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The inference of evolutionary relationships is usually aided by a reconstruction method which is ex-
pected to produce a reasonably accurate estimation of the true evolutionary history. However, various
factors are known to impede the reconstruction process and result in inaccurate estimates of the true
evolutionary relationships. Detecting and removing errors (wrong branches) from tree estimates bear
great significance on the results of phylogenetic analyses.Methods have been devised for assessing the
support of (or confidence in) phylogenetic tree branches, which is one way of quantifying inaccuracies
in trees. In this paper, we study, via simulations, the performance of the most commonly used methods
for assessing branch support: bootstrap of maximum likelihood and maximum parsimony trees, con-
sensus of maximum parsimony trees, and consensus of Bayesian inference trees. Under the conditions
of our experiments, our findings indicate that the actual amount of change along a branch does not have
strong impact on the support of that branch. Further, we find that bootstrap and Bayesian estimates are
generally comparable to each other, and superior to a consensus of maximum parsimony trees. In our
opinion, the most significant finding of all is that there is nothreshold value for any of the methods
that would allow for the elimination of wrong branches whilemaintaining all correct ones—there are
always weakly supported true positive branches.

1. Introduction

The accuracy and validity of most comparative genomic studies rely on the quality of an
underlying “guiding” phylogenetic tree. Such a tree is often inferred using a phylogeny
reconstruction method. However, such methods are bound to make errors in the inferred
tree (by inferring wrong branches and missing correct ones)due to a host of reasons such as
biological processes that may not be modeled by a single tree(e.g., recombination and hor-
izontal gene transfer) or “data issues” (e.g., incomplete taxon sampling, insufficient data,
wrong assumptions). Various methods have been introduced for estimating the support of
(or confidence in) tree branches; two of the most commonly used methods are thebootstrap
method19 and Bayesian inference techniques. The bootstrap method isusually coupled
with the maximum parsimony (MP) or maximum likelihood (ML) heuristic searches, and
amounts to estimating many trees over subsamples of the dataset and using the the percent
of trees containing a branch to be its support. Bayesian inference uses statistical inference
techniques whose final outcome is a set of trees, each coupledwith probabilities associ-
ated with its branches to reflect their support. Further, MP heuristics often compute a large
set of optimal trees. The number of trees in which a given branch appears can be taken
to be its support (these are referred to as the “consensus” methods). After support values
are computed, a threshold is chosen and branches with support lower than that threshold
are contracted. The hope is that a threshold exists such thaterroneous branches will be
removed while correct ones will be retained.

Existing simulation-based performance studies of branch support measures have con-
sidered Maximum Likelihood with bootstrap and Bayesian Inference,5,6 as well as the
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statistical properties of the bootstrap.2,3,4 Other studies considered the performance of the
various branch-support estimation methods on biological datasets, in which case the true
phylogeny is usually unknown.12,1,18 One exception is the work of Tayloret al. in which
they studied the accuracy of the bootstrap and Bayesian approaches in reconstructing the
phylogeny of several strains of yeast.23 The results focused on studying the effect of evo-
lutionary rate consistency and tree shape on accuracy.

In this paper, we evaluate both the absolute and relative correctness of each method
under the conditions of the study by evaluating the performance of branch support assess-
ment methods via simulations. We generate random phylogenetic trees, and simulate the
evolution of DNA sequences down these trees. We study the accuracy of the trees and the
support of their branches, as calculated by the methods, by comparing their estimates to the
true (known) phylogenetic trees. In this study, we focused on the performance of the most
prevalent branch support-labeling algorithms. Thus, we have omitted the less common
distance-based branch support assessment methods, such asbootstrap withneighbor join-
ing. We also do not explicitly consider the error resulting fromthe fact that the heuristics
we consider do not actually converge to the true tree under all conditions.20,14,22

We focus on three main questions. (1) Is the support (as calculated by each of the
methods) of a correct branch significantly higher than that of a wrong branch? (2) Is there
a clear threshold for each of the methods that would allow forcontracting wrong branches
while retaining all correct ones? (3) Is there any correlation between the support of a branch
and the actual amount of evolution along that branch?

Under the conditions of our experiments, bootstrap and Bayesian techniques outper-
form a consensus of MP trees, with respect to the first question. Further, we find that
the support of a correct branch as computed by each of the techniques remains largely
unaffected by amount of evolution along that branch. However, with respect to the sec-
ond question, the answer is not very promising. Under the conditions of our experiments,
any choice of threshold for any of the methods involves a significant tradeoff between the
number of wrong branches contracted and the number of correct branches retained.
2. Methods

In this study we considered three different phylogenetic estimation methods—Maximum
Parsimony9 (MP), Maximum Likelihood7 (ML), and Bayesian Inference10 (BI). Since MP
and ML estimation methods do not produce trees that have support-labeled branches, these
methods are used in conjunction with a bootstrap algorithm in order to generate support
values for tree branches. Another prevalent method for generating support-labeled trees
is to take the majority consensus of the top scoring trees returned by MP, which we also
considered in our study.

2.1. Phylogeny Estimation Methods

Two of the most commonly used and most accurate criteria for phylogeny reconstruction
aremaximum parsimony (MP) andmaximum likelihood (ML). They are both hard opti-
mization criteria for which various accurate heuristics have been devised.

The MP criterion is based on the assumption that “evolution is parsimonious”, i.e.,
the best evolutionary trees are the ones that minimize the number of changes along the
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branches of the tree. In our study, we used the PAUP*21 MP heuristic (starts with a random
tree, and traverses the tree space using TBR moves). The ML problem seeks the treeT and
its associated parameters (such as branch-lengths, rates of evolution for each site, etc.) that
maximize the probability of generating the given set of sequences. In our study, we used
the PAUP*21 ML heuristic (starts with a random tree, and traverses the tree space using
TBR moves). Bayesian Inference seeks the tree that maximizes the estimated posterior
probability of the treeτi given the sequencesX. The MrBayes tool is a heuristic that uses
the Markov chain Monte Carlo method to approximate the posterior probability.11 We used
this application for inferring trees (we used 100,000 generations with a burn-in period of
10,000 generations).

2.2. Bootstrap

The bootstrap technique is commonly used to add support-labelings to the output of MP and
ML estimation methods. This technique subsamples the original sequence data to produce
“new” input data of the same length in which some of the original sites appear duplicated
and some do not appear at all. The technique constructs the new datasets in such a way that
they remain statistically similar to the original input data. The bootstrap technique con-
structs these datasets and the associated best MP or ML tree aspecified number of times.
Following this, a support-labeled tree is constructed by taking the majority consensus of
the set of trees created during the iterations. For our study, we used the bootstrap tech-
niques with MP and ML, as implemented in PAUP*,21 where the number of repetitions we
considered was 100.

2.3. Consensus Trees & Branch Contraction

Thep-consensus tree, τc, for a set of trees,T , is the tree containing only those branches that
occur in at leastp percent of the trees inT . Associated with each branch in the consensus
tree is the percent of trees that contain that branch—this isconsidered the support for that
branch. Astrict consensus tree is a consensus tree for whichp = 100. Therefore, it
contains only those branches that occur in all of the trees inT . On the other end of the
spectrum, themajority consensus trees is the consensus tree for whichp = 50, containing
only those branches that occur in at least half of the trees inT .

In a strict consensus tree, the minimum support of any branchin the tree is100. Also
the maximum support any branch can possibly have in any tree is 100. As a result, all
branches in a consensus tree have the same, maximum support value.

In a majority consensus tree, the support for any branch can range between50 and100.
After constructing such a majority consensus tree, we may want to remove all branches that
have a support value below a certain threshold. This threshold-based removal procedure is
calledbranch contraction. Assuming that some branches are removed by such a process,
the result of branch contraction is an unresolved (non-binary) tree in which all remaining
branches have a support value greater than or equal to the threshold.

2.4. Tree Comparison

Given two trees, the modelτM and the estimateτe, the distance is reported in terms offalse
positives, the number of branches inτe that are not in the modelτM , andfalse negatives, the
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number of branches inτM that are missing fromτe. The false negative and false positive
values are divided by the number of branches inτe, so that both error rates fall between0

and1. In this study, we used the false positives (FP), false negatives (FN), and their average
(also known as the Robinson-Foulds measure16) to quantify the error between the model
and inferred trees.

3. Experimental Design

Sequence Dataset Generation. We generated five different fully resolved, 20-taxon trees
using the r8s tree generation tool.17 We then deviated each tree from ultrametricity by
scaling each branch length by a random valuer = ex where−2 ≤ x ≤ 2. These deviated
trees were designated the model trees. For each model tree, and each sequence length of
250, 500, 1000, and 1500 nucleotides, we generated 40 DNA sequence datasets using Seq-
gen with the scaling time-reversible model and a substitution rate of0.6.15

True Tree Calculations. For the purpose of our study, we differentiate between themodel
tree and thetrue tree. The branch lengths of the former are theexpected numbers of changes
along the branches, whereas the branch lengths of the latterare theactual numbers of
changes along the branches. Since we want to study the performance of support assessment
techniques as a function of the actual branch lengths, we generated true trees by relabeling
the branch lengths of the model treestM with the actual substitution rates (which are known
in simulations).
Generating ML Bootstrap, MP Boostrap and BI Results. We used PAUP*21 to generate
ML and MP bootstrap results (100 repetitions), and MrBayes11 for Bayesian inference. We
ran each of the methods on each sequence dataset individually.
Generating MP Consensus Trees. Majority consensus MP trees were generated by a
series of steps. First, we ran the PAUP* implementation of MP(described above) and
reported all trees. We separated the trees into levels, where the top level corresponded to
trees with the lowest parsimony score (the best trees), and each subsequent level contained
trees of increasing parsimony score. We calculated the majority consensus trees for each
sequence dataset using trees from just level 1; levels 1 and 2; levels 1,2, and 3; and levels
1,2,3, and 4.

4. Results

In order to characterize the performance of the different estimation methods, we chose
to study the relationship between the substitution rate along a branch and each method’s
support for that branch as well as the interplay between the contraction threshold and three
different measurements of tree errors (false positives, false negative, and average error). In
Section 5, we compare the results of each method. The standard deviations for the results
of each method were small (MP≤ 0.084, ML ≤ 0.083, and MB≤ 0.047) and will not be
shown in figures to enhance readability.

4.1. Selection of Optimal MP Consensus Method

Recall from Section 3 that we generated results for MP majority consensus for four com-
binations of top tree levels (1; 1 and 2; 1, 2 and 3; 1, 2, 3, and 4). Therefore, for any given
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Figure 1. The average error of the estimated trees constructed using MP with Majority Consensus
on the datasets with a sequence length of 1500. The x-axis is the range of possible contraction
support threshold values. Errors are calculated with respect to the true tree for the dataset. The errors
reported are the average of the error for each tree constructed for each dataset. The graphs show
Majority Consensus using the (a) top one level, (b) top two levels, (c) top three levels, and (d) top
four levels.

sequence dataset there are four MP consensus trees, corresponding to each of these level
combinations. In the remainder of the analysis, we compare only the best of the four MP
consensus level sets with MP bootstrap, ML bootstrap, and BI. Figure 1 shows the aver-
age performance of this method over all datsets with sequence length of 1500 for the four
choices of levels. While average total error is nearly identical for all choices of trees, con-
sensus trees built from all four levels contain the fewest false positives, yielding a tree with
fewer wrong relationships than other trees. As a result, we chose the 4-level MP consensus
trees to be representative of the MP consensus method in the remainder of this study. A
significant observation is that regardless of the thresholdvalue chosen, the average error
rate of the majority consensus tree does not drop below 16%.

4.2. Branch Support vs. Substitution Rate

Within a “reasonable” range of substitution values (well below the point of saturation), it is
usually the case that a larger number of substitutions alonga branch is correlated to a higher
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probability of inferring that branch. Therefore, branchesin the true tree (whose branch
lengths are well below the point of saturation in our experiments) with high substitution
rates should have a stronger phylogenetic signal and hence higher probability of being
inferred. We tested this hypothesis by grouping branches inthe true trees by their actual
substitution rate, creating five bins for branches with substitution rates in the ranges 0—
0.1, 0.1—0.2, 0.2—0.3, 0.3—0.4, and 0.4—0.5. For each method, we collected the support
values generated for the branches in each dataset. The resulting distributions of support
values in each bin for datasets with a sequence length of 1500are shown in Figure 2.
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Figure 2. Whisker-box plots indicating the distribution of support values for each substitution rate
range: (a) MP consensus, (b) MP bootstrap, (c) ML bootstrap,and (d) BI. The+ marks indicate
outliers. The trend lines indicate the percentage of correct branches (true positives) in each bin that
were predicted in the estimated trees on average.

The trend lines indicate the percentage of correct branches(true positives) in the bin that
were predicted by the each method. As expected, the percent of true branches predicted is
higher for branches with greater substitution rates.

In Figure 2, the whisker-box plots13 and average support values for all substitution
ranges for all methods are compressed into a very small region around1.0, indicating that
the majority of support values for branches, regardless of true substitution rate or method,
were close to1. In the lower substitution rate range, these were much higher support
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values than we expected to see. Surprisingly, repeating thesame test on the 250 bp datasets
(not shown) yields similarly high average support values – greater than90% in the lowest
substitution rate bin for all methods. Thus, MP bootstrap, ML bootstrap, and BI methods
all characteristically assign high support values even to branches with low substitution
rates – implying that when one of these methods detects a truebranch, it obtains a strong
signal, regardless of the true substitution rate along thatbranch. However, observe that
for branches with low substitution rates, consensus and bootstrap MP trees have a false
negatives rate of about 25%, and for bootstrap ML and BI treeshave a false negatives rate
of about 15%. In other words, while these methods are computing high support of very
short branches, they are missing a sizable portion of the true branches. Further, the MP
consensus trees have the least number of outliers for very short branches; yet, this comes
at the expense of higher false negatives rate. The other methods have higher numbers of
outliers and lower false negative rates.

4.3. Effects of Branch Contraction on Accuracy

The benefit of having support-weighted branches is that branches with low support (defined
as appropriate for the intended use of the tree) can be removed through branch contraction.
In order to characterize how branch contraction can be used to derive more accurate phy-
logenetic trees, we calculated the error of each estimated support-labeled tree for various
choices of a branch contraction threshold. These results are shown in Figure 3. The figure
shows the error measured in false positives, false negatives, and average error (as defined
in Section 2) for all four methods. There are several trends evident in the graphs:

False positives monotonically fall with higher branch contraction thresholds. This
trend can be seen in all four plots shown in Figure 3 and is expected since we assume
that the noise in the data giving rise to the prediction of incorrect branches is minimal,
leading to those wrong branches having small support values. This is precisely what is
observed.

Low-supported branches are evenly split between true and false positives. Despite the
fact that the number of false positives falls with higher branch contraction thresholds, the
number of false negatives rises. On all four plots, the slopeof the false positives line is
mirrored by the slope of the false negatives line. This indicates that approximately as many
true branches receive low support values as do false branches. An ideal method would have
a falling false positive score and a constant false negativescore for increasing contraction
thresholds.

Overall average error modestly increases with higher branch contraction thresholds.
Due to the fact that as the branch contraction threshold increases, the false positives de-
crease and the false negatives increase at similar rates, weexpect that the overall error will
not change significantly. In fact, for all methods, as the contraction threshold is increased,
the average error increases slightly, seen most prominently in the MP bootstrap (Figure
3(b)) and ML boostrap (Figure 3(c)) methods. This should notbe interpreted as implying
that the trees are of equal correctness. On the contrary, as will be discussed in Section 5,
the overall average error is not the best error metric to use when evaluating the correctness
of a tree.
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Figure 3. The average error of estimated trees, branch contracted according to the threshold shown
along the x-axis, as compared to the true tree for the dataset: (a) MP consensus, (b) MP bootstrap, (c)
ML bootstrap, and (d) BI. All figures shown were constructed using only the results from the 1500
sequence length datasets.

The MP consensus method has few moderately supported branches. Unlike the MP
bootstrap, ML boostrap, and BI methods (Figures 3(b—d)), the numbers of false posi-
tives and negatives for the MP consensus method hardly change for different values of the
contraction threshold. This is an indicator that branches in MP concensus trees characteris-
tically have extreme support values - either close to0.5 or 1 - resulting from the population
of trees is generally too small in size to provide sufficient diversity to generate good sup-
port values. In spite of this limitation, the MP consensus method still generates trees with
comparable overall average error levels, albeit with undesirably high false positive rates for
high contraction thresholds.

5. Discussion

The overarching goal of this project was to find out how support values generated by various
phylogenetic estimation methods can be used to estimate more accurate trees. Based on the
results presented in Section 4, specifically those discussed in Section 4.3, we have several
observations (true under the conditions of our experiments) to offer:

The MP consensus method does not produce informative support-labeled trees. Though



October 11, 2005 8:45 RuthsNakhlehBranchSupport

9

the method does produce good trees in terms of all three formsof error measured in this
project, Figure 3(a) reveals that support-values cannot beused to significantly improve the
majority consensus tree.

MP bootstrap, ML bootstrap, and BI perform very similarly. BI produces the most re-
solved trees of the three methods (evident from its significantly lower false negative rates),
whereas MP and ML both have slightly lower false positive rates (which are less significant
than the false negative difference in BI).

Strict consensus gives the most correct tree. We make this observation from the per-
spective of minimizing the false positives. As discussed earlier in Section 2, false nega-
tives lead to conservative trees, missing some resolution in the relationships between taxa
whereas false positives are relationships that do not actually exist. While Figure 3 shows
that strict consensus trees will contain more errors than majority consensus trees, the strict
consensus trees will be conservative estimates as opposed to majority consensus which
contain wrong relationships.

It is impossible to construct a fully resolved (binary) tree with 100% certainty. As the
figures show, attempting to maintain a more resolved tree requires the admission of more
false positives into the tree. In order to eliminate these errors, the tree must become less
resolved. Because of this trade-off, phylogenetic analysis methods must be designed to
operate on non-binary trees. The alternative is to accept greater accumulated error in the
results.

6. Conclusions

In this project, we studied four different phylogenetic estimation methods for constructing
support-labeled trees. The contribution of this paper bears a significant impact on the un-
derstanding of the relative merits of the different algorithms we studied and of the trade-off
involved in choosing a branch contraction threshold. In addition, our results support the
observation that strict consensus trees will always yield more correct trees, if the goal is to
minimize the number of wrong branches in the estimated tree.Further, our results show
that even with sophisticated methods such as Bayesian inference, obtaining a fully resolved
accurate tree is very hard. Therefore, phylogenetic analysis tools that assume the trees are
always binary (fully resolved) may have a serious shortcoming in their applicability.

This study has also identified the trend of methods ascribinglow support values to equal
numbers of true and false branches in the estimated tree. What remains unclear is why true
branches receive low support values and whether there are ways to improve this true branch
confidence. Such improvements would directly impact the accuracy of estimated trees.
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