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Protein nuclear magnetic resonance (NMR) chemical shi##iemong the most accurately measurable
spectroscopic parameters and are closely correlated teiprstructure because of their dependence
on the local electronic environment. The precise naturdisfdorrelation remains largely unknown.
Accurate prediction of chemical shifts from existing stires’ atomic co-ordinates will permit close
study of this relationship. This paper presents a novellmaar regression based approach to chemical
shift prediction from protein structure. The regressiordele@mployed combines quantum, classical
and empirical variables and provides statistically sigaift improved prediction accuracy over exist-
ing chemical shift predictors, across protein backbonenaigpes. The results presented here were
obtained using the Random Forest regression algorithm antaip entry data set derived from the
RefDB re-referenced chemical shift database.

1. Introduction

Any nucleus with spinf = 1/2, when placed in an external magnetic field, will exhibit
two spin states with an energy differential directly prdporal to the strength of the ap-
plied magnetic field. Each nucleus, however, is influencethbyelectrons in its vicinity
and therefore the effective magnetic field at the nucleuiénaated depending upon this
electronic environment. Thehemical shift (0) is a measure of the electronic shielding that
leads to this magnetic field attenuation, and thereforeigesvan accurate description of
the local electronic environment. Thus, chemical shifessanong the most fundamental of
nuclear magnetic resonance (NMR) spectral parametersmiCakshifts are also among
the most accurately measurable quantities in NMR speapysfaccuracy up to one part
in a billion).

Given these properties of the chemical shift, there has lmegn an interest in un-
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derstanding the nature of the relationship between maeattucture and shift, and ap-
plying said knowledge to infer additional structural infeation about the molecule under
study. Protein molecules too give rise to NMR spectra in goliep magnetic field in a
fashion intricately dependent on their three dimensiotralkctures. The electronic envi-
ronment around nuclei in the case of proteins is influencedabtors such as neighbor
anisotropy, ring current anisotropy, hydrogen bond effeatd through-space electric field
effects among others. A graphical representation of thenada shift measurements from
a standard protein NMR experiment{/'°N HSQC) is depicted in Fig. 1. The center of
each of the peaks observed in this two-dimensional ploessnts two chemical shifts, the
'H and'SN shifts. The axes of the spectrum are in parts per milliomr(pghe standard
unit for chemical shifts.
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Figure 1: Two-dimensiondH/'®N Heteronuclear Single-Quantum Coherence (HSQC)
NMR spectra of aife. coli DNA glycosylase, Fpg. (frorht t p: / / www. ensl . pnl .
gov/ horres/ nsd/ bi onnt / Buchko_Fpg_post er/ Fpg. ht m

Knowledge of the chemical shift and insight into the struetshift relationship is use-
ful in many contexts. The most obvious application is resmeaassignment in the context
of an protein NMR experiment where a model of the target jm&testructure is avail-
able [10] (either via independent X-ray crystallographpesments or comparative mod-



October 10, 2005 18:33 Proceedings Trim Size: 9.75in x 6.5in paper

eling). Predicted shifts may also be used to refine existingiral models. There have
also been efforts to infer low-resolution structure modglen just the experimental chem-
ical shifts. Examples include techniques for secondancsitre prediction [16, 18], back-
bone torsion angle prediction [5], fold recognition [11, 28], protein-protein docking [7]
and modeling ligand interactions [15]. Predicted shiftdjsct to their having acceptable
accuracy, may be similarly employed.

Existing approaches to chemical shift prediction from eiostructure apply quantum
mechanical, classical and/or empirical methods to the @toprordinate data. Examples
of such algorithms includeHIFTS[19], SHIFTX [14] andPROSHIFT[12]. SHIFTStakes a
guantum mechanical approach and employs a pre-calculatabake of tri-peptide shifts
(via density functional theory), whilsHIFTX uses a hybrid empirical/semi-classical ap-
proach involving pre-calculated chemical shift hyperaoels and equations for ring cur-
rent, electric field, hydrogen bonding and solvent effeeioSHIFTuses a neural network
trained on~ 69,000 experimentally determined chemical shifts. Eacthe$e shift pre-
diction approaches has unique limitations either in terfhe size and composition of
the training and/or test data sets, or due to the generatteydor learning methods such
as neural networks to over-fit training data. We hypothestbat a better chemical shift
predictor could be built by layering an ensemble machinenieg algorithm (Random
Forests [4]) capable of non-linear regression on top ofgleassting predictors in addition
to expanding the feature set by taking into account numesmysrical structural features
such as solvent accessibility, secondary structure ancehepahlity. This paper presents
the results of such an exercise.

In brief, the non-linear regression approach to chemidétl grediction employing the
ensemble machine learning Random Forest algorithm ouwipeefd each of the underlying
shift prediction programs/(z. SHIFTS, SHIFTX, PROSHIFT) across all six backbone atom
types. These improvements in prediction accuracies wessuaned in terms of root mean
squared error from experimentally recorded shifts andérctse of the Random Forest al-
gorithm, they ranged between 3%+d 8% when compared to the best performer amongst
the aforementioned prediction programs. The decreaseran ebserved was proven to
be statistically significant by comparing the distributimiherrors using a standatetest.
Across all atom typeg-values< 0.001 were observed.

2. Systemsand methods
2.1. Data assembly

Building a structure-based chemical shift prediction mdthequires a dataset of protein
chains with experimentally recorded chemical shifts matico structures solved by NMR
or X-ray crystallography. The principal community reposiés of chemical shift and struc-
tural (atomic co-ordinate) data are the BioMagResBank (BYI 8] and the Protein Data
Bank (PDB) [1] respectively. However, it has been demotsti#hat significant chemical
shift referencing errors exist for a substantial portiothefBMRB data. Hence, the dataset
used in this projectis drawn from the RefDB [21] databasearefully re-referenced set of
chemical shifts derived originally from the BMRB. The RefaBo provides a sequence-
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based mapping to PDB entries for each set of re-referendisl sihe sub-set of the RefDB
entries selected was free of complexes and mapped to 454 RiBse

Metadata and structural information from each of the 454 RDBies were extracted
and each entry was split up into its constituent fragmentthik context, a fragmentis de-
fined as a single contiguous polypeptide chain present asf@potentially larger protein
structure with multiple such chains. These fragments weza processed through each of
the three chemical shift predictors PROSHIFT, SHIFTSandSHIFTX. STRIDE [8] sec-
ondary structural information was obtained for each fraginfrom the S2C [17] database.
Additionally, a per-residue solvent exposure term wasutated using the half-sphere ex-
posureH S E — 3 [9] measure. All structural information and predicted shifartitioned by
protein backbone atom type were stored in a relational databsing appropriate schema.

A mapping between the residues in a PDB fragment and thos®afl@aB entry with
experimental shifts is required to be able to compare theigted shifts with experimental
shifts. Alignments between the corresponding residue esezps were generated using a
simple pairwise dynamic programming alignment algoritmavided by Biopython [2].

2.2. Feature extraction

Chemical shifts can be predicted from structural modelshied¢ ways: using quantum
mechanics, classical mechanics, and empirical models. rAlypguantum approach is
theoretically possible but, in the case of most macromdéscilne size of typical protein
structures, computationally infeasible. Thus, most pnotbemical shift prediction meth-
ods employ hybrid techniques, combining quantum, clakaité empirical approachesin
various ways. Examples of such algorithms inclgéerTs(combines quantum and empir-
ical methods)sHIFTX (combines classical and empirical methods) ardsSHIFT(maps

a variety of empirically-determined structural featureshemical shifts using neural net-
works). Our approach employs each of these individual ptedi’ final predicted shifts
as input to a non-linear regression algorithm. Also, therpsidue quantum mechanical
contributions calculated byHIFTSVvia density functional analysis of tri-peptides are inde-
pendently included in the feature array. Additionally, #eegondary structural assignments
and solvent exposure information obtained in the manneriesi earlier are incorporated
on a per-residue basis. Tables 1 and 2 enumerate the speatiicés employed in predict-
ing backbone heavy atom and proton shifts respectively. Fig a flowchart depicting the
assembly of data and feature extraction described herein.

2.3. Regression using Random Forests

The proposed regression model has the form :

b = f(73) 1)

whered; is the estimated chemical shift for tité nucleusf(-) is a non-linear regression
function andz; is a vector whose components encode the variables of thessign model.
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Table 1: Feature set employed in regression for proteink@uk heavy atoms

Feature Description

aa Amino acid residue

Sec_str STRIDE secondary structure

solv_exp Half-sphere solvent exposur8 S FE — [3) terms

qf_"f Contribution from preceding residue’s backbone torsiogies
qf”w Contribution from target residue’s backbone torsion asigle
qj’jf Contribution from succeeding residue’s backbone torsiayies
@ Contribution from preceding residue’s type apdtorsion angle
qr Contribution from target residue’s type agd torsion angle
efB Hydrogen bond contributions

rand_coil Random coil reference shift value

pred_shifts Predicted shifts fronsHIFTS, SHIFTX andPROSHIFT

Table 2: Feature set employed in regression for proteinkimaudk protons

Feature Description

aa Amino acid residue

sec_sir STRIDE secondary structure

solv_exp Half-sphere solvent exposur G E — [3) terms

el Ring current contributions from neighboring aromatic sng
ef Electrostatic contributions from nearby point charges
el Peptide group anisotropy

rand_coil Random coil reference shift value

pred_shifts Predicted shifts frongHIFTS SHIFTXandPROSHIFT

These variables correspond to computable properties mmatdeus’ environment and are
essentially the features described in the section above.algorithm selected for imple-
menting the regression function in this set of experimenBandom Forest regression [4].
A Random Forest is an ensemble of decision trees construsied bagging (i.e., ran-
dom instance selection) and random feature selection.id®mts are made by averaging
(or voting, in the context of classification) over the préidics made by each tree. The ben-
efits of ensemble methods in machine learning has been dtegiensively [6]. Briefly,
an ensemble predictor will be more accurate than any of dividual members when the
individual predictors are accurate and diverse. Two ptedscare diverse if their errors
are uncorrelated. Random Forests ensure diversity throamgfom instance and feature
selection. The benefits of ensemble predictions can be stwbet intuitively in terms of
the likelihood that two or more trees will make the same inectrprediction. Lefp; be
the probability that theth tree makes an error. If the trees errors are uncorrelated (
independent), then the probability tHatrees make the same error is bounde(ﬂﬁ/pi.
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Breiman has analyzed the properties of Random Forestssaxdn[4]. Of note is
that the generalization error, that is the error on novebimses, converges to a limit as
the number of trees grows. In contrast, algorithms such asmhaetworks have no such
guarantee. Additionally, the randomization scheme guagdnst noise.

In the experiments described, Random Forests were traoregbfth nucleus type on
the given set of features and the accuracy of the final predighifts was estimated using
10-fold cross-validation. Chemical shift prediction aaties are reported for thettHHY,
15N, 3¢, 13CPand'3C’ backbone atom types in terms of root mean squared error (RMSE
from the experimental value. These RMSE values are compargahilar values obtained
for the three component chemical shift predictem®oSHIFT, SHIFTS, andsHIFTX. Thep-
values of decreases in RMSE are calculated using a statitistto assess the significance
of improvements in prediction accuracy.

PDB structures
for 454 RefDB
entries

\4

Chemical shift
predictors

SHIFTS,
SHIFTX,
PROSHIFT

Secondary Solvent Predicted Quantum and
structure exposure chemical shifts

Experimental

empirical features shifts from RefDB

(SHIFTS)

Random Forest non-linear regression
- training and error estimation

\4

Cross-validation

Figure 2: Flowchart depicting the experimental procednvelived in training Random
Forest regressors
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3. Resultsand discussion

Table 3: Chemical shift prediction accuracies for indivatishift predictors and Random
Forest regression in terms of root mean squared error (RNtSHE)experimental values.
The values in italics identify the least RMSE value amonigesHIFTS, SHIFTX and
PROSHIFTpredictors for that atom type. The values in bold type idgkie best overall
predictor, which is the Random Forest approach for all iuglee percentage figures in
parentheses in the Random Forest column represent theadedneRMSE as a percentage
of the least RMSE value amongst the underlying predictors.

SHIFTS SHIFTX PROSHIFT RANDOM FOREST
Nucleus Instances RMSE (ppm) RMSE (ppm) RMSE (ppm) RMSE {ppm
HN 46,991 0.66 0.63 0.58 0.49 (15.5%)
He 38,767 0.79 0.36 0.34 0.28 (17.7%)
15N 40,166 5.29 3.51 3.44 2.93(14.8%)
13ce 37,006 1.86 1.64 2.59 1.51 (7.9%)
13¢ch 29,809 3.13 3.02 3.75 2.93 (3%)
3¢/ 24,253 1.89 1.40 2.34 1.19 (14.9%)

The database of chemical shifts employed in this exercissisted of between 24,000
to 47,000 separate chemical shifts depending on the nutipas These were mapped to
454 different protein structures from the PDB. The resulitaimed by training Random
Forest regressors for each nucleus type (subject to 10zfokk-validation) are shown in
table 3. Prediction accuracies are reported in terms of men squared error (RMSE)
from experimental shift values. It is seen that the Randone$t@redictions are 15.5%,
17.7%, 14.8%, 7.9%, 3% and 14.9% more accurate than the besters, SHIFTX, and
PROSHIFTfor HY, HN, 15N, 13C%, 13C” and!3C’ nuclei respectively. Thp-values of these
decreases in RMSE, basedtetests on the residuals, are eagtD.001, thereby indicating
that the decreases in error are statistically significaoteNthat although th&C’ RMSE
value shows only modest improvement (3%) when predictedguie Random Forest
algorithm, a separate experiment (data not shown) wheaeneric configurations served
as a feature resulted in an RMSE drop of greater than 7% fosdhee nucleus. This is
to be expected since the configuration of the sidechain amtetultant distribution of the
sidechain electrons likely have a significant influence an*#C” chemical shift. This
also indicates that the same set of regression features atdeoptimal for every type of
nucleus.

It is clear from these results that the Random Forest-basadinear regression ap-
proach to shift prediction promises significant improvetsén prediction accuracy over
existing methods. Apart from the resistance of the techeiquver-fitting, it is to be noted
that the size of the training data set employed in this egerisisignificantly larger than any
prior comparable effort. This, in turn, will allow this prietion method to better generalize
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to novel protein structures. Also, given that Random Ferast extremely efficient to train
and each tree in the forest can be grown in parallel, additistructural variables may
be rapidly tested for their contribution to improvement ifisprediction accuracy. Ex-
periments using B-factors from X-ray crystallographiaistures and discrete per-residue
rotamer library categories as additional features areeatigrin progress.

The method reported here is also notable for the fact thatathybrid meta-prediction
approach, combining quantum, classical and empiricalrinédion about protein struc-
tures. Purely quantum mechanical approaches to shift girediwork well for small
molecules but are computationally infeasible for anythivegsize of a typical protein struc-
ture. Conversely, purely empirical approaches are unlitcetapture all the complexity in-
herentin the factors affecting the electronic environméhith finally dictates the chemical
shift. The meta-prediction aspect, wherein predictiooafmultiple underlying chemical
shift predictors PROSHIFT, SHIFTSandsSHIFTX in this case) are incorporated as input to
the regression algorithm, allows for a judicious combimaibf information from both ap-
proaches to be incorporated into a single prediction teglmiMeta-prediction approaches
have been successfully used in secondary and tertiaryusteyarediction and ligand dock-
ing. The results obtained indicate that chemical shift jptéah is also a suitable candidate
for this approach.

4, Conclusion

We have shown that a non-linear regression approach to cheshiift prediction employ-
ing a ensemble machine learning approach has the potenimptrove chemical shift pre-
diction accuracy significantly. The ensemble Random Faigstrithm employed is prov-
ably resistant to over-fitting the test data and generalimdkto novel test instances. This
is demonstrated by the improvement in shift prediction eacyseen in the 10-fold cross-
validation exercise over existing chemical shift predistacross all six protein backbone
nuclei. Random Forests allow for rapid training of regressmd are eminently paralleliz-
able, therefore permitting one to explore the protein $tmat variable space efficiently.
They make feasible the potential training of separate ssgs for varied partitions of the
training data set (all NMR structures versus all X-ray stuues, per amino acid type re-
gressors, per secondary structure type regressors éts.padssible that a future variant on
this method will render predictions by using such diffenegressors internally to predict
on different partitions of the test data. We are in the precésnaking an implementation
of the current method available for public use.

The availability of a rapid, accurate and easily adaptechotebf chemical shift pre-
diction will make it easier to study the relationship betwaéift and structure. Any tech-
nigue that incorporates chemical shift prediction, sucNBIR resonance assignment, low
resolution structure prediction, fold recognition, pintdocking and ligand interaction
modeling, will benefit from the increased accuracy providgdhis method. Additionally,
the speed of training of the Random Forests will permit dorsgiecific regressors to be
trained in these endeavors.
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