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The gene tree and species tree problem remains a central problem in phylogenomics. To overcome 
this problem, gene concatenation approaches have been used to combine a certain number of genes 
randomly from a set of widely distributed orthologous genes selected from genome data to conduct 
phylogenetic analysis. The random concatenation mechanism prevents us from the further 
investigations of the inner structures of the gene data set employed to infer the phylogenetic trees 
and locates the most phylogenetically informative genes. In this work, a phylogenomic mining 
approach is described to gain knowledge from a gene data set by clustering genes in the gene set 
through a self-organizing map (SOM) to explore the gene dataset inner structures. From this, the 
most phylogenetically informative gene set is created by picking the maximum entropy gene from 
each cluster to infer phylogenetic trees by phylogenetic analysis. Using the same data set, the 
phylogenetic mining approach performs better than the random gene concatenation approach.  

1 Introduction 

1.1. Gene tree and species tree problem 

The gene tree/species tree problem is still an important problem in phylogenomics. A 
gene tree is a phylogenetic hypothesis constructed from one gene; it may not represent 
the true evolutionary history of the species [1]. On the other hand, a species tree reflects 
the species evolutionary history correctly, but it is generally unknown to investigators for 
a group of organisms. Incongruence among species trees and gene trees simply means 
that gene trees are not isomorphic with species trees. The incongruence occurs due to 
possible biological or analytical reasons in the phylogenetic reconstruction. The 
biological reasons include paralogy, lineage sorting and horizontal gene transfer [1,2,3]. 
The analytic reasons can be the data sampling bias and fit of the mathematical models in 
the phylogenetic analysis [4,5,6]. Both of them can lead to the artifacts in phylogeny. 
There are many excellent models and approaches to address the gene tree and species 
tree problem from different point of view based on these factors [7,8]. 

There are two most recently proposed approaches to solve the species tree and gene 
tree problem. The first approach is to use complete genome data in the phylogenetic 
inference [9,10]. This approach removes the possible gene trees and species tree problem 
since all information is incorporated in the tree inference by comparing gene contents or 
gene orders [9,10,11].  Although it shows strong potential, such approach suffers from 
the primitive mathematical model and temporal data scarcity problem [11]. For example, 
the main algorithm employed in the gene-order based phylogenomic reconstruction is 
break-point analysis, a method to minimize the number of breakpoints between 



genomes, where a NP-hard problem has to be solved in the each iteration. The current 
genome data needed for genome based approaches are still far from abundant compared 
with general sequence data although more than 260 genomes already sequenced and 
thousands of genome sequencing is in progress [9]. Another approach is called gene 
concatenation [12]. Its main idea is to include more genes involved in gene tree 
reconstruction by randomly combining a set of widely distributed orthologous genes 
selected from genome data. Rokas et.al. [12] randomly concatenated genes from a set of 
selected 106 widely distributed orthologous genes for seven Saccharomyces species (S. 
cerevisiae, S. paradoxus, S. mikatae, S. kudriavavzevii, S. bayanus, S. castellii, S. 
kluyveri) and an outgroup Candida albicans in their experiment. They showed that the 
phylogenetic analysis results from maximum parsimony (MP) and maximum likelihood 
(ML) of the DNA and corresponding protein sequences were the species tree for at least 
twenty (an experimental number) gene combinations. The random gene combination 
strategy gives no consideration of gene functionality in the phylogeny. Such a random 
concatenation strategy may bring noise signals into the phylogenies because the 106 
selected genes may not be a sampling bias free data set and different genes may have 
different evolution history. It is possible that the noise signals play negative roles in the 
phylogeny. The experimental gene concatenation number in phylogenetic inference has 
to be reobtained for different data sets each time through large scale simulations. 
Furthermore, there is little knowledge known about the genes involved in the 
phylogenetic reconstruction except the basic orthology. The ad-hoc strategy of the 
random concatenation method inhibits biologists from resolving the species tree and 
gene tree problem robustly in the phylogenomic era. 

1.2. Gene concatenation under Bayesian analysis  

We define terminology “gene convergence” and “tree posterior probability” in our 
phylogemomic analysis. A gene is defined as a convenegent gene or a “good” gene if its 
gene tree is the species tree under a phylogenetic reconstruction model . Otherwise the 
gene is called a nonconvergent gene or a “bad gene”. In the 106 gene set used by 
Rokas et. al.(we also use the same gene set), there are 45 convergent genes and 61 
nonconvergent genes under a Bayesian analysis with the GTR+Γ model [13, 14]; The 
tree posterior probability for a evolutionary tree inferred from Bayesian analysis 

 is defined as the multiplication of all posterior probabilities of its inferred 

branches, where the is the posterior probability in the  inferred branch and  is 

the set of all inferred branches (the corresponding branches related to the outgroup taxon 
are excluded). 
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We conduct a random gene concatenation under Bayesian analysis as follows.  We 
randomly concatenate the genes according to three cases: good gene concatenation, bad 
gene combination and random gene combination for total gene set. For each gene 
combination case, we generate 10 random data sets for Bayesian analysis under the 
GTR+Γ model and compute the expected tree posterior for the ten trials. We found that 
simulation results were congruent with the results from those of Rokas et. al’s. although 



 

different phylogenetic analysis methods were employed. With the increase of the number 
of genes in the concatenation, we observe that the tree average posterior probability 
increases for each combination case (Figure 1). The final evolution tree inferred by 
Bayesian analysis is the species tree with maximum support (Figure 2). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Random gene concatenation under Bayesian analysis. 

 
   
  
 

 
 
 
Figure 2. The species tree inferred by Bayesian analysis with the maximum support. 

However, the performance from three types of combinations is quite different. To 
reach the best expected tree posterior probability, it requires at least 4 genes in the good 
gene combination case, at least 14 genes in the random gene combination case and at 
least 28 genes in the bad gene combination case, which is “the worst case” in this random 
gene combination method.  In “the worst gene” combination case, there are still generally 
at least 10% gene combination sets whose gene trees are not the species tree if the gene 
combination sets have less than 28 genes. After computing the phylogenetic tree 
posterior probability standard deviations of gene combinations under bootstrap with 1000 
bootstrap samples, we found that the bad gene combination had highest level oscillations 
and the good gene combination had lowest level oscillations in the plots of tree posterior 
probability standard deviations.   

Actually, biologists don not know which genes are good or bad before knowing the 
species trees for a set of organisms. Thus, the worst gene combination case is 
unavoidable in the ad-hoc gene combination approach because investigators are not only 
blind to the inner structure of the gene set but also have little knowledge about which 
genes are more phylogenetically informative, not to mention the possible situation where 



noisy data in the phylogenetic inference increase after gene combination. 

1.3. Overview of the methods and results 

In this paper, we develop a robust phylogenomic mining approach to address the gene 
tree/species tree problem. Self-organizing map (SOM) mining is employed to acquire 
knowledge from the gene set using same data set as Rokas et al. [12] before the 
phylogenetic analysis starts. The genes in the gene set  are clustered into different sets 
according to their gene prototypes obtained from SOM mining. Then the maximum 
entropy gene from each cluster is selected to create a core gene set . A phylogenetic 
tree will be inferred based on the core gene set. Our experimental results show the 
phylogenetic analysis (Maximum likelihood, Bayesian analysis) based on  always 
infers the desired species tree robustly. Compared with previous approaches, our 
phylogenomic mining approach can overcome the incongruence between the species tree 
and gene tree systematically. To our knowledge, this is the first work to integrate SOM 
mining and entropy theory in phylogenomics.  
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The paper is organized as follows. In the next section, we describe the basic idea of 
the phylogenomic mining. The third section describes the detailed phylogenomic mining 
method and related results. The fourth section presents gene entropy theory and its 
applications in phylogenetic inference. In addition to exploring the phylogenetic 
properties of the maximum entropy genes by Shimodaira-Hasegawa test, the Bayesian 
analysis is conducted to the core gene set created by picking maximum entropy genes 
from each gene cluster. The Bayesian phylogenetic analysis results are also compared 
with the random and good gene concatenation cases. Finally, we discuss our results and 
directions for future work. 

2 Phylogenomic Mining: Knowledge Discovery from a Gene Set by Self-
Organizing Map (SOM) Learning 

The random gene concatenation method treats all genes uniformly in the phylogeny. The 
basic idea of the phylogenomic mining is to gain some knowledge from a gene set G  by 
some unsupervised data mining algorithms before phylogenetic tree reconstruction. The 
gene set consists of aligned orthologous genes in our data set (the gene set actually can 
be rather huge, for example, a set of genomes.) The knowledge learning from gene 
set is clustering genes in the gene set to gain insight into the possible structures of the 
gene set , to identify some outliers, and to find possible phylogenetically informative 
genes. These phylogenetically informative genes may contain more evolutionary 
information based on a gene entropy measure; if so, they will be selected to create a core 
gene set . The final phylogenetic tree will be reconstructed from the gene set 
carrying the most phylogenetic information. We will demonstrate that the final 
evolutionary tree from this selected set converges to the species tree with maximum 
support. 
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It is highly discouraged to cluster genes directly since different genes have different 
lengths. To cluster genes directly, Genes have to be encoded into uniform column 



 

vectors. That is, zeros have to be filled into the encoded vectors for the short genes. The 
filled zeros will act as “missing data” in the clustering and it is not advisable to do 
clustering under such a condition [15]. Thus, we suggest an alternative way to cluster 
genes.  The core idea of the phylogenomic mining is to cluster the prototypes of genes 
rather than genes themselves directly. 

The prototype of a gene is a small dataset containing representative features of 
genes, compared with a gene (generally a high dimensional dataset). For example, the 
probability mass function of a gene nxxxx ...21=  on the space can be a gene 
prototype. Self-organizing map (SOM) is a traditional data mining approach and vector 
quantization model to map a high dimensional data set

2R

D to its representative 
prototype : . It takes competitive unsupervised learning (self-
organization) to partition original data space into a set of corresponding representative 
prototypes. With the assumption of no prior knowledge about the data to be mined, the 
unsupervised learning in SOM is a process of feature extraction and data dimension 
reduction. SOM mining is widely used in gene expression data processing, vector 
quantization, visualization and commercial database mining [15,16,17].  

2RW ∈ 2: RWDSOM ∈→

3 The Phylogenomic Mining Method in Detail 

The phylogenomic mining method to resolve the gene tree and species tree problem 
mainly consists of the following six steps: 1.Encoding the gene set G into a digital matrix 
D; 2. Conducting SOM mining for the data set D; 3.Computing the gene distribution on 
SOM plane P for each gene; 4.Clustering gene hierarchically; 5.Selecting maximum 
entropy genes from each cluster to build a core gene set; 6.Conducting phylogenetic 
analysis for the core gene set to infer gene trees.   

The first step is to encode an input character matrix to its corresponding digital 
matrix D before phylogenomic mining.  In our analysis, the input character matrix (the 
transposition of the general character matrix) is a 127026×8 matrix which consists of 106 
genes of the eight yeast species: Scer, Spar, Smik, Skud, Sbay, Scas, Sklu, Calb. Each 
column represents a taxon, each row represents a site and a gene crosses certain number 
of rows according to its length. The four orthogonal bases are used to encode ‘A’, ‘T’,’ 
C’, ‘G’ respectively:  A=(1,0,0,0)´,  T=(0,1,0,0)´, C=(0,0,1,0)´, G=(0,0,0,1)´. Missing 
nucleotides and gaps are encoded as a vector with four zeros entries.  The input character 
matrix is encoded as a 508104×8 digit matrix D after such encoding processing. 

The digit matrix D is then sent to a self-organization map (SOM) for mining in the 
second step. The SOM takes an input/output plane with 20×20 neurons and employs 
sequence learning algorithm. The reference vectors are initialized by the principal 
component analysis. The neighborhood kernel function used is a Gaussian function. The 
prototypes of species, which are also called the species patterns, can be obtained 
immediately after the SOM mining. It is just the final reference vector matrix W. The 
iteration process is time consuming since the complexity of each training epoch 
is where the sample number)(nmkO 508104=n , species number 8=m  and the number of 
neurons . In our analysis, the SOM mining takes more than 8 hours time to get the 
species prototype after more than 2000 epochs in a Pentium 4 with a 2.1 GHz CPU. 
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The third step in our method is to compute the prototypes of genes which are the 
gene distributions on the SOM plane. The gene prototypes are represented in a matrix 

in our computing, where l is the number of genes involved in the mining 
( ) and is the number of neurons on the SOM plane

)(1 klW ×

106=l k P . 
For a multi-species gene n , its probability mass function on the SOM 

plane
xxxx ...21=

P is its prototype  after SOM mining, where k is the number of 
neurons on the SOM plane. The prototype of a gene is a set of representative features 
extracted from the dataset

kyyyy ...21=

x . It will follow the statistical property of the gene x and can 
be considered as an approximation to the original probability mass function [18]. )(xp

The gene distribution on the SOM plane P can be computed as follows. For a gene 
sample  (a site/character), there exists a best match unit ix ),...2,1( kjj =  whose reference 
vector is most similar to  in the Euclidean distance measure.  Then for each neuronix j on 
the SOM plane, there exist a sample set },...,{

21 jiiij xxxs = , each of its entry acknowledges 
the neuron as its best match unit (BMU). That is, j

                            },...2,1,||||minarg|{ nijwxxs iij ==−=                                            (1) 

The size of  :  stands for the number of gene samples of the gene js jj hs =|| x which 
are closest to the reference vector in the neuron j in the Euclidean distance; that is, there 
are  gene samples hitting the map unit on the SOM plane. So for each gene jh thj x in 
the gene set G , there exists a corresponding hit number sequence kx hhhh ...21=  recording 
the projection of the gene on the SOM plane P .   

Thus, the prototype of the gene x  is a sequence of hit rate: kyyyy ...21= , where is 
the hit rate of the gene

iy
x on the neuron on thi P : . The gene distribution on 

the SOM plane 
∑ == k

j ji hihy 1/
P  extracts the representative features from each gene in a uniform format 

by tracing the projection of each gene on the SOM plane P . Compared with the raw 
genes, the prototypes of genes are more representative and make gene features and 
patterns comparable and visualizable. The gene clustering based on the prototypes can 
help us identify the clusters of genes sharing same features which are biological 
meaningful. From the visualizations of gene distributions on SOM plane (data not 
shown), we find that the distributions show interesting patterns: the genes with similar 
gene distributions are clustered close together on the SOM plane. This is actually the 
characteristic of the SOM learning, that is, data closer to each other in the high 
dimensional space are mapped to the neurons in close to each other topologically [18].                                               2R

The fourth step in our phylogenomic mining clusters genes hierarchically based on 
the prototypes of genes. Although SOM itself is a fuzzy clustering algorithm, where 
similar data samples are mapped in the neighborhoods of BMUs, the data prototype still 
needs to use hierarchical or partitive clustering to explore the global similarity in the data 
set [19]. The gene clustering is conducted through the hierarchically clustering the 
prototypes of genes into natural grouped clusters in our analysis. The natural division of 
the prototypes is achieved by specifying the inconsistency coefficiency or cutoff number 
obtained by computing U-matrix for prototype vectors [19]. In our experiment, the 106 
orthologous genes from eight species are clustered as 18 naturally grouped clusters. Gene 



 

clustering helps us to discriminate between the genes before phylogenetic analysis to 
overcome the “blindness” in the phylogeny reconstruction where no consideration is 
given to relationships between genes. It is interesting to see that each cluster shares 
similar phylogenetic properties in addition to the fact that they have similar gene 
distributions on the SOM plane. For example, all genes in cluster 4, 5, 12, 15, 18 are 
nonconvergent (“bad”) genes.  

4 Exploring Phylogenetically Informative Genes by Gene Entropy  

After the gene clustering is completed, a core gene set  will be built by selecting 
phylogenetically informative (“important”) genes from each cluster before the 
phylogenetic analysis to infer the final tree. But which genes are phylogenetically 
informative genes in a cluster and how do we identify them? The initial thought is to 
employ principal component analysis. But it cannot return to the original gene space 
since the final data we need are symbolic data in the phylogenomic reconstruction.  Thus, 
another method has to be found to measure the utility of genes in phylogenetic 
reconstruction.  Recalling that a gene can be a set of patterns generated from an alphabet 
set , we borrow entropy from information theory to measure the 
phylogenetic informative potentials of a multiple species gene. The informative genes 
will selected from each cluster according to gene entropy values to build a core gene set 
for further phylogenetic analysis.   

coreG
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We give the definition of gene entropy as follows. For a gene nxxxx ...21=  (which is 
a character matrix, a set of aligned sequences; each character  is a column in the 
character matrix), the gene entropy is defined as 
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The gene entropy is equivalent to the block entropy definition in DNA entropy if the 
character matrix is converted to a corresponding one dimensional sequence and the block 
length is the length of a site. Although the entropy estimate can be conducted by block 
entropy estimate approaches theoretically, the estimate may not be satisfied since the 
block length is generally assumed a large number [20]. Since the gene distribution on the 
SOM plane is the frequency distribution on the SOM based on for each site, such gene 
prototype is perfectly fitted to estimate the gene entropy, where the gene probability 
mass function on the SOM plane is the distribution of each site in the gene set. 

We predict that a gene with large entropy value will contain more phylogenetic 
information. Thus, a higher entropy gene is highly likely to be a phylogenetically 
informative gene, for example, a “good” gene (a gene whose gene tree is nearest to the 
species tree). To verify such hypothesis, we conduct the Shimodaira-Hasegawa test (SH 
test) [21] to compute the delta log likelihood and associative p-value for each gene tree 
with respect to the species tree after ML analysis for each gene. The SH-test is conducted 
under the GTR+Γ model with reestimated log likelihoods (RELL) approximation for 21 
tree topologies for each gene. From the SH-test results, we can see 8/10 genes in the high 
entropy zone (HEZ) are convergent, (where gene entropy is not less than the sum of 
mean and standard derivation of all gene entropy in the gene set ). On the other hand, G



there are 10/12 genes in the low entropy zone (LEZ) that are nonconvergent genes, (LEZ 
is a set of genes whose gene entropy is not greater than the difference of mean and 
standard derivation of all gene entropy in the gene set ). There are 31 genes among the 
45 convergent genes in the 106 gene set that have entropy greater than the average 
entropy of the gene set. In sum, higher entropy genes are more likely to be “good” genes 
in phylogenetic reconstruction. 

G

4.1 Maximum entropy gene concatenation 
It is reasonable to combine maximum entropy genes from each cluster into a core gene 
set and conduct phylogenetic analysis for this core gene set, because a high entropy gene 
appears to be more likely to be phylogenetically informative. A maximum entropy gene 
is the “local maximum” gene whose entropy is the maximum for all genes in a particular 
cluster instead of among the total gene set. Compared with the general random gene 
concatenation, this phylogenomic mining based approach may be more systematic and 
robust to resolve the incongruence in the phylogeny because gene combinations are done 
based on an information measure after phylogenomic mining. There is no experimental 
gene number computing needed if this new approach is applied to different data set. On 
the other hand, maximum entropy gene selection from each cluster can remove potential 
“noise” signals contained in the non-convergent genes, which appear from our analyses, 
more likely to include low entropy genes. Furthermore, maximum entropy gene 
concatenation based on clustering prevents from the “data bias” problem if the total gene 
set obtained has over-representation of one or several types of genes due to data 
acquisition issues. This property may ameliorate over-support for some branches in the 
final consensus tree. 

We conduct following three experiments to build a core gene set by selecting 
maximum entropy genes to infer phylogenetic trees. In experiment 1, we build the core 
gene set by selecting a maximum entropy gene from each cluster among 18 
clusters. The core gene set consists of following 18 maximum entropy genes selected 
from available gene clusters: {YIL125W, YNL220W, YOL049W, YNL082W YDL195W, YPL169C, 
YDL116W, YJL085W, YDL126C, YMR186W, YOR158W,YPL210C, YJL087C, YNR008W, YLR253W, YIL109C, 
YFR044C, YGR285C}. The mean entropy of the core gene set is 5.2325 bits. The gene tree 
inferred from the Bayesian analysis under GTR+Γ model is the species tree where the 
posterior probability of 1.0 is on each inferred branch (Figure 2). 

coreG

In experiment 2, we can further cluster the total gene set G into an arbitrary number 
of clusters and pick the maximum entropy genes from each cluster. This approach 
answers the query: suppose the gene set is clustered as clusters, which genes are 
the most informative to build a robust phylogenentic tree?  If we treat the whole gene set 
as a cluster (i.e. no clustering work), the maximum entropy gene 18 (YDL126C) will be the 
only gene in the core gene set. The corresponding tree probability  for gene 18 is 1.0 
after Bayesian analysis. Similarly, the core gene set consists of maximum entropy 
gene selected from clusters if the total gene set is clustered into sets. We test all 
cases for from 1 to 14, the corresponding tree posterior probability for each case is 
1.0 after Bayesian analysis. Such striking results suggest that our approach can be useful 
to infer the species tree systematically and robustly. However, such maximum entropy 
gene selection depends on the gene clustering. Randomly selecting several higher 
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entropy genes may not produce good results because more genes selected from a same 
cluster will make the sampling bias occurrence which may give “over support” for 
specific branch patterns. 

In experiment 3, we compare phylogentically informative gene (maximum entropy 
gene selection from each cluster) concatenation under phylogenomic mining with 
random and good gene concatenations. Just as before, for each gene combination case, 
we generate 10 random data sets for Bayesian analysis under the GTR+Γ model and 
compute the expected tree posterior for the ten trials. We found our approach 
performance is even better than the good gene combination performance from the 
phylogenetic tree expected posterior probability analysis (Figure 3). Considering the 
species tree is actually unknown to investigators, we suggest that our method can provide 
a systematic solution to the gene tree and species tree problem. Moreover, it is well 
suitable to identify potential phylogenetically informative genes by phylogenomic mining 
in large genome databases.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 3. Comparing the performance of random and good gene concatenation cases with phylogenetically 
informative gene concatenation approaches. 

5 Discussion and Future Work 

In this paper, we provide a novel analytical solution to resolving the gene tree and 
species tree problem from phylogenomic mining point of view. Our results show that this 
approach is more robust than an ad-hoc gene concatenation approach. If generalizable, 
we also plan to take advantage of the powerful feature extract capability of SOM mining 
and entropy theory to address paralogy and orthology detection problem. The detection 
of paralogy and orthology is a key problem in phylogenomics but still in its naïve stage 
[3,6]. We expect the detection of the paralogous and orthologous genes can be conducted 
in their corresponding feature spaces and by means of entropy estimations. We are also 
interested in integrating our phylogenomic mining approach to the Bayesian analysis to 
explore more powerful tree reconstruction algorithms. 
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