October 11, 2005 8:45 RuthsNakhlehBranchSupport

TECHNIQUES FOR ASSESSING PHYLOGENETIC BRANCH SUPPORT: A
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The inference of evolutionary relationships is usuallyedidby a reconstruction method which is ex-
pected to produce a reasonably accurate estimation ofttetolutionary history. However, various
factors are known to impede the reconstruction processesudtiin inaccurate estimates of the true
evolutionary relationships. Detecting and removing exi@rong branches) from tree estimates bear
great significance on the results of phylogenetic analydeshods have been devised for assessing the
support of (or confidence in) phylogenetic tree brancheg;wis one way of quantifying inaccuracies
in trees. In this paper, we study, via simulations, the parémce of the most commonly used methods
for assessing branch support: bootstrap of maximum likethand maximum parsimony trees, con-
sensus of maximum parsimony trees, and consensus of Bayef#eence trees. Under the conditions
of our experiments, our findings indicate that the actualamof change along a branch does not have
strong impact on the support of that branch. Further, we fiadliootstrap and Bayesian estimates are
generally comparable to each other, and superior to a cens@f maximum parsimony trees. In our
opinion, the most significant finding of all is that there isthoeshold value for any of the methods
that would allow for the elimination of wrong branches whitaintaining all correct ones—there are
always weakly supported true positive branches.

1. Introduction

The accuracy and validity of most comparative genomic stdely on the quality of an
underlying “guiding” phylogenetic tree. Such a tree is pfteferred using a phylogeny
reconstruction method. However, such methods are boundhle mrrors in the inferred
tree (by inferring wrong branches and missing correct odes)}o a host of reasons such as
biological processes that may not be modeled by a singldéerge recombination and hor-
izontal gene transfer) or “data issues” (e.g., incomplaxen sampling, insufficient data,
wrong assumptions). Various methods have been introdwreskfimating the support of
(or confidence in) tree branches; two of the most commonlg osethods are thigootstrap
method® and Bayesian inference techniques. The bootstrap methaslislly coupled
with the maximum parsimony (MP) or maximum likelihood (MLgUristic searches, and
amounts to estimating many trees over subsamples of theeda@tad using the the percent
of trees containing a branch to be its support. Bayesiamenfse uses statistical inference
techniques whose final outcome is a set of trees, each cowjitlegbrobabilities associ-
ated with its branches to reflect their support. Further, M@ristics often compute a large
set of optimal trees. The number of trees in which a given divaappears can be taken
to be its support (these are referred to as the “consensuion®. After support values
are computed, a threshold is chosen and branches with supp@r than that threshold
are contracted. The hope is that a threshold exists suctett@teous branches will be
removed while correct ones will be retained.

Existing simulation-based performance studies of brangipsrt measures have con-
sidered Maximum Likelihood with bootstrap and Bayesiaretahce’® as well as the
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statistical properties of the bootstrap? Other studies considered the performance of the
various branch-support estimation methods on biologiatdskts, in which case the true
phylogeny is usually unknowt?:-'8 One exception is the work of Tayl@t al. in which
they studied the accuracy of the bootstrap and Bayesiaroagipes in reconstructing the
phylogeny of several strains of ye&3tThe results focused on studying the effect of evo-
lutionary rate consistency and tree shape on accuracy.

In this paper, we evaluate both the absolute and relativeectiress of each method
under the conditions of the study by evaluating the perforreaf branch support assess-
ment methods via simulations. We generate random phyldiganees, and simulate the
evolution of DNA sequences down these trees. We study theacy of the trees and the
support of their branches, as calculated by the methodxioyparing their estimates to the
true (known) phylogenetic trees. In this study, we focusethe performance of the most
prevalent branch support-labeling algorithms. Thus, weetamitted the less common
distance-based branch support assessment methods, sambtstsap withneighbor join-
ing. We also do not explicitly consider the error resulting frtiva fact that the heuristics
we consider do not actually converge to the true tree untieoatlitions2?-14:22

We focus on three main questions. (1) Is the support (as leédclby each of the
methods) of a correct branch significantly higher than thatywrong branch? (2) Is there
a clear threshold for each of the methods that would alloveémtracting wrong branches
while retaining all correct ones? (3) Is there any correlalietween the support of a branch
and the actual amount of evolution along that branch?

Under the conditions of our experiments, bootstrap and 8iapetechniques outper-
form a consensus of MP trees, with respect to the first questiurther, we find that
the support of a correct branch as computed by each of thaitpets remains largely
unaffected by amount of evolution along that branch. Howewéh respect to the sec-
ond question, the answer is not very promising. Under thelitioms of our experiments,
any choice of threshold for any of the methods involves ai@amt tradeoff between the

number of wrong branches contracted and the number of ¢diraeches retained.
2. Methods

In this study we considered three different phylogenetitregion methods—Maximum
Parsimony (MP), Maximum Likelihood (ML), and Bayesian Inferenég(BI). Since MP
and ML estimation methods do not produce trees that haveosuigbeled branches, these
methods are used in conjunction with a bootstrap algorithmorder to generate support
values for tree branches. Another prevalent method for rg¢ing support-labeled trees
is to take the majority consensus of the top scoring treesnetl by MP, which we also
considered in our study.

2.1. Phylogeny Estimation Methods

Two of the most commonly used and most accurate criterialigtqgeny reconstruction
are maximum parsimony (MP) andmaximum likelihood (ML). They are both hard opti-
mization criteria for which various accurate heuristiceédnbeen devised.

The MP criterion is based on the assumption that “evolutfoparsimonious”, i.e.,
the best evolutionary trees are the ones that minimize tingbeu of changes along the
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branches of the tree. In our study, we used the PRURIP heuristic (starts with a random
tree, and traverses the tree space using TBR moves). The dbllgon seeks the treg and

its associated parameters (such as branch-lengths, faeslation for each site, etc.) that
maximize the probability of generating the given set of smes. In our study, we used
the PAUP#2! ML heuristic (starts with a random tree, and traverses the $pace using
TBR moves). Bayesian Inference seeks the tree that maximizes the estimated posterior
probability of the treer; given the sequences. The MrBayes tool is a heuristic that uses
the Markov chain Monte Carlo method to approximate the pistprobability! ' We used

this application for inferring trees (we used 100,000 gatiens with a burn-in period of
10,000 generations).

2.2. Bootstrap

The bootstrap technique is commonly used to add suppoetihegs to the output of MP and
ML estimation methods. This technique subsamples ther@igequence data to produce
“new” input data of the same length in which some of the olddg)sites appear duplicated
and some do not appear at all. The technique constructshdatasets in such a way that
they remain statistically similar to the original input datThe bootstrap technique con-
structs these datasets and the associated best MP or ML speeidied number of times.
Following this, a support-labeled tree is constructed ynthe majority consensus of
the set of trees created during the iterations. For our stwdyused the bootstrap tech-
niques with MP and ML, as implemented in PAUP*where the number of repetitions we
considered was 100.

2.3. Consensus Trees & Branch Contraction

Thep-consensustree, 7., for a set of treed’, is the tree containing only those branches that
occur in at leasp percent of the trees ifi. Associated with each branch in the consensus
tree is the percent of trees that contain that branch—thusrisidered the support for that
branch. Astrict consensus tree is a consensus tree for whigh = 100. Therefore, it
contains only those branches that occur in all of the treéB.irOn the other end of the
spectrum, thenajority consensus trees is the consensus tree for whiph= 50, containing
only those branches that occur in at least half of the tre&s in

In a strict consensus tree, the minimum support of any brante tree is100. Also
the maximum support any branch can possibly have in any rée0i As a result, all
branches in a consensus tree have the same, maximum suglpert v

In a majority consensus tree, the support for any branchamgerbetween and100.
After constructing such a majority consensus tree, we may teecemove all branches that
have a support value below a certain threshold. This thidgbmsed removal procedure is
calledbranch contraction. Assuming that some branches are removed by such a process,
the result of branch contraction is an unresolved (non+lg)rteee in which all remaining
branches have a support value greater than or equal to shtiid.

2.4. Tree Comparison

Given two trees, the mode),; and the estimate,, the distance is reported in termsfalfse
positives, the number of branches g that are not in the mode},,;, andfal se negatives, the
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number of branches iny; that are missing from,. The false negative and false positive
values are divided by the number of branches.inso that both error rates fall betweén
and1. In this study, we used the false positives (FP), false megmfFN), and their average
(also known as the Robinson-Foulds mea&i)réo quantify the error between the model
and inferred trees.

3. Experimental Design

Sequence Dataset Generation. We generated five different fully resolved, 20-taxon trees
using the r8s tree generation tdélWe then deviated each tree from ultrametricity by
scaling each branch length by a random value e* where—2 < x < 2. These deviated
trees were designated the model trees. For each model @eaah sequence length of
250, 500, 1000, and 1500 nucleotides, we generated 40 DNAeseg datasets using Seq-
gen with the scaling time-reversible model and a substitutate of0.6.1°

True Tree Calculations. For the purpose of our study, we differentiate betweenmbeel
treeand theruetree. The branch lengths of the former are #pected numbers of changes
along the branches, whereas the branch lengths of the &tetheactual numbers of
changes along the branches. Since we want to study the penfice of support assessment
techniques as a function of the actual branch lengths, wergéd true trees by relabeling
the branch lengths of the model tregswith the actual substitution rates (which are known
in simulations).

Generating ML Bootstrap, MP Boostrap and Bl Results. We used PAUP?! to generate
ML and MP bootstrap results (100 repetitions), and MrBayésr Bayesian inference. We
ran each of the methods on each sequence dataset indiyiduall

Generating MP Consensus Trees. Majority consensus MP trees were generated by a
series of steps. First, we ran the PAUP* implementation of (d&scribed above) and
reported all trees. We separated the trees into levels,enthertop level corresponded to
trees with the lowest parsimony score (the best trees), actisubsequent level contained
trees of increasing parsimony score. We calculated thentagbpnsensus trees for each
sequence dataset using trees from just level 1; levels 1 gedleds 1,2, and 3; and levels
1,2,3,and 4.

4. Results

In order to characterize the performance of the differetitredion methods, we chose
to study the relationship between the substitution ratagakp branch and each method’s
support for that branch as well as the interplay betweendhé&action threshold and three
different measurements of tree errors (false positivése fiaegative, and average error). In
Section 5, we compare the results of each method. The sthddaiations for the results
of each method were small (M® 0.084, ML < 0.083, and MB< 0.047) and will not be
shown in figures to enhance readability.

4.1. Selection of Optimal MP Consensus Method

Recall from Section 3 that we generated results for MP migjeonsensus for four com-
binations of top tree levels (1; 1 and 2; 1, 2 and 3; 1, 2, 3, @nd'Herefore, for any given
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Figure 1. The average error of the estimated trees constructed uskhgvith Majority Consensus
on the datasets with a sequence length of 1500. The x-axieisange of possible contraction
support threshold values. Errors are calculated with gpehe true tree for the dataset. The errors
reported are the average of the error for each tree constrdot each dataset. The graphs show
Majority Consensus using the (a) top one level, (b) top twelk (c) top three levels, and (d) top
four levels.

sequence dataset there are four MP consensus trees, onidegpto each of these level
combinations. In the remainder of the analysis, we compaketbe best of the four MP
consensus level sets with MP bootstrap, ML bootstrap, andrigure 1 shows the aver-
age performance of this method over all datsets with seguiemgth of 1500 for the four
choices of levels. While average total error is nearly igmhfor all choices of trees, con-
sensus trees built from all four levels contain the fewdsefpositives, yielding a tree with
fewer wrong relationships than other trees. As a result,vese the 4-level MP consensus
trees to be representative of the MP consensus method irth&imder of this study. A
significant observation is that regardless of the threskalde chosen, the average error
rate of the majority consensus tree does not drop below 16%.

4.2. Branch Support vs. Substitution Rate

Within a “reasonable” range of substitution values (welblethe point of saturation), it is
usually the case that a larger number of substitutions adirgnch is correlated to a higher
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probability of inferring that branch. Therefore, branclweshe true tree (whose branch
lengths are well below the point of saturation in our experits) with high substitution
rates should have a stronger phylogenetic signal and hdgberhprobability of being
inferred. We tested this hypothesis by grouping branchdéisdrirue trees by their actual
substitution rate, creating five bins for branches with suli®n rates in the ranges 0—
0.1,0.1—0.2,0.2—0.3,0.3—0.4, and 0.4—0.5. For each nikthe collected the support
values generated for the branches in each dataset. Thérrggiktributions of support
values in each bin for datasets with a sequence length of a&0€hown in Figure 2.
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Figure 2. Whisker-box plots indicating the distribution of suppoalues for each substitution rate
range: (a) MP consensus, (b) MP bootstrap, (c) ML bootstaag, (d) Bl. The+ marks indicate
outliers. The trend lines indicate the percentage of colyemnches (true positives) in each bin that
were predicted in the estimated trees on average.
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The trend lines indicate the percentage of correct brar(ttuespositives) in the bin that
were predicted by the each method. As expected, the pertenedranches predicted is
higher for branches with greater substitution rates.

In Figure 2, the whisker-box plot$ and average support values for all substitution
ranges for all methods are compressed into a very smallmegimundl .0, indicating that
the majority of support values for branches, regardlesauef $ubstitution rate or method,
were close tol. In the lower substitution rate range, these were much highpport
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values than we expected to see. Surprisingly, repeatinggime test on the 250 bp datasets
(not shown) yields similarly high average support valueseater thar0% in the lowest
substitution rate bin for all methods. Thus, MP bootstrap, Bdotstrap, and Bl methods
all characteristically assign high support values evenramthes with low substitution
rates — implying that when one of these methods detects dtameh, it obtains a strong
signal, regardless of the true substitution rate along lhamch. However, observe that
for branches with low substitution rates, consensus andsbap MP trees have a false
negatives rate of about 25%, and for bootstrap ML and Bl thees a false negatives rate
of about 15%. In other words, while these methods are comgutigh support of very
short branches, they are missing a sizable portion of thetiranches. Further, the MP
consensus trees have the least number of outliers for very stanches; yet, this comes
at the expense of higher false negatives rate. The otheroaetiave higher numbers of
outliers and lower false negative rates.

4.3. Effectsof Branch Contraction on Accuracy

The benefit of having support-weighted branches is thatdreswith low support (defined
as appropriate for the intended use of the tree) can be rahtbr@ugh branch contraction.
In order to characterize how branch contraction can be usddrive more accurate phy-
logenetic trees, we calculated the error of each estimatppast-labeled tree for various
choices of a branch contraction threshold. These reswdtsteown in Figure 3. The figure
shows the error measured in false positives, false negativel average error (as defined
in Section 2) for all four methods. There are several trenéeat in the graphs:

False positives monotonically fall with higher branch contraction thresholds. This
trend can be seen in all four plots shown in Figure 3 and is @rpesince we assume
that the noise in the data giving rise to the prediction obimect branches is minimal,
leading to those wrong branches having small support valtibss is precisely what is
observed.

Low-supported branches are evenly split between true and false positives. Despite the
fact that the number of false positives falls with higherrtmta contraction thresholds, the
number of false negatives rises. On all four plots, the slofpthe false positives line is
mirrored by the slope of the false negatives line. This iatis that approximately as many
true branches receive low support values as do false brangindédeal method would have
a falling false positive score and a constant false negatiwee for increasing contraction
thresholds.

Overall average error modestly increases with higher branch contraction thresholds.
Due to the fact that as the branch contraction thresholcasss, the false positives de-
crease and the false negatives increase at similar ratesseet that the overall error will
not change significantly. In fact, for all methods, as thet@artion threshold is increased,
the average error increases slightly, seen most prominanthe MP bootstrap (Figure
3(b)) and ML boostrap (Figure 3(c)) methods. This shouldbeinterpreted as implying
that the trees are of equal correctness. On the contraryillasewdiscussed in Section 5,
the overall average error is not the best error metric to usvevaluating the correctness
of a tree.
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Figure 3. The average error of estimated trees, branch contractendieg to the threshold shown

along the x-axis, as compared to the true tree for the dat@e¥iP consensus, (b) MP bootstrap, (c)
ML bootstrap, and (d) BI. All figures shown were constructsthg only the results from the 1500

sequence length datasets.

The MP consensus method has few moderately supported branches. Unlike the MP
bootstrap, ML boostrap, and Bl methods (Figures 3(b—d), tbmbers of false posi-
tives and negatives for the MP consensus method hardly effangifferent values of the
contraction threshold. This is an indicator that branche@dlP concensus trees characteris-
tically have extreme support values - either close.foor 1 - resulting from the population
of trees is generally too small in size to provide sufficieinedsity to generate good sup-
port values. In spite of this limitation, the MP consensushué still generates trees with
comparable overall average error levels, albeit with uindely high false positive rates for
high contraction thresholds.

5. Discussion

The overarching goal of this project was to find out how supypalues generated by various
phylogenetic estimation methods can be used to estimate acourate trees. Based on the
results presented in Section 4, specifically those disduss8ection 4.3, we have several
observations (true under the conditions of our experinm)é¢atsffer:

The MP consensus method does not produce informative support-labeled trees. Though
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the method does produce good trees in terms of all three fofraror measured in this
project, Figure 3(a) reveals that support-values cannasked to significantly improve the
majority consensus tree.

MP bootstrap, ML bootstrap, and Bl performvery similarly. Bl produces the most re-
solved trees of the three methods (evident from its sigmiflgdower false negative rates),
whereas MP and ML both have slightly lower false positivesdtvhich are less significant
than the false negative difference in Bl).

Strict consensus gives the most correct tree. We make this observation from the per-
spective of minimizing the false positives. As discussetiarain Section 2, false nega-
tives lead to conservative trees, missing some resolutioing relationships between taxa
whereas false positives are relationships that do not byist. While Figure 3 shows
that strict consensus trees will contain more errors thgonityaconsensus trees, the strict
consensus trees will be conservative estimates as opposedjority consensus which
contain wrong relationships.

It isimpossible to construct a fully resolved (binary) tree with 100% certainty. As the
figures show, attempting to maintain a more resolved treeires|the admission of more
false positives into the tree. In order to eliminate theserer the tree must become less
resolved. Because of this trade-off, phylogenetic analystthods must be designed to
operate on non-binary trees. The alternative is to accegater accumulated error in the
results.

6. Conclusions

In this project, we studied four different phylogenetidmsttion methods for constructing
support-labeled trees. The contribution of this paper$aaignificant impact on the un-
derstanding of the relative merits of the different alguris we studied and of the trade-off
involved in choosing a branch contraction threshold. Initait, our results support the
observation that strict consensus trees will always yieddlentorrect trees, if the goal is to
minimize the number of wrong branches in the estimated tFregther, our results show
that even with sophisticated methods such as Bayesiareimfer obtaining a fully resolved
accurate tree is very hard. Therefore, phylogenetic aisalysls that assume the trees are
always binary (fully resolved) may have a serious shortogn their applicability.

This study has also identified the trend of methods ascribingupport values to equal
numbers of true and false branches in the estimated treet M#inains unclear is why true
branches receive low support values and whether there aretavanprove this true branch
confidence. Such improvements would directly impact theigmy of estimated trees.
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