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Inferring the structure of gene regulatory networks from gene expression data has attracted a growing
interest during the last years. Several machine learning related methods, such as Bayesian networks,
have been proposed to deal with this challenging problem. However, in many cases, network recon-
structions purely based on gene expression data not lead to satisfactory results when comparing the
obtained topology against a validation network. Therefore, in this paper we propose an "inverse" ap-
proach: Starting from a priori specified network topologies, we identify those parts of the network
which are relevant for the gene expression data at hand. For this purpose, we employ linear ridge re-
gression to predict the expression level of a given gene from its relevant regulators with high reliability.
Calculated statistical significances of the resulting network topologies reveal that slight modifications
of the pruned regulatory network enable an additional substantial improvement.

1. Introduction

Transcriptional datasets provide valuable insights into specific cellular processes under
various conditions. To control these processes the cell utilizes regulatory mechanisms,
whereas for each specific process only a small fraction of the complete regulatory network
is affected. Therefore, a gene regulatory network (GRN) is a large graph covering regula-
tory mechanisms for various stimuli. Yet for a specific observation only a small fraction of
the GRN can be inferred and linked to the respective transcriptional data. Thus, the fixed
topological structure of a GRN can be detached from the dynamic structure comprising a
subset of the fixed topological structure associated with a quantitative observation.

Today, modeling of GRNs is guided by a rich flow of experimental data. The stream
is still widened by an increasing pool of measurement techniques including mRNA mi-
croarray technology'?, chromatin immunoprecipitation (ChIP)!, quantitative RT-PCR7 and
microarray-based immunoassays'3. Despite of all this information, detailed knowledge re-
garding the topology of network models is still almost exclusively collected by biologists.
They collect and integrate data, expand and refine their models and finally validate them.
For our modeling efforts, we will use this qualitative knowledge provided by the biolog-
ical observations to compile a priori topologies of the GRN. Within such topologies, we
search for a subset of connections which is in good accordance to the transcriptional data
and therefore prune the topological network using a reverse engineering approach.

*These authors contributed equally to this work.
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Several of such reverse engineering approaches for GRNs have emerged during the
last years. They include analytical methods such as Boolean networks'2, (non)-linear
networks23:21, S-Systems?® and differential equations?, but also machine learning meth-
ods such as decision trees'® and Bayesian networks'?. Most of these approaches have
been applied solely to transcriptional data, thereby neglecting the a priori information
available. Thus, they implicitly assume that the topological network can be connected
arbitrarily, which leads to a huge number of potential regulatory mechanisms. However,
some inference methods previously published consider a priori information. For instance
Someren et al. compiled a validation network based on a co-citation approach??, others
have restricted the regulators to transcription factors'®, and, as in this work, the putative
cis-regulatory elements have been employed as initial network structure!6.

Despite the use of a priori information, a set of transcriptional response measurements
has to be available in order to reconstruct GRNs. Given this data, one of the above men-
tioned reconstruction methods can be employed to untangle the underlying topological
structure of the interaction network. One of the principle problems thereby is the ambigu-
ity inherent in reconstructing the GRN from given expression data, which is due to the small
sampling rate along with the high noise level of the measurements. Even if the total number
of microarray measurements is growing at a tremendous rate, the number of measurements
utilizable for a specific observation is still limited. The bottom line is, that typical GRN
inference methods produce topologies, which contain a certain fraction of false or unverifi-
able interactions. This fraction of spurious edges has to be traded off against the fraction of
correctly identified regulatory dependencies. Husmeier et al 1° systematically investigate
this trade-off for a Bayesian network reconstruction of an artificially created network.

This motivated us to take an "inverse" approach to the usual GRN reconstruction meth-
ods: based on a given network topology from literature or by putative cis-regulatory ele-
ments (which may also contain wrong interactions), our approach is first, to identify the
part of this network, which is relevant for the experimental data and second, to eventually
modify this "pruned"” network modestly to better fit the data. The basic assumption behind
our approach is, that today, in many cases, a good starting network topology, which sub-
sequently has to be refined in order to fit the experimental measurements, can be obtained
from public databases or by the rich biological literature. In this work, the refinement is
achieved through a machine learning based approach using linear ridge regression®, which
resembles the framework proposed by Soinov et al.'®. In favor of our approach, we are
able to show on publicly available Yeast genome datasets, that the prediction accuracy of
gene expression levels is significantly higher in our fitted topology than in the original or a
random network.

The remainder of this paper is organized as follows: in the next section, we introduce
the datasets used and explain our approach in detail. In Section 3 we present and discuss
the results obtained on our investigated datasets. Finally, in Section 4 the conclusions are
drawn.
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2. Materialsand Methods
2.1. Data
2.1.1. Budding Yeast Cell Cycle

The biological model used for this research is the budding yeast cell cycle. This model
displays a small subset of the whole network, where it is known that the chosen genes play
an important role in the respective processes. The dataset was taken from Spellman et al.™®
and Cho et al.* , who measured the cell cycle of the budding yeast. The budding yeast
cell cycle is known at a high level of detail. Spellman et al. and Cho et al. measured
the progression of the cell cycle with different synchronization techniques. Overall they
provided four records of time series measurements, which can be used for modeling pur-
poses. The sampling number of these datasets ranges from 14 to 24, the samples are taken
at equidistant time-steps for each series. However the time-steps are not equal for the dif-
ferent series, they range from 7 to 30 minutes. In this study we use the « factor, cdc 15 and
cdc 28 arrest, as well as the elutriation time series. This results in 73 time point measure-
ments altogether. These measurements have been taken on microarrays®, each consisting
of 6178 data genes. We imputed missing values in the gene expression measurements by
the SVD method described®.

2.1.2. Chen Dataset

Of the above described 6178 genes we chose a subset according to Chen et al.? , who used
a set of differential equations to define the topology of the GRN. In addition to the interac-
tions provided by the differential equations we searched TRANSFAC?24, Entrez Gene'* and
the Saccharomyces Genome Database (SGD'!) for known dependencies between a pair of
genes.

The entire network contains 56 interactions and is depicted in Figure 1. It will serve as
our first a priori network for the reconstruction.

2.1.3. Cis-Regulatory Elements

The major control in transcriptional gene regulation is mediated by transcription factors
(TFs) that bind to the promotor region of a gene. We used these connections between
TFs and genes to construct the second validation network. In this network, the inferred
genes are still restricted to the genes from the Chen et al. dataset, whereas the TFs are
not. To establish these TF-gene connections, we extracted the cis-regulatory elements from
the SCPD (The Promoter Database of Saccharomyces cerevisiae) database. This database
was developed by Zhang et al.2> and contains experimentally mapped TF binding sites as
primary data entries and predefined putative regulatory elements using matrix and consen-
sus methods. To extract the binding sites, we restricted the search to the 500 bp upstream
sequence and searched for the consensus patterns contained.
The entire network contains 145 interactions and is depicted in Table 1.
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Figure 1. Literature network for the Chen data: An arrow a — b indicates that b is regulated by a. Edges with
no arrows indicate a mutual influence « — band b — a.

Table 1. Network composed by cis-regulatory elements.

Gene Regulators

Cdcl4  «  GCN4, TBP, INO1, PHO4, ABF1, Swi5, STE12

Cdcl5 <«  GCRL, BAS2, ABF1, GCN4, ADRL, MSE, YOX1, YHP1

Cdc20  «+  YHPL, GCR1, RAP1, MSE, GCN4, STE12, YOX1, Swi5

Cdc6 < GCR1, GCN4, MCB, Mcm1, Swis, BAS2, TBP

Cdhl <  MSE, GCR1, ADR1, GCN4, UASPHR, REB1, MSE

Clb2 «—  AP-1, GCN4, GCR1, BAS2, GCN4, ADR1, TBP

Clb5 < ACE2, Swis, Mcm1, GCRL, GCN4, YOX1, YHP1, MSE, BAS2, AP-1

Cln2 «—  STEI12, YOX1, MSE, TBP, GCN4, BAS2, YHP1

Espl < GCN4,PHO4, ABF1, YHP1, GCR1, BAS2, TBP, YOX1, RAP1, TBP

Ltel < GCN4,BAS2, ACE2, Swi5, TBP, ADR1, YOX1, SCB, YHP1, MCB, MATalpha2
Mad2 <  GCN4, TBP, Swi5

Mcml <«  BAS2, GCN4, YHPL, YOX1, Swi5

Netl < YHP1, GCN4, YOX1, ABF1, REB1, STE12

Pdsl <  CPF1, PHO4, GCN4, TBP, YHP1, GCR1, MATalpha2, MSE, MCB, BAS2, YOX1
Sicl < GCN4, ABF1, BAS2, ADR1, Swi5, MCB, TBP, GCN4, MATalpha2, SCB

Swi5 < GCN4, BAS2, Mcm1, GCR1, YHP1, YOX1, ADR1, PHO4, MATalpha2, ATF
Teml <  GCN4, ADRL, Swi5, GCR1, AP-1, YHPL, SCB, RAP1, Mcm1, YOX1, TBP
APC1 <  ADR1, GCRL, MIGL, MSE, YHP1, YOX1, Swi5, GCN4

2.2. Regression Based Network Refinement

Given one of the above described literature or cis-regulatory networks our goal is to fit their
topology to our datasets. This is done in a framework resembling that proposed by Soinov
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et al.'®: For each gene g we know a set of possible regulators Ry, = {r1,...,7,,}. From
these regulators we would like to select the subset R, of R,, which allows the highest
prediction performance of the expression level of g. Thereby, predicting the expression
level of g can be either done within one time step ¢, or from time step ¢ — 1 to ¢. We
consider both prediction tasks and in the end merge the obtained regulator subsets R; and
Rg to the final subseth. We use linear ridge regression as the prediction machinery with
ridge constant 7 = 107°.

To prune the "irrelevant” regulators for g, we adopt the RFE algorithm originally pro-
posed for SVM feature selection®: In linear ridge regression one estimates a hyperplane
f:R™ — R, f(x) = (w,x) + b, where w is the normal vector of the hyperplane and
b a bias term. The components of the normal vector w can be understood as weights for
the individual features in x. Therefore, we can prune the regulator, for which the com-
ponent in w is the smallest. Then the regression function is re-estimated and the whole
procedure iterated until all regulators are removed. Overall, we receive a ranking of all
regulators depending on their time of removal from the regulator set R,. The optimal num-
ber of regulators in our case is determined via 5-fold cross-validation, where we use the
mean squared correlation between predicted and true gene expression values to measure
the prediction performance.

After pruning the original set of regulators we allow to add one extra regulator, which
was not in R, before, if this further improves the 5-fold cross-validated mean squared
correlation. This slight modification of the pruned network takes into account that there
might exist interactions, which are not covered by the apriori provided network structure
and otherwise could not be detected. Nevertheless, the selected subset Ré (1 = 1,2) of
regulators, which typically consists only of a few genes, is completely rejected, if the mean
5-fold cross-validated correlation between the true and the predicted expression levels of
g is below 60%. This ensures that only interactions with a high statistical confidence are
inserted into the network.

As a last step the final regulator subset R, = R! U R2 is evaluated with respect to the
two prediction tasks described in the beginning. This is done via 5-fold cross-validation,
measuring the mean squared correlation between the predicted and the true expression level
of g.

2.3. Comparison Scheme

The bottom line from the above described approach is that for all genes in the inferred

network we obtain an estimate, how well their expression level can be predicted from their

putative regulators. This can be viewed as a measure for the reliability of the network.

Which allows us to compare different network topologies with respect to this measure

and to compute statistical significances. More specifically, we are interested, how well a
network computed with the method described in the last subsection performs relative to the

following reference topologies:

o the original literature and cis-regulatory network
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e a random network with the same number of connections as the literature network
e a fully connected network

Comparing the prediction performances obtained from these network topologies to our
refined network allows the computation of p-values, via Wilcoxon’s signed rank test. In
the following section we describe the results we achieved this way for the two datasets
investigated in this paper.

3. Results
3.1. Chen Dataset

Our method from subsection 2.2 yielded 6 genes with a nonempty regulator set. It is de-
picted in Figure 2a). For comparison reasons we also computed the network, which was
obtained by just pruning the literature network and not introducing any further interactions.
It had only 5 genes with a nonempty regulator set and is shown in Figure 2b). It is worth
mentioning that both networks can differ in more than one regulator per gene: If in the
modification step an additional regulator is added to the pruned regulator set, the predic-
tion performance of the prediction model can increase such that it exceeds the minimum
prescribed threshold of 60% mean squared correlation between predicted and true gene ex-
pression values. Hence, the whole regulator set is added to the pruned network at once in
this case.

In Table 2 we compare the resulting average 5-fold cross-validated mean squared cor-
relations for these genes with those obtained from the literature, the random and the fully
connected network (see last section). As shown, the pruned network with additional modi-
fications yielded a high significant improvement compared to the random and the literature
network. In contrast, the pruned network without additional modifications had a much
worse p-value compared to the random network and was not significantly better than the
original literature network. A direct comparison of the pruned networks with and with-
out additional modifications reveals a high statistical significant difference between both
(p-value = 0.0059).

Table 2. 5-fold cross-validated correlations (r) with true expression levels for
genes with nonempty regulator sets (Chen dataset). For the inferred networks
(pruned+modification, pruned only) the p-values are calculated as described in sub-

section 2.3.
Topology rtstd. err. p-val. lit. p-val. rand.  p-val. full
pruned+mod. 72.07+1.94 9.76-10"4 0.0024 0.4697
pruned only 65.74 + 3.77 0.1953 0.0645 0.2324
literature 42.52 + 2.76
random 39.58 4+ 2.55

full 51.87 £ 2.83
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(a) with pruning only (b) with pruning and modification

Figure 2. Inferred networks for the Chen data.

Table 3. Network inferred by pruning the cis-regulatory elements.

Gene Regulators

Cdcl4 — Swi5, ABF1, STE12, PHO4

Cdc15 — -

Cdc20 — GCN4, Swi5, GCR1, MSE, YOX1, YHP1

Cdc6 — -

Cdhl — UASPHR

Clb2 — =

ClIb5 — GCN4, GCR1, BAS2, MSE, YOX1, Mcm1, AP-1, ACE2
Cin2 — GCN4, TBP, STE12, BAS2, MSE, YOX1, YHP1
Espl — —

Ltel —  —

Mad?2 —  —

Mcm1 — —

Netl — —

Pds1 — PHO4, GCR1, BAS2, YOX1, YHP1, MCB

Sicl —  —

Swi5 — GCN4, BAS2, ADR1, YOX1, YHP1

Teml «—  TBP, Swi5, SCB

APC1 «—  ADR], Swi5, GCR1

3.2. Cis-Regulatory Elements

Our method from subsection 2.2 on this dataset yielded 11 genes with a nonempty regulator
set (Table 4). Again, we also computed the network, which was obtained by just pruning
the initial network network without introducing any further interactions. It had only 9
genes with a nonempty regulator set and is shown in Table 3. Like in the last subsection,
in Table 4 we compared the resulting average 5-fold cross-validated mean squared correla-
tions for these genes with those obtained from the cis-regulatory, the random and the fully
connected network. As seen, the pruned network with additional modifications yielded a
high significant improvement compared to the random, the cis-regulatory network and the
full network. The pruned network without additional modifications in all cases had much
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Table 4. Network inferred by pruning the cis-regulatory elements network
and some allowed subsequent modifications. Regulators introduced addi-
tionally to the pruned network are marked bold. Regulators, which were not
in the a priori network are written italic as well.

Gene Regulators

Cdcl4 — TBP, PHO4, ABF1, Swi5, STE12, RAP1

Cdcl5 «— —

Cdc20 — GCN4, APC1, Swi5, GCR1, MSE, YOX1, YHP1

Cdc6 — —

Cdhl — UASPHR, Sicl

Clb2 — GCR1, BAS2, ADR1, REB1

CIb5 — GCN4, GCR1, BAS2, MSE, YOX1, Cdc6, Mcm1, AP-1, ACE2
CIn2 — GCN4, TBP, STE12, BAS2, MSE, YOX1, YHP1, AP-1
Espl — =

Ltel — —

Mad?2 — -

Mcm1 — —

Netl — —

Pds1 — PHO4, GCR1, BAS2, YOX1, YHP1, MCB, Teml

Sicl — GCN4, TBP, ABF1, Swi5, BAS2, Cdc6, SCB, M ATalpha2
Swi5 — GCN4, BAS2, ADR1, YOX1, YHP1, ACE2

Teml — TBP, Swi5, GCR1, AP-1, SCB, Sicl

APC1 < ADR1, Swi5, GCR1, INO1, MSE, MIG1

worse p-values, especially compared to the fully connected network. A direct comparison
of the pruned networks with and without additional modifications reveals a high statistical
significant difference between both (p-value = 0.0036).

4. Conclusion

We introduced a method to refine a GRN topology obtained from the literature or from
public databases such that it fits a given gene expression dataset. Thereby our criterion
was the estimated generalization performance achieved by a linear ridge regression model,
which was trained to predict the expression level of each gene in the network from the
expression levels of its regulators. An algorithm was developed to find a minimal regulator
subset for each gene, which allows the highest prediction rate. Thereby slight modifications
of the pruned literature network were allowed in order to take into account the possible
incompleteness or defectiveness of the original network topology.

We performed evaluations of our method on publicly available datasets from Yeast
genome and compared our approach against the original a priori network, a random net-
work with the same number of interactions as the a priori network and a fully connected
network. We were able to show that our inferred networks on both datasets could signif-
icantly improve on the original, the random, and in case of the second dataset, also on
the fully connected dataset. Furthermore, an interesting finding was that allowing slight
modifications of the pruned a priori network in all cases lead to much better p-values than
without allowing these changes.

Altogether we think that a main contribution of this work was first, the introduction of
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a network refinement method from a given starting topology, and second the possibility to
compute statistical significances for the inferred network, which to our knowledge has not
been possible so far.

Table 5. 5-fold cross-validated correlations (r) with true expression levels for genes
with nonempty regulator set (cisregulatory elements). For the inferred networks
(pruned+modification, pruned only) the p-values are calculated as described in subsec-

tion 2.3.

Topology rtstd. err. p-val. cisreg.  p-val. rand. p-val. full
pruned+mod. 73.85+2.71 5.96-107% 4.61-10"% 2.14.10"%
pruned only 68.3 +4.09 0.0181 3.86-10"4 0.0312
cis-reg. 52.04 + 3.32
random 45.13 +£2.84
full 50.87 £ 2.81
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