all 
patterns with different d values, 0 � d � l, have been considered in the algorithm. Since 
there are t(n – l + 1) length-l substrings in T, and a length-l substring can be a variant of 
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Since exactly t(n – l + 1)2l votes will be issued, there will be at most n(t – l + 1)2l entries 
in the hash table V. The time needed to count the number of variants of a pattern in F is 
nlf. Therefore the time needed for verifying each entry in V is at most nlf t(n – l + 1)2l = 
O(nlf(nt)2l). The total running time of the algorithm is O(ntl2l + nlf(nt)2l) = O(nlf(nt)2l). 
The memory needed for storing the hash table V is O(nt2l). 

Although the base number of the exponent is reduced from 5 to 2, the time and space 
complexities of this direct voting algorithm are still very large. The space complexity 
remains impractical for large l. 
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The planted motif problem can also be viewed as a maximum clique problem [17]. 
Even though the maximal clique problem is NP-complete, this approach has the 
advantage that the space complexity is at most O((nt)2) as there are t(n – l +1) substrings 
(vertices) in T. In order to reduce the time and space complexities, we modify the Voting 
algorithm to vote patterns by a set of substrings instead of a single substring. 

Normally the hidden motif should have at least two variants in T. One vote will be 
given to those patterns P such that length-l substrings S and S’ in T are variants of P. Thus, 
a pattern with k variants in T should get exactly )(2

k  votes. Intuitively, the time and space 
complexities can be reduced because the hash table V does not needed to handle those 
patterns with only one variant in T. The expected time complexity and space complexity 
can be calculated as follows. 

Assume the occurrence probabilities of A, C, G and T are 0.25. The probability that S 
differs from S’ in i positions is )(i

l 0.25l-i0.75i and the number of patterns P such that both 
S and S’ are variants of P is  
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So the expected number of patterns voted by each pair of substrings is 
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Since there are O((nt)2) pairs of substrings in T, the time complexity of the algorithm 
(including checking the patterns in F) is  
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And the space complexity of the algorithm is  
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In order not to miss motifs with only one variant in T, we check whether each length-l 
substring in T can be the motif. This checking step takes O(nlf(nt)) time and O(1) space 
which do not affect the time and space complexities of VAS. 

With this approach, the time and the space complexities are reduced by a factor of 
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if we vote on patterns by pairs of substrings instead of single substrings. The algorithm 
can be speeded up if and only if nt < (8/5)l. Therefore, voting by pairs of substrings is 
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beneficial when the size of the input sequences is small or the length of the motif is long. 
Similar improvement can be performed by giving votes to patterns of k substrings. The 
expected time complexity and space complexity for voting from k substrings are 
O(nlf(nt)k(4k-1+1/4k-1)l) and O((nt)k(4k-1+1/4k-1)l) respectively. In practice, VAS has the 
best time complexity when k = 2 or 3 depending on the size of the input sequences and the 
length of the motif. 

4 Experimental Results 

We have implemented VAS in C++ and used it to find motifs in both simulated and real 
biological data. In this section, we describe the performance of VAS and compare it with 
some existing motif discovery algorithms. All experiments were taken on a 2.4GHz P4 
CPU with 1 GB memory. 
 

Table 1. Successful rate and running time of VAS.  

b = 10 b = 20 b = 30 b = 40 l d 
Success rate Time Success rate Time Success rate Time Success rate Time 

8 1 100% 13.7s 100% 13.7s 100% 13.8s 100% 13.8s 
 2 74% 13.8s 76% 13.7s 100% 13.7s 100% 13.8s 

10 3 100% 17.1s 100% 17.0s 100% 16.7s 100% 16.8s 
 4 62% 17.1s 54% 16.7s 100% 16.9s 100% 16.7s 

12 5 100% 23.1s 100% 23.3s 100% 23.3s 100% 23.4s 
 6 44% 23.0s 84% 23.1s 100% 23.2s 100% 23.3s 

14 7 100% 37.8s 100% 37.6s 100% 37.7s 100% 37.6s 
 8 68% 37.7s 96% 37.7s 100% 37.7s 100% 37.7s 

16 9 100% 67.1s 100% 67.1s 100% 67.1s 100% 67.1s 
 10 100% 67.0s 82% 67.2s 100% 67.2s 100% 67.0s 

18 11 100% 132s 100% 132s 100% 131s 100% 132s 
 12 100% 132s 100% 132s 100% 131s 100% 132s 

20 13 100% 256s 100% 256s 100% 255s 100% 256s 
 14 100% 255s 100% 256s 100% 256s 100% 256s 

4.1. Simulated Data 

The simulated data were generated as follows. All input instances contain t = 20 length-
600 sequences in T and f = 20 length-600 sequences in F. Each nucleotide of these 
sequences was generated independently with the same occurrence probability 0.25. Then 
a length-l motif M with d Ns was picked randomly from all possible patterns and b 
variants of M were planted in the sequences in T at random positions. The motif length l 
and the sequences in T and F were inputted to VAS for finding the motifs. For each set of 
parameter l, d and b, we ran 50 test cases. Table 1 shows the successful rate and the 
average running time of VAS when k = 2 (votes are given by pairs of substrings in T). 

Since the number of votes given by each pair of substrings in T is almost independent 
of the number of planted variants in T and the number of Ns in the motif pattern, the 
running time of VAS is independent of these factors as shown in Table 1. Algorithm VAS 
may not find the motif when d, the number of Ns in the motifs, is relatively large (e.g. 
(8,2), (10,4), (12,6)) and the number of planted variants in T is small (b = 10 or b = 20).  
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It is because random patterns P might have more variants in T and less variants in F than 
the motif M in these cases. Since VAS cannot distinguish M from these random patterns P, 
VAS fails to find the motif. However, when the number of non-N symbols in M is 
reasonably large (> 6), VAS can find the motif M successfully with high probability. 

Common motif discovery algorithms like PROJECTION [3] and VOTING [4] are 
developed for solving planted motif problem without control set. In order to compare the 
performance of these algorithms with VAS, we reduce the values of d for these algorithms 
such that they can theoretically find the motif [3] and plant exactly one variant in each 
sequence in T. Table 2 shows the results of these algorithms. 
 

Table 2. Successful rate and running time of brute force algorithm, PROJECTION, VOTING. And VAS 

Brute Force PROJECTION VOTING VAS l d 
Success rate Time Success rate Time Success rate Time Success rate Time 

8 1 100% 268s 94% 18s 100% <1s 100% 13.8s 
10 2 100% 72min 98% 77s 100% 0.7s 100% 16.7s 
12 3 - - 88% 371s 100% 28.4s 100% 23.4s 
14 4 - - 76% 650s 100% 412s 100% 37.7s 
16 5 - - 82% 20min 100% 31min 100% 67.0s 
18 6 - - 88% 34min - - 100% 132s 
20 7 - - 86% 48min - - 100% 256s 

 

Although brute force algorithms can find motif when l is small, they fail to find the motif 
when l > 10. Voting algorithm [4] (we use the basic voting algorithm without heuristic 
search) has a better performance than the brute force algorithms because its running time 
increases exponentially with d instead of l.  The running time of PROJECTION does not 
increase sharply with l because it performs heuristic search for finding the motifs. 
However, it does not guarantee that the motifs can be found all the time and has a success 
rate less than 100%. When compared with these algorithms, VAS has the best 
performance in both accuracy and running time.  

4.2. Real Biological Data 

SCPD [24] contains different transcription factors for yeast. For each set of genes 
regulated by the same transcription factor, we chose the 600 base pairs in the upstream of 
the genes as the input sequences T. 100 random sequences in the upstream of yeast’s 
genes were picked randomly as the set of control sequences F. The lengths of the motifs 
were same as those of the published motifs. For PROJECTION and the Voting algorithm, 
we tested all possible d from 0 to l. Experimental results are showed in Table 3. Some 
motifs with many wildcard symbols (e.g. GAL4) cannot be represented properly by the 
planted motif problem and can be found by VAS only. Since PROJECTION and the 
voting algorithm do not consider the set of control sequences, they fail to find motifs 
when relatively less variants are in T (e.g. ACE2). On the other hand, VAS can find the 
motifs in these cases with the help of the control sequences. Note that we have not shown 
all the experimental results because PROJECTION, the Voting algorithm and VAS have 
the same performance on the rest transcription factors in the SCPD. 
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Table 3. Experimental results on real biological data 

Name Published Pattern PROJECTION VOTING VAS 
CuRE TTTGCTC TTTGCTC TTTGCTC TTTGCTC 
GATA CTTATC CTTATC CTTATC TTATCG 
ACE2 GCTGGT - - GCTGGT 
AP1 TTANTAA - TTACTAA TTANTAA 
GAL4 CGGN11CCG - - CGGNGNNCTNTNGNCCG 
ROX YYNATTGTTY - - TCCATTGTTC 

Symbol Y means C or T. N11 means 11 Ns. 

 

5 Discussion 

In this paper, we have introduced VAS for solving the extended motif discovery problem 
with control set using O(nlf(nt)k(4k-1+1/4k-1)l) time and O((nt)k(4k-1+1/4k-1)l) space for any 
positive integer k. Not only VAS can solve the motif discovery problem with least 
assumptions, experimental results show that VAS has the best performance than existing 
algorithms in both speed and accuracy. Since VAS can find the number of variants of 
every length-l patterns in T in short running time, the new technique used in VAS can also 
be applied to find string motifs for other motif discovery algorithms for those problems 
without control set F [12] or based on other hypotheses [20]. For example, if the input 
does not contain any control sequences, we cannot use the hyper-geometric distribution 
for the evaluation of p-values by. In this case, we may have to evaluate the p-values based 
on the background occurrence probabilities of the nucleotides. The extension of this work 
will have similar performance as VAS and will be included in the full paper. 

VAS works well on the extended motif discovery problem because it is easy to find 
the set of patterns to be voted by a substring in T. This task may become difficult when 
the definition of variants is changed. In the future, we will investigate how to use VAS to 
solve motif discovery problems with other definitions of variants, for example, motif with 
IUPAC symbols. 
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