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Clustering is widely used in gene expression analysis, which helps to group genes with similar biolog-
ical function together. The traditional clustering techniques are not suitable to be directly applied to
gene expression time series data, because of the inhered properties of local regulation and time shift.
In order to cope with the existing problems, the local similarity and time shift, we have developed a
new similarity measurement technique calledLocal Similarity Combinationin this paper. And at last,
we’ll run our method on the real gene expression data and show that it works well.

1. Introduction

The increasingly used microarray techniques generate more and more biological data very-
day to the biologists, who reasonably need special computational tools to help. The data
obtained from microarray technique records the expression levels of genes in the form of
time series points by measuring the concentration of the corresponding mRNAs.1,2,3 Thus
it provides the possibility and opportunity to insight the genes’ behaviors and functions
indirectly, and to find gene pairs with different kind of regulation relationships and group
genes together with similar biological function, which usually demonstrate similar expres-
sion profiles against the time series, and at last to construct a biological network.4,5

Clustering genes with highly similar expression profiles, locally or globally and time
shifted, is one of the most important steps to analyse the microarray data, which usually
applies a kind of similarity measurement first, such as the traditional Pearson correlation or
Euclidean distance6 methods, and then a clustering paradigm follows which classifies genes
basing on their pairwise similarities into different clusters. Here the time shift means a time
lag between the local parts of the two gene profiles, because the first gene——the regulator,
usually effects the downstream gene——-the regulated, with a time delay. The clustering
structure will reveal the transcriptional information of the genes in the biological envi-
ronment to help the understanding of the biological control mechanism. And in a deeper
analysis, the clustering results will serve, usually with many other kinds of biological in-
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formation and data, such as transcriptional factors and binding sites, or the protein-protein
interaction information, to insight the gene functions in the molecular level.

In order to analyse the time series microarray data, many methods have been developed
to measure the similarity between genes. Here we’ll give a brief review about the related
similarity measurement methods. The aforementioned Euclidean method is widely used
in other scientific or engineering fields, which usually directly dismisses the time informa-
tion and only focuses on the global profile distance calculation, and rarely works well on
microarray data. The well-known standard Pearson correlation method also computes the
global similarity and ignores the time series characteristic. The modified Pearson corre-
lation method7 based on the standard Pearson Correlation was developed quickly, which
takes the time lag into account, but which also considers the global time lag only and
there is no good approach to deciding the size of lag yet. And a particular method in-
troduced by Spellman et al in 1998 applied the Fourier transformation on the time series
data,8 which was proved to be effective for the periodic data. Recently, some more sophis-
ticated methods have been presented. TheEdge Detection Methodtries to find the main
changes in expression levels(edge) and gives a score by comparing the edges between the
two genes,9 which will lose information when two edges are far apart. Another method
is Dominant Spectral Component Method,10 which first decomposes the time series data
into frequency components and attains a pair of frequent component with least difference,
and then transforms them back to time space and uses the standard Pearson coefficient to
calculate the similarity. TheEvent method11 transforms time series expression level into
a string of events—-R(Rising), F (Falling) & C(No changing, and gives each gene pair
a score by applying theNeedleman-Wunschalignment algorithm, which will aslo lose too
much information while only giving a global similarity score.

We propose a new method in our work to measure the similarity between micaoarray
gene expression profiles, which takes the local similarity and time shift properties into
account, yet simultaneously solved by the previous methods. Our method will discretize
the data first and then apply a matrix to find all the local matching information including
the time lag. Then a optimal combination of the local matches follows to attain a global
similarity.

2. Method

In this section we’ll describe the paradigm of our new similarity measurement, in which the
original expression data will be discritized by using two equations and, then we’ll demon-
strate how to use a matrix to discover all the local matching information. And we’ll give
the definition of the optimal combination of the local match candidates to obtain the op-
timal alignment between the gene pair, and by defining an equation we’ll finally get the
similarity.

2.1. Data Discretization

Here we’ll use a 3-value discretization method to preprocess the original gene microarray
expression data matrixGn×m to get the discretized matrixEn×(m−1), wheren means the
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gene number andm indicates the time condition points. And before we get the object
matrix we’ll apply Equ.(1) onG firstly to get a temp matrixG′n×(m−1). Then the Equ.(2)
will be usedG′ to attain object matrixE.

G′i,j =





1, if Gi,j = 0 & Gi,j+1 > 0,

−1, if Gi,j = 0 & Gi,j+1 < 0,

0, if Gi,j = 0 & Gi,j+1 = 0,
Gi,j+1−Gi,j

|Gi,j | , if Gi,j <> 0.

(1)

Ei,j =





G′i,j , if G′i,j = 0,−1, 1,

1, if G′i,j >= t,

−1, if G′i,j <= −t,

0, if −t < G′i,j < t .

(2)

The parametert is a customized threshold, which we empirically set to be 1.0. This value
means that only an apparent change——increasing or decreasing——in expression level
can be assigned to the discretized value 1 or -1, and all others should be 0 for the reason to
maximally eliminate the potential noise in the original data.

2.2. Local Matching

In order to calculate the similarity between two genes, denoted byS(X, Y ), we’ll use a
matching matrix to find all the local matching information. HereX andY stand for two
genes respectively, and represented by sequences(x1, x2, ..., xm−1) and(y1, y2, ..., ym−1)
derived from the discretized matrixE. And we defineX(i, j) to be the subsequence
(xi, xi+1, .., xj) of X andX(i) is theith element ofX.

In our method, we will calculate similarity by finding all the possible subsequence
matching between theX andY , and then find a optimal combination of the local candidate
matches. A local match can be defined to be two subsequences from two genes respectively
exactly having the same sequence:X(i1, j1) = Y (i2, j2) andX(i1 + k) = Y (j1 + k) for
eachk(0 <= k <= j1 − i1), where we have1 <= i1 < j1 <= m − 1 , 1 <= i2 <

j2 <= m− 1 and|j1 − i1| = |j2 − i2|.
After we have found all the local matches between the genes, we should combine the

local matches into an optimal global match with longest length. We should introduce sev-
eral important parameters. The first is theminSubLenwhich defines the minimum length
of a matched subsequence. A local match with too short length means nothing but high
random probability in matching. The second parameter, themaxTimeLag, is the time shift
between the two subsequences which is the difference ofi1 andj1. A too big time lag is
difficult to explain in biology but there always exists time shift when the gene regulation
works. So we’ll confine the time shift in a limitation. After that, we’ll find that some lo-
cal candidate matches have the problem of overlapping which will not be allowed in the
optimal combination.
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Here we’ll apply a matrixMm×m to find all the candidate local matches. The first row
and first column will be initialed to be0. And after that we’ll fill the matrix as the algorithm
in Fig.1 .

1)Begin

2) for i = 0 to m− 1

3) for j = 0 to m− 1

4) if i == 0 or j == 0

5) M(i, j) = 0;

6) else ifX ′(i) == Y ′(j)
7) M(i, j) = M(i− 1, j − 1) + 1;

8) M(i− 1, j − 1) = 0;

9) else

10) M(i, j) = 0

11) end if

12) end for

13) end for

14)End

Figure 1. Algorithm for mining local matches

And now we need to consider the two restrictions: theminSubLenand themaxTimeLag,
which will confine our combination on the cellMi,j satisfying|i−j| <= maxTimeLagand
Mi,j >= minSubLen. As a result, some useless candidate subsequence matches will be
eliminated, which will greatly reduce the computation complexity to find the optimal com-
bination. Here we give a formal description of the optimal combination problem. Given
a set of triplesS = {s1, s2, ..., sn} with eachs =def (len, rowI, colI) in S recoding the
information of a cell inM satisfying the aforementioned conditions including the value of
the cell and its row and column indexes respectively. Here the valuelen records the length
of matched subsequence, and the match in the two genes ends at positionsrowI and index
colI respectively. We define the operatorNon-Conflict(si, sj) to be TRUE if for anysi ∈ S

andsj ∈ S(i <> j) with si.rowI +si.len <= sj .rowI andsi.colI +si.len <= sj .colI,
or sj .rowI + sj .len <= si.rowI andsj .colI + sj .len <= si.colI. Now our optimal
problem is to find a subsetS′ ⊆ S that maximizes

∑
s′∈S′(s

′.len) and anys′i ands′j is
non-conflict. Then the attained subsetS′ will serve for the similarity calculation. Here we
have proved the generalOptimal Local Combination Problemto be NPC, which can be
reduced from the Weighted Independent Set problem. And we also calculate the size of
|S| to obtain 0.6722C as an upper bound, where C is the length of a gene inG when we
setminSubLenandmaxTimeLagto be 4 and 3 respectively, which actually makes a brute
searching method possible. The solution will list all the legal subset of S with no conflict
elements and get the subset with maximized

∑
s′∈S′(s

′.len) as an optimal combination.
We’ll sort the elements into a listS in lexicographic order first when implement the brute
searching which will reduce the comparison times.
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Given geneX and geneY with the sequencesX=(-1,0,1,-1,1,-1,1,-1,1,0,1,-1,1,-
1,1,-1,1) and Y =(1,0,0,0,-1,1,-1,1,-1,1,-1,1,-1,1,-1,0,0) respectively, we’ll show the
matching matrix of geneX and geneY in Tab.1. It’s easy to select the lo-
cal matches with length greater than theminSubLenand we can confine the cells
along the diagonal from upper-left to down-right with|i − j| <= maxTimeLag.
In Tab.1 the candidate cell appears in bold. In the above example, we have

Table 1. Matching matrix

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1

0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 4

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 6

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 7

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 7

0 0 0 0 2 0 4 0 6 0 0 0 2 0 4 0 6 0

0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

S={(4, 8, 9), (6, 10, 9), (7, 12, 9), (4, 15, 14), (6, 15, 16), (7, 14, 17)}, where we setmin-
SubLento be 4 andmaxTimeLagto be 3. Now our job is to find a subsetS′ ⊆ S satisfying
the aforementioned constraints. Here we getS′ = {(4, 8, 9), (7, 14, 17)}, which is the op-
timal local combination. And a triple such as (7,14,17) means a local match with length 7,
and ends at index 14 of geneY and index 17 of geneX.

2.3. Exact Similarity

In this section, we’ll calculate the similarity of the gene pair after we find the setS′. As-
sume the size of|S′| to beK, which is the number of elements in the set. Then we’ll use
the following Equ.(3), where the parameterK is used to adjust the similarity, a higherK

meaning more punishment because one long global match obviously has higher similarity
than that calculated from the local combination. So a punishment ofK with high value
will be reflected in the formulation, and 10 in the second multiplication operator under the
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radical sign is usually set to be half of the gene length. And the constantC usually is set to
be the length of gene.

S(X, Y ) =

√∑
s′∈S′ s

′.len
C

(
1− K − 1

10

)
. (3)

Our similarity method focuses on the local similarity, and the regulation between genes
often functions locally as well as a time lag exists. The global similarity or distance mea-
surement, the Pearson correlation or the Euclidean distance, have difficulties to solve such
problems. Even only one time slice lag will greatly reduce the similarity between two
genes, and a local similarity will often not be found when applying a global similarity
calculation method. In our method, it is easy to locate the local similarity and even give
the time lag between the local matching. The triple inS′ fairly records the time lag in-
formation, and the value of|s′.rowI − s′.colI| gives the time lag of the local matching.
To demonstrate the difference of our method and thePearson Correlationmethod, Fig.2

1 2 3 4 5 6 7 8
−0.5

0

0.5

1
Gene X
Gene Y

Figure 2. Our similarity method for the profiles is 0.93 whereas the Pearson correlation is -0.38.

shows two profiles with length 8, which have a highly correlated relationship according
to our similarity method but almost unrelated when applied the Pearson correlation, and
where the -0.38 means a negative regulation——one gene depresses another geneś expres-
sion. The reason is that the profiles have a high similar profiles except one slice time offset
which the Pearson correlation has difficulty to cope with but our method can easily reflect.

3. Experimental Results

In this section we’ll report the experimental results by applying our method on the real gene
microarray data.

3.1. Data & Clustering

In order to demonstrate the performance and correctness of our new method, we’ll run our
method on the real time series gene data. We use the earliest gene expression data which
is accessible atPaul T. Spellman’swebsite8 and also widely used in academic research.
The data is mainly attained by four independent experiments for synchronized reasons:
factor arrest, elutriation, arrest of a cdc15 temperature-sensitive mutant and cdc28, which
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consists of all the 6178 Yeast ORFs. But we’ll not directly use this data, and there is
too much of them. In the research of Steven Skiena and Vlfilkov(http://www.cs.sunysb
.edu/ skiena/gene/jizu/), they searched the Yeast database and got 1007 genes from that in
Feb. 2000. And by reviewing the published literatures on these genes, they collected 888
gene regulations, positive or negative. On this basis, we find 288 genes in alpha data set
with their known regulation relationship among the 888 gene regulation relationship. Here
the alpha data set has 18 time condition points with 7 minutes interval.

We’ll run our method on the alpha data set and construct a similarity matrix for the
genes in the data set to record the pairwise gene similarity, which is symmetrical and used
for later clustering.

Clusters will de attained from the similarity matrix by using the GCLUTO,12 a cluster-
ing tool consisting several clustering analysis methods. Here we use the clustering option
based on the graph partition method.13 GCLUTO will first construct a graph where each
gene is represented by a node and edges between nodes are assigned with the correspond-
ing similarities. GCLUTO will cut the graph with an optimal approach recursively until a
pre-specified number of clusters been attained.

3.2. Results Evaluation

The number of clusters is a critical parameter in the clustering which will greatly effect
the robustness of the clustering structure. Fortunately, when the parameter is over 20, the
clustering structure is quite robust to the variation of the parameters.

Fig.3 and Fig.4 show cluster 7 in 30-ways clustering and cluster 8 in 25-ways clustering.
They have a great high similarity, except in Fig.4 there are a little more genes for there are
5 less clusters. But the genes in Fig.3 can be found in cluster 7 in 25-ways clustering. And
Fig.5 and Fig.6 both demonstrate cluster 2 in 30-ways clustering and in 25-ways clustering
respectively. They also have a high similarity. And it is the same with the previous cluster
pair, that the genes in cluster 2 in 30-ways can all be found in cluster2 in 25-ways. At last,
in our experimental results, all the other clusters in the 25-ways clustering except no 2 and
8, they all can find a corresponding cluster in the 30-ways clustering with high similarity
except several genes more or less. As a fact, when the gene clusters number is over 20, the
structure is rather robust and changes little with the pre-specified cluster number increasing.

In Fig.3 and Fig.4, we obviously find two main profiles of the genes, and there is a time
lag between them. This is very difficult for the traditional similarity or distance measure-
ment, Pearson correlation or Euclidean distance, to find such clusters with time lag existing.
But our method can give a high similarity between genes with similar profiles even there is
a time lag, where the inter similarity in the cluster is 0.787.

In Tab.2, we shows the statistical results of the first 10 clusters in the 30-ways clustering
for space reason. The column labeled Size displays the number of objects that belongs to
each cluster. The column labeled ISim displays the average similarity between the objects
of each cluster. The column labeled ISdev displays the standard deviation of these average
internal similarities. The column labeled ESim displays the average similarity of the objects
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Figure 3. Cluster 8 in 30-ways clustering
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Figure 4. Cluster 7 in 25-ways clustering

of each cluster and the rest of the objects . Finally, the column labeled ESdev display the
standard deviation of the external similarities. The ISim is much higher than the ESim and
the ISdev and ESdev are much lower compared with the previous values. Now we can
conclude that our method has successfully find the clusters with high similarity.

4. Discussion

We have proposed a new gene expression similarity measurement, which has successfully
solved the local regulation and time lag problems in microarray data. By discretizing the
original data and finding their local match, an optimal combination can be attained from
the local matches and get the global match. And we also check our method on the real
gene expression data and find that the clustering structure is rather robust. The genes in
the same cluster also demonstrate high similarity. In the future work, we can compare our
results with the gene database, for instance the MIPS, to check the genes clustered in the
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Figure 5. Cluster 2 in 30-ways clustering
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Figure 6. Cluster 2 in 25-ways clustering

same cluster whether have a similar biological function. The data and software is available
upon request.
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