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MiRNAs are short non-coding RNAs that regulate gene expression. While the first miRNAs were
discovered using experimental methods, experimental miRNA identification remains technically chal-
lenging and incomplete. This calls for the development of computational approaches to complement
experimental approaches to miRNA gene identification. We propose in this paper ade novo miRNA
precursor prediction method. This method follows the “feature generation, feature selection, and fea-
ture integration” paradigm of constructing recognition models for genomics sequences. We generate
and identified features based on information in both primarysequence and secondary structure, and use
these features to construct SVM-based models for the recognition of miRNA precursors. Experimental
results show that our method is effective, and can achieve good sensitivity and specificity.

1. Introduction

Traditionally, the “Central Dogma” has decreed that genetic information flows linearly
from DNA to RNA to protein, and never in reverse. The role of RNA in the cell has been
limited to its function as mRNA, tRNA, and rRNA. The discovery of a diverse array of
transcripts that are not translated to proteins but rather function as RNAs has changed this
view profoundly. Now, it is increasingly hard to have a comprehensive understanding of
cellular processes without considering functional RNAs. Efficient identification of func-
tional RNAs—non-coding RNAs (ncRNAs) as well as cis-actingelements—in genomic
sequences is, therefore, one of the major goals of current bioinformatics.

1.1. Background

MicroRNAs (miRNAs) are the smallest functional non-codingRNAs of animals and plants.
They have been called “the biological equivalent of dark matter, all around us but almost
escaping without detection.” The mature miRNAs are synthesized from a longer precursor
(pre-miRNA) forming a long hairpin structure that containsthe mature miRNA in either
of its arms. All reported mature miRNAs are between 17 and 29 nucleotides (nt) in length
and the majority of them are about 21-25 nt long and have been found in a wide range of
eukaryotes, from Arabidopsis thaliana and Caenorhabditiselegans to mouse and human.3

MicroRNAs play an important regulatory functions in eukaryotic gene expression through
mRNA degradation or translation inhibition. The regulatory functions of miRNAs range
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from cell proliferation, fat metabolism, neuronal patterning in nematodes, neurological dis-
eases, modulation of hematopoietic lineage differentiation in mammals, development, cell
death, cancer, and control of leaf and flower development in plants. An miRNA downreg-
ulates the translation of target mRNAs through base-pairing to these target mRNAs.16,1 In
animals, miRNAs tend to bind to the 3’ untranslated region (3’ UTR) of their target tran-
scripts to repress translation. The pairing between miRNAsand their target mRNAs usually
includes short bulges and/or mismatches. In contrast, in all known cases, plant miRNAs
bind to the protein-coding region of their target mRNAs withthree or fewer mismatches
and induce target mRNA degradation10 or repress mRNA translation.

1.2. Related Works

The experimental identification of miRNA is technically challenging and incomplete for
two reasons. First, miRNAs tend to have highly constrained tissue- and time-specific ex-
pression patterns. Second, degradation products from mRNAs and other endogenous non-
coding RNAs coexist with miRNAs and are sometimes dominant in small RNA molecule
samples extracted from cells.

MicroRNAs and their associated proteins appear to be one of the more abundant ribonu-
cleoprotein complexes in the cell. A single organism may have hundreds of distinct miR-
NAs, some of which are expressed in stage-, tissue- or cell type-specific patterns. Nonethe-
less, miRNAs whose expression is restricted to nonabundantcell types or specific environ-
mental conditions could still be missed in cloning efforts.Thus, computational methods
have been developed to complement experimental approachesto identify miRNA genes.

Many miRNAs have been predicted through various computational screens, such as
comparative genomics, that can detect entirely new RNA families.13,12 To date, over 1600
miRNAs have been identified in different organisms.6A variety of computational meth-
ods have been applied to several animal genomes, including Drosophila melanogaster, C.
elegans and humans.5,12,13 They use the following strategies:

(1) Homology searches for orthologs and paralogs of known miRNA genes. This strat-
egy exploits the observation that some miRNAs are conservedacross great evo-
lutionary distances which indicates that their sequence isnot arbitrary. Such se-
quence conservation in the mature miRNA and long hairpin structures in miRNA
precursors facilitates genome-wide computational searches for miRNAs.

(2) Searching for a genomic cluster15 in the vicinity of known miRNA genes. This
strategy is important because some of the most rapidly evolving miRNA genes are
present as tandem arrays within operon-like clusters, and the divergent sequences
of these genes make them relatively difficult to spot if general approaches are used.

(3) Gene-finding approaches that do not depend on homology orproximity to known
genes have also been developed and applied to entire genomes.5,13,12,19 They typ-
ically start by identifying conserved genomic segments that both fall outside of
predicted protein-coding regions and potentially could form stem loops and then
scoring these candidate miRNA stem loops for the patterns ofconservation and
pairing that characterize known miRNAs genes.
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MiRscan12,15 and SRNALoop5 have been systematically applied to nematode and ver-
tebrate candidates, and miRseeker13 has been systematically applied to insect candidates.
Wang et al.19 applied their method to plants. Dozens of new genes have beenidentified that
were subsequently (or concurrently) experimentally verified. Other methods like profile-
based detection of miRNA precursors11 have also been proposed. In addition, several
groups have developed computational methods to predict miRNA targets in Arabidopsis,
Drosophila and humans.

1.3. Paper Organization

Notwithstanding its progress,de novo prediction is still a largely unsolved issue. Here, we
follow the “feature generation, feature selection, feature integration” paradigm14 of con-
structing recognition models for genomic sequences to develop ade novo method based on
SVM for recognition of miRNA precursors. The paper is organized as follows: Section 2
details our methodology which includes the input data and feature generation. The data
generation and experimental results are presented in Section 3 to demonstrate the effective-
ness of our method and we conclude in Section 4.

2. Proposed Methodology

To predict new miRNAs by computational methods, we need to define sequence and struc-
ture properties that differentiate known miRNA sequences from random genomic sequence,
and use these properties as constraints to screen intergenic regions/whole genome (introns
excluding those protein encoding exons) in the target genome sequences for candidate
miRNAs. Unlike protein coding genes, ncRNAs lack in their primary sequence common
statistical signals that could be exploited for reliable detection algorithms. For miRNAs,
different methods need to be contrived.

2.1. Signals Used

Computational gene-finding for protein-coding genes in both prokaryotic and eukaryotic
genomes has been quite successful. These methods exploit genomic features such as long
open-reading-frames and codon signatures. Many signal sensors have been designed to de-
tect signals like splice sites, start and stop codons, branch points, promoters and terminators
of transcription, polyadenylation sites, ribosomal binding sites, topoisomerase II binding
sites, topoisomerase I cleavage sites, and various transcription factor binding sites and CpG
islands.

However, it is not so easy for noncoding RNA (ncRNA) genes like miRNA. Usually
only weakly-conserved promoter and terminator signals (and possibly other poorly known
transcription binding sites) are present in ncRNA genes.2 EST searches indicate that some
human and mouse miRNAs are co-transcribed along with their upstream and downstream
neighboring genes.17 A recent study shows that microRNA genes are transcribed by RNA
polymerase II.9 This leads us to exploit some possible signals that might exist in the up-
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stream and downstream of miRNA precursors. We distinguish the possible transcription of
miRNA into two categories:

(1) Co-transcribed miRNAs: miRNAs located in the introns ofannotated host genes.
For this case, miRNAs share the same±1000 up/downstream of the host genes.

(2) Independently transcribed miRNAs: These miRNAs are notfar away from the an-
notated genes. We further divide them into two categories: (a) clustered miRNAs:
we use the -1000 upstream of the first miRNA precursor in the cluster and the
+1000 downstream of the last miRNA precursor in the cluster;(b) non-clustered
miRNAs: we use the±1000 up/downstream of the miRNAs precursor.

For the secondary category, it is observed that a prominent characteristic of animal miRNAs
is that their genes are often organized in tandem, and are closely clustered on the genome.

Again the situation with miRNAs is more challenging. Far fewer miRNAs are available
in the databases. MicroRNA sequences can be compared only atthe nucleotide level—not
as translated amino acids and miRNA sequences are quite short. As noted previously, the
mature miRNA has only about 17-25nts and its precursor has about 100nts for animals.
Consequently, distinguishing weakly conserved genes fromrandom “hits” is more difficult
when searching for miRNAs than for protein-coding genes. Moreover, even in cases where
there are large RNA families, sequence conservation is often at the secondary-structure
level, i.e., what is conserved are base pairing rather than the individual base sequence.
Consequently, sequence alignment alone may fail to identify miRNAs that diverged too far
apart in their primary sequence while retaining their base-paired structure.

To capture the information of secondary structure, we first fold the miRNA precursor
using the Vienna RNA package RNAFold.8 Next, to facilitate data processing, we encode
the base-pairing by: A:U–“1”, C:G–“2”, G:C–“3”, G:U–“4”, U:A–“5”, U:G–“6”, Other-
“0”. An example cel-mir-1 miRNA precursor of C. elegans is shown in Figure 1. We
ignore the loop part and mismatch starting part because of their large variations and low
conservations.

>cel-mir-1 
aaagugaccguaccgagcugcauacuuccuuacaugcccauacuauaucauaaaug 
gauaUGGAAUGUAAAGAAGUAUGUAgaacggggugguagu 
 
 cut-off->                                                                                                       <-cut-off  
    aaagug         ua       ag                               c                  gc               -        au  
                accg  ccg     cu g c a u a  c u u c   u u a  c a u     c c a u a   cuau    c 
                 | | | |     | | |      |  |  |  |  |  |  |   |  |  |  |     |  |  |   |  |  |      |  |  |  |  |    | | | |       a 
                uggu    ggc  gAUGUAUGAAG   AAUGUA    GGU a u  ggua    u 
      ---uga        gg       aa                                A                 -A              a        aa  
 cut-off->                                                                                                       <-cut-off 
Encoding:12240022300 254 2 1 5 1 2 5 5 2 05 5 1 2 1 5 002 2 1 5 102615 

A:U--"1" 
C:G--"2" 
G:C--"3" 
G:U--"4" 
U:A--"5" 
U:G--"6" 
Other-"0" 

Figure 1. Encoding the secondary structure.

Figure 2 shows the conceptual view of one input sequence. Each input consists of four
components: upstream sequence, the primary sequence of miRNA precursor, the encoding
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sequence of the secondary structure of miRNA precursor, andthe downstream sequence.
Thus, the input contains the information of both primary sequence and secondary structure.

upstream(-1000)
miRNA precursor
primary sequence

miRNA precursor
secondary
structure encoding
sequence downstream(+1000)

 

Figure 2. A conceptual view of input sequence.

2.2. Feature Generation and Feature Selection

To enable machine learning algorithms to learn from known miRNA sequences, we need
to map the input sequence into a feature vector in the featurespace. In this work, we follow
the “feature generation, feature selection, feature integration”.14 In the “feature generation”
process, we exploit the widely used so-calledk-gram14 frequency in our feature mapping.

Let Σ denote an alphabet, whose length is|Σ| = L. Let X be a sequence of
letters from Σ. Given 1 ≤ k < L, a k-gram is a k-length contiguous subse-
quence. We define our feature map as an indexed vector by all possible subsequences
α of length-k from Σk. Formally, the feature mapΦk: X → R

Lk

is defined as:
Φk(X)=(φα(X))α∈Σk

whereφα(X) is the frequency count ofα that occurs inX .
For our input data, the upstream, the primary sequence of theprecursor and the down-

stream have the same alphabet
∑

={A, C, G, U}. Given k=6, each sequence is coded into
a vector with

∑6

k=1
4k = 1364 elements. The encoding sequence of the secondary struc-

ture of the precursor has an alphabet{1, 2, 3, 4, 5, 6}. We ignore the mismatch code “0”.
Let k = 5, the latter sequence is coded into a vector with

∑5

k=1
6k = 1554 elements.

Hence, an input sequence will be mapped into a feature vectorwhich will have a total of
3 ∗ 1364 + 1554 = 5646 elements. We use a suffix tree to accelerate the generation of
features. Each depth-k node of the suffix tree stores a count of the number of leaf nodes it
leads to.

The feature dimensionality is very large even for a small k. Most learning algorithms
suffer from the “curse of dimensionality”— these methods typically require an exponential
increase in the number of training samples with respect to anincrease in the dimensionality
of the samples in order to uncover and learn the relationshipof the various dimensions
to the nature of the samples. Hence, the selection of relevant informative features among
the large collection of candidate features is necessary formachine learning tasks faced
with high dimensional data. In the “feature selection” process, we use a correlation-based
feature selection method based on the concept of entropy.20
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2.3. Support Vector Machines

Support Vector Machines (SVMs) are a class of supervised learning algorithms first intro-
duced by Vapnik.18 Given a set of labelled training vectors (positive and negative input
examples), an SVM learns a linear decision boundary to discriminate between the two
classes. The result is a linear classification rule that can be used to classify new test exam-
ples. SVMs have exhibited excellent generalization performance (accuracy on test sets) in
practice and have strong theoretical motivation in statistical learning theory.

In our application, we integrate the features selected previously into a model for classi-
fying a candidate sequence as a miRNA precursor or as “other”. This “feature integration”
process is a typical application for SVMs.

3. Experiments: Classification of miRNA Precursors

In this section, we first describe how to generate the required data set for training and
testing. Then we show the prediction result of the trained SVM.

3.1. Data Generation

All miRNA genes and precursors (Version 6; April2005) are downloaded from the mi-
croRNA Registry6 which has 1650 precursors. Genome sequences for Caenorhabdi-
tis elegans and Caenorhabditis briggsae are available fromWormBase atftp://ftp.
wormbase.org. Drosophila melanogaster and Drosophila pseudoobscura genome re-
lease 4.1 are obtained from FlyBase atftp://flybase.net/genomes. Genomes
and the corresponding annotation files of Homo sapiens, Mus musculus, Rattus norvegi-
cus, and Gallus gallus are acquired from Ensembl athttp://www.ensembl.org/
Download/.

3.1.1. Generating Positive Examples

Animal miRNAs are often closely clustered together. We calltwo miRNAs on the same
strand as “adjacent” if the number of nucleotides between the end of one miRNA and the
start of the other is less than 1000 nts. If miRNAsmr1, mr2, ...,mrk satisfy(mri+1.start−
mri.end) < 1000nts fori = 1, ...,k−1, we say they form a miRNA cluster. The procedure
of generating positive examples is as follows:

(1) For each species considered, we merge the adjacent miRNAs in the same strand to
form clusters;

(2) According to the GFF annotations,
• For miRNAs located in the introns of CDS, we obtain the –1000 upstream

and +1000 downstream of the CDS, along with the miRNA precursor to form
one input sequence;

• For each independently transcribed miRNA, we extract the±1000 up-
stream/downstream of the miRNA or miRNA cluster, along withthe miRNA
precursor to form one input sequence;
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3.1.2. Generating Negative Examples

It is an inherently difficult problem in bioinformatics to get negative examples. However,
knowing that only a very very small fraction of non-annotated sequences correspond to
“coding” sequences for miRNAs, we can generate negative examples of miRNA genes
from inter-genic regions for learning. We make this assumption realizing that our negative
examples might be somewhat contaminated with currently unknown miRNA genes. Hence,
to alleviate the problem, we filter the negative examples in an iterative manner after making
the initial predictions, i.e., we remove strongly predicted genes and re-train in order to
purify our training examples.

Since all the miRNA precursors form a stem-loop secondary structure and each arm
of the stem may contain the miRNA, we also require these negative examples to be as
similar as possible to the true miRNA precursors. Otherwise, it will be trivial for the
learning algorithm to detect these fake outliers. Specifically, when generating the negative
examples, two conditions must be satisfied. First, they forma stem-loop. We use RNAfold8

for folding the selected sequence using the C-libraries of the Vienna RNA package version
1.4. Second, the matching part of the stem is at least 15 nt long (currently the smallest
miRNA is 17nt).

The procedure of generating negatives is as follows:

(1) With the help of GFF annotation file, we sort each CDS of thesame strand accord-
ing to its (start, end) position, and form the inter-genic regions;

(2) For each inter-genic region, we slide along the sequenceand use a normal distri-
bution N(µ, σ) to simulate the length of the precursor, where theµ, σ are esti-
mated from the known miRNA precursors of the species in question. For instance,
µ = 98, σ = 6.3 for C. elegans.

During the generation of a sequence for stem-loops of a certain length, we may find
two or more stem-loops on the same strand that has a large percentage of overlap. To avoid
excessive overlap, when sliding along the intergenic region, we make a hop of about 50 nt
by using a normal distributionN(50, 20) with a large variation.

3.2. Experimental Results

We obtain a binary classification SVM on training sets by using the support vector machine
library LIBSVM.4 The input data for the SVM are scaled to[−1, 1]. We choose a radial
basis function (RBF) kernel. All the experiments were performed in a PC with 1G RAM.

We present the results of three sets of experiments: training the SVM with one of three
species D. melanogaster (dme), C. briggsae (cbr), and Mus musculus (mmu) separately and
then use the resulting SVMs to predict other species. Due to memory restriction, we are
not able to include a large number of negatives in the training set for feature selection. In
the experiments, we only include 4000 negatives for featureselection.

Note that the choice of the negatives is an art since different combinations of negatives
can lead to different selected feature sets. Hence, we test different combinations and keep
those with good testing performance. For example, one data set may consists of 220 mmu
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Table 1. Characteristics of training data for feature selection.

species # of positives # of negatives # of features by CFS # of features by CBFS
mmu 220 4000mmu 177 72
dme 78 4000dme 95 55
cbr 82 2000cbr+2000cel 134 55

Table 2. Experimental Results

Trained species Test Species Sensitivity(TP/(TP+FN)%) Specificity(TN/(TN+FP)%)
dme(120dme150dps,39, 2,2

−1) dps 62/(62+10)=86% 39666/(39666+2996)=93%
cbr(80cbr0cel, 44, 32,2−9) cel 88/(88+27)=76.52% 76661/(76661+3418)=95.73%

mmu(600mmu150hsa, 62, 8,2
−3) rno 172/(172+13)=92.97% 77370/(77370+4842)=94.11%

mmu(0mmu350hsa, 62, 512,2
−7) hsa 258/(258+63)=80.37% 69792/(69792+6518)=91.46%

mmu(600mmu450hsa, 62,32,2
−3) gga 110/(110+12)=90.16% 75069/(75069+4338)=94.54%

mmu(600mmu450hsa, 62, 32,2
−3) ptr 57/(57+10)=85.08% 75203/(75203+3451)=95.61%

positives and 4000 mmu negatives; another data set may consists of 220 mmu positives,
2000 mmu negatives and 2000 hsa negatives. We also use the recursive feature selection
method, i.e., we first obtain a feature set from a data set and then form a new data set by
projecting the original data against this feature set. Thismethod can put more instances
into consideration. However, this method does not necessarily lead to better performance
since the feature selection in the first step may be biased. Inour experiments, we try
two feature selection methods: CFS7 and CBFS20 for each combination. In general, the
selected features are different for different data sets. The prominent property for all these
feature sets is that they primarily consist of features fromthe encoded secondary structure.
Some simple combinations of the negatives for feature selection are listed in Table 1.

Given one species, our purpose is to see if we can find a model topredict the miRNA
precursors of another species. For this reason, during the training stage, we only use the
positives of one species for training and hold out all the positives of the other species
for testing. However, we use some negatives of the target species randomly chosen by
assuming that most of the intergenic regions do not contain miRNA precursors. For the
first experiment, we use all the known positives (78) of D. melanogaster (dme) and 4000
negatives to perform feature selection using CBFS. Among the 55 selected features, we
choose the top 39 to train SVM models—we refer to it as dmeSVM.Among these models,
we choose the one with larger area under the ROC curve (AUC). In general, we can get
many models with equal AUC. Here, we report the model with 120dme negatives and 150
dps negatives which has a sensitivity of 86% and a specificityof 93%. We optimize the
parametersγ=0.5 andC=2. The prediction results of a species for its related species are
given in Table 2. In the first column, the selected model is presented asspecies(negative
data combination, number of features used, C value, γ value ).

To see the relationship between these miRNA precursorsT in the training set and the
miRNA precursorsP to be predicted in the testing set, we implemented a Needleman-
Wunsch-based similarity computing algorithm with match score = 1, mismatch= −1,
and gap penalty= 1, and the similarity is computed by the ratio of identities over
the whole alignment length denoted assim(s,P), where s ∈ T and sim(s,P) =
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Figure 3. Similarity Histograms against the mmu Positives.
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Figure 4. Similarity Histograms of hsa, gga and rno Positives against the mmu Positives.

max{sim(s, p) | p ∈ P}. By sampling the negatives with a rate1
20

and taking the whole
set of positives, we build the histograms of similarities tommu of both negatives and pos-
itives of species other than mmu (Fig. 3). For the histogram of negatives of all species vs
mmu positives (Fig. 3(a)), we know that the distribution is an approximate normal with
their center around56-58. This trend is also observed in the histogram of other positives of
remote species against mmu-positives Fig. 3(b) which centers around56-59. Only the later
has a little bit longer tail. We show the similarity histogram of its related species in Fig. 4.
The comparisons between other species are similar. For human(hsa), there are about 102
miRNA precursors with similarity around 53−62 %. Based on these observations, we can
see that SVM’s performance is not solely dependent on the primary sequence similarity in
some sense. This point is reflected in the selected features.

We also check some false positives by looking at their conservations in their related
species. We find that some false positives reach 88% identityin conservation. This indi-
cates that the false positive may be a true positive.

4. Conclusion

In this work, we have described a SVM-based method to predictmiRNA precursors. Based
on the current number of candidates generated, the method performs well for related
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species. Future research directions include examining theselected features for biologi-
cal explanations, investigate the performance for predicting unrelated species, and locating
mature miRNA in its precursor.
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