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This paper presents an improved algorithm for de novo sequencing of multi-charge mass spectra. 
Recent work based on the analysis of multi-charge mass spectra showed that taking advantage of 
multi-charge information can lead to higher accuracy (sensitivity and specificity) in peptide 
sequencing. A simple de novo algorithm, called GBST (Greedy algorithm with Best Strong Tag) was 
proposed and was shown to produce good results for spectra with charge > 2. In this paper, we 
analyze some of the shortcomings of GBST. We then present a new algorithm GST-SPC, by 
extending the GBST algorithm in two directions. First, we use a larger set of multi-charge strong 
tags and show that this improves the theoretical upper bound on performance. Second, we give an 
algorithm that computes a peptide sequence that is optimal with respect to shared peaks count from 
among all sequences that are derived from multi-charge strong tags. Experimental results 
demonstrate the improvement of GST-SPC over GBST. 

1.  Introduction 

De novo peptide sequencing of tandem mass (MS/MS) is a challenging problem in 
proteomics and high-throughput generation of MS/MS spectra with modern proteomics 
technology is compounding the problem. As the volume of MS/MS spectra grows, the 
accompanying algorithmic technology for automatically interpreting these spectra has to 
keep pace.  An increasingly urgent problem is the interpretation of multi-charge spectra – 
MS/MS spectra with charge 3, 4, and 5 are available from the publicly accessible GPM 
(Global Proteome Machine) dataset [5]; and those with charge 3 are available from the 
ISB (Institute for Systems Biology) dataset [10]. It is foreseen that increasingly there will 
be more multi-charge spectra produced and so the problem of accurate interpretation of 
these spectra will become more important with time. 

Many existing algorithms for peptide sequencing have focused largely on 
interpreting spectra of charge 1, even when dealing with multi-charge spectra, and only a 
few algorithms [4, 8, 11] take account for higher charge ions. Recent work by the authors 
[4] using this approach has shown that the sensitivity accuracy of Lutefisk [15] and 
PepNovo [8] (both of which consider only ion-types of charge 1 and 2) are very low (less 
that 25%) when applied to higher charge spectra from the GPM dataset. Their 
experimental study also showed that there is significant potential improvement in the 
performance if multiple charges are taken into consideration during the sequencing 
process. A simple de novo algorithm, called GBST (Greedy algorithm with Best Strong 
Tags) was also presented that uses multiple charges to achieve good results for multiple 
charge spectra. The GBST algorithm consists of two phases: in the first phase, a set of 
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“best” strong tags are computed based on strong evidence in the spectrum (charge 1, b-
ions and y-ions, and no neutral loss, and direct connectivity); in the second phase, the 
GBST algorithm then link the set of “best” strong tags by taking into account more ion-
types (charges) and greater connectivity. A standard algorithm was then used to generate 
the set of paths that corresponds to the top k predicted peptide sequences. 

In this paper, we present an improved algorithm called GST-SPC that improves on 
GBST algorithm. In the first phase, the GST-SPC algorithm computes a larger set of 
strong tags – the set of all maximal multi-charge strong tags. We show that this improves 
the theoretical upper bound on the sensitivity. In the second phase, the GST-SPC 
algorithm computes a peptide sequence that is optimal with respect to shared peaks count 
(SPC) from among all sequences that are derived from strong tags. Our evaluation shows 
that the GST-SPC algorithm improves on GBST, especially on multi-charge spectra. 

2. Review of Related Work and Problem Formulation 

We first give a quick review of related work on de novo peptide sequencing for 
MS/MS. De novo algorithms [1, 3, 4, 6, 8, 11, 15] are used to predict sequences or partial 
sequences for novel peptides or for peptides that are not in the protein database. Most de 
novo sequencing algorithms [3, 6, 8, 15] uses a spectrum graph approach to reduce the 
search space of possible solutions. Given a mass spectrum, the spectrum graph [6] is a 
graph where each vertex corresponds to some ion type interpretation of a peak in the 
spectrum. Edges represent amino acids which can interpret the mass difference between 
two vertices. Each vertex in this spectrum graph is then scored using Dancik scoring 
based on its supporting peaks in the spectrum (see [6] for details). Given such a scoring 
the predicted peptide represents the optimal weighted path from the source vertex (of 
mass 0) to the end vertex (of mass M).  

PepNovo [8] uses a spectrum graph approach similar to [6], but uses an improved 
scoring function based on a probability network of different factors which affect the 
peptide fragmentation and how they conditionally affect each other (represented by edges 
from one vertex to another). The algorithm PEAKS [11] does not explicitly construct a 
spectrum graph but builds up an optimal solution by finding the best pair of prefix and 
suffix masses for peptides of small masses until the mass of the actual peptide is reached.  
A fast dynamic programming algorithm is used. 
Problem Formulation of Multi-Charge Peptide Sequencing: Our formulation of 
multi-charge peptide sequencing follows that in [4]. We summarize it here to facilitate 
our discussion of the GBST algorithm (see [4] for detailed discussion).  

Consider a multi-charge MS/MS spectrum S of charge α for a peptide ρ = (a1a2…an) 
where aj is the jth amino acid in the sequence. The parent mass M, of the peptide is given 
by m(ρ) = M = . A peptide fragment ρk = (a1a2…ak) (k ≤ n) has fragment mass 
m(ρk) = .  The peaks in the spectrum S come from peptide fragmentation. 
Each peak p can be characterized by its ion-type given by (z, t, h) ∈ (Δz×Δt×Δh), where z 
is the charge of the ion, t is the basic ion-type, and h is the neutral loss incurred by the 
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ion.  In this paper, we use Δ = (Δz×Δt×Δh), where Δz = {1,2,…,α}, Δt = {a,b,y}, and Δh = 
{φ, –H2O, –NH3}. The (z, t, h)-ion of the peptide fragment ρk will produced an observed 
peak p in the spectrum S, that has a mass-to-charge ratio of mz(p), that can be computed 
by the following formula [4]: 

   m(ρk) = mz(ρ) ⋅ z + (δ(t) + δ(h)) + (z – 1)     (1) 
where δ(z) and δ(z) are the mass difference for the respective ion-type and neutral-loss.  

The theoretical spectrum of charge α [4] for ρ is defined by (ρ) = {p | p is 
observed peak for (z, t, h)-ion of peptide fragment ρk, for all (z, t, h)∈Δ and k=0,1,…,n}. 
It represents the set of all possible observed peaks that may be present in any 
experimental spectrum for the peptide ρ.  

α
αTS

In peptide sequencing, we are given an experimental spectrum S = {p1, p2, … , pn}, 
where each peak pk is described by two parameters: mz(pk), the observed mass-to-charge 
ratio and intensity(pk), its intensity. The problem is to determine the peptide ρ that 
produced S.  In practice, of course, only a small fraction of these peaks in (ρ) are 
present in S and there are also noise peaks as well. 

α
αTS

Extended Spectrum and Spectrum Graph: To account for the different ion-types 
considered by different algorithms, the notions of extended spectrum and extended 
spectrum graph were introduced  were introduced in [4], where α denotes the 
maximum charge for S, and β denotes the maximum charge considered by the algorithm 
(β = 2 for PepNovo [8] and Lutefisk [15]). In the extended spectrum , for each peak 
pj∈S and ion-type (z, t, h)∈({1,2,…,β}×Δt×Δh), we generate a pseudo-peak denoted by 
(pj, (z, t, h)) with a corresponding assumed fragment mass given by (1). Then, the 
extended spectrum graph of connectivity d is a graph Gd( ) in which each vertex 
represents a pseudo-peak (pj, (z, t, h)) in the extended spectrum , namely to the (z, t, 
h)-ions for the peak pj. Two special vertices are added – the start vertex v0 to represent 
mass 0 and the end vertex vM for the parent M. For each vertex v, we define prefix 
residue mass of v, denoted by PRM(v), to be the prefix mass of the interpreted peptide 
fragment mass for vertex v. It is defined as PRM(v) = m(v) if v is a prefix ion type, and 
PRM(v) = M – m(v) if v is a suffix ion type, where M is the parent mass. There is a 
directed edge (u, v) from vertex u to vertex v if we can find a directed path of at most d 
amino acid with total mass equal to the (PRM(v) – PRM(u)). (The standard spectrum 
graph use d = 1.) Note that the number of possible paths to be searched is O(20d), which 
increases exponentially with d. In this paper, we use d=2, unless otherwise stated. The 
extended spectrum is a generalization because when β=1, all peaks are assumed to be of 
charge 1, and so  = S – namely, there is no extension. In the extended spectrum , 
only ions of charge 1 or 2 are considered (even for spectra with charge α >2). Algorithms 
such as PepNovo [8] and Lutefisk [15] uses some subsets of  and G2( ). 
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Upper Bound on Sensitivity: Given any spectrum graph G defined on an experimental 
spectrum S from a known peptide ρ, the notion of theoretical upper bound on sensitivity 
was defined in [4] as follows: Given G, we can compute the path in G that maximizes the 
number, p*, of amino acids from the (known) peptide ρ. Then, U(G) = p*/|ρ| is an upper 
bound on the sensitivity for any sequencing algorithm based on the spectrum graph 
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approach using the graph G.  Then U( ) is the theoretical upper bound on 
sensitivity for the extended spectrum graph , namely using the extended 
spectrum  with all ion types in Δ and a connectivity of d. PepNovo and Lutefisk 
which considers charge of up to 2 (and connectivity of up to 2) are bounded by 
U( ) and there is a sizeable gap between U( )  and U( ). 
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3. Evaluation of Greedy Strong Tag Algorithm for Multi-Charge Spectra 

The GBST algorithm [4] was a simple algorithm that takes into account higher charge 
ions. It performs well on multi-charge spectra compared to other de novo algorithms. 
However, we show in this section that there is still a big gap in performance with respect 
to the theoretical upper bound U( ). )(2
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The GBST Algorithm: The GBST algorithm first computes a set, BST, of “best” (or 
reliable) strong tags. To find strong tags, they use ion-types that appear most frequently, 
namely, charge 1, b-ions and y-ions with no neutral loss. The restricted set is given by 

, where    and . They also define 
G1( , ), the spectrum graph G1( ) where the ion types considered are restricted to 
those in . Then, a strong tag T of ion-type (z, t, h) 
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α
1S RΔ α

1S
RΔ RΔ∈ is a maximal path 

〈v0,v1,v2,...,vr〉 in the graph G1( ,α
1S RΔ ), where every vertex vi∈T is of a (z, t, h)-ion. In 

each “component” of this graph, GBST compute a “best” strong tag with respect to some 
scoring function [4]. Then, the set BST is the set comprising the best strong tag for each 
component in the spectrum graph G1( ,α

1S RΔ ). 
After the set of best tag, BST, is computed, the GBST algorithm then proceeds to 

find the best sequence that result from paths obtained by “extending” the tags from BST 
using all possible ion-types. It search for paths in the graph G2(BST) defined as follows: 
the vertices are the strong tags in BST, and we have a directed edge from the tail vertex u 
of a strong tag T1 to the head vertex v of another strong tag T2 if there is a directed edge 
(u,v) in the graph G2( ). We note two major difference between G2(BST) and the 
extended spectrum graph G2( ) – firstly, the number of vertices in G2(BST) is smaller; 
and secondly, the number of edges is also much smaller since only strong tags are linked 
in a head-to-tail manner. However, all ion types are considered in the graph G2(BST). 

α
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α
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Upper Bounds on Sensitivity for GBST: Since the GBST algorithm uses a restricted set 
of ion-types  in its search for best strong tags, we let U(R)= U(G1( , )) be the 
upper bound on sensitivity with ion-type restriction. For the second phase, we define 
U(BST) = U(G2(BST)), the upper bound on sensitivity with best strong tag restriction.  

RΔ α
1S RΔ

Datasets Used:  To evaluate the performance of GBST vis-à-vis the upper bounds, we 
used spectra that are annotated with their corresponding peptides – the GPM-Amethyst 
dataset [5] (Q-star data with good resolution1) and the ISB dataset [10] (Ion-Trap data 
with low resolution). For each dataset, we selected subsets of spectra with annotated 

                                                 
1 Though these GPM spectra are high resolution spectra, they have been pre-processed using 
deconvolution [16], and so charge state determination using mono-isotopes is not possible. 
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peptides validated with an X-correlation score (Xcorr) greater than 2.0. The selected 
GPM dataset we use contains 2328 spectra, with 756, 874, 454, 205, and 37 each of 
charge 1,2,3,4, and 5, respectively, with an average of 46.5 peaks per spectrum.  
The selected ISB dataset contains 995 spectra, with 16, 489, and 490 of charge 1,2, and 
3, respectively, with an average of 144.9 peaks per spectrum.  
The Evaluation Results: We have computed these upper bounds on sensitivity for both 
the GPM and the ISB datasets and the results are shown in Figure 1, together with the 
actual sensitivity obtained by the GBST algorithm. The results in Figure 1 show that for 
GPM datasets, U(BST) is near to U(R), but the GBST results have sensitivities about 
10% less than U(BST). This indicates that the GBST has not been able to fully utilize the 
power of BST.  For the ISB datasets, even U(BST) is far from U(R). Therefore, it is 
natural the GBST algorithm can not perform well on ISB datasets. 
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(a)                                                                                       (b)  

Figure 1: The comparison of sensitivity results of GBST with theoretical upper bounds. U(R) and U(BST) on (a) 
GPM dataset, and (b) ISB datasets. 

4. An Improved Algorithm – GST-SPC 

In this paper, we present an improved algorithm, called GST-SPC, for de novo 
sequencing of multi-charge spectra, which improves the GBST algorithm in two ways: 
(a) by selecting a larger set of multi-charge strong tags, and second, and (b) by improving 
the sequencing algorithms for a given set of multi-charge strong tags. 
(a) Using a Larger Set of Strong Tags:  A straight-forward improvement of GBST [4] 
is to expand the set of strong tag under consideration. We do this as follows: (i) when 
searching for strong tags, we include multi-charge ions (using  instead of just ), 
and (ii) instead of choosing only one “best” strong tag from each component of the graph 
G1( , ), we allow a set of all multi-charge strong tags in each component of the 
graph G1( ,

α
αS α

1S

α
1S RΔ

α
αS RΔ ) to be chosen. Namely, a multi-charge strong tags of ion-type (z*, t, 

h) is a maximal path 〈v0,v1,v2,…,vr〉 in G1( ,{RΔ∈ α
αS RΔ }), where every vertex vi is of a 

(z*, t, h)-ion, in which t and h should be the same for all vertices, but z* can be different 
number from {1,…α}. We let MST denote this set. The algorithm for computing the MST 
is the almost identical to that for tag generation (a depth-first search) with slight 
modification to store the MST. Running the GBST algorithm with the MST (instead of 
the BST) improves the results slightly (the details not shown here). 
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Theoretically, the size of the MST may be exponential. However, in practice, our 
experiments show that the MST does not exhibit exponential growth from BST. For 
GPM datasets (average of about 46 peaks) the increase in the average number of strong 
tags is from 10 to about 50. For ISB datasets (average of 145 peaks) the increase is from 
15 to about 90. The average length of strong tags in MST is 4.65 amino acids for GPM 
datasets, and 2.26 for ISB datasets.  

We define U(MST) = U(G2(MST)) the theoretical upper bound on sensitivity with 
respect to the set MST of multi-charge strong tags. The increase from U(BST) to U(MST) 
is shown in Figure 2. From Figure 2, it is easy to see that the introduction of MST has 
pushed up the theoretical upper bounds for both datasets. For GPM dataset, the best 
sequencing results obtainable from MST is about 5% higher in accuracies than BST. We 
also note that U(MST) is very close to the U(R), the theoretical upper bounds with . 
For ISB datasets, the increase is more pronounced – partly because the ISB datasets have 
more peaks. The best sequencing results obtainable from MST is about 10%~60% higher 
in accuracies than BST, and with in 20% to the theoretical upper bounds. This shows a 
great potential for sequencing algorithms based on MST. 

RΔ
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(a)                                                                              (b) 

Figure 2. Comparing the theoretical upper bounds on sensitivity for MST and BST. Results are based on (a) 
GPM dataset, and (b) ISB datasets. 

 

(b) Optimal Shared Peaks Count:  While the GBST algorithm modified to use MST (in 
place of BST) is slightly better, there is still a gap in performance. This motivates us to 
formulate the problem of maximizing the shared peaks counts with respect to the 
computed set of multi-charge strong tags. The shared peak count (SPC) is a commonly 
used and fairly objective criterion for determining the “quality” of de novo peptide 
sequencing. We also show that we can solve this problem optimally in polynomial time. 

Suppose that we are given the set, say MST, of strong tags. Define a multi-charge 
strong tag path Q to be a path from v0 to vM given by Q = (q0 T1 q1 T2 q2 T3 q3 … qk-1 Tk 
qk) where each Tj is a strong tag in MST and each qj is a path of at most two amino acids, 
or mass difference that “links” the preceding tag to the succeeding tag in the usual head-
to-tail fashion. A strong tag path Q gives rise to a peptide sequence P(Q) obtained by 
interpreting the “gaps” in the path Q. A example of P(Q) is “[50]CGV[100]PK”. Given 
the peptide sequence P(Q), we can compute the shared peaks count of P(Q). Then our 
problem can be stated as the following: Among all the possible strong tag paths, we want 
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to find an optimal multi-charge strong tag path Q* that maximize the shared peak count 
in the peptide sequence P(Q*). 

Our solution to this problem is to form the graph G2(MST) defined in the same ways 
as the graph G2(BST). We first pre-compute the shared peaks count for each tag in MST. 
For each edge (u, v) connecting two tags Tu and Tv, we compute the path Q of length with 
at most two amino acids that locally maximizes that shared peak count of Q against 
experimental spectrum. Then we can compute the path with maximum shared peaks 
count in the graph G2(MST), which is a DAG. Additional processing has to be done if 
either end vertex is not connected to the first (or last) vertex in the path, or the sparse 
areas are not connectable – we connect this via mass difference. It is easy to see that this 
algorithm optimizes the shared peaks count among all peptide sequences obtained by 
extending the multi-charge strong tags in MST via connectivity 2. Next, we present an 
algorithm that produces provably better result. 
Improving the Spared Peaks Counts using H(MST):  We can further improve the 
shared peaks count if we increase the maximum connectivity d. However, this will cause 
the running time to grow exponentially due to the number of paths to be searched. We 
propose a graph H(MST), a superset of G2(MST) which is simple to define, and yet not 
too computationally expensive. In H(MST), we have an edge from the tail vertex u of Tu 
to the head vertex v of Tv if the mass difference (PRM(v)–PRM(u)) is in the range [57.02, 
186.08] Da, where 57.02 and 186.08 are the minimum and maximum mass of an amino 
acid, respectively. In addition, we can also pre-compute the path from u to v that locally 
maximizes the shared peak count. For this sub-problem, we have fast procedure that does 
this efficiently. The length of the computed path from u to v varies depending on the 
mass difference. The rest of the algorithm is to interpret edges in H(MST). 
Algorithm GST-SPC:  Finally, our GST-SPC algorithm uses the multi-charge strong tag 
set MST and the graph H(MST) to compute a peptide with optimal shared peaks count. 

5. Performance Evaluation of Algorithm GST-SPC 

We have compared the performance of our algorithms with two other algorithms with 
freely available implementation, Lutefisk [15] and PepNovo [8]. For specific spectrum 
and algorithm, the sequencing results with best scores are compared. To compare 
performance of GST-SPC with the GBST [4], Lutefisk [15], and PepNovo [8], we use 
the following accuracy measures: 

Sensitivity = # correct / | ρ | Tag-Sensitivity = # tag-correct / | ρ | 
Specificity = # correct / | P | Tag-Specificity = # tag-correct / | P | 

where #correct is the “number of correctly sequenced amino acids” and #tag-correct is 
“the sum of lengths of correctly sequenced tags (of length > 1)”. The number of correctly 
sequence amino acids is computed (approximated) as the longest common subsequence 
(lcs) of the correct peptide sequence ρ and the sequencing result P.  The sensitivity 
indicates the quality of the sequence with respect to the correct peptide sequence and a 
high sensitivity means that the algorithm recovers a large portion of the correct peptide. 
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The tag-sensitivity accuracy takes into consideration of the continuity of the correctly 
sequenced amino acids. For a fairer comparison with algorithms like PepNovo that only 
outputs the highest scoring tags (subsequences) we also use specificity and tag-
specificity measures, which measures how much of the results are correct. 

The comparison of the different algorithms based on the four accuracy measures is 
summarized in Figure 3 (for the GPM datasets) and Figure 4 (for the ISB datasets). 
Overall, the results obtained by our GST-SPC algorithm using the shared peaks count 
scoring functions are promising. On the GPM datasets, the GST-SPC outperforms the 
other algorithms. For example, it has higher sensitivity than Lutefisk (by 10% for charge 
≥ 2) and PepNovo (by about 10%) in sensitivity and tag-sensitivity. It has comparable 
specificity and tag-specificity PepNovo for charge 1 and 2. It is constantly better than 
GBST and Lutefisk (for charge > 1) on all accuracy measures.  
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Specificity Comparisons on GPM dataset
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Tag-Specificity Comparisons on GPM dataset
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(c)                                                                                                (d) 

Figure 3. Comparison of different algorithms on GPM dataset – based on (a) sensitivity, (b) tag-
sensitivity, (c) specificity and (d) tag-specificity. PepNovo only has results for charge 1 and 2. 

 
For the ISB dataset, the results shows that the ranking as follows: (PepNovo, GST-

SPC, GBST, Lutefisk) for all the accuracy measures. The ISB datasets contains many 
noises and PepNovo has a sophisticated scoring function that may account for its best 
performance, especially on datasets with charge 1. For spectra with charge 2, the 
difference in performance is not as high. However, since PepNovo do not (as yet) handle 
spectra with charge greater than 2, there was no way to compare results for charge 3.  
That comparison would be interesting given the apparent trend exhibited in the results. 

We also compare the algorithm with respected to the number of completely correct 
identified peptide sequences. Our results (not shown here due to space limitations) show 
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that the GST-SPC algorithm out-performs Lutefisk, but is slightly worse than PepNovo. 
We have also listed (in Table 1) a few sample “good” interpretations of the GST-SPC 
algorithm, on which Lutefisk does not provide good results. It is interesting to note that 
GST-SPC algorithm can identify more correct amino acids – illustrating the power of 
using multi-charge strong tags. 
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Specificity Comparisons on ISB dataset

0.0

0.2

0.4

0.6

0.8

1 2 3 (Charge α)

(A
cc

ur
ac

y)

GST-SPC
GBST
Lutefisk
PepNovo

 

Tag-Specificity Comparisons on ISB dataset

0.0

0.2

0.4

0.6

0.8

1 2 3 (Charge α)

(A
cc

ur
ac

y)

GST-SPC
GBST
Lutefisk
PepNovo

 
(c)                                                                                              (d) 

Figure 4. Comparison of different algorithms on ISB dataset – based on (a) sensitivity, (b) tag-
sensitivity, (c) specificity and (d) tag-specificity. PepNovo only has results for charge 1 and 2. 
 

Table 1: The sequencing results of Lutefisk, PepNovo and GST-SPC algorithm on some spectra. The accurate 
subsequences are labeled in bold and red. “-” means there is no result. 
M/Z Z Real Lutefisk PepNovo GST-SPC 
1219.8 2 VAQLEQVYIR [170.1]ELEKVYLR GLQLEQVYLR AVEIEQVYIR 
1397.9 2 ELEEIVQPIISK [242.1]EELAVG[LP]LSK EELVKPLLSK EIEEIA[101.0]QHISK 
1644.9 2 PAAPAAPAPAEKTPVKK [AP]AAPA[HS]AP[198.1]PAAA[CS] AAPADFEAMTNLPK APAAPAPA[56.1]APAMTKVPK 
1838.8 3 SSYSLSGWYENIYIR [172.1]L[303.2][243.1][NP][MT]LYLR - SSIYI[27.3]IIEPCEIYIR 
2000.2 4 PAAPAAPAPAEKTPVKKKAR [323.1]RPA[AP]EKTN[LP]K[199.1]R - APAAPAMWNYNHKPYIR 
1936.1 4 SIRVTQKSYKVSTSGPR [199.1][PW][259.1]L[250.1]KVSTSGPR - VVISVTQK[63.8]WKVSTSGPR 
2101.1 4 KIETRDGKLVSESSDVLPK [243.1]LVR[TY]YTSESSAE[PV]R - IKQHTHECYSESSDVIPK 
2359.0 5 CDKDLDTLSGYAMCLPNLTR - - AFCDYA[417.2]RNQKIRCPTR 

6. Conclusion 

In this paper, we propose a novel algorithm, GST-SPC for de novo sequencing of multi-
charge MS/MS spectra.  Our algorithm is based on the idea of using multi-charge strong 
tags to assist in reducing the size of the problem space to be searched. For a fixed set of 
strong tags, the GST-SPC algorithm optimizes the shared peaks count among all possible 
augmentations of the tags to form peptide sequences. The experimental results on ISB 
and GPM datasets show that GST-SPC is better than the GBST algorithm and Lutefisk.  
Against PepNovo, it performs better on GPM datasets and is worse on the ISB datasets. 
We have also showed theoretical upper bound results for our algorithms.  
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However, it is interesting to note that none of these algorithms is close to the 
theoretical upper bound of the sensitivity (based on restriction) shown in Figure 2. 
This indicates that there is hope that there can be an algorithm based on MST that 
outperforms all of these algorithms. Since there is still room for algorithms based such 
ideas to improve, the idea itself is very promising.  Other research directions are also 
possible – we are currently looking at more flexible method to connect strong tags rather 
than the head-to-tail manner, for example; and statistical significance (rather than SPC) 
of the strong tags  and peptide sequencing results are also important for us to investigate. 
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