
4th October 2005 19:36 Proceedings Trim Size: 9.75in x 6.5in sinoquet_apbc_2006_crc_04_10_05

A NOVEL APPROACH FOR STRUCTURED CONSENSUS MOTIF INFERENCE
UNDER SPECIFICITY AND QUORUM CONSTRAINTS

CHRISTINE SINOQUET
LINA, Université de Nantes,

2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex, France,
E-mail: christine.sinoquet@univ-nantes.fr

We address the issue of structured motif inference. This problem is stated as follows: given a set
of n DNA sequences and a quorum q (%), find the optimal structured consensus motif described as
gaps alternating with specific regions and shared by at least q × n sequences. Our proposal is in the
domain of metaheuristics: it runs solutions to convergence through a cooperation between a sampling
strategy of the search space and a quick detection of local similarities in small sequence samples. The
contributions of this paper are: (1) the design of a stochastic method whose genuine novelty rests on
driving the search with a threshold frequency f discrimining between specific regions and gaps; (2) the
original way for justifying the operations especially designed; (3) the implementation of a mining tool
well adapted to biologists’exigencies: few input parameters are required (quorum q, minimal threshold
frequency f , maximal gap length g). Our approach proves efficient on simulated data, promoter sites
in Dicot plants and transcription factor binding sites in E. coli genome. Our algorithm, Kaos, compares
favorably with MEME and STARS in terms of accuracy.

1. Introduction

In the last fifteen years a lot of work has appeared in the literature which addresses the
general topic of consensus motif inference (CMI) in a set of biological sequences (Gibbs
sampling,10,16 Pratt,9 CONSENSUS,8 Teiresias,14 MEME,2 PROJECTIONS,4 Smile,12,6

Winnower,13 Splash,5 STARS,11 MoDEL,7 ...). The reader is directed to some recent
surveys3,11,7. Though the problem is incontestably not new, it remains an important and
difficult one in sequence analysis. Exact algorithms are not convenient for large datasets or
long sequences. Therefore, approximate algorithms have to be designed. There was room
for an approach dedicated to the specific problem of structured motif inference. Let us
first remind of a peculiar instance of the CMI problem, called the local multiple alignment
problem (LMA). In its general form, this problem may be stated as follows: identify a set
of sub-words {oi1 , oi2 , · · · , oiri

}, called occurrences, under the four following constraints:
(1) any oij

verifies a similarity constraint with any other oip
; (2) the occurrences have the

same length; (3) each sequence si contains 0 or 1 such occurrence oik
; (4) there are at least

q × n sequences si contributing to the set of occurrences (quorum constraint). Generally,
LMA algorithms output the set of occurrences, a position-specific scoring matrix (pssm)
M and the consensus motif. For any character c of the DNA sequence alphabet A , M [c, j]

yields the frequency of character c at position j over the set of occurrences. The consensus
motif is computed as the word with the most frequent characters in the pssm M . But a

1

4th October 2005 19:36 Proceedings Trim Size: 9.75in x 6.5in sinoquet_apbc_2006_crc_04_10_05

central issue in post-genomics is the automatic discovery of functional biological motifs
with the aim of identifying a structure common to a set of sequences. The structure may
be described as specific regions alternating with gaps. Gaps are regions which contain
no intrinsic information. Thus we are interested in structured local multiple alignments
(SLMAs). A structured motif is a word built on alphabet A ∪ {x}, where x denotes the
wild-card character. A wild-card character in position j of the motif indicates that the fre-
quencies of all characters in A are below a given threshold frequency, say, f . A gap is
made up of contiguous wild-card characters. Here our concern is the retrieval of structured
motifs such as ACTGxxxxCTTxxGGxxxAAGA, for example.

Naively deriving a structured consensus motif from the pssm built by a classical LMA
method does not yield the optimal solution for large datasets or long sequences. Neverthe-
less, it is wise to benefit from an existing LMA algorithm for local similarity search. On
the other hand, for systematic data mining purpose, one can not waste time with successive
guesses at the putative structure. The number of input parameters for a search must be
reduced: quorum (q); threshold frequency (f); minimal motif length (minMotifLength),
maximal gap length (g). Thirdly, we are aware of the robustness of stochastic methods in
the domain of CMI (Gibbs sampler,10 MEME,2 PROJECTIONS,4 STARS,11). Finally, we wish
to design an algorithm with a low memory cost. These motivations lead to our investigating
a stochastic sampling strategy cooperating with an LMA algorithm.

The remainder of the paper is organized as follows. Section 2 introduces specific termi-
nology and notions we use subsequently. Section 3 is dedicated to the presentation of our
algorithm, Kaos. The discussion of the results obtained on simulated and biological data
may be found in Section 4.

2. Definitions

For DNA sequences, the alphabet A is {A, C, T, G}.

Definition 2.1. (LMA) Given n sequences s1, s2 · · · sn built on alphabet A , an integer k

and a similarity criterion, an LMA is a set of substrings o1, o2 · · · on of s1, s2 · · · sn such
that o1, o2 · · · on have common length k and maximize the similarity criterion. Note that
an LMA is easily represented with a matrix. In the following, we will also call LMA any
process yielding such a set of substrings.

Definition 2.2. (pssm, support, hits) Let S = s1, s2 · · · sn be n sequences built on
alphabet A , let O = {o1, o2 · · · on} be an LMA of length k built from these sequences
considering a given similarity criterion and let minSeq and minMotifLength be two
integers. A pssm M associated with this LMA is any matrix of reals of size |A | × l (l ≥
minMotifLength) induced from a sub-matrix L of the LMA matrix as follows: L has at
least minSeq lines and minMotifLength columns; M compiles the frequencies of the
characters of A , for each column of L. The hits of the pssm M are the locations in the
sequences of the sub-words aligned in L. These sub-words are the support of the pssm.

Definition 2.3. (specific character) Let f be a given threshold frequency, 0 ≤ f ≤ 100.
If the highest frequency at column j, M+[j], is over f and is obtained for character c, then

2

4th October 2005 19:36 Proceedings Trim Size: 9.75in x 6.5in sinoquet_apbc_2006_crc_04_10_05

c is a specific character and is refered to as char(M+[j]).

Definition 2.4. (wild-card character, mask) Let us choose x (/∈ A) as the wild-card
character. We denote mask(M) the string ∈ A l ∪ {x} verifying:

forall 1 ≤ j ≤ l, mask(M)[j] =

{

x if M+[j] < f

char(M+[j]) otherwise.

Definition 2.5. (gap) A gap is any word built on alphabet {x} which is one of the longest
substrings of contiguous wild-card characters in mask(M).

The only constraint on the motif structure is g, the maximal gap length allowed.

Definition 2.6. (property G(f, g)) Property G(f, g, M) holds if and only if the length of
the longest gap in M ’s mask is less than or equal to g for the threshold frequency f and
this mask has no gap at either extremity.

3. Cooperation between a sampling strategy and an LMA

3.1. Moving in the pssm search space

To solve a combinatorial optimization problem, all metaheuristics find a balance between
search intensification (identifying solutions of better quality from known solutions) and
search diversification (escaping from local optima). Our approach successively infers so-
lutions through iterations considering small samples of m sequences chosen at random
among the n initial sequences. If at least q × n sequences share a similarity, it is likely
that q×m sequences in the samples share this similarity on average. The searched space E
consists of pssms. But we would emphasize that the definite originality of our method lies
in the following points: (1) where Gibbs sampling, PROJECTIONS, MEME and CONSENSUS
(at each of its iterations) consider pssms for a given motif length and pssms supported by
the same number of sequences, on the contrary, our method considers the space of pssms

with minimal second dimension minMotifLength and minimal support size minSeq;
(2) moreover, for structured motif inference purpose, we impose straightaway that we only
move in the pssm sub-space where all elements verify property G(f, g). Each pssm repre-
sents a similarity shared by, say, r sequences belonging to the initial set. The higher r is,
the more likely is the pssm the optimal solution. The objectives for the search are increas-
ing the support size (quorum constraint) and optimizing a criterion C designed to evaluate
the specificity of solutions.

3.2. Sketch of the algorithm

3.2.1. Sequence sampling and first intensification level

The sketch of the search is given in algorithm 1. Any iteration begins with the generation
at random of two sequence samples S1 and S2 (line 3). The plug-in LMA software tuned
with length w yields two LMA matrices of size m × w (line 4). An exact procedure is
implemented to scan each of these matrices and identify the largest sub-matrices (with

3

4th October 2005 19:36 Proceedings Trim Size: 9.75in x 6.5in sinoquet_apbc_2006_crc_04_10_05

respect to the numbers of lines and columns) whose pssms verify the constraint G(f, g).
This procedure will be described in an extended version of the paper.

At line 5, operator ⊗ processes each pair (s11
, s12

) of S 11
× S 12

shifting one
matrix with regard to the other one to identify a local similarity. As a result, the el-
ementary operation s11

× s12
outputs the unique pssm s2 (if it exists) which satisfies

property G(f, g) and optimizes criterion C . s2 is computed according to the formula:
s2[c, j] =

n11
s11

[c,j1]+n12
s12

[c,j2]

n11
+n12

. j1 and j2 are the columns of matrices s11
and s12

which
contribute to the column j of matrix s2. n11

and n12
are the support sizes of s11

and s12
.

Indeed, such computations need only be done for some shifts. The other shifts are effi-
ciently rejected through straightforward focuses on the gaps in s11

(or s12
) (starting with

the longest ones), and the corresponding regions in s12
(or s11

). Thus it is likely that the
longest gaps in the potential solution corresponding to the current shift will be pointed
out. For a given shift, optimization is performed through scanning L , the list of pairs
(begin, end) for all gaps in s11

and s12
. This list is sorted in decreasing order with re-

spect to the gap lengths. The principle of the optimization will be detailed in the extended
version of the paper.

3.2.2. Starting points and second intensification level

If they are of sufficient quality with respect to criterion C , some elements of S 2 will be
chosen as "starting points" for moving in the search space E (line 6). A starting point
from S 2 will replace a "bad" current solution in S 3. Moving in E is performed with the
objective of maximizing the support sizes (see definition 2.2) of the current solutions in
S 3. Here, intensification is obtained with a second operator ⊕ (line 6) which compares
the elements of all pairs in S 3 × S 2: if a solution s2 in S 2 has the same mask as a
solution s3 belonging to S 3, then the support and frequencies of s3 are updated. ⊕ is a
specialized version of ⊗. Furthermore, if updating the frequencies for a given solution s∗

with support size above q × n only entails variations within a given percentage, say, 2%,
then the convergence criterion is satisfied (line 7), the search stops and it yields the pair
{s∗, S 3} which will be processed afterwards. Now the reader can understand that a "bad"
solution s3 in S 3 replaced with a starting point s2 is characterized as follows: (1) it was
not much reinforced by operator ⊕ through successive iterations and therefore it has a low
support size; (2) s2 scores over s3 with regard to criterion C . To sump up, diversification
by generation of starting points and intensification in E are simultaneous processes iterated
until a convergence criterion is satisfied for a solution s∗.

3.3. Justification of the operators implemented and the criterion optimized

To evaluate the pertinency of operator⊗, we must check that it is unlikely that false positive
solutions corresponding to local similarities might be retained in S 2. If we call f1 and
f2 the two frequencies involved in the formula s2[c, j] =

n11
s11

[c,j1]+n12
s12

[c,j2]

n11
+n12

, Figure
1 shows variations of f2 versus f1 for 4 values of f and different values of ratio n11

n12

under the constraint n11
f1+n12

f2

n11
+n12

≥ f . The ratio values considered here are the 49 our

4

4th October 2005 19:36 Proceedings Trim Size: 9.75in x 6.5in sinoquet_apbc_2006_crc_04_10_05

Algorithm 1 Search(g, f, q)
Input: a set S of n sequences; maximal gap length g; minimal frequency f ; quorum q; sample size m.
Output: answer ’Yes’/’No’; if ’Yes’, a maskMask, the corresponding pssm M , hits hits for at least q × n sequences.
Search space: E , the set of pssms verifying constraint G(f, g)

Solution sets: S 11
, S 12

, S 2 and S 3

Operators: ⊗ and⊕: P(E)×P(E)→P(E) (P(E): set of all subsets of E)
1: S 3 ← ∅

2: repeat
3: Step 1: generate at random from S two samples of m sequences respectively, S1 and S2.
4: identify at most n1 best solutions S 11

and at most n1 best solutions S 12
running plug-in algorithm LMA respectively

on samples S1 and S2 , under constraint G(f, g) and using criterion C .
5: Step 2: identify at most n2 best solutions S 2 from S 11

⊗S 12
, under constraint G(f, g) and with respect to criterion

C .
6: Step 3: update S 3 with S 3 ⊕ S 2 and possibly new starting points from S 2 , under constraint G(f, g) and using

criterion C .
7: until (convergence criterion is satisfied for a solution s∗ in S 3 verifying quorum constraint) or timeout is reached
8: if such a solution s∗ exists then motifAssembling(s∗ , S 3); return ’Yes’,Mask, M , hits

9: return ’No’

implementation works with (n11
, n12

∈ [4, 10]; m = 10; minSeq = 4, see definition
2.2). As intuitively expected, the probability that the frequency f1 = 25% of an aleatory
character might be compensated by a sufficiently high value of f2min = h(f1) = (f −

f1)
n11

n12

+ f , to yield a false specific character, drastically decreases as f increases. We
draw vertical lines x = 25 ± 5% and horizontal lines y = 25 ± 5% to delimit areas for
frequencies near to 25%. Through f = 60% to f = 90%, the two areas delimited intersect
a decreasing number of lines y = h(x).

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100

f = 60%

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100

f = 70%

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100

f = 80%

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100

f = 90%
Figure 1: Probability for reinforcement of a specific character c through operation ⊗, under various
values for the threshold frequency f (f ≥ 60%). We draw the lines corresponding to f2min =

h(f1) = (f − f1)
n11

n12

+ f for 49 values of the ratio n11

n12

; n11
, n12

∈ [4, 10].

Conclusion 3.1. For DNA sequences, if the threshold frequency f is greater than or equal
to 70% and if all 49 possibilities for n11

n12

with n11
, n12

∈ [4, 10] are equiprobable, then the
probability that an aleatory character in s11

compensates the same character in s12
, to yield

a specific character in s2, decreases from 0.45 to 0 (0.29 for f = 72%; 0.12 for f = 75%).

With this knowledge, we study the behaviour of operator ⊗ in the three cases: TP ×

TP, FP × TP, FP × FP, where FP denotes a false positive solution (a local similarity) and
TP corresponds to a sub-optimal solution. The optimal solution is a similarity shared by
n × q sequences at least and a TP only differs from the optimal solution by some false
wild-card or specific characters. Table 3 in Appendix details our reasoning, which is based
on conclusion 3.1. We draw the following conclusion from the comparison of columns 3,
3’, 5 and 5’ of Table 3 (see lines 3, 6 and 9):

5

4th October 2005 19:36 Proceedings Trim Size: 9.75in x 6.5in sinoquet_apbc_2006_crc_04_10_05

Conclusion 3.2. Table 3 shows that crossing operands one of which at least is a false pos-
itive solution is likely to entail the generation of wild-card characters whereas specific
characters are generated instead if both operands are true positive solutions.

Operator ⊗ implements shifts of a pssm with respect to another pssm. If one of the
operands at least is a FP, it is unlikely that many specific characters of both pssms corre-
spond. Were it the case for a pair of specific characters of both operands for a given shift,
it is unlikely that these specific characters would be identical. So the cases mentioned at
(6,2) and (9,2) in Table 3 are highly improbable. As a consequence of this and conclusion
3.2, conclusion 3.3 is stated as follows:

Conclusion 3.3. Crossing operands (s11
× s12

) one of which at least is a false positive
solution is likely to yield a pssm whose mask has wild-card characters in the majority. The
resulting pssm will be rejected because of the presence of gaps at extremities or because
they do not verify the maximal gap length constraint.

The criterion C can not be the usual log-likelihood ratio1 because contrary to other
LMA methods, our pssms are not supported by the same numbers of sequences. Con-
clusion 3.3 gives a strong motivation to reward solutions with the following criterion:
∑l

j=1, M+[j]≥f M+[j].

3.4. Final processing

3.4.1. Motif assembling

At line 8, among the solutions in S 3, some may be false positive solutions while others
may correspond to sub-regions of the final consensus motif, either strictly included in the
sub-region corresponding to s∗, overlapping it or totally disjointed from it. Procedure
motifAssembling chooses s∗ as a first "reference" and refines it. Then it finds the solution
in S 3 having the greatest number of co-occurring hits with the reference and satisfying
quorum constraint. This solution is refined in its turn and is used as the new reference.
This process is repeated until no such reference can be identified. The procedure will be
detailed in the extended version of this paper.

3.4.2. Estimation of the motif statistical significance

It is not a rule that all functional biological motifs should necessarily be less represented
than other words in a dataset. Anyway, we must estimate the statistical significance of the
motif predicted. We consider a motif of length l with ns specific characters. The probability
that such a motif occurs by chance at least one time in each of n sequences of maximal
size t, with at most d mismatches relative to the specific characters, is approximated by
(1 − (1 −

∑d

m=0

(

ns
m

)

(|A |−1
|A |)

m
(1
|A |)

ns−m
)t−l+1)

n

.

3.5. Complexity

We chose MoDEL7 as the plug-in LMA software for its rapidity. The complexity of an LMA
performed with MoDEL is O(m t w b) where w is the chosen length for the local alignment,

6

4th October 2005 19:36 Proceedings Trim Size: 9.75in x 6.5in sinoquet_apbc_2006_crc_04_10_05

b is the intrinsic number of iterations for this method (default value is 45), m is the size of
the sequence samples and t is the maximal length for the n sequences. We suppose that the
convergence for procedure Search(g, f, q) is obtained at uth iteration. The complexity
is then O(u m t w b + λ2 n3

2 n) where λ is the maximal number of hits per sequence for
any of the n3 solutions in S 3. The memory cost is O(2 n1 + n2 + n3) (n λ + w) where
n1 and n2 are the sizes of S 11

and S 2. Due to space limitation the corresponding proofs
will be published in the extended version of the paper.

4. Experimental results

4.1. Simulations

Generating a consensus motif at random, we also generated n×q occurrences, blurred them
with mismatches (in the specific regions only) and inserted them in n aleatory generated
sequences. We compared the retrieved consensus motif with the real one and computed
statistics: cover (Is the whole motif retrieved?) and exactness (Are there errors?) (not
detailed here). Table 1 includes more details on the false wild-card or the false specific
characters predicted. For some tests (b, c, d and e), we adapted to our concerns the so-
called challenge motif problem stated by Pevzner and Sze13. The first conclusion to draw
from Table 1 is that our method is accurate. The lowest average exactness is 0.92, obtained
for motif a and c under rather hard conditions: q = 70%; f = 80%. The cover is quite
satisfying too: it never drops below 0.90. On the other hand, we never encounter more than
one false wild-card character or one false specific character on average, except for b2 and
c2 (respectively 1.03 and 1.02 false wild-card characters).

A second benchmark was designed to study whether tuning the parameter g

(maximal gap length) with different values alters the results. The benchmark con-
sists of 50 sequences generated at random (length in [50, 300]) and containing
CTACTxxxATCCTTGGGxxxxxxxxTCGTxxxAAACTTGCTAGATTCAGGGAxxxGAC-
GGAGGGTA whose longest gap has length 8. Successively tuning g to 8, 15 and 25 does
not alter the quality of the ouputs obtained for 20 runs.

4.2. Biological benchmarks

Finally we ran Kaos on the biological datasets collected for STARS evaluation17,18. The
motifs considered consist of (1) the Tata box TATAxATA in 131 sequences from various Di-
cot plants (32880 nucleotides, sequence length 251), (2) the binding site TGTAAxxxxxxxT-
TxAC for TyrR protein in E. coli genome (5 sequences, 3585 nucleotides, sequence length
in [251-2021]) and (3) the binding site CTGTAxAxxxAxxCAG for LexA protein in E. coli
genome (16 sequences, 28941 nucleotides, sequence length in [100-3842]). We compared
MEME, STARS and 20 runs of Kaos under the constraints q = 100% and f = 80%. To
test our method with quorum q = 70% (and f = 80%), we replaced 30% of the sequences
in the initial datasets (1) and (3) with as many sequences of the same lengths chosen at
random in the adequate genomes. Then we compared 20 runs of Kaos with MEME, which
allows the retrieval of zero or one occurrence of the motif per sequence. We had to convert

7

4th October 2005 19:36 Proceedings Trim Size: 9.75in x 6.5in sinoquet_apbc_2006_crc_04_10_05

MEME’s outputs into structured motifs for comparison purpose. We compared the lengths
of the motifs and the locations of false wild-card/specific characters for the motifs predicted
by Kaos and any other algorithm. We conclude that in both cases (q = 100% and q = 70%)
Kaos is as efficient as MEME and STARS (see extended version).

Then we tested the behaviour of Kaos when the quorum decreases. We chose a difficult
case: the binding sites for PurR protein (18 sequences, 44592 nucleotides) (see Table 2).
From 90% to 70% all solutions found by Kaos are consistent with the real motif, with each
other and with MEME’s results. 60% is the quorum value below which MEME and Kaos
retrieve a consensus depending on the sequences generated at random.

Table 1: Performances of Kaos with 2 quorum values and 2 frequency values for various motifs.

(a1) (a2) (a3) (a4) (b1) (b2) (c1) (c2) (d1) (d2) (e1) (e2)
q 100 70 100 70 100 70 100 70 100 70 100 70
f 100 100 80 80 80 80 80 80 80 80 80 80
co 0.97 0.97 0.91 0.90 1.0 1.0 1.0 0.97 0.92 0.93 0.91 0.95
ex 1.0 1.0 0.98 0.92 0.98 0.96 0.95 0.92 0.96 0.95 1.0 1.0
fw 0.49 0.5 0.58 0.57 0.5 1.03 0.2 1.02 0.37 0.47 0.11 0.3
fs 0.38 0.37 0.13 0.9 0 0.44 0.9 0.3 0.22 0.21 0.2 0.95
n t l ns q = 100% q = 70%

d = 2 d = 4 d = 7 d = 2 d = 4 d = 7

(a) 100 50 14 10 2.4 E-182 5.4 E-29 0.999 1.4 E-96 2.2 E-4 0.999
(a) 100 300 14 10 1.3 E-95 0.720 1.0 3.3 E-43 1.0 1.0
(b) 20 600 16 12 d = 3: 1.7 E-14 d = 3: 2.5 E-6
(c) 20 600 18 14 d = 4: 1.4 E-15 d = 4: 5.1 E-7
(d) 20 600 20 16 d = 5: 4.8 E-17 d = 5: 5.8 E-8
(e) 20 600 22 18 d = 6: 9.1 E-19 d = 6: 4.3 E-9

(a) GCGxxAAGCAxxCC (b) TGATxxTGAxxACGCC (c) TTTxCTCxCGxCCGxgag
(d) AATTTxxTCCTAGxTxTACG (e) CTTGGACxCGAxCCTCxxCGCC

Note: The maximal gap length g is set to 5. (a), (b), (c), (d) and (e) refer to various motifs. In each subcase
(ai), 100 sequences of lengths ranging from 50 to 300 have been generated under quorum (q%) and minimal
frequency (f%) constraints. In cases (b), (c), (d) and (e), 20 sequences of length 600 have been generated.
Average values for cover (co), exactness (ex) and number of false wild-card/specific characters (fw/fs) predicted
have been computed for 100 runs. Bottom section: statistical significance. n is the number of sequences of size
t, l is the motif length, ns is the number of specific characters, d is the maximal number of mismatches observed
per occurrence. For motif (a) different values of d were encountered in the worst cases (f = 70%).

Table 2: Robustness of Kaos with respect to quorum q; comparison with other methods.
q 100% 90% 80% 70%
MEME ACGCAAACGTTTGCGTT see 100% ACGCAAACGTTTGCGT ACGCAAACGTTTACGTT
MEME(∗) AxGCAAACGxTTxCxT see 100% AxGCAAACGTTTxCxT AxGCAAACGTTTACTT (8)

AxGCAAACGTTTxCGT (3)
AxGCAAACGTTTCxT (9)

STARS GCxAxCGTTTTC
Kaos GxAAxCGxTTxC (7) AxGxAAxCGxTTxC (10) GxAAxCGxTTxCxT (12) AxGxAAACGxxTxC (6) ‡

AxGxAAACGTTTxCxT (13)† AxGxAAACGxTTxC (1) CGxAAACGTTTxCxT (8) CAAAxGTxTCxGT (7)
CGCAAxCGxTTxC (9) CxAACGTxTTxGT (7)

Note: f = 80%. The maximal gap length is 5. The dataset contains sequences with PurR protein binding sites and
random sequences. The known motif is AxGxAAxCGxTTxCxT. Sequences have lengths in range [299-5864],
with average 2477. (*) For an easier comparison, the ouputs of MEME have been converted into structured motifs.
The numbers in brackets indicate how many runs over 20 output the corresponding result. Statistical significance:
† 1.2 E-69; d = 0 ‡ 0.999; d = 4. d is the maximal number of mismatches observed per occurrence.

8

4th October 2005 19:36 Proceedings Trim Size: 9.75in x 6.5in sinoquet_apbc_2006_crc_04_10_05

5. Conclusion

We presented a novel method for SLMA under minimal specific character frequency, max-
imal gap length and quorum constraints. pssm convergence is obtained in an original way:
strengthening (literally merging) the best candidates satisfying frequency and gap con-
straints, which definitely distinguishes our algorithm from all known methods. Kaos is
robust with regard to the following criteria: maximal gap length specified with too high
a value, parameters q and f . Besides, our method has a low memory cost. Finally, our
software is easy to use since only three input parameters are required and the maximal gap
length may be overestimated. Our results show that it is worth doing future work. The next
step will consist in examining which parts of the algorithm may be speeded up. A more
thorough examination of the choice for scoring functions is also one of our future tasks.

Acknowledgements

We wish to thank A. Mancheron for kindly putting at our disposal the datasets he collected.
Thanks are also due to D. Hernandez for providing the beta version of the MoDEL software.

Appendix

Table 3: Study of the behaviour of operator ⊗ w.r.t. the type of operands (FP or TP, see text, subsection 3.3).
1 2 3 3’ 4 4’ 5 5’ 6 6’

sopt x c c1 c1 x x c c x x
s11

x c c1 c2 c1 c2 c x c x
s12

x c c2 c1 c2 c1 x c x c

1 TP×TP s11
1c1 1c2 c1 c2 c c+ c c eq
2c2 2c1 c2? c1?

2 s12
1c2 1c1 c2 c1 c+ c c eq c

3 s2 x c c1 c1 x x c c x x
4 TP×FP s11

1c1 1c2 1c1 see 4 c c+ c c eq
2c2? 2c1? 2c2?

5 s12
1c2 1c1 1c2 see 4 c? c c? c

6 s2 x c x x x x x c x x
7 FP×FP s11

c1 see 3 see 3 see 3 c x see 5 see 5

c2?
8 s12

c2 x c

9 s2 x c x x x
Note: This table relies on conclusion 3.1. The operands are s11

and s12
. The elementary operator for ⊗ is

denoted ×. We give the most probable result for s2 = s11
× s12

, considering the 2 contributing columns of s11

and s12
and the resulting column for s2. x denotes a wild-card character in the masks of the pssms considered.

c, c1 and c2 denote specific characters. sopt is the optimal solution. Indicating the character of sopt is obviously
only of concern for operations involving TPs. Notations: ′1 c′

1
recalls that c1 has the highest frequency rank

in the column of the pssm considered; ′2 c′
2

means that c2 is likely to have the second frequency rank; ′c1+′

denotes the character c1 is likely to have a high frequency rank; ′c1?′ means that there is no possible guess as to
what the rank for c1 can be; ’c1 eq’ means that c1 has a frequency averaging 1

|A |
as all equiprobable characters.

We comment line TP×TP and columns 3 and 3’ to show how to read this table: if one of the TPs has c1 as a
specific character, corresponding to the specific character of sopt, and the other TP has c2 as a specific character,
since both are TPs, it is likely that c1 appears with the second frequency rank for the second TP. The cases at lines
and columns (4-6,5) and (4-6,5’) are not symmetrical. c may be encountered in a FP with either a low or high
probability (though < f since the corresponding character of the mask is a wild-card character). Thus the notation
′c?′ is adequate. On the contrary, there is a high probability that the character c is high-ranked if s11

has a false
wild-card character and sopt has character c in its mask. In this case, the adequate notation is c+.

9

4th October 2005 19:36 Proceedings Trim Size: 9.75in x 6.5in sinoquet_apbc_2006_crc_04_10_05

Bibliography

1. T.L. Bailey, Likelihood vs. information in aligning biopolymer sequences, USCD technical report
cs93-318. University of California, San Diego, 1993.

2. T.L. Bailey, C. Elkan, Unsupervised learning of multiple motifs in biopolymers using expectation
maximization. Machine learning, 21, 51–80, 1995.

3. B. Brejová, C. DiMarco, T. Vinar, S.R. Hidalgo, G. Hoguin, C. Patten, Finding patterns in bio-
logical sequences. Tech. Rep. CS798g, University of Waterloo, 2000.

4. J. Buhler, M. Tompa, Finding motifs using random projections. In Proceedings of the Fifth
International Conference on Computational Molecular Biology (RECOMB), 69–76, Montréal,
Canada, ACM Press, apr, 2001.

5. A. Califano, SPLASH: Structural pattern localization analysis by sequential histograms. Bioinfor-
matics, 16(4), 341–357, 2000.

6. A.M. Carvalho, A.T. Freitas, A.L. Oliveira, M.-F. Sagot, A highly scalable algorithm for the ex-
traction of cis-regulatory regions. In Yi-Ping Phoebe Chen and Limsoon Wong, ed., Proceedings
of the 3rd Asia Pacific Bioinformatics Conference (APBC), volume 1 of Advances in Bioinformat-
ics and Computational Biology, Imperial College Press, 273–282, 2005.

7. D. Hernandez, R. Gras, R. Appel, MoDEL: an efficient strategy for ungapped local multiple
alignment. Computational Biology and Chemistry, 28, 2, 119-128, apr, 2004.

8. G. Hertz, G. Stormo, Identifying DNA and protein patterns with statistically significant alignments
of multiple sequences. Bioinformatics, 15, 563–577, 1999.

9. I. Jonassen, Efficient discovery of conserved patterns using a pattern graph. Computer Applica-
tions in the Biosciences, 13, 509-522, 1997.

10. C.E. Lawrence, S.F. Altschul, M.S. Boguski, J.S. Liu, A.F. Neuwald, J.C. Wootton, Detecting
subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science, 262, 208–
214, oct, 1993.

11. A. Mancheron, I. Rusu, Pattern discovery allowing gaps, substitution matrices and multiple score
functions. In Proceedings of the Third Workshop of Algorithms in Bioinformatics (WABI), 2812,
129–145, Budapest, Hungary, Springer-Verlag, LNBI, sep, 2003.

12. L. Marsan, M.-F. Sagot, Algorithms for extracting structured motifs using a suffix tree with
application to promoter and regulatory site consensus identification. Journal of Computational
Biology, 7, 345–360, 2000.

13. P.A. Pevzner, S.-H. Sze, Combinatorial algorithm for finding subtle signals in DNA sequences. In
Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology
(ISMB), 269–278, San Diego, California, aug, 2000.

14. I. Rigoutsos, A. Floratos, Combinatorial pattern discovery in biological sequences: The TEIRE-
SIAS algorithm. Bioinformatics, 14(1), 55–67, 1998.

15. T.D. Schneider, G.D. Stormo, L. Gold, and A. Ehrenfeucht, Information content of binding sites
on nucleotide sequences. J. Mol. Biol., 188, 415-431, 1986.

16. W. Thompson, E.C. Rouchka, C.E. Lawrence, Gibbs Recursive Sampler: finding transcription
factor binding sites. Nucleic Acids Research, 31, 13, 3580–3585, 2003.

17. http://www.softberry.com/berry.phtml
18. http://arep.med.harvard.edu/ecoli_matrices/

10

