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Abstract: The rapid growth of biological databases not only provides biologists with abundant data 
but also presents  a big challenge in relation to the analysis of data. Many data analysis approaches 
such as data mining, information retrieval and machine learning have been used to extract frequent 
patterns from diverse biological databases. However, the discrepancies, due to the differences in the 
structure of databases and their terminologies, result in a significant lack of interoperability. 
Although ontology-based approaches have been used to integrate biological databases, the 
inconsistent analysis of biological databases has been greatly disregarded. This paper presents a 
method by which to measure the degree of inconsistency between biological databases. It not only 
presents a  guideline for correct and efficient database integration, but also exposes high quality data 
for data mining and knowledge discovery.  

1 Introduction 

In recent years, advanced experiment methods have resulted in the rapid growth of life 
science databases. Many biological databases have been developed for different 
purposes, such as GenBank and NCBI [1-2]. The enormous data in databases are 
meaningful for the exploration of their life origin and evolution, and to predict the 
function and structure of life systems. They have been commonly usedby biologists 
during data analysis. 

Due to the increasingly complex and specific nature of biological databases, a 
complicated biological question has to be answered by consulting multiple biological 
databases. However, the knowledge of life systems is too detailed and complex to be 
completely comprehended. Such complexity presents a big challenge to merge 
knowledge from diverse databases. The heterogeneity of databases blocks the 
accessibility to them [3-4]. In other words, the inconsistent structures and terminologies 
of biological databases result in a significant lack of interoperability. Thus, it creates a 
demand for data preprocessing.  

As an important cleaning action, the integration of biological databases is significant 
when dealing with the heterogeneity of biological databases. However, the twisted and 
deformed biological data often demand additional knowledge so that the values held in 
databases can be specified and constrained. This causes considerable difficulties for data 
integration. 
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Technical and semantic problems are two key issues which present themselves when 
integrating biological databases. The former can be solved because most current 
biological databases are implemented on relational database management systems 
(RDBMS) that provide standard interfaces like JDBC and ODBC for data and metadata 
exchange [5-6]. Nevertheless, the solution of semantic problems remains unsolved..  

Modern bioinformatics demand knowledge extracted from databases for 
communication purposes. For example, a user’s query of a protein kinase may refer to 
hundreds of databases. There are two options to integrate knowledge from databases: (1) 
standardising the nomenclature of diverse databases; and (2) creating bridges between 
databases even if they differ radically in structure and nomenclature. The former have 
encountered resistance from database maintainers and specialists who hesitate to change 
preferred terminology [4]. As a tradeoff scheme, the latter has been commonly applied in 
the integration phase of biological databases. Among them, ontology-based biological 
database integration is one of the representative methods designed to capture knowledge 
from databases. 

There have been many attempts to develop standards that can be applied 
tobioinformatics ontologies and which subsequently exploit biological information. For 
example, EcoCyc ontology [7] covers E.coli gene, metabolism, regulation and signal 
transduction, and Gene ontology (GO) [8] describes drosophila, moused and yeast gene 
function, process and cellular location and structure. Recently, ontology-based semantic 
integration of biological databases was presented in [2, 9]. Philippi [6] proposed a 
method for the ontology-based semantic integration of life science databases using XML 
technology. To enhance semantic interoperability, there have been considerable efforts to 
solve nomenclature-mapping problems and standardise the naming of functional relations 
and processes and their arguments such as ontology-mapping in GO community [10]. It 
provides a comprehensive list of synonyms that can be used immediately to improve 
indexing and search over the literature. However, no effort has been made to analyse the 
inconsistency of biological databases which would effectively lead to the enhancement of 
database integration. 

This paper presents a method by which to analyse inconsistencies between biological 
databases using ontology. The method is able to find out the databases that are 
inappropriate for integration or need to be further improved. This not only reduces the 
search space but also generates high quality data for accurate and efficient data mining 
and knowledge discovery. Algorithms and experiments are presented to further 
demonstrate our approaches. 

The remainder of this paper is organised as follows. Section 2 presents basic 
concepts. The approaches by which to analyse the inconsistency between biological 
databases are presented in Section 3. In Section 4, experiments are presented. Section 5 
concludes this paper. 

 



 

2 Basic Concepts 

2.1 Problem Description 

The increasing biological databases relating to genome sequences and protein structures 
and functions are challenging the traditional approaches for knowledge acquisition. To 
answer a complex biological question, hundreds of biological databases can be consulted. 
It is critical to guarantee accessibility to the databases. However, the discrepant structures 
and nomenclature of databases have an effect on their communication capabilities.  

Although some biological data publishing and collection use HTML (Hypertext 
Markup Language) format, this method cannot describe complex structure documents. 
Besides, the varied organisation, storage and publication of biological data leads to 
different information types. For example, the representative database NCBI (National 
Center for Biotechnology Information) adopts mostly the binary ASN.1 [1], while 
flatfiles are used in GenBank [2]. The differences in the information types result in 
heterogeneities between biological databases and prevent us from obtaining high quality 
data for data analysis. Additionally, the information derived only from a single database 
does not enable us to obtain a comprehensive understanding, and the knowledge 
acquisition is inconvincible.  

There have been some efforts to establish a link between disparate databases, such as 
data warehousing and database federation. Nevertheless, the increasing new data and 
databases have led efforts to reach a terminological impasse whereby databases have to 
agree on nomenclature and compatible formats before a link is able to be built. 
Nevertheless, database maintainers and specialists in certain research fields find it 
difficult to accept such a link. Ontology has been recently used to create bridges between 
biological databases. However, there are still some problems in the ontology-based 
integration of biological information. Problems include: 

 Ontologies with independent terminologies and structures are often 
incompatible. This causes difficulties when acquiring knowledge from 
databases. 

 Heterogeneities such as synonym result in a significant lack of interoperability 
among biological databases. This blocks the generation of high quality data. 

 Semantic inconsistency has been widely ignored. The integration of biological 
databases with high discrepancies cannot guarantee efficient data mining. 

Such inconsistencies surrounding biological databases and when the databases are 
appropriate for further processing, present major ambiguities. The analysis of the 
inconsistent nature of biological databases assists us in sorting out the appropriate 
databases from which high quality data can be derived. Hence, it is imperative to develop 
approaches by which to measure the inconsistency of biological databases and ensure 
reliable integration of biological databases. 

2.2 Symbols and Formal Semantics 

Suppose A and L denote atom symbols and proposition formulae respectively. In 



particular, A can contain α and ¬α for some atoms α. Let ∧, ¬ and → be logical 
connectives. Let C, c ∈ A be concepts such as Gene and Protein, CV for control 
vocabulary, r for relationship, and α, β and γ for attributes in general. Let ≡  be logical 
equivalence. A model of a formula φ is a possible set of atoms where φ is true in the 
usual sense.  

Controlled vocabularies are a set of named concepts that may have an identifier. The 
concepts or their identifiers are often used as database entries. Its definition is as follows. 

DEFINITION 2.1. Suppose t, def, id and sn present term, definition, identifier and 
synonyms respectively. Let C be the set of concepts of databases. Hence, we have 

 
Controlled Vocabulary CV := {c | c = (t, def, id, sn) ∈ C} 

 
An example of Gene Ontology (GO) is as follows. Each concept (biological process) 

has a term (recommended name), an identifier (id: GO: number), definition (explanation 
and references) and synonyms (other names). The definition of each biological process 
is provided by brief description and references to relevant literature or web links. 

Ontology includes relationships as well as concepts. The relationships consist of ‘is-
a’ (Specification relationships) and ‘part-of’ (Partitive relationships), by which concepts 
can correlate with each other. Although ‘part-of’ relationship can be defined, only the 
transitive ‘is-a’ hierarchy is required for querying databases. For example, ‘Enzyme is 
one kind of Protein’, ‘Protein is one kind of Macromolecule’ and ‘Membrane is part of 
Cells’. Therefore, ontology can be viewed as a tree, where the nodes and directed edges 
present concepts and relationships respectively. 

DEFINITION 2.2. Let O be ontology, and r be relationships that link concepts. 
Ontology can be defined as a set of tuples.  

 
Ontology O := {(c1, c2, r ) | c1, c2 ∈ CV, and r : c1 → c2} 

 
where c1 → c2 presents a relationship r from c1 to c2, such as ‘c1 is-a c2’.  
 

 
 

Figure 1. Biological database attributes are linked to ontology concepts. Attributes pname and pro_name from 
databases Species and Vert have different attribute names, but they are correlated by a common concept protein 
of the ontology. 

EXAMPLE 2.1. In Figure 1, Vertebrate, Animal, Plant and Organism are connected 



 

by transitive ‘is-a’ relation. (Animal, Organism, Animal → Organism), (Plant, Organism, 
Plant → Organism), (Vertebrate, Animal, Vertebrate → Animal) and (Invertebrate, 
Animal, Invertebrate → Animal) represent tuples of ontology. 

To analyse the inconsistency of biological databases, the above need to be defined 
semantically using ontology. One of the key processes is to link tables and attributes to a 
specified ontology. Subsequently, users can execute queries via hierarchies, such as ‘is-
a’, to derive information from databases. Four operators to describe the interactions 
among attributes, tables and ontology are given below. Let Att1 ∈ DB1 and Att2 ∈ DB2 be 
database attributes. Let CV1 and CV2 be controlled vocabularies. 

 
(1) Mapping: Let Att ∈ DB be database attributes. Let O and c be ontology and 

concepts respectively. ‘maps(O, Att, c)’ states the attribute Att in DB can be mapped 
to a corresponding concept c via ontology O. 

(2) Cross-reference: Let CV be controlled vocabulary. ‘cross-reference(CV, (Att1, Att2), 
c)’ states that if Att1 and Att2 can be linked to a common concept c by cross-
reference of CV, they are semantically equivalent owing to c. 

(3) Translation: ‘translates((CV1, CV2), (Att1, Att2), c)’ states that database attribute Att1 
and Att2 can be translated to a common concept c using the controlled vocabularies 
CV1 and CV2. Thus, it is feasible to relate database entries that use different terms for 
the same thing, such as the English species name and Systematic species name in 
Figure 2. 

(4) Taxonomy: Let ci and cj be concepts. ‘is-a(ci, cj)’ states that ci is a sub-concept of cj 
and cj is a sup-concept of ci. For simplicity, the operator ‘is-a’ below implies both 
‘is-a’ and ‘part-of’ relationships mentioned above. Actually, the ‘is-a’ relationship 
holds transitivity. Hence, we have 

 
∀ c1, …, cn ∈ O,  is-a(c1, c2) ∧ is-a(c2, c3) ∧ … ∧ is-a(cn-1, cn) →  is-a(c1, cn) 

 

 
 

Figure 2. Translation by mapping synonymous concepts of controlled vocabularies is used to link databases 
with synonyms. Database attributes corresponding to the same concept and sharing the same controlled 
vocabulary can be viewed as cross-references of attributes. 
 

The above axioms describe possible processes in response to a user's query on 
biological databases. Ontology plays a central role in mapping database attributes to 
common concepts or translating attributes between different controlled vocabularies, 
such as English controlled vocabulary and Systematic controlled vocabulary in Figure 2. 



Additionally, queries operator usually intends to search in attribute for specified terms as 
mentioned above. Hence, a user's query can be classified into two categories in terms of 
entries regarding attribute: 
 

− if the queried attribute is found in databases, it will be mapped to a 
corresponding concept of ontology, and will enable other database attributes to 
be linked together; 

− if no database attribute is defined as the queried attribute, a corresponding 
concept of ontology is selected. Its sub-concepts and super-concepts will be 
searched to find the attribute. 

 
Although the latter is complex, it can eventually get back to the former pathway via 

ontology. In either case, the queries bring about a collection of results, which can be used 
to measure the inconsistency found in biological databases. Usually, users specify a term 
T along with queries. T is able to reduce the searched concepts that are irrelevant to the 
queries. Suppose Att is the queried attribute by users, and its mapping concept of 
ontology O is C. Hence, we have 

1. sub(C, T) = {c |∀ c, is-a(c, C), c ⊒ T} 
2. sup(C, T) = { c |∀ c, is-a(C, c), c ⊒ T } 

where ⊒ denotes a inclusion relationship in view of semantics. 
EXAMPLE 2.2. Suppose a queried database attribute is Animal with a specified term 

parrot. Hence, in Figure 1, we have sub(Animal, parrot) = {Vertebrate}, sup(Animal, 
parrot) = {Organism}. Without the term parrot, sub(Animal, parrot) = {Vertebrate, 
Invertebrate}, sup(Animal, parrot) = {Organism}. 
       From the observation, the database attributes should be semantically defined as 
specific as possible, which can avoid searching unrelated databases. 

DEFINITION 2.3. Let ATTDB = {a1, a2,…, an} be a set of attributes of biological 
database DB. The set of attributes derived from reference database and compared 
databases are denoted by ATTR and ATTC respectively. 

The reference database consists of multiple databases containing the queried 
attribute or the attribute that can be mapped to concepts of sub(C, T) ∪ sup(C, T). It is 
used to decide whether or not the attributes found in compared databases are consistent 
with the specified attribute. An example regarding ATTR and ATTC is given below. 

EXAMPLE 2.3. In Figure 1, ATTSpecies = {sp, pname}, ATTVert = {pr_ name, spec} 
and ATTInvert = {id, org}. If users query attribute pname, then ATTR = ATTSpecies = {sp, 
pname} and ATTC = ATTVert ∪ ATTInvert = {pro name, spec, id, org}.. 

DEFINITION 2.4. Let ⊨ be a supporting relationship. For a set of database 
attributes ATTDB, ATTDB  ⊨ is defined as follows. 
(1) if the queried database attribute α is found in current databases, we have  

− ATTR ⊨ α iff ATTR contains α 
− ATTc ⊨ ¬α iff ATTc contains β that is a database attribute of compared 

databases, which has a common concept with α. 
(2) if the queried database attribute α is not found in databases but can be mapped to a 

concept C in ontology, we have 
− ATTR ⊨ α1 iff ATTR contains α1 and maps(O, α1, c) 



 

− ATTC ⊨  ¬α1 iff ATTc contains α2 that is the corresponding database attribute 
of c in compared databases 

Here O and c present the ontology and concepts in sub(C, T) ∪ sup(C, T) respectively. 
α1 denotes a mapping attribute in reference database from c. 

EXAMPLE 2.4. Suppose ‘pname : mouse’ and ‘animal : mouse’ are two queries on 
Figure 1, in which pname and animal are queried attributes, and mouse is a term that 
locates databases. For the query ‘pname : mouse’, database Species can be viewed as the 
reference database. The term mouse reduces the search space to database Species and 
Vert. Hence, we have ATTSpecies ⊨ pname and ATTVert ⊨ ¬pname. For the query ‘animal : 
mouse’, no database attribute is defined as animal. Nevertheless, the sub-concepts and 
super-concepts of animal in ontology can be mapped to this attribute. The search will be 
limited to Vertebrate and Species due to the term mouse that is mapped to attribute spec 
of Vert and sp of Species. Vert is selected as the reference database so ATTVert⊨ spec. 
The attribute sp of Species is viewed as a negative attribute of spec, namely ATTSpecies ⊨ 
¬spec. 

3 Analyzing Inconsistency of Biological Databases 

3.1 Models of Queried Biological Databases Attributes 
DEFINITION 3.1. Suppose ATT ∈ ℘(L), X∈ ℘(A). Let ATTDB be attributes derived 

from DB∈ {R, C}. Let X ⊨ ATT denote that X ⊨ α holds for every α in ATT. 
 

model(ATT) = {X ∈ ℘(A) | X ⊨ ATT} 
where ATT denotes a set of database attributes. The model of ATT actually presents a set 
of atoms that support ATT. 

For measuring inconsistency, we use compatibility of biological databases. The 
consistentset of a model is the set of database attributes that have identical names with 
corresponding reference attributes. The conflictset of a model consists of (1) the set of 
database attributes that are semantically equivalent; and (2) the null attribute that presents 
no attribute is semantically equivalent to the reference attribute. Actually, some databases 
may not contain the queried attribute at all.  

DEFINITION 3.2. Let δ be a selected reference attribute from reference database R. 
Let Y ∈ ℘(A) be a model of δ.. The consistentset and conflictset are defined below. 

 
− Consistentset(α) = {α | α ∈ Y, α ≡ δ} 
− Conflictset(α) = {α | α ∈ Y, α ≡ ¬δ, or α ≡ null} 
Based on consistentset and conflictset from minimal models, a measurement can be 

used to compute the inconsistency of minimal models in respect to specified database 
attributes.  

DEFINITION 3.3. The compatibility function from A into [0, 1], is defined below 
when α is not empty, and Compatibility(∅) = 0. 
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)()(

)(
×

+ αα
α

tConflictsesetConsistent
etConsistens

 



where |Consistentset(α)| and |Conflictset(α)| are the cardinality of Consistentset(α) and 
Conflictset(α) respectively. If Compatibility(α) = 0, then we can say that the model Y has 
no opinion upon α and vice versa; if Compatibility(α) = 1, it indicates that there are no 
negative attributes ¬α in the model Y; if 0< Compatibility(α) <1, it presents the model Y 
as partially inconsistent/consistent with respect to α. 
       The compatibility function quantifies the inconsistency of biological databases in 
relation to the queried database attributes. A queried attribute in biological databases is 
regarded as compatible or consistent in the case that the compatibility regarding this 
attribute is equal to, or greater than, the threshold minimal compatibility (mincomp) 
given by users or experts. Here, let mincomp = 0.5. Then 

− consistent if Compatibility(α) ≥ mincomp 
− inconsistent if Compatibility(α) < mincomp 

Ideally, we would like to achieve Compatibility(α) = 1. Nevertheless, the 
inconsistency is the objective existence of discrepant terminologies and ontology used in 
diverse biological databases. If biological databases are found to be inconsistent, it is 
possible that they contain too many incompatible database attributes or most of current 
databases do not contain the queried database attribute. Therefore, the method presented 
in this paper is a prerequisite for the integration of biological databases. 

3.2 Experiments 

Table 1 represents the definition of attribute fields for five biological databases and refers 
to Gene ontology and NCBI databases. Among them, DB2 and DB5 are databases which 
regard Species, DB1 and DB4 are databases with respect to Vertebrate, and DB3 is about 
Invertebrate. All database attributes under DNA sequence are linked to DNA sequence 
concept of the ontology. For the attributes under Organism, org is related to Vertebrate 
concept but spec is linked to Organism concept. The null value in this table means no 
such attribute is defined in corresponding biological databases, such as attributes of DB1 
under Description column. In particular, the attribute specs of DB5 is a systematic species 
name. A translation is, therefore, needed to search for this attribute. 
 

Table 1. Attributes of biological databases. 

DB  Author DNA Sequence Description Identifier Organism Enzyme 
DB1 au dns null id org null 
DB2 author seq_dna desc id spec ename 
DB3 au seq_dna desc mid org ename 
DB4 au seq_dna null gid specs enzyme 
DB5 au seq_dna null id org ec_nr 

 
       Measuring the inconsistency of biological databases mainly comprises of three steps: 
(1) input queried database attributes; (2) compute the compatibility of databases in 
relation to queried attributes; and (3) determine the consistency of databases. Two 
experiments are presented below. One is to query attribute ‘enzyme : mouse’ via cross-
reference, and the other is to query attribute ‘animal : mouse’ using translation.  
       In the former, DB3 is ignored for it does not meet the constraint mouse. DB5 is 
selected because the reference database for enzyme is found in DB5, which is mapped to 
concept protein of the ontology in Figure 1. According to the ontology, the attributes 



 

under Enzyme of DB2, DB4 and DB5 use different terminology to represent the same 
concepts. The common concept Enzyme can be used for cross-reference among them. 
According to Definition 3.2, we can obtain Consistentset(enzyme) = {enzyme} from DB5, 
and Conflictset(enzyme) = {null, enmae, ename} from DB1, DB2 and DB4. Both null and 
ename are regarded as ¬enzyme when computing the compatibility of biological 
databases. Finally, we obtain Compatibility(enzyme) = 1 / 4 = 0.25 < mincomp. 
Therefore, the biological databases are inconsistent in relation to the database attribute 
enzyme. 
       As for the latter case, DB3 is ignored in the same way. The database attribute org of 
DB1 and DB4 is linked to Vertebrate concept in the ontology, and spec of DB2 and DB5 is 
linked to Organism concept in Figure 2. Among them, the spec attribute in DB2 and DB3 
needs to be translated to the corresponding attribute specs in DB5 for it is a systematic 
species name. Hence, the model(ATT) = {org, spec, org, spec}. There are two 
possibilities by which to select the reference attribute here: (1) org; and (2) spec.  If we 
use org as the reference attribute, we have Consistentset(org) = {org, org} with respect 
to DB1 and DB4, and Conflictset(org) = {spec, specs} in relation to DB2 and DB5. 
Therefore Compatibility(org) = 2 / 4 = 0.5 ≥ mincomp. Therefore, the biological 
databases are consistent in respect to the queried database attribute animal : mouse using 
org. On the other hand, if we use spec as the reference attribute, we have 
Consistentset(spec) = {spec}, Conflictset(spec) = {org, org, specs} and 
Compatibility(spec) = 1 / 4 = 0.25 < mincomp. Thus, they are inconsistent in respect to 
the database attribute (animal, mouse) using spec. 

4 Conclusions 

Knowledge acquisition from biological databases plays a nontrivial role in biological 
studies. However, the heterogeneity of biological databases has resulted in a significant 
lack of interoperability between them. The integration of biological databases is critical 
when dealing with heterogeneity but suffers from the twisted and deformed nature of 
biological data. Ontology-based integration of biological databases is an efficient way to 
capture knowledge from multiple sources. Nevertheless, no effort has been made to 
analyse the inconsistency in biological databases. This paper proposes a method to 
measure the inconsistency of biological databases via ontology. It assists in obtaining 
high quality data for data mining and knowledge discovery. We demonstrate our method 
by conducting experiments. 
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