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Protein nuclear magnetic resonance (NMR) chemical shifts are among the most accurately measurable
spectroscopic parameters and are closely correlated to protein structure because of their dependence
on the local electronic environment. The precise nature of this correlation remains largely unknown.
Accurate prediction of chemical shifts from existing structures’ atomic co-ordinates will permit close
study of this relationship. This paper presents a novel non-linear regression based approach to chemical
shift prediction from protein structure. The regression model employed combines quantum, classical
and empirical variables and provides statistically significant improved prediction accuracy over exist-
ing chemical shift predictors, across protein backbone atom types. The results presented here were
obtained using the Random Forest regression algorithm on a protein entry data set derived from the
RefDB re-referenced chemical shift database.

1. Introduction

Any nucleus with spinI = 1/2, when placed in an external magnetic field, will exhibit
two spin states with an energy differential directly proportional to the strength of the ap-
plied magnetic field. Each nucleus, however, is influenced bythe electrons in its vicinity
and therefore the effective magnetic field at the nucleus is attenuated depending upon this
electronic environment. Thechemical shift (δ) is a measure of the electronic shielding that
leads to this magnetic field attenuation, and therefore provides an accurate description of
the local electronic environment. Thus, chemical shifts are among the most fundamental of
nuclear magnetic resonance (NMR) spectral parameters. Chemical shifts are also among
the most accurately measurable quantities in NMR spectroscopy (accuracy up to one part
in a billion).

Given these properties of the chemical shift, there has longbeen an interest in un-
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derstanding the nature of the relationship between molecular structure and shift, and ap-
plying said knowledge to infer additional structural information about the molecule under
study. Protein molecules too give rise to NMR spectra in an applied magnetic field in a
fashion intricately dependent on their three dimensional structures. The electronic envi-
ronment around nuclei in the case of proteins is influenced byfactors such as neighbor
anisotropy, ring current anisotropy, hydrogen bond effects, and through-space electric field
effects among others. A graphical representation of the chemical shift measurements from
a standard protein NMR experiment (1H/15N HSQC) is depicted in Fig. 1. The center of
each of the peaks observed in this two-dimensional plot represents two chemical shifts, the
1H and15N shifts. The axes of the spectrum are in parts per million (ppm), the standard
unit for chemical shifts.

Figure 1: Two-dimensional1H/15N Heteronuclear Single-Quantum Coherence (HSQC)
NMR spectra of anE. coli DNA glycosylase, Fpg. (fromhttp://www.emsl.pnl.
gov/homes/msd/bionmr/Buchko Fpg poster/Fpg.htm)

Knowledge of the chemical shift and insight into the structure-shift relationship is use-
ful in many contexts. The most obvious application is resonance assignment in the context
of an protein NMR experiment where a model of the target protein’s structure is avail-
able [10] (either via independent X-ray crystallography experiments or comparative mod-
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eling). Predicted shifts may also be used to refine existing structural models. There have
also been efforts to infer low-resolution structure modelsgiven just the experimental chem-
ical shifts. Examples include techniques for secondary structure prediction [16, 18], back-
bone torsion angle prediction [5], fold recognition [11, 13, 20], protein-protein docking [7]
and modeling ligand interactions [15]. Predicted shifts, subject to their having acceptable
accuracy, may be similarly employed.

Existing approaches to chemical shift prediction from protein structure apply quantum
mechanical, classical and/or empirical methods to the atomic co-ordinate data. Examples
of such algorithms includeSHIFTS [19], SHIFTX [14] andPROSHIFT[12]. SHIFTS takes a
quantum mechanical approach and employs a pre-calculated database of tri-peptide shifts
(via density functional theory), whileSHIFTX uses a hybrid empirical/semi-classical ap-
proach involving pre-calculated chemical shift hypersurfaces and equations for ring cur-
rent, electric field, hydrogen bonding and solvent effects.PROSHIFTuses a neural network
trained on≈ 69,000 experimentally determined chemical shifts. Each ofthese shift pre-
diction approaches has unique limitations either in terms of the size and composition of
the training and/or test data sets, or due to the general tendency for learning methods such
as neural networks to over-fit training data. We hypothesized that a better chemical shift
predictor could be built by layering an ensemble machine learning algorithm (Random
Forests [4]) capable of non-linear regression on top of these existing predictors in addition
to expanding the feature set by taking into account numerousempirical structural features
such as solvent accessibility, secondary structure and model quality. This paper presents
the results of such an exercise.

In brief, the non-linear regression approach to chemical shift prediction employing the
ensemble machine learning Random Forest algorithm outperformed each of the underlying
shift prediction programs (viz. SHIFTS, SHIFTX, PROSHIFT) across all six backbone atom
types. These improvements in prediction accuracies were measured in terms of root mean
squared error from experimentally recorded shifts and in the case of the Random Forest al-
gorithm, they ranged between 3% to∼18% when compared to the best performer amongst
the aforementioned prediction programs. The decrease in error observed was proven to
be statistically significant by comparing the distributionof errors using a standardt-test.
Across all atom types,p-values� 0.001 were observed.

2. Systems and methods

2.1. Data assembly

Building a structure-based chemical shift prediction method requires a dataset of protein
chains with experimentally recorded chemical shifts matched to structures solved by NMR
or X-ray crystallography. The principal community repositories of chemical shift and struc-
tural (atomic co-ordinate) data are the BioMagResBank (BMRB) [3] and the Protein Data
Bank (PDB) [1] respectively. However, it has been demonstrated that significant chemical
shift referencing errors exist for a substantial portion ofthe BMRB data. Hence, the dataset
used in this project is drawn from the RefDB [21] database - a carefully re-referenced set of
chemical shifts derived originally from the BMRB. The RefDBalso provides a sequence-
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based mapping to PDB entries for each set of re-referenced shifts. The sub-set of the RefDB
entries selected was free of complexes and mapped to 454 PDB entries.

Metadata and structural information from each of the 454 PDBentries were extracted
and each entry was split up into its constituent fragments. In this context, a fragment is de-
fined as a single contiguous polypeptide chain present as part of a potentially larger protein
structure with multiple such chains. These fragments were then processed through each of
the three chemical shift predictors —PROSHIFT, SHIFTS andSHIFTX. STRIDE [8] sec-
ondary structural information was obtained for each fragment from the S2C [17] database.
Additionally, a per-residue solvent exposure term was calculated using the half-sphere ex-
posureHSE−β [9] measure. All structural information and predicted shifts partitioned by
protein backbone atom type were stored in a relational database using appropriate schema.

A mapping between the residues in a PDB fragment and those in aRefDB entry with
experimental shifts is required to be able to compare the predicted shifts with experimental
shifts. Alignments between the corresponding residue sequences were generated using a
simple pairwise dynamic programming alignment algorithm provided by Biopython [2].

2.2. Feature extraction

Chemical shifts can be predicted from structural models in three ways: using quantum
mechanics, classical mechanics, and empirical models. A purely quantum approach is
theoretically possible but, in the case of most macromolecules the size of typical protein
structures, computationally infeasible. Thus, most protein chemical shift prediction meth-
ods employ hybrid techniques, combining quantum, classical and empirical approaches in
various ways. Examples of such algorithms includeSHIFTS(combines quantum and empir-
ical methods),SHIFTX (combines classical and empirical methods) andPROSHIFT(maps
a variety of empirically-determined structural features to chemical shifts using neural net-
works). Our approach employs each of these individual predictors’ final predicted shifts
as input to a non-linear regression algorithm. Also, the per-residue quantum mechanical
contributions calculated bySHIFTSvia density functional analysis of tri-peptides are inde-
pendently included in the feature array. Additionally, thesecondary structural assignments
and solvent exposure information obtained in the manner described earlier are incorporated
on a per-residue basis. Tables 1 and 2 enumerate the specific features employed in predict-
ing backbone heavy atom and proton shifts respectively. Fig. 2 is a flowchart depicting the
assembly of data and feature extraction described herein.

2.3. Regression using Random Forests

The proposed regression model has the form :

δi = f(~xi) (1)

whereδi is the estimated chemical shift for theith nucleus,f(·) is a non-linear regression
function and~xi is a vector whose components encode the variables of the regression model.
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Table 1: Feature set employed in regression for protein backbone heavy atoms

Feature Description
aa Amino acid residue
sec str STRIDE secondary structure
solv exp Half-sphere solvent exposure (HSE − β) terms
qφ,ψi−1 Contribution from preceding residue’s backbone torsion angles
qφ,ψi Contribution from target residue’s backbone torsion angles
qφ,ψi+1

Contribution from succeeding residue’s backbone torsion angles
qχi−1

Contribution from preceding residue’s type andχ1 torsion angle
qχi Contribution from target residue’s type andχ1 torsion angle
eHB Hydrogen bond contributions
rand coil Random coil reference shift value
pred shifts Predicted shifts fromSHIFTS, SHIFTX andPROSHIFT

Table 2: Feature set employed in regression for protein backbone protons

Feature Description
aa Amino acid residue
sec str STRIDE secondary structure
solv exp Half-sphere solvent exposure (HSE − β) terms
eRC Ring current contributions from neighboring aromatic rings
eE Electrostatic contributions from nearby point charges
ePA Peptide group anisotropy
rand coil Random coil reference shift value
pred shifts Predicted shifts fromSHIFTS, SHIFTXandPROSHIFT

These variables correspond to computable properties in each nucleus’ environment and are
essentially the features described in the section above. The algorithm selected for imple-
menting the regression function in this set of experiments is Random Forest regression [4].

A Random Forest is an ensemble of decision trees constructedusing bagging (i.e., ran-
dom instance selection) and random feature selection. Predictions are made by averaging
(or voting, in the context of classification) over the predictions made by each tree. The ben-
efits of ensemble methods in machine learning has been studied extensively [6]. Briefly,
an ensemble predictor will be more accurate than any of its individual members when the
individual predictors are accurate and diverse. Two predictors are diverse if their errors
are uncorrelated. Random Forests ensure diversity throughrandom instance and feature
selection. The benefits of ensemble predictions can be understood intuitively in terms of
the likelihood that two or more trees will make the same incorrect prediction. Letpi be
the probability that theith tree makes an error. If the trees errors are uncorrelated (i.e.,
independent), then the probability thatk trees make the same error is bounded by

∏k
i pi.
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Breiman has analyzed the properties of Random Forests extensively [4]. Of note is
that the generalization error, that is the error on novel instances, converges to a limit as
the number of trees grows. In contrast, algorithms such as neural networks have no such
guarantee. Additionally, the randomization scheme guardsagainst noise.

In the experiments described, Random Forests were trained for each nucleus type on
the given set of features and the accuracy of the final predicted shifts was estimated using
10-fold cross-validation. Chemical shift prediction accuracies are reported for the Hα, HN,
15N, 13Cα, 13Cβand13C′ backbone atom types in terms of root mean squared error (RMSE)
from the experimental value. These RMSE values are comparedto similar values obtained
for the three component chemical shift predictors,PROSHIFT, SHIFTS, andSHIFTX. Thep-
values of decreases in RMSE are calculated using a standardt-test to assess the significance
of improvements in prediction accuracy.
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Figure 2: Flowchart depicting the experimental procedure involved in training Random
Forest regressors
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3. Results and discussion

Table 3: Chemical shift prediction accuracies for individual shift predictors and Random
Forest regression in terms of root mean squared error (RMSE)from experimental values.
The values in italics identify the least RMSE value amongst theSHIFTS, SHIFTX and
PROSHIFTpredictors for that atom type. The values in bold type identify the best overall
predictor, which is the Random Forest approach for all nuclei. The percentage figures in
parentheses in the Random Forest column represent the decrease in RMSE as a percentage
of the least RMSE value amongst the underlying predictors.

SHIFTS SHIFTX PROSHIFT RANDOM FOREST

Nucleus Instances RMSE (ppm) RMSE (ppm) RMSE (ppm) RMSE (ppm)
HN 46,991 0.66 0.63 0.58 0.49 (15.5%)
Hα 38,767 0.79 0.36 0.34 0.28 (17.7%)
15N 40,166 5.29 3.51 3.44 2.93 (14.8%)
13Cα 37,006 1.86 1.64 2.59 1.51 (7.9%)
13Cβ 29,809 3.13 3.02 3.75 2.93 (3%)
13C′ 24,253 1.89 1.40 2.34 1.19 (14.9%)

The database of chemical shifts employed in this exercise consisted of between 24,000
to 47,000 separate chemical shifts depending on the nucleustype. These were mapped to
454 different protein structures from the PDB. The results obtained by training Random
Forest regressors for each nucleus type (subject to 10-foldcross-validation) are shown in
table 3. Prediction accuracies are reported in terms of rootmean squared error (RMSE)
from experimental shift values. It is seen that the Random Forest predictions are 15.5%,
17.7%, 14.8%, 7.9%, 3% and 14.9% more accurate than the best of SHIFTS, SHIFTX, and
PROSHIFTfor Hα, HN, 15N, 13Cα, 13Cβ and13C′ nuclei respectively. Thep-values of these
decreases in RMSE, based ont-tests on the residuals, are each� 0.001, thereby indicating
that the decreases in error are statistically significant. Note, that although the13Cβ RMSE
value shows only modest improvement (3%) when predicted using the Random Forest
algorithm, a separate experiment (data not shown) where rotameric configurations served
as a feature resulted in an RMSE drop of greater than 7% for thesame nucleus. This is
to be expected since the configuration of the sidechain and the resultant distribution of the
sidechain electrons likely have a significant influence on the 13Cβ chemical shift. This
also indicates that the same set of regression features may not be optimal for every type of
nucleus.

It is clear from these results that the Random Forest-based non-linear regression ap-
proach to shift prediction promises significant improvements in prediction accuracy over
existing methods. Apart from the resistance of the technique to over-fitting, it is to be noted
that the size of the training data set employed in this exercise is significantly larger than any
prior comparable effort. This, in turn, will allow this prediction method to better generalize
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to novel protein structures. Also, given that Random Forests are extremely efficient to train
and each tree in the forest can be grown in parallel, additional structural variables may
be rapidly tested for their contribution to improvement in shift prediction accuracy. Ex-
periments using B-factors from X-ray crystallographic structures and discrete per-residue
rotamer library categories as additional features are currently in progress.

The method reported here is also notable for the fact that it is a hybrid meta-prediction
approach, combining quantum, classical and empirical information about protein struc-
tures. Purely quantum mechanical approaches to shift prediction work well for small
molecules but are computationally infeasible for anythingthe size of a typical protein struc-
ture. Conversely, purely empirical approaches are unlikely to capture all the complexity in-
herent in the factors affecting the electronic environmentwhich finally dictates the chemical
shift. The meta-prediction aspect, wherein predictions from multiple underlying chemical
shift predictors (PROSHIFT, SHIFTS andSHIFTX in this case) are incorporated as input to
the regression algorithm, allows for a judicious combination of information from both ap-
proaches to be incorporated into a single prediction technique. Meta-prediction approaches
have been successfully used in secondary and tertiary structure prediction and ligand dock-
ing. The results obtained indicate that chemical shift prediction is also a suitable candidate
for this approach.

4. Conclusion

We have shown that a non-linear regression approach to chemical shift prediction employ-
ing a ensemble machine learning approach has the potential to improve chemical shift pre-
diction accuracy significantly. The ensemble Random Forestalgorithm employed is prov-
ably resistant to over-fitting the test data and generalizeswell to novel test instances. This
is demonstrated by the improvement in shift prediction accuracy seen in the 10-fold cross-
validation exercise over existing chemical shift predictors across all six protein backbone
nuclei. Random Forests allow for rapid training of regressors and are eminently paralleliz-
able, therefore permitting one to explore the protein structural variable space efficiently.
They make feasible the potential training of separate regressors for varied partitions of the
training data set (all NMR structures versus all X-ray structures, per amino acid type re-
gressors, per secondary structure type regressors etc.). It is possible that a future variant on
this method will render predictions by using such differentregressors internally to predict
on different partitions of the test data. We are in the process of making an implementation
of the current method available for public use.

The availability of a rapid, accurate and easily adapted method of chemical shift pre-
diction will make it easier to study the relationship between shift and structure. Any tech-
nique that incorporates chemical shift prediction, such asNMR resonance assignment, low
resolution structure prediction, fold recognition, protein docking and ligand interaction
modeling, will benefit from the increased accuracy providedby this method. Additionally,
the speed of training of the Random Forests will permit domain-specific regressors to be
trained in these endeavors.
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