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Abstract 

The prediction of β-turn, despite the observation that one out of four residues in protein 
belongs to this structure element, has attracted considerably less attention comparing to 
secondary structure predictions. Neural network machine learning is a popular approach 
to address such a problem of structural bioinformatics. In this paper, we describe a new 
neural network model for β-turn prediction that accounts for site-specific amino acid 
preference, a property ignored in previous training models. We showed that the statistics 
of amino acid preference at specific sites within and around a β-turn is rather significant, 
and incorporation of this property helps improve the network performance. Furthermore, 
by contrasting with a previous model, we revealed a deficiency of not incorporating this 
site-specific property in previous models. 

Introduction 

β-turn 

Prediction of protein secondary structure is an intermediate step in the prediction of its 
tertiary structure. Most secondary structure prediction methods predict only three 
states — α-helix, β-sheet and coil [1]. However, in addition to these three repetitive 
structural states, tight turn is a significant element frequently occurring in protein 
structures. Based on the number of their constituent amino acid residues, tight turns are 
categorized as δ-, γ-, β-, α- and π- turns [1]. Of these five tight turns, the occurrence of β-
turn is the most frequent, constituting approximately 25% to 30% of the residues in 
globular proteins [2]; in contrast, the second most frequently occurring tight turn, γ-turn, 
takes up only 3.4% of the total residues [3]. β-turn formation is also an important stage in 
protein folding [4], and because β-turns usually occur on solvent-exposed surfaces, they 
often participate in molecular recognition processes in the interactions between peptide 
substrates and receptors [5].  

Despite that β-turn is a common and critical structure element, and that a great 
number of secondary structure prediction methods have been developed, β-turn 
prediction algorithms are surprisingly few. Most of the β-turn prediction methods are 
early statistical approaches, which achieve limited accuracy [1]. As accurate β-turn 
prediction would increase the accuracy and reliability of secondary structure prediction, 
which in turn would contribute to improve the prediction of tertiary structure and the 
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identification of structural motifs such as β-hairpin, there is a need to explore more 
sophisticated β-turn prediction algorithms. 

β-turn Prediction 

The widely accepted definition for β-turn is: A β-turn comprises four consecutive 
residues where the distance between Cα(i) and Cα(i+3) is less than 7 Å, and the 
tetrapeptide is not in a helical conformation [1]. Based on these criteria, a number of β-
turn prediction algorithms have been developed. They can be categorized as: 1) Site-
Independent Model, 2) 1–4 and 2–3 Residue-Correlation Model, 3) Sequence-Coupled 
Model, and 4) Others [2]. 

Because a β-turn is consisted of four consecutive amino acid residues, the prediction 
for β-turn can be performed based on the probabilities of the 20 amino acid residues 
occurring at each of the 4 oligopeptide subsites. 

The Site-Independent Model is a simple prediction method that multiplies the 
probability of each kind of the 20 amino acids occurring at each of the four subsites. 
Different from the Site-Independent Model, both the 1–4 and 2–3 Residue-Correlation 
Model and the Sequence-Coupled Model do not consider the occurrences of the 4 
residues as completely independent incidents. The 1–4 and 2–3 Residue-Correlation 
Model is based on the observation that when a tetrapeptide folds into a β-turn, the 
interaction between 1st and 4th as well as between 2nd and 3rd residues becomes 
remarkable. Particularly, a hydrogen bond may form between the backbone carbonyl 
oxygen of the 1st residue and the backbone amino hydrogen of the 4th residue. The 
Sequence-Coupled Model also incorporates conditional probabilities. However, it is a 
residue-coupled model that calculates the conditional probabilities of 1–2, 2–3 and 3–4 
residues. 

As β-turn prediction has only two outcomes — β-turn and non-β-turn, the former 
should take up ~25% of the occurrences according to what is observed in protein 
structures — it is not sufficient to evaluate the performance of a prediction algorithm 
based only on prediction accuracy, which could be misleading when, for example, a 
method is biased to give more non-β-turn prediction outcomes. 

Therefore, the four parameters commonly used to measure the performance of β-
turn prediction algorithms are: 1) Qtotal (Qt): total prediction accuracy, 2) Qpredicted 
(Qp): percentage of correct positive prediction, 3) Qobserved (Qo): sensitivity, and 4) 
MCC: Matthews Correlation Coefficient, which accounts for both over- and under-
predictions. They are defined in the equations given below, where “p” denotes the 
number of correctly predicted β-turn residues,  “n” the number of correctly predicted 
non-β-turn residues, “o” the number of incorrectly predicted β-turn residues (false 
positives), “u” the number of incorrectly predicted non-β-turn residues (false negatives), 
and “t” the total number of residues predicted. “Qpredicted” and “Qobserved” are the 
proportion of false positive prediction results and that of false negative results, 
respectively. The MCC value is an overall evaluation parameter, which is dimensionless. 
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MCC has a theoretical value between 0 (for random prediction) and 1 (for perfect 
prediction). 
 
 

 (1) 
 

Machine Learning Approaches 

Most of the recent algorithms that generally outperform earlier statistical approaches in 
the prediction of protein structure states have been developed via machine learning, 
neural networks and support vector machines (SVM) being most notable. Neural network 
algorithms usually use a segment of peptide sequence as the basis for prediction, where it 
automatically looks for subtle correlations between the input amino acids and their 
structural preference via a back-propagation training process. In these approaches, each 
of the segment residues is transformed into 20 (or 21) nodes of numeric data, which are 
then used as 20 (or 21) numerical values for the input nodes (or neurons) of the neural 
network. During the training process, the correlations between each set of the input nodes 
and output data are automatically adjusted to be in line with the relationship between the 
structure and the preference of amino acids. 

In 2003, Kaur and Raghava proposed a neural network method for the prediction of 
β-turns utilizing multiple sequence alignments [6]. They constructed two serial feed-
forward back-propagation networks, both of which have an input window of 9 residues 
wide (21 nodes in each residue) and a single hidden layer of 10 units (nodes). The first 
layer, a sequence-to-structure network, is trained with the multiple sequence alignment in 
the form of PSI-BLAST [7]-generated position-specific scoring matrices. The 
preliminary predictions from the first network along with PSIPRED [8]-predicted 
secondary structure states are then used as input to the second, structure-to-structure 
network to refine the predictions. They achieved a MCC value of 0.37 using multiple 
sequence alignment on the first layer and 0.43 overall using the first-layer results plus 
secondary structure prediction on the second layer. Their results are among the best 
reported in the literature for β-turn predictions. 
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However, in Kaur and Raghava’s network, the group of 20 nodes, representing the 
20 kinds of amino acids, for the central residue of the peptide segment is adjusted to 
merely fit the general correlations between the structure and the amino acid preference; 
site-specific amino acid preference is not taken into account. Here we show that a 
statistical analysis on the occurrence of the 20 amino acids at each of the four sites of the 
β-turn, and of its adjacent sites also, revealed marked site-specific preference, and 
incorporation of this preference improved network performance. 
 

Materials and Methods 

The Data Set 

The data set in this study is consisted of 426 non-redundant protein structures as 
originally established by Guruprasad and Rajkumar (2000) [3]. Selected from Protein 
Data Bank [9], the data set was obtained using the program PDB_SELECT [10] such that 
no two chains of the selected representative proteins have > 25% sequence identity. All 
the structures selected are determined by X-ray crystallography at 2.0 Å resolution or 
better. Each chain contains at least one β-turn, and the β-turn assignment is based on the 
annotation of PDBsum [11]. 

Previous Neural Network Training Methods vs. Site-specific Amino Acid 
Preference Based Training Method 

A back-propagation training procedure is used to optimize the weights of the neural 
network. During training, the network response at the output layer is compared to a 
supplied set of known answers (training targets). The errors are computed and back-
propagated through the network in an attempt to improve the network response. The 
nodal weight factors are then adjusted by the amounts determined by the training 
algorithm. The iterative procedure of processing the inputs through the network, 
computing the errors and back-propagating the errors to adjust the weights constitutes the 
learning process.  

Previous neural network methods for structure-state prediction of proteins (e.g. 
secondary structure prediction and turn prediction) stipulate that the structure of a residue 
is dependent upon its adjacent amino acid sequences. According to most of these 
methods, patterns are presented as windows of a certain number (n) of residues, in which 
a prediction is made for the central residue (ith residue) [6, 8] or a residue in a specific 
position of the window [12], as shown in Figure 1A. In this way, the group of 20 nodes 
for the central residue is adjusted to merely fit the general correlations between the 
structure state of this residue and the amino acid preference deduced for each site on this 
structure fragment. As the central residue is the point of focus, these methods generally 
do not care if the adjacent groups of nodes do not fit a certain structure state. In other 
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words, a residue may be predicted as a β-turn residue even if its neighboring residues are 
not. In addition, site-specific amino acid preference is not considered. 
 

 

 
Figure 1. Illustrations of the differences between two neural network training methods: (A) A demonstration of 
the previous methods: The sequence ACDEFGHI on the left indicates a fragment of consecutive 8 amino acid 
residues in an input protein sequence. The sequence NTTTTNNN on the right indicates the known structure 
state of the corresponding residues: N for non-β-turn residue and T for β-turn residue. Note that T always occurs 
4 or more times consecutively, as a β-turn contains exactly 4 consecutive residues. In this illustration, the neural 
network contains 5 groups (i-2, i-1, i, i+1, i+2; actual implementation has more) of input nodes (white dots in 
the gray rectangle), with each group comprising 20+1 units (such as probabilities of 20 amino acids derived 
from multiple sequence alignment plus an additional piece of information) to code for the residues, and 1 output 
node (the dark blue dot in the gray rectangle) for β-turn prediction of site i. The blue, red and green boxed and 
arrowed rectangles indicate 3 input data, and the “T” or “N” labeled blue, red and green arrows are the 
corresponding prediction results of the 3 input data. (B) A demonstration of the network model used  in the 
present study: The network contains 4 groups of input nodes (9 residues actually used), i, i+1, i+2, i+3, and 1 
output node, the result of which is either a “T” or a “N” assigned to all of the 4 predicted sites. The outputs are 
indicated by arrows using the same color of their corresponding inputs. Note that if a residue receives a “T” 
prediction from any of the input, it will be assigned as T (β-turn residue). 
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In this study, we proposed a new model to produce a training process in which the 

weights of each group of the nodes are adjusted to fit the preference patterns on each site 
of the β-turn and of the neighboring residues as well. As shown in Figure 1B, if the (i)th 
amino acid residue of the input window occurs, as in the case of the target (i.e. true 
answer), exactly on the 1st site of the β-turn, while the (i+1)th residue occurs on the 2nd 
site, and so on, the neural network will perform a positive training. When the input 
window shifts, e.g. the (i)th residue occurs on the 2nd site of the β-turn, and the (i+1)th 
residue on the 3rd site, and so on, the neural network will perform a negative training. As 
a result, each group of the nodes will be trained to fit the preference patterns on specific 
sites within and around the β-turn.  

Neural Network Architecture 

Besides the implementation to account for site-specific preference, our network 
architecture follows that of Kaur and Raghava [6]. Briefly, two serial feed-forward back-
propagation networks with a single hidden layer were used. The number of hidden nodes 
was optimized and the two networks used were a sequence-to-structure network in the 
first layer and a structure-to-structure network in the second layer. The first network had 
the input window containing information of 9 residues and 24 nodes in the single hidden 
layer (these numbers of residues and nodes produced best performance among several 
combinations tested). The input to the first network was a multiple alignment profile. The 
target output was a single continuous number, which was converted to a binary 
number — one for β-turn and zero for non-β-turn. The window was shifted residue by 
residue through the protein chain, yielding N patterns for a chain with N residues. The 
prediction results obtained from the first layer network along with the secondary 
structure prediction results from PSIPRED were used as input to the second layer. 
Specifically, besides the first layer output, each of the 9 residues of the 2nd network input 
window was given reliability indices of the three secondary structure states (helix, strand 
and coil). 

Results 

Statistics of Amino Acid Preference at Specific Sites of β-turn 

In this study, the occurrence probability of the 20 kinds of amino acids contained in the 
non-redundant dataset of 426 proteins on sites within and in the vicinity of a β-turn (sites 
i to i+3 corresponding to the 1st to 4th residue of the β-turn, and sites i-3 to i-1 and i+4 to 
i+6 corresponding to the three residues preceding and following the β-turn) and their 
occurrence probability in the whole dataset were calculated. The one-sample test for 
binomial proportion [13] was performed on the occurrence probability of the 20 kinds of 
amino acids on these sites. Table 1 shows the z-value results. In this table, a z value > 2 
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or < -2 indicates the occurrence frequency of a certain amino acid at a certain site is 
significantly higher or lower than its occurrence frequency in the dataset. The larger the 
absolute z-value, the more significant the difference is. As may be seen from Table 1, 
different sites, particularly the four sites of β-turn, have very different preference patterns 
for different kinds of amino acids. For example, both the 1st (i) and 2nd (i+1) site have a 
strong preference for proline, whereas the 3rd (i+2) site does not and in fact selects 
against it. In contrast, glycine appears to be significantly preferred at the3rd (i+2) and 4th 
(i+3) site, but not at the 2nd (i+1) site. There are many other notable preference patterns. 
Thus, the amino acid preference patterns on different specific sites indeed differ 
significantly. This provides a basis for the new neural network training strategy, which 
allows neural network to more precisely adjust the weights of each group of the input 
nodes to fit the preference patterns on the specific sites of β-turn in the training process. 
 
Table 1. z values of amino acid preference on the sites within (site i to i+3) and around a β-turn produced by 
one-sample test for binomial proportion. Those discussed in the text are highlighted.  

Residue\Site i-3 i-2 i-1 i i+1 i+2 i+3 i+4 i+5 i+6 

A -1.72 -4.05 -6.24 -5.31 -2.45 -12.78 -3.34 -7.63 -6.09 -2.10 

C 1.52 1.95 4.32 5.13 -4.20 -2.86 2.15 -1.05 2.49 3.21 

D -4.41 -3.09 4.50 14.30 5.20 21.81 -0.81 -0.67 -2.55 -4.03 

E -3.81 -2.94 -5.68 -5.40 5.43 -3.35 -4.70 -1.91 -1.75 -2.28 

F 3.26 3.30 2.50 -0.36 -5.68 -3.68 -1.69 -1.33 1.01 4.67 

G -0.93 0.70 -0.91 1.91 -0.56 35.21 18.80 -0.61 -2.12 -1.77 

H 0.29 3.25 2.24 2.11 -0.11 2.98 0.52 -0.73 0.69 0.50 

I 3.16 2.08 0.99 -7.39 -8.59 -12.67 -6.40 -4.13 2.38 2.51 

K -2.28 -1.51 -2.19 -3.98 6.81 -3.43 2.64 6.58 -0.20 -3.42 

L 2.29 -2.38 -1.06 -5.57 -10.80 -13.54 -6.34 -6.36 0.71 -0.89 

M -0.88 -0.09 -0.14 -2.69 -6.79 -6.45 -2.19 -3.12 -0.96 -2.52 

N -0.26 -1.80 1.49 9.12 2.36 24.72 1.13 2.28 -1.44 -2.11 

P -2.03 2.13 -0.57 12.78 33.19 -7.18 2.96 15.41 6.96 1.17 

Q -1.28 -2.16 -3.64 -4.87 -2.84 -3.33 -0.49 -1.43 -3.08 -2.84 

R -1.08 -1.21 1.15 -5.82 -0.57 -3.50 -0.45 1.89 -1.59 -2.72 

S -0.23 -1.02 -1.00 6.20 4.66 2.98 0.50 3.29 -1.32 0.10 

T 0.73 0.64 1.41 2.02 -2.40 -1.20 3.63 6.37 0.78 3.80 

V 4.18 4.73 1.92 -7.14 -8.63 -13.23 -4.91 -3.51 4.56 5.31 

W 1.32 1.57 3.26 -1.12 -1.80 -1.89 -0.64 -0.86 2.97 1.66 

Y 3.80 4.48 4.09 0.01 -4.25 -2.56 -1.31 -1.13 2.55 4.51 

No. of Res. 7042 7072 7101 7129 7129 7129 7129 7079 7040 7015 
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Prediction Using Multiple Sequence Alignment in the First Layer 

Our first-layer network was trained using input of multiple sequence alignment profiles 
generated from PSI-BLAST [12], as was done in the study of Kaur and Raghava [6]. The 
main difference is the new neural network model we used to fit site-specific amino acid 
preference, as described above. We performed a seven-fold cross validation, and the 
results, in comparison with those of BetaTPred2 (the current version of Kaur and 
Raghava’s program for predicting β-turn [6]), were presented in Table 2. As may be seen, 
our results were significantly better. Specifically, our network achieved an MCC value of 
0.402, which is significantly higher (p < 10e-8) than that (0.37) of the first layer network 
of BetaTPred2. The values of Qtotal and Qpredicted were also improved, though at the 
cost of slightly degraded Qobserved. These data indicate that the proportion of false 
positive prediction results has been significantly decreased with our model. In other 
words, the probability of correct prediction is significantly increased.  
 
Table 2. Comparisons of results from the first layer between this study and that of Kaur and Raghava 
(BetaPred2) [6]. SD: standard deviation.  

 BetaTPred2 [6] This study 

 Average SD Average SD 

MCC 0.37 0.01 0.402 0.01 
Qt 73.5 1.5 74.9 1.9 
Qp 47.2 1.9 53.2 2.4 
Qo 64.3 2.2 62.6 6.3 

 

Prediction Using First Layer Output Plus Secondary Structure Information in the 
Second Layer 

Again, following the procedures of Kaur and Raghava [6], our second layer was trained 
with the first layer output and the secondary structure prediction results from PSIPRED 
[10]. Cross-validation results shown in Table 3 yielded an MCC value of 0.443, which is 
just a bit higher than that (0.43) of BetaTPred2. Similar to the results of the first layer 
(Table 2), we improved on Qtotal and Qpredicted, but not Qobserved. 
 
Table 3. Comparisons of results from the second layer between this study and that of Kaur and Raghava 
(BetaPred2) [6]. SD: standard deviation. 

 BetaTPred2 [6] This study 

 Average SD Average SD 

MCC 0.43 0.01 0.443 0.01 
Qt 75.5 1.7 76.4 2.3 
Qp 49.8 2.0 55.6 3.5 
Qo 72.3 2.6 66.6 7.5 
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Discussion 

In this study, we have developed a new neural network model to account for site-specific 
amino acid preference for β-turn predictions. We showed that site-specific preference is 
statistically significant and when incorporated in the neural network training can improve 
the network performance. In fact, ignoring site-specific preference may be a source of 
errors for previous models such as that of Kaur and Raghava [6]. For example, as shown 
in Table 1, Cysteine frequently occurs but Lysine rarely occurs on the 1st site of β-turn (z 
values 5.13 and -3.98), whereas on the 2nd site, the occurrence preference for the two 
amino acids is reversed (z values -4.20 and 6.81). In the training process of previous 
models, the (i)th group of neurons must fit all of the amino acids preferred on four sites 
simultaneously. If the residue of the 1st site of β-turn is the input to the (i)th group of 
neurons, the neuron weight of Cysteine will be increased and that of Lysine will be 
decreased. However, if the residue of the 2nd site of β-turn is the input to the (i)th group 
of neurons, the neuron weights of Cysteine and Lysine will be adjusted in the opposite 
way. This extreme example indicates possible interference of training data subsets using 
previous models. As the weights of a particular group of neurons are not adjusted to fit 
the amino acid preference on specific sites, but are merely updated as a general pattern to 
fit most of the preference, the prediction power would be compromised. This is 
corroborated by the observation that our main improvement (for the first layer) was 
achieved by increasing the value of Qp (Table 2), or reducing the false positive rate.  
Additionally, because only one residue is predicted in each prediction process using the 
previous models, the prediction results of consecutive residues in a sequence taken 
together are likely to conflict with each other; with the site-specific model (Figure 1B), 
contradictory adjacent predictions are eliminated. 

The less-than-expected improvement by the second layer (MCC from 0.402 to 
0.443), as opposed to that (MCC from 0.37 to 0.43) of Kaur and Raghava’s model (Table 
3 vs. Table 2), revealed a possible role of the second layer in previous network models. 
Many secondary structure prediction methods use two serial neural networks for 
prediction, where even if the second layer network does not involve other data except for 
the initial prediction results from the first layer, significantly greater improvement from 
the first layer is still achieved [8, 14]. Our study suggests that the function of the second 
layer network in these models is likely to reconcile or filter the initially disaccord results, 
whereas in our site-specific model, this is already achieved to a large extent in the first 
layer.   

Tight turns are usually classified as coil in secondary structure assignment. 
However, its structural and functional significance is no less than that of α-helix or β-
sheet, and could play a prominent role in the prediction of tertiary structures. Indeed, 
despite that the accuracy of secondary structure prediction methods has exceeded 75% 
[14], that for terminals of α-helix and β-strand has not yet reached a satisfactory level. 
Accurate tight turn predictions could remedy this problem as they could complement 
nicely with existing secondary structure predictions. This study demonstrated the merit of 
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incorporating site-specific amino acid preference for β-turn prediction and provided 
insight into a deficiency of previous models. The same idea should be applicable to other 
structure-state predictions with beneficial results. 
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