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The interaction between transcription factors and their DNA binding sites plays a key role for un-

derstanding gene regulation mechanisms. Recent studies revealed the presence of “functional poly-

morphism” in genes that is defined as regulatory variation measured in transcription levels due to the

cis-acting sequence differences. These regulatory variants are assumed to contribute to modulating

gene functions. However, computational identifications of such functional cis-regulatory variants is a

much greater challenge than just identifying consensus sequences, because cis-regulatory variants dif-

fer by only a few bases from the main consensus sequences, while they have important consequences

for organismal phenotype. None of the previous studies have directly addressed this problem. We

propose a novel discriminative detection method for precisely identifying transcription factor binding

sites and their functional variants from both positive and negative samples (sets of upstream sequences

of both bound and unbound genes by a transcription factor) based on the genome-wide location data.

Our goal is to find such discriminative substrings that best explain the location data in the sense that

the substrings precisely discriminate the positive samples from the negative ones rather than finding

the substrings that are simply over-represented among the positive ones. Our method consists of two

steps: First, we apply a decision tree learning method to discover discriminative substrings and a hi-

erarchical relationship among them. Second, we extract a main motif and further a second motif as

a cis-regulatory variant by utilizing functional annotations. Our genome-wide experimental results

on yeast Saccharomyces cerevisiae show that our method presented significantly better performances

for detecting experimentally verified consensus sequences than current motif detecting methods. In

addition, our method has successfully discovered second motifs of putative functional cis-regulatory

variants which are associated with genes of different functional annotations, and the correctness of

those variants have been verified by expression profile analyses.

1. Introduction

Transcription factors (TFs) are DNA-binding proteins at the terminals of signal transduc-

tion networks and, in genomic sequences, a TF binding site (motif) is a set of cis-regulatory

elements that preserve a certain nucleotide composition, playing a key role in transcrip-

tional regulations. Each transcription factor recognizes a specific binding site composed of

similar substrings, referred to as cis-regulatory variants. Recently, such subtle variations

were hypothesized to also play a key role in transcription control. 1,5 It is generally as-

sumed that cis-regulatory variants are hard to be detected only by sequence analyses but

rather require extensive experimental studies. 1

While a number of methods have been proposed previously, computational identifica-

tion of TF binding sites is still a challenging and unsolved problem. Most existing methods

1
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for detecting motifs examine only the upstream sequences of clustered, and presumably

co-regulated, groups of genes or bound genes by the same TF, and search for statistically

over-represented motifs among them. Such well-known motif detecting algorithms include

AlignACE, Multiple EM for Motif Elicitation (MEME), Yeast Motif Finder (YMF), and

MDScan. 4 Since biological signals are subject to mutations and usually do not appear

exactly, they typically use probability weight matrix (PWM) to represent motifs. On the

other hand, genome-wide location analyses, referred to as chromatin immunoprecipitation

(ChIP) microarray experiments, recently elucidated in vivo physical interactions between

TFs and their chromosomal targets on the genome. 2,3 The ChIP microarray technique can

be thought to provide reliable and useful information about direct binding of a specific

protein complex to DNA. In other words, the ChIP data provide us the explicit interaction

information about not only TF-DNA “binding” but also TF-DNA “unbinding”.

Our fundamental idea for detecting motifs is that the true motif appears only in the

upstream sequences of the target genes controlled and bound by the TF and does NOT

appear in those of the unbound ones. This idea leads us to a discriminative approach to find

true motifs that distinguish the upstream sequences between bound and unbound genes.

Compared with most existing methods, our new strategy has three distinct features.

First, our method takes unbound upstream sequences into account as negative samples as

well as bound sequences as positive ones. Several approaches using ChIP data have been

proposed previously, 4 but they still focus on the positive samples alone. Second, we define

motifs as “discriminative” substrings that correctly distinguish the upstream sequences of

positive samples from those of negative ones instead of statistically over-represented pat-

terns or well-conserved ones. Even if using statistical criteria, methods that only focus

on over-represented patterns suffer from numerous spurious random similarities. Third,

we use a discriminative machine learning technique for detecting motifs, and we search

for motifs using an exact-match, which is the opposite of the current probabilistic search

strategies. Existing methods try to represent a motif by one single model allowing biologi-

cal noises (mismatches, insertions and deletions) to some extent. Yet their obtained model

is characterized by one specific substring, referred to as consensus. If one single consensus

sequence characterizes the positive samples, it must be more precisely detected by using an

exact-match search when negative samples are taken into account. In addition, by allow-

ing ambiguity, current methods can not distinguish between the consensus sequences and

their functional variants. As a result, they fail to detect the subtle differences of motifs that

lead to important consequences for organismal phenotype. In contrast with most existing

methods, we search for main motifs and their functional variants by focusing on the subtle

differences among substrings rather than allowing and unifying them.

To search for the most discriminative substrings, we employ the decision tree learning

method. Decision trees are used for classification tasks whose concepts are defined in

terms of a set of attribute-value pairs. A text-classification tree classifies an input text

(sequence) into one category according to several tests whether the input sequence contains

some specific substrings. The inductive learning problem of decision trees is to construct

such a text-classification tree from already classified sequences. In this paper, we use the
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Figure 1. Motif detection by a decision tree learning method. These trees are constructed from both positive

and negative samples of Reb1 and Leu3. The number of samples is shown in each node. The correctly identified

consensus sequence and its previously inferred functional variant (only for Reb1) are shown inside the rectangles.

decision tree learning method for extracting sequence motifs given positive and negative

samples. As a result of learning, substrings that are the most important and predictive for

distinguishing the upstream sequences between positive and negative samples are extracted

and are assigned to each internal node of the learned tree, which we call here a consensus

tree. Figure 1 demonstrates the effectiveness of our method using the consensus tree. Our

method correctly identified the consensus sequences for Reb1 and Leu3. As for the case

of Reb1, a previous computational study 5 based on phylogenetic analysis only inferred

the presence of Reb1 consensus variant. Our method succeeded to identify this variant

and presented the relationships among them as a hierarchical tree structure. Further, our

method inferred a number of cis-regulatory variants that have not previously been detected

for many TFs through genome-wide experiments on S. cerevisiae.

2. Methods

Our method consists of two steps: (i) build a consensus tree by decision tree learning

method, and (ii) search for highly functionally enriched motifs from the extracted sub-

strings that are assigned in the internal nodes of the consensus tree.

In the preprocessing step, we select highly ChIP-array-enriched genes (binding P -value

≤ 0.001) as positive samples and low ChIP-array-enriched genes (binding P -value ≥ 0.80)

as negative ones. The genome-wide location analyses assign P -value (confidence value)

to each interaction between a TF and an intergenic region. It is reported that the empirical

rate of false positives at a stringent P -value threshold (P ≤ 0.001) is 6 − 10% in the data

of Ref. 3 and 4% in the data of Ref. 2. Since we assume that true motifs appear only in the

upstream sequences of positive samples and not in those of negative ones, the use of a high

confidence P -value threshold is required.

2.1. Consensus Tree Construction

We define motifs as informative substrings that can correctly classify genes into proper

classes (‘positive’/‘negative’) based on their upstream sequences. Thus, given a specific

TF’s positive and negative samples, our aim is to search for the most informative and hence

discriminative substrings from the positive samples.

To accomplish this task, we use the decision tree learning method. We denote a se-



October 10, 2005 20:45 Proceedings Trim Size: 9.75in x 6.5in discriminative-detection

4

Enumerative Collection of substrings

Top t (15  25) Postivie Samples

YAL044C CAAGAAGATGAAGGCACAA...

YAL045C AGTCAAAATGAAGCTGAGG...

YGL186C CAATGGATTGTAGTAGCCC...

5  20 mer

a substring 
that minimizes
Score(v, S)

Consensus Tree Construction

ATTACATAAT

pos
81

neg
1170

CAGTCGGAT

pos
71

neg
1170

not contain

leaf

pos
10

neg
0

contain

not contain contain

Figure 2. Consensus Tree Construction.

BTLEARN(S, prnsrt, nsrt, keyl1, keyl2):

(1) Collect all the substrings.

Keywords = {v | keyl1 ≤ |v| ≤ keyl2}
(2) Output a consensus tree T .

T = BTFIND(S, Keywords, prnsrt, nsrt)

BTFIND(S, Keywords, prnsrt, nsrt):

(1) If (|S| − Occur(S, ci))/|S| ≤ nsrt is satisfied, return a

subtree T = ci.

(2) If |S| ≤ prnsrt is satisfied and the major class label with S is

ci, return a subtree T = ci.

(3) If a substring vg that minimizes Score(vg, S) is found from v ∈
Keywords, return vg as an informative substring of the current

node, a left-sided subtree T0 and a right-sided subtree T1.

T0 = BTFIND(Sv
0

, Keywords − v, prnsrt, nsrt)
T1 = BTFIND(Sv

1
, Keywords − v, prnsrt, nsrt)

Figure 3. Decision Tree Learning Algorithm.

quence by w, a substring by v, class labels (‘positive’/‘negative’) by c and ci, samples

by S, and by Sv
0 , Sv

1 , Occur as follows: Sv
0 = {(w, c) ∈ S | w does not contain v},

Sv
1 = {(w, c) ∈ S | w contains v}, Occur(S, ci) = |{(w, c) | c = ci}|. And v is

“informative” if and only if Sv
0 6= ∅ and Sv

1 6= ∅.

If we have two classes (’positive’ and ’negative’) and denote their class labels by c1 and

c2 respectively, the objective function is defined in Equation 1.

I(S) = −
2

∑

i=1

Occur(S, ci)

|S|
log2

Occur(S, ci)

|S|

Loss(v, S) =
|Sv

0 |

|S|
I(Sv

0 ) +
|Sv

1 |

|S|
I(Sv

1 )

Score(v, S) = Loss(v, S) + τ
1

l
log(p(v)) (1)

where l is the length of v, p(v) is the probability of generating v from a third-order Markov

background model estimated from all the intergenic regions. τ is a free parameter and is

chosen empirically. Loss function indicates a weighted sum of the entropies of two sets

that are divided by the presence of one specific substring. With the minimum entropy

criterion, the most discriminative substring is the one that minimizes the Score function.

The procedure of constructing a consensus tree by our decision tree learning method

is shown in Figure 2. We begin by collecting every nonredundant w-mer in both strands

of the top t (15 − 25) positive samples, and then recursively search for the substring that

minimizes the objective function with the current positive and negative samples from the

collection of substrings, and divide both samples by the presence of it. The algorithm of

decision tree learning is outlined in Figure 3. Given samples (S), two values for condition

precedent (prnsrt and nsrt) and lower and upper bounds of the length of the substring

(keyl1 and keyl2), BTLEARN returns a learned consensus tree. By examining three TFs,

we set prnsrt = 10, nsrt = 0.01, keyl1 = 5, and keyl2 = 20. We normalized the log

likelihood of the background model, and set τ = 0.05
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As a result of learning, substrings that are the most important and predictive for dis-

crimination are extracted and are assigned to each internal node of the learned tree. Our

decision tree learning method recursively split the search space, which is equivalent to

clustering genes recursively by the presence of specific substrings. Therefore, we apply

the following strategy for extracting the consensus sequence and their second variants: In

a hierarchical structure of the learned tree, the main consensus sequence is extracted from

the root node, and its significant second variants are extracted from the left children and the

left descendants of the root node (Fig. 2). Since we assume that the number of significant

functional variants is not large, we set the maximum depth of consensus trees to three.

2.2. Extractions of cis-regulatory elements based on functional annotations

After constructing the consensus tree, we search for a highly functionally enriched motif

from an extracted substring in each internal node of the learned tree. Highly functionally

enriched motif, which we call here a functional consensus, is the one whose target genes are

highly associated with a same functional annotation. Target genes of a motif mean the genes

which are included in the positive samples of the TF and whose upstream sequences contain

a perfect-match to the motif. We assume that motifs are composed of several functional

consensuses each of which regulates a specific set of genes. Since it is not usually possible

to predict which nucleotide changes in motifs might affect expression, we search for main

motifs and their variants by utilizing functional annotations.

We slide a window of length more than six along a discriminative substring in the node,

and evaluate a motif in the window at each position by measuring its functional enrichment.

For each window position, we calculate the hypergeometric P -value of independence be-

tween genes which are targets of the motif in the window and genes with the same GO

biological process category, adjusted by Bonferroni correction for multiple testing. We

collect the most functionally enriched motif as a functional consensus from every node.

The hypergeometric P -value is given by Equation 2.

P−value =
T

∑

i=I

(

B

i

) (

G − B

T − i

)

(

G

T

) (2)

where G is the total number of genes, B is the total number of genes in a particular biolog-

ical process category, T is the number of target genes of the motif, and I is the number of

genes which are targets of the motif and are in the particular biological process.

From the information-theoretic point of view, the most discriminative substrings are

not necessarily be functionally enriched. Intuitively, they are too “informative” in the

following sense. Since the ratio of nucleotide distribution in S. cerevisiae is approxi-

mately given by: A : T : G : C = 32 : 32 : 18 : 18, the average information con-

tent of one nucleotide is: Iave = −
∑

i∈{A,T,G,C} pi log2(pi) ≈ 1.94 bits, where pi

is the frequency of occurrence of nucleotide i. The amount of information required to

identify γ sites out of a possible Γ is given by: Iγ = − log2
γ
Γ bits. Thus, if a mo-

tif is six base long and it occurs exactly once in every 1000 bases and may be placed

in either of the two DNA strands in n sequences, the average information required to
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identify a motif is then: Iactual = − log2
n

(n×(1000−6+1)×2) ≈ 10.96 bits. Therefore,

Iactual/Iave ≈ 5.64 nucleotides are required to identify a motif from positive samples

alone. However, in the discriminative framework, we search for a motif which appears

only in the positive samples and must not appear in the negative ones. If we have p posi-

tive samples and q negative ones, the average information required to identify such a motif

is: Ireq = − log2
p

((p×q)×(1000−10+1)×2) bits. In the case of p = 50 and q = 1200,

Ireq/Iave ≈ 10.91 nucleotides are required to identify such a discriminative motif.

The discussion stated above is just a rough approximation. In the discriminative frame-

work, however, the required information tends to become high. Thus, to correctly identify

functional consensuses, we need to “decompose” them by utilizing functional annotations.

From the discussion stated above, we set the minimum length of a sliding window to six.

3. Experimental Results

3.1. Data

We collected the sequences of 1000 bp upstream of the translation start sites for 6270 genes

on S.cerevisiae from SGD and SCPD, and two published genome-wide location data. 2,3 To

search for functional consensuses and to assess the reliability of discovered cis-regulatory

variants, we also collected various types of functional annotations, such as GO annota-

tions for S.cerevisiae (process, component, and function), MIPS categories for S.cerevisiae

(function, complex, motif, protein class, and phenotype), and a compendium of 827 gene

expression profiles from 29 different publications. For evaluating obtained motifs, we col-

lected all the 20 experimentally verified consensus sequences from TRANSFAC database

and 25 from the literature that were reported in at least two papers. The average of the

length of the collected motifs was 7.20 and the standard deviation of that was 2.27.

The total numbers of the location data that we used was 148. The number of positive

samples ranged from 1 to 282 and that of negative ones ranged from 552 to 2084, with an

average of 63 positive samples and 1177 negative ones per a TF. Due to the page limitation,

we will only show typical experimental results for several TFs. The full results are available

at our web site (http://www.dna.bio.keio.ac.jp/reg_motifs).

3.2. Detection of Known Motifs

We compared the motif detecting performance of our method with four other programs in-

cluding AlignACE, MEME, YMF and MDScan. 4 AlignACE and MEME employ a heuris-

tic local search approach, YMF employs an enumerative one, and MDScan employs a

hybrid of enumerative and heuristic ones. Each program was run with default parameters.

Note that, since the published consensus sequences are obtained empirically, they may not

be the most functionally enriched and they are slightly different from literature to litera-

ture. Therefore, a discovered substring was considered to be consistent with the published

consensus sequence if it contained at most one mismatch, insertion, or deletion.

When we only evaluated the top scoring motifs, that is, substrings that were assigned to

the root nodes in the learned trees, our method correctly identified 38 out of 45 published
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Table 2. Most Associated Functional Category.

Database Motif Associated Category P value

GO

Process
TGACTC amino acid metabolism 1.03 E-33

GACTAA nitrogen compound metabolism 5.782 E-19

Function
TGACTC molecular function 5.89 E-10

GACTAA catalytic activity 1.07 E-04

Component
TGACTC cellular component 2.57 E-10

GACTAA cellular component 9.01 E-05

MIPS

function
TGACTC amino acid metabolism 4.00 E-28

GACTAA amino acid metabolism 4.78 E-16

complexes
TGACTC Complexes by Systematic Analysis 2.31 E-16

GACTAA Complexes by Systematic Analysis 1.45 E-04

protein class
TGACTC Cys6 cysteine-zinc cluster 9.58 E-11

GACTAA Cys6 cysteine-zinc cluster 1.29 E-04

phenotype
TGACTC

Auxotrophies, carbon and nitrogen

utilization defects
1.43 E-05

GACTAA Methionine auxotrophy 1.41 E-03

Table 3. Differences of Expression Profiles.

Motif Motif t-test P value Source

TGACTC vs GACTAA 1.27 E-07 Ploidy

Table 4. GO Terms for Gcn4.

GO Terms (assigned by YPD)

Amino acid biosynthesis

Cellular response to glucose starvation

Cellular response to nitrogen starvation

Cellular response to starvation

Response to stress

Nucleotide biosynthesis

Nucleobase, nucleoside, nucleotide and nucleic acid metabolism

Transcription from RNA polymerase II promoter

Regulation of transcription from RNA polymerase II promoter

Note: Terms that were associated with the main mo-

tif and the second motif are underlined.

consensus sequences. AlignACE identified 12, MEME identified 16, YMF identified 17,

and MDScan identified 17 among 45 published consensus sequences. Within seven con-

sensus sequences that our method failed to identify, four consensus sequences were dis-

covered in other nodes of the learned trees. When we used random sequences generated

from a third-order Markov background model as negative samples, our method identified

25. Table 1 shows 28 examples of 45 TFs used in our experiments, and shows discrimina-

tive substrings discovered by our method and discovered motifs with other four programs.

In Table 1, motifs that were consistent with the published consensus sequences are under-

lined for our method and YMF and are shown with the mark of rectangles for AlignACE,

MEME, and MDScan.

Our method clearly outperformed other programs, because all the existing methods only

focus on the positive samples even if some of them were designed to utilize the location

data. 4 In addition, our approach of using negative samples based on the location data was

quite effective compared with using a random background model for negative samples. We

assume that this result also contributed to the motif detecting performance of our method.

3.3. Putative Cis-Regulatory Variants

By performing the genome-wide search with our method on S. cerevisiae, we discovered

putative functional variants for 17 TFs in total that were verified by both functional data

analyses and expression profile analyses.

To assess the difference of expression profiles of two groups of targets, we used the

paired t-test among all the Pearson correlations between every pair of genes within one

group and those between every pair of genes each of which belongs to the different group.

In other words, we assessed the difference between intra-cluster expression similarities and

inter-cluster expression similarities. To select a meaningful threshold for both a hyper-

geometric P -value (functional enrichment) and a t-test P -value (expression difference),

we calculated the average P -value of 1000 randomly selected motifs’ targets for 10 times

respectively, and we set a hypergeometric threshold to 0.1 and a t-test threshold to 0.01.
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Figure 4. Relationship among different motifs in-

duced by different complexes formed from the

same non-DNA-binding cofactor, Swi6. (Swi6

forms two different complexes with different TFs,

and each complex recognizes a specific motif)

Table 5. Most Associated GO Category.

Motif Category P value

CGCGTC cell cycle 4.54 E-07

ACGCGT cell cycle 1.10 E-06

TTCGCG G1/S transition of mitotic cell cycle 6.82 E-07

Table 6. Top Two Associated TFs.

Motif TFs Overlaps P value

ACGCGT
Swi6 46 1.58 E-56

Mbp1 42 2.53 E-56

TTCGCG
Swi4 55 1.76 E-58

Swi6 36 5.62 E-30

Table 7. Differences of Expression Profiles.

Motif Motif t-test P value Source

CGCGTC vs ACGCGT 1.00 E-03 Stress Response

CGCGTC vs TTCGCG 1.32 E-10 Mitotic Cell Cycle

ACGCGT vs TTCGCG 7.81 E-06 Cell Cycle

Due to the page limitation, we only pick up Gcn4 as an example. Gcn4 regulates

general control in response to amino acid or purine starvation. It involves in induction of

genes required for utilization of poor nitrogen sources.

The discriminative substrings discovered in the root node and in the left children were

TGACTCA (Table 1) and GATGACTAAC respectively. The discovered functional consen-

suses from them were TGACTC and GACTAA. Table 2-4 show the most associated func-

tional categories, the difference of the expression profiles between those two motifs’ tar-

gets, and the GO Terms for Gcn4 respectively. Table 2 and 4 indicate that targets of the

main motif, TGACTC, primarily involve in the amino acid metabolism, while those of the

second variant, GACTAA, involve in the nitrogen compound metabolism. Note that both

target genes were predicted to be bound by the same TF from the location data, and targets

of GACTAA had any significant overlaps with those of other TF’s main motif. However,

the expression profile analyses for them (Table 3) showed targets of GACTAA had a distinct

biological property compared with those of the main motif of Gcn4 (TGACTC). Therefore,

we concluded that GACTAA is a putative functional cis-regulatory variant of Gcn4.

3.4. Detection of Multiple Motifs of Non-DNA-Binding Cofactors

The representation of motifs as a hierarchical tree structure can be used for analyzing a

relationship among multiple motifs induced by different complexes formed from the same

cofactor. Our method correctly identified those relationships among motifs. To illustrate

this, we pick up Swi6 as an example. (shown in Figure 4)

Swi6 is a non-DNA-binding cofactor of Mbp1 and Swi4. Swi6 and Mbp1 form MBF

and Swi6 and Swi4 form SBF, both heterodimers are active during G1/S phase. Although

Swi6 involves in both complexes, each complex recognizes a specific motif. MBF binds

MCB (consensus:ACGCGT) and SBF binds SCB (consensus:CGCGAAA). Our method suc-

cessfully identified both MCB and SCB from the positive and negative samples of Swi6,

while MDScan failed to detect SCB. Further, our method presented the relationships be-
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tween MCB and SCB as a hierarchical tree structure.

The functional consensuses of each internal node of the learned tree (Fig. 4) were

CGCGTC, ACGCGT, and TTCGCG respectively. Table 5 shows the most associated GO

biological process category for each motif’s targets. Although these targets were predicted

to be bound by Swi6 from the location data, targets of TTCGCG showed a distinct biologi-

cal property. Their hypergeometric P -value associated with “cell cycle” category was just

0.00147. Table 6 shows the top two associated TFs with each motif. To determine the

most associated TFs, we calculated the hypergeometric P -value of independence between

targets of each motif and those of each TF’s main motif, adjusted by Bonferroni correc-

tion (CGCGTC was excluded, since it was the main motif of Swi6). ACGCGT was highly

associated with Mbp1, and TTCGCG was highly associated with Swi4. Table 7 shows the

differences of expression profiles among each motif’s targets. Targets of TTCGCG showed

different expression profiles compared with others.

Table 5-7 clearly show the multimodality of Swi6. We assumed that the signal of MCB

was stronger than that of SCB, since MCB-like motifs (CGCGTC, and ACGCGT) were dis-

covered twice by our method and MDScan could only detect MCB. The consensus tree is

thus able to reveal a relationship among multiple motifs of the same cofactor as a hierar-

chical tree structure.

4. Conclusion

We present a novel discriminative motif detection method based on the location data. Our

method significantly outperformed other motif detecting methods. Further, our method

successfully detected putative functional cis-regulatory variants and also revealed the re-

lationships among multiple motifs of the same cofactor for several TFs. Since our motifs

obtained in this paper are just substrings, ongoing efforts for combining this method with

methodologies of profile hidden Markov models will be published soon.

With the progress of genome-wide location analyses, we hope that our method can pro-

vide a useful platform for analyzing the regulatory functions of motifs including functional

variants, and hence present more detailed analyses for transcriptional regulations.
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Table 1. Comparison of Discovered Motifs.
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