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We present a new approach to segmenting multiple time series by analyzing the dynamics
of cluster rearrangement around putative segment boundaries. By directly minimizing
information-theoretic measures of segmentation quality derived from Kullback-Leibler
(KL) divergences, our formulation reveals clusters of genes along with a segmentation

such that clusters show concerted behavior within segments but exhibit significant re-
grouping across segmentation boundaries. This approach finds application in distilling
large numbers of gene expression profiles into temporal relationships underlying biolog-

ical processes. The results of the segmentation algorithm can be summarized as Gantt
charts revealing temporal dependencies in the ordering of key biological processes. Ap-
plications to the yeast metabolic cycle and the yeast cell cycle are described.

Keywords: Time series segmentation, clustering, KL-divergence, temporal regulation.

1. Introduction

Time course analysis has become an important tool for the study of developmental,

disease progression, and cyclical biological processes, e.g., the cell cycle,1 metabolic

cycle,2 and even entire life cycles. Recent research efforts have considered using

static measurements to “fill in the gaps” in the time series data,3 quantifying timing

differences in gene expression,4 and reconstructing regulatory relationships.5

One of the attractions of time series analysis is its promise to reveal temporal

relationships underlying biological processes:6 which process occurs before which

other, and what are the “checkpoints” that must be satisfied (and when). Although

similar analysis can also be conducted by tracking individual genes whose function

is known, we desire to automatically mine, in an unsupervised manner, temporal

relationships involving groups of genes, which are not yet characterized a priori. In

particular, given multiple gene expression profiles over a time course, we desire to

identify both segments of the time course where groups show concerted behavior

and boundaries between segments where there is significant functional “regrouping”

of genes. We cast this problem as a form of time series segmentation where the
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segmentation criterion is driven by measures over cluster dynamics.

It is important to contrast our goals with prior work. Typical published results

on time series segmentation7 are focused on segmenting a single time series with ho-

mogeneity assumptions on successive time points. We are focused on simultaneously

segmenting multiple time series by modeling each segment as a heterogeneous mix

of multiple clusters which can themselves be redefined across segments. Our work

is hence directly targeted to mining datasets involving thousands of genes where

there are complex inter-relationships and reorganizations underlying the dataset.

As an example, consider the yeast metabolic cycle (YMC), using the dataset of
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Fig. 1. Preview of results from the segments in the Yeast metabolic cycle.

Tu et al.2 The YMC is a carefully coordinated mechanism between a reductive

charging (R/C) phase involving non-respiratory metabolism (glycolysis, fatty acid

oxidation) and protein degradation, followed by oxidative metabolism (Ox), where

respiratory processes are used to generate adenosine triphosphate (ATP), culminat-

ing in reductive metabolism (R/B), characterized by a decrease in oxygen uptake

and emphasis on DNA replication, mitochondrial biogenesis, and cell division. Dif-

ferent genes are central to each of these phases. Tu et al. analyzed this 36-pt time

course—spanning approximately three cycles (R/B phase is not sampled in the

last cycle)—by tracking ‘sentinel’ genes showing periodic behavior across the time

course. We analyzed this dataset of 3602 gene expression profiles over a 15 hour
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period using our segmentation algorithm and arrived at the same segmentation cor-

responding to three cycles, one of which is shown in Fig. 1. The top row depicts

the prototypes of the clusters in the R/C, Ox, and R/B phases respectively. The

second row shows how the genes corresponding to each phase are coming together

in a particular cluster within a segment (intersection of the highlighted row and

column) while the genes of other phases are spread apart across other clusters. This

regrouping of the clusters of genes across the segments is captured by the contin-

gency tables in the third row. Observe that the contingency tables in the second row

involve significant enrichments whereas the tables in the third row approximate a

uniform distribution. These time-bounded enrichments for the clusters in each seg-

ment identify the biological processes with modulated activities as shown in the

Gantt chart in the bottom row of Fig. 1. We reiterate that the time point bound-

aries, the groups of genes important in each segment, and the functions enriched in

them, are inferred automatically. No explicit modeling of periodicity or other prior

biological knowledge has been imparted to the segmentation algorithm.

2. Problem Formulation

We are given multiple l-vectors of measurements G = {g1,g2, . . . ,gν}, where each

gi is a time series over T = (t1, t2, . . . , tl). The problem of segmentation is to express

T as a sequence of segments or windows: (wta

t1
, wtb

ta+1
, . . . , wtl

tk
) where each window

wte

ts
, ts ≤ te, is a sequence of consecutive time points beginning at (and inclusive

of) time point ts and ending at (and inclusive of) time point te.

We first describe a way to evaluate a given segmentation before presenting an

algorithm for identifying segmentations. We begin by studying the case of just two

adjacent windows: wtb

ta
and wtc

tb+1
. Given two clusterings of genes, one for each of the

windows, our evaluation criterion requires that these two sets of clusters are highly

dissimilar, i.e., genes clustered together in some cluster of wtb

ta
move out of their

clusters and are clustered together with different genes in wtc

tb+1
. For instance, given

a dataset with 18 genes and 3 clusters in either window, the evaluation criterion

prefers contingency table (a) below over tables (b) and (c).

2 2 2

2 2 2

2 2 2

6 0 0

0 6 0

0 0 6

0 6 0

6 0 0

0 0 6

(a) (b) (c)

Here the rows refer to clusters of wtb

ta
and the columns refer to clusters of wtc

tb+1
.

We achieve this by enforcing that the (projected) row-wise and column-wise dis-

tributions from the contingency table resemble a uniform distribution. Formally,

given two windows wtb

ta
and wtc

tb+1
, which have been clustered into r and c clusters

(respectively), we define the r × c contingency table over the clusterings. Entry nij

in the (i, j)th cell of the table represents the overlap between the genes clustered

together in cluster i of wtb

ta
and in cluster j of wtc

tb+1
. The sizes of the clusters in wtb

ta
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are given by the column-wise sums across each row: ni. =
∑

j nij , while the sizes

of clusters in wtc

tb+1
are given by row-wise sums down each column: n.j =

∑

i nij .

Using these, we define (r + c) probability distributions, one for each row and one

for each column. The distribution corresponding to row i, Ri, takes values from the

column indices, i.e., 1, . . . , c, with value j (1 ≤ j ≤ c) occurring with probability
nij

ni.
. Similarly, the column distribution for column j, Cj , takes values from the row

indices, i.e., 1, . . . , r, with value i (1 ≤ i ≤ r) occurring with probability
nij

n.j
. We

capture the deviation of these row-wise and column-wise distributions w.r.t. the

uniform distribution as

F =
1

r

r
∑

i=1

DKL(Ri||U(
1

c
)) +

1

c

c
∑

j=1

DKL(Cj ||U(
1

r
)), (1)

where, DKL(p||q) =
∑

x p(x) log2
p(x)
q(x) is the Kullback-Leibler (KL) divergence be-

tween two probability distributions p(x) and q(x) , and U(·) denotes the uniform

distribution whose argument is the probability of any outcome. The optimization

problem is then to minimize F . This function can also be interpreted in terms of

entropies of the row-wise and column-wise distributions, and also in terms of condi-

tional entropies of the clusters in windows wtb

ta
and wtc

tb+1
. Also, F has connections

to the principle of minimum discrimination information (MDI).8 The MDI princi-

ple states that if q is the assumed or true distribution, the estimated distribution

p must be chosen such that DKL(p||q) is minimized. In our case, q is the uniform

distribution desired and p is the distribution estimated from observed data. Ob-

serve that the combinations of the r row-wise KL-divergences and c column-wise

KL-divergences are averaged to form F . This is to mitigate the effect of lopsided

contingency tables (r ≫ c or c ≫ r) wherein it is possible to optimize F by focus-

ing on the “longer” dimension without really ensuring that the other dimension’s

projections are close to uniform. Finally, note that Eq. (1) can be readily extended

to the case where we have more than two segments.

Minimizing F will yield row-wise and column-wise distribution estimates that

are close to the respective uniform distributions and, hence, result in independent

clusterings across the neighboring windows. Maximizing F leads to highly depen-

dent clusters across the windows which is the same as associative clustering de-

scribed by Kaski et al.9 However, for our current problem of time series segmenta-

tion, we are concerned with only minimizing F to obtain independent clusters.

3. Clustering across windows

We now turn our attention to the clustering algorithm that must balance two con-

flicting criteria: namely, the clusters across neighboring windows must be indepen-

dent and, yet the clusters must exhibit concerted behavior within a window. In

typical clustering algorithms, each cluster has a prototype and the data vectors are

assigned to the nearest cluster based on some distance measure from these proto-

types. The prototypes are iteratively improved to find the best possible clusters.
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Again, we develop our notation for two adjacent windows and the extension

to greater numbers of windows is straightforward. Given a gene vector gk, let its

projection onto the ‘left’ window wtb

ta
be referred to as xk, and its projection onto

the ‘right’ window wtc

tb+1
be referred to as yk. Recall that sets of such projections

are clustered separately such that the clusters are maximally dissimilar. Let r and

c be the number of clusters for x and y vectors, which results in a r× c contingency

table. Let m
(x)
i be the prototype vector for the ith cluster of the x vectors. The

assignment of a data vector to the clusters is given by the probability distribution

V(xk) = {Vi(xk)}, where
∑r

i=1 Vi(xk) = 1. The probabilities Vi(xk) are the cluster

membership indicator variables, i.e., the probability that data vector k is assigned to

cluster i. Similar cluster prototypes m
(y)
j , distributions V(yk), and cluster indicator

variables Vj(yk) are defined for y vectors as well. Then the contingency table counts

can be calculated as nij =
∑

k Vi(xk)Vj(yk). Assigning a data vector to the nearest

cluster with a probability of one and calculating nij renders the objective function

F in Eq. (1) nondifferentiable at certain points, as a result of which we cannot

leverage classical numerical optimization algorithms to minimize F . To avoid this

problem, cluster indicator variables are typically parametrized as a continuously

differentiable function that assigns each data vector to its nearest cluster with a

probability close to one and to the other clusters with a probability close to zero,

i.e. Vi(xk), Vj(yk) ∈ (0, 1). For this purpose, we define

γ(i,i′)(xk) =
||xk − m

(x)
i′ ||2 − ||xk − m

(x)
i ||2

D
, 1 ≤ i, i′ ≤ r, (2)

where, D = max
k,k′

||xk − xk′ ||2, 1 ≤ k, k′ ≤ ν is the pointset diameter. A well known

approximation to min
i′

γ(i,i′)(xk) is the Kreisselmeier-Steinhauser (KS) envelope

function10 given by

KSi(xk) =
−1

ρ
ln

[

r
∑

i′=1

exp(−ρ γ(i,i′)(xk))
]

,

where ρ ≫ 0. The KS function is a smooth function that is infinitely differentiable.

Using this function the cluster membership indicators are redefined as

Vi(xk) = Z(x)−1 exp
[

ρKSi(xk)
]

,

where Z(x) is a normalizing function such that
∑r

i=1 Vi(xk) = 1. The cluster mem-

bership indicators for the “right” window, Vj(yk), are also smoothed similarly. The

membership probability of a vector to a cluster is assigned relative to its distance

from all the other clusters as captured by the function γ in Eq. (2). This approach

tracks the membership probabilities better than using individual Gaussians for each

cluster as suggested by Kaski ⁀et al9.

Minimizing the function F in Eq. (1) should ideally yield clusters that are in-

dependent across windows and local within each window. However, using smooth

cluster prototypes gives rise to an alternative minimum solution where each data
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vector is assigned with uniform probability to every cluster. Recall the contingency

table example from Sec. 2; each of the 18 genes can be assigned to the three row

clusters (and three column clusters) with probability [1/3, 1/3, 1/3] and the esti-

mate of the count matrix from these soft counts would still be uniform in each cell

(
∑

k Vi(xk)Vj(yk) = 2). To avoid degenerate solutions such as these, we require

maximum deviation of each data vector’s cluster membership probabilities (Vi(xk)

and Vj(yk)) from the uniform distribution over the number of clusters. This leads

to the regularized objective function

F =
λ

r

r
∑

i=1

DKL(Ri||U(
1

c
)) +

λ

c

c
∑

j=1

DKL(Cj ||U(
1

r
))

−
1

ν

ν
∑

k=1

DKL(V(xk)||U(
1

r
)) −

1

ν

ν
∑

k=1

DKL(V(yk)||U(
1

c
)),

(3)

where λ is the weight, set to a value greater than 1, gives more emphasis to min-

imizing the row and column wise distributions. This also enforces equal cluster

sizes. Optimization of F is performed using the augmented Lagrangian algorithm

with simple bound constraints on the cluster prototypes using the FORTRAN pack-

age LANCELOT.11 The initial cluster prototypes are set using individual k-means

clusters in each window and are iteratively improved till a local minimum of the

objective function is attained.

4. Segmentation Algorithm

Let T = (t1, t2, . . . , tl) be the given time series data sequence, and lmin and lmax

be the minimum and maximum window lengths, respectively. For each time point

ta, we define the set of windows starting from ta as Sta
= {wtb

ta
|lmin ≤ tb − ta + 1 ≤

lmax}. Given a window wtb

ta
, the choices for the next window are given by Stb+1

,

the set of windows starting form tb+1. These windows can be organized as nodes of

a directed acyclic graph, where directed edges exist between wtb

ta
∈ Sta

and every

wtc

tb+1
∈ Stb+1

. The edge weights are set to be the objective function from Eq. (3)

realized by simultaneously clustering the windows wtb

ta
and wtc

tb+1
, as discussed in the

previous section. Since local optimization procedures are sensitive to initialization,

we perform 100 random restarts of the optimization procedure (each time with

different k-means prototypes found in individual windows) and choose the best

(minimum) of the local optimum solutions as the weight for the edge between the

two windows. Given this weighted directed acyclic graph, the problem of segmenting

the time series is equivalent to finding the minimum path (if one exists) between a

node representing a window beginning at t1 and a node corresponding to a window

that ends in tl (recall that there can be several choices for nodes beginning at t1 as

well as for those ending at tl, depending on lmin and lmax). We find the shortest

path using dynamic programming (Dijkstra’s algorithm) where the path length is

defined as Davg, given by Eq. (4), described later.
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5. Experiments

Datasets: Our experimental datasets constitute gene expression measurements

spanning the yeast metabolic cycle (YMC) and the yeast cell cycle (YCC). As stated

earlier, the YMC dataset2 consists of 36 time points collected over three continuous

cycles. The YCC was taken from the well known α-factor experiment of Spellman et

al.1 The original YMC dataset consists of 6555 unique genes from the S. cerevisiae

genome. We first eliminated those genes that do not have an annotation in any

GO biological process category (revision 4.205 of GO released on 14 March 2007),

resulting in a universal set of 3602 genes. The gene expression values were log trans-

formed (base 10) and normalized such that the mean expression of each gene across

all time points is zero. To segment this dataset we experimented with the number

of clusters in each segment ranging from three to 15, lmin = 4, lmax = 7, ρ = 20,

and λ = 1.4. The λ and ρ values were adjusted to give approximately equal sized

clusters with good intracluster similarities. For the YCC dataset which originally

had 6076 genes, we considered the genes with no missing values and mean centered

each gene’s expression across all time points to zero. From this data, we removed

the genes that do not have any annotation in the GO biological process category

resulting in a final set of 2196 genes. To segment this dataset, again we ranged from

three to 15 clusters in each window, lmin = 3, lmax = 5, ρ = 20, and λ = 1.4 (ρ

and λ adjusted as before).

Evaluation metrics: We evaluate our clusterings and segmentations in five ways:

cluster stability, cluster reproducibility, functional enrichment, segmentation qual-

ity, and segmentation sensitivity. We assess cluster stability using a bootstrap

procedure to determine significance of genes brought together.

Recall that each window except the first and last windows has two sets of clus-

ters, one set independent with respect to the previous window and the other in-

dependent with respect to the next window. We are interested in the genes that

are significantly clustered together in these two sets of clusters, as they represent

the genes that are specific to the window under consideration. We calculate a con-

tingency table between these two clusterings for each window (excluding the first

and the last window). Each cell in the contingency table represents the number of

genes that are together across the two independent sets of clusters. We randomly

sample 1000 pairs of clusterings within each window (with cluster sizes same as the

two independent clusterings) and compute their contingency tables. By the central

limit theorem, the distribution of counts in each cell of the table is approximately

normal (also verified using a Shapiro-Wilk normality test with p = 0.05). We now

evaluate each cell of the actual contingency table with respect to the corresponding

random distribution and retain only those cells that have more genes than that

observed at random with p < 0.05 (Bonferroni corrected with the number of cross

clusters to account for multiple hypothesis testing). To ensure reproducibility of

clusters, we retain only those genes in each significant cell of the contingency table

that are together in more than 150 of the 200 clusterings (conducted with different
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initializations).

For the first and last windows, which have only 100 randomly initialized cluster-

ings, we retain those genes that are clustered together in more than 75 of the 100

clusterings. After the above two steps, we perform functional enrichment using

the GO biological process ontology (since we are tracking biological processes) over

the selected clusters of genes. A hypergeometric p-value is calculated for each GO

biological process term, and an appropriate cutoff is chosen using a false discovery

rate (FDR) q-level of 0.01.

The segmentation quality is calculated as a partition distance12 between the

“true” segmentation (from the literature of the YMC and YCC) to the segmen-

tations computed by our algorithm. We view each window as a set of time points

so that a segmentation is a partition of time points. Given two segmentations S1

and S2, whose windows are indexed by the variables wtb

ta
and ztd

tc
respectively, the

partition distance is given by:

PD = −
∑

w
tb
ta

∈S1

∑

z
td
tc

∈S2

|wtb

ta
∩ztd

tc
| log2

|wtb

ta
∩ ztd

tc
|

|wtb

ta
|

−
∑

z
td
tc

∈S2

∑

w
tb
ta

∈S1

|wtb

ta
∩ztd

tc
| log2

|wtb

ta
∩ ztd

tc
|

|ztd

tc
|

.

The segmentation sensitivity to variations in the number of clusters is calcu-

lated as the average of the ratios of KL-divergences between the segments to the

maximum possible KL divergence between those segments. This latter figure is easy

to compute as a function of the number of clusters, which is considered uniform

throughout the segmentation. Suppose we have |S| windows in a given segmenta-

tion S = {wta

t1
, wtb

ta+1
, . . . , wtk

tj+1
, wtl

tk+1
} with c clusters in each window. Let Fmax be

the objective function value for the maximally similar clustering (the c× c diagonal

contingency table (b) in the example in Sec. 2). Then the measure we compute is

Davg =
1

|S| − 1

[F
{w

ta
t1

,w
tb
ta+1

}

Fmax

+
F

{w
tc
tb+1

,w
td
tc+1

}

Fmax

+ . . . +
F

{w
tk
tj

,w
tl
tk+1

}

Fmax

]

, (4)

where F
{w

tb
ta

,w
tc
tb+1

}
is the optimal objective function value obtained by clustering

the pair of adjacent windows wtb

ta
, wtc

tb+1
. Lower values of this ratio indicate that

the segmentation captures maximal independence between adjacent segments while

higher values indicate the clusters obtained are more similar in adjacent segments.

Results: The YMC segmentation generated for the minimum number (3) of clus-

ters is: 1-6, 7-10, 11-14, 15-18, 19-22, 23-26, 27-31, 32-36, which correspond to

alternating R/C, Ox, and R/B phases. The GO categories enriched (p < 10−7) in

one cycle for this dataset have already been depicted in Fig. 1. This segmentation is

stable up to eight clusters after which it begins to deviate from the “true” segmenta-

tion (discussed further below). The segmentation (Fig. 2) generated for YCC—1-3,

4-6, 7-9, 10-12, 13-15, 16-18—is also periodic with the stages approximately corre-

sponding to alternating M/G1, {G1,S}, {G2,M} phases. Note that each phase is of

very short length in this experiment as compared to YMC: the phases M/G1, G1, S

each last for approximately two time points, while the G2 phase lasts only for one
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

mitotic metaphase/anaphase transition
mitotic spindle elongation

mitotic sister chromatid cohesion
G1/S−specific transcription

RNA processing
strand elongation

DNA replication initiation
regulation of exit from mitosis

cytokinesis, completion of separation

timepoints

Fig. 2. Gantt chart from segmentation of Spellman et al. dataset. To preserve space, only some
of the enriched GO biological process terms are shown.

time point. Because our minimum window length is three (set so that we recover

significant clusterings and regroupings), we cannot resolve these short-lived phases.

A possible approach is to use continuous representations such as spline fits to gain

greater resolution of data sampling. Nevertheless, the key events occurring in these

segments are retrieved with high specificity (p < 10−7) as shown in Fig. 2.

The effect of the number of clusters on segmentation characteristics is studied
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Fig. 3. (a)Segmentation sensitivity and (b)Segmentation quality

in Fig. 3. In Fig. 3 (a), we see that as the number of clusters increases, it is in-

creasingly difficult to obtain independent clusterings and hence, for higher values

of the number of clusters, the segmentation problem actually resembles associative

clustering (observe that this curve tends toward a Davg value of 0.5). Figure 3 (b)

tracks the segmentation quality, and shows that the correct segmentation is recov-

ered for many settings in the lower range for number of clusters, but as the number

of clusters increases, the best segmentations considerably deviate from the true

segmentation. Nevertheless, comparing the two plots, we see that Davg tracks the

segmentation quality PD well and hence can be a useful surrogate for determining

the “right” number of clusters.
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6. Discussion

One of the applications of our methods is to decode temporal relationships be-

tween biological processes. Since cell division processes are enriched in both YCC

and YMC, we superimposed those segments of our two Gantt charts (from Fig. 1

and Fig. 2), and observed that the oxidative metabolism phase of YMC typically

precedes the transition from G1 to S in the YCC. This is significant because it

permits the DNA replication process to occur in a reductive environment. These

and other connections between the YMC and the YCC are presently under intense

investigation.13–15

Temporal modeling of biological process activity is a burgeoning area of re-

search. For instance, Shi et al.16 present an approach to detect the activity levels

of biological processes in a time series dataset. Such ideas can be combined with

our segmentation algorithm to get a temporal activity level model of biological pro-

cesses. In particular, we can develop richer models of cluster reorganization, e.g.,

dynamic revisions in the number of clusters, split-and-merge behaviors of clusters,

and a HMM for cluster re-organization, leading to inference of complete temporal

logic models.
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12. R. D. Mántaras, Machine Learning 6, 81 (1991).
13. B. Futcher, Genome Biology 7, 107 (2006).
14. Z. Chen, E. Odstrcil, B. Tu and S. McKnight, Science 316, 1916 (2007).
15. D. Murray, M.Beckmann and H. Kitano, PNAS 104, 2241 (2007).
16. Y. Shi, M. Klustein, I. Simon, T. Mitchell and Z. Bar-Joseph, Bioinformatics (Pro-

ceedings of ISMB 2006) 23, i459 (2007).


