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Many RNA functions are determined by their specific secondary and tertiary structures.

These structures are folded by the canonical G::C and A::U base pairings as well as by the
non-canonical G::U complementary bases. G::U base pairings in RNA secondary struc-

tures may induce structural asymmetries between the transcribed and non-transcribed

strands in their corresponding DNA sequences. This is likely so because the correspond-
ing C::A nucleotides of the complementary strand do not pair. As a consequence, the

secondary structures that form from a genomic sequence depend on the strand tran-

scribed. We explore this idea to investigate the size and significance of both global and
local secondary structure formation differentials in several non-coding RNA families and

mRNAs. We show that both thermodynamic stability of global RNA structures in the

transcribed strand and RNA structure strand asymmetry are statistically stronger than
that in randomized versions preserving the same di-nucleotide base composition and

length, and is especially pronounced in microRNA precursors. We further show that a

measure of local structural strand asymmetry within a fixed window size, as could be
used in detecting and characterizing transcribed regions in a full genome scan, can be

used to predict the transcribed strand across ncRNA families.

Keywords: ncRNA; non-coding RNA; structural strand asymmetry; RNA secondary
structure

1. Introduction

A variety of functional non-coding RNAs (ncRNAs) have been shown to play key
regulatory roles in a number of cellular processes including chromatin modification,
transcription initiation, mRNA and protein synthesis, as well as post-translational
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RNA modification.1,2 MicroRNAs (miRNAs) are a class of small ncRNAs that are
known to play important roles in gene regulatory networks by influencing the ex-
pression of other genes. Systematic identification of ncRNAs is important for under-
standing complex gene regulatory networks. However, de novo ncRNA prediction is
a challenge for current bioinformatics due to a lack of statistically reliable charac-
teristics in ncRNA sequences. Glusman et al.3 has discussed a “third approach” to
the problem of noncoding gene detection (in addition to the other two more usual
approaches based on sequence similarity and recognition of protein-coding gene fea-
tures), which involves the detection of transcribed regions by detecting evolutionary
signals in the transcribed strand, including base compositional asymmetries. In a
similar vein, in this paper we investigate an asymmetry in the structure forming po-
tential between the transcribed and non-transcribed strands of a genomic sequence.

It is widely assumed that the function of a ncRNA depends on its structural fea-
tures. Previous research has addressed the prospect of stability of RNA secondary
structures acting as a statistical signal for RNA identification. Current opinion dif-
fers as to whether ncRNAs and/or mRNA can be recognized by their secondary
structures. It has been proposed that mRNA secondary structure stability as mea-
sured by the predicted minimum free energies (MFE) is more stable than that of
randomized sequences with the same base composition.4 This hypothesis has been
questioned by Workman and Krogh5 who provide evidence that the observed sta-
bility signals disappear when sequences are shuffled so as to preserve di-nucleotide
frequencies. Also, Rivas and Eddy6 argue that ncRNA secondary structures are
similar to random sequences in their stability, especially while taking local base
composition effects into account, and therefore are not useful in ncRNA detection.
However, Washietl et al7 has combined thermodynamic stability and RNA struc-
ture conservation to recognize some ncRNAs. In particular, miRNA precursors have
been shown to have lower MFEs than is expected by chance.8

In our previous work on legume ncRNA transcripts,9 we introduced the struc-
tural strand asymmetry feature for characterizing transcribed regions. In addition to
the canonical complementary bases G::C and A::U, RNA secondary structures typ-
ically include non-canonical G::U base pairs. The corresponding C::A nucleotides of
the complementary strand do not pair. As a consequence, the secondary structures
formed depend on the strand transcribed. Sequences that have evolved functional
RNA structures should have done so predominantly on the transcribed strand. We
thus hypothesize that the differential in potential secondary structures between the
two complementary strands may be used as a measure of RNA structure evolution.
We showed9 that local structural strand differential is pronounced in RNAs com-
pared to that of non-transcribed sequences. We further showed that base composi-
tional asymmetries also contribute to distinguishing the transcribed RNA sequences
from non-transcribed DNA sequences.

Here we extend our investigation of the RNA strand structural asymmetry fea-
ture by analyzing this feature in sequence sets of known ncRNAs, including miRNAs,
and mRNAs. We aim to identify whether this is an independent feature, in addition
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to structural asymmetries induced by base compositional asymmetries alone. Also,
we investigate the effectiveness of local and global measures of structural asymme-
try features. Given that the stability of RNA structure depends upon di-nucleotide
base stacking energies, we compared them with sequences that were shuffled so as
to preserve both mono- and di-nucleotide frequencies.

2. Methods

2.1. Datasets

All ncRNA sequences used in this study were obtained from the Rfam database
(release 8.0).10 We retrieved sequences from Rfam.fasta.gz file which filtered Rfam
members to < 90% identity, including several ncRNA families: miRNA precur-
sor, 5S rRNA, 5.8S rRNA, 7SK, Hammerhead ribozyme (type I and type III),
Group I and Group II catalytic intron, IRES, RNase MRP, Nuclear RNase P,
snoRNA CD-box, snoRNA HACA-box, Eukaryotic type signal recognition parti-
cle RNA (SRP), tmRNA, and tRNA. We randomly selected 100 sequences from
the miRNA family and up to 50 sequences from each other RNA family; all se-
quences were retrieved if ncRNA family had less than 50 sequences. To select rep-
resentative mRNA sequences, we selected proteins in the Swiss-Prot11 database
that were derived from a number of commonly studied organisms including Ara-
bidopsis thaliana, Bos Taurus, Caenorhabditis elegans, Danio rerio, Drosophila
melanogaster, Escherichia coli, Homo sapiens, Mus musculus, Mycoplasma pneu-
moniae, Oryza sativa, Rattus norvegicus, Saccharomyces cerevisiae, Schizosaccha-
romyces pombe, Takifugu rubripes, Xenopus laevis, and Zea mays. cDNAs for these
proteins were then extracted from EMBL.12 We randomly sampled 800 sequences
and then excluded those with sequence length of more than 1000 bp (to limit com-
putation time) to construct a set of 614 mRNA sequences. Table 1 summarizes the
sequence length and GC content of the ncRNA family and mRNA sets used in this
study.

2.2. Sequence randomization

Each sequence was permutated 100 times to generate 100 shuffled sequences that re-
tained both mono-nucleotide and di-nucleotide base composition and length. Mono-
nucleotide shuffling preserves the same nucleotide frequencies as the original se-
quences, whereas di-nucleotide shuffling preserves both mono- and di-nucleotide fre-
quencies. We used the EMBOSS program shuffleseq13 to perform mono-nucleotide
shuffling. Di-nucleotide shuffling is particularly important because the stability of
RNA secondary structures depends upon the stacking energies.5 We used the pro-
gram dishuffleseq.pl which implemented Altschul and Erickson shuffling algorithm14

to perform di-nucleotide shuffling. See Altschul and Erickson for details of the care-
ful considerations needed for di-nucleotide randomization.
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2.3. RNA secondary structures

To compute a measure of global structure strand asymmetry, we used RNAfold in
the Vienna RNA package (version 1.6.4)15 to compute RNA global secondary struc-
tures separately for the transcribed and complementary non-transcribed strands
for each RNA sequence. MFE was measured for both the transcribed and non-
transcribed global structures. The values were normalized by the length of the se-
quences yielding the MFE densities (MFED). The MFED difference between the two
strands was taken as ∆MFEDtr−ntr. This measure was calculated on the original
RNA sequences and on both mono-nucleotide and di-nucleotide shuffled sequences.

In gene-finding applications, these asymmetry features would typically be ap-
plied to local structures computed in a sliding window along the genome. For this
reason, it is of interest to examine a measure of local structure strand asymmetry.
To compute this, we used RNALfold (in Vienna RNA package) which can compute
the MFE of locally stable secondary structures in an RNA sequence, limited to a
maximum sliding window size. We used a sliding window size L = 150 (as may be
typical for a genome-wide study) to predict a list of RNA local secondary struc-
tures for each sequence. The mean MFED over the predicted local structures for
each strand was computed, and the difference, ∆MFEDtr−ntr, was taken as the
measure of local structure asymmetry.

2.4. Statistical significance

To provide evidence for whether any structural strand asymmetry (∆MFEDtr−ntr)
is primarily due to RNA secondary structure conservation, or is primarily a side-
effect of base compositional asymmetries, we performed a permutation test using
the shuffled versions of the sequences from ncRNA families and mRNAs. This per-
mutation test measures the strength of the structural asymmetry in the original
sequence as compared with the structural asymmetry of shuffled versions of the se-
quence (which maintains base compositional asymmetries). Any overall structure is
effectively removed in these shuffled sequences and any remaining structural asym-
metry in these shuffled sequences would be mainly due to mono- and di-nuceotide
frequency asymmetries between strands. To calculate a p-value for the structural
asymmetry, the fraction of the shuffled sequences that achieved a ∆MFEDtr−ntr as
great as the original version was estimated. Z-scores6 were also calculated as a mea-
sure of the structure signal strength above random noise levels: Z-score = (x−µ)/σ,
where x is the MFEDtr values from the original sequences, µ is the mean value of
the randomized sequences, and σ is the standard deviation.

An advantage of the structural asymmetry feature in gene-finding applications
is that it also inherently provides information on the transcribed strand which is re-
quired for annotation of detected transcribed regions. Indeed, global ∆MFEDtr−ntr

has recently been applied successfully for strand orientation detection in ncRNA
multiple sequence alignments.16 Our focus is on characterizing the regions of tran-
scription across the genome and so the accuracy of both global and local strand
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asymmetry features for transcribed strand detection are computed as an additional
measure of the strength of the strand asymmetry features. The accuracy in predict-
ing the transcribed strand was computed using the sign of the differential, where
accuracy is defined as the proportion of correct predictions/number of samples.

3. Results and Discussion

We used strand differences in MFEDs (∆MFEDtr−ntr) to compare the most stable
global structures that could be formed by sequences of ncRNA families and mRNAs
(See Methods). This measure should not be substantially affected by sequence reg-
ularities that equally affect both strands such as overall shifts in the absolute MFE
across RNA families. Table 1 gives the MFED on the transcribed strand (MFEDtr)
and the global structural strand differentials (∆MFEDtr−ntr) in each ncRNA fam-
ily and mRNAs. On average, ∆MFEDtr−ntr shows large negative mean values of
-0.0907 kcal/mol·bp for the miRNA set and -0.0379 kcal/mol·bp for the total ncRNA
set, compared with a small (and in fact positive) mean value of 0.00365 kcal/mol·bp
for the mRNA set. For miRNAs this corresponds to a very substantial 20.8% de-
crease in MFED from the transcribed strands; for ncRNAs this corresponds a 11.2%
decrease; and for mRNAs a 1.2% increase. The preferential use of the transcribed
strand for structure formation is substantially higher in miRNAs and ncRNAs than
in mRNAs, which suggests a stronger signal for structure evolution in some ncRNA
families.

Table 1. RNA secondary structure asymmetry in each ncRNA family and mRNA dataset

RNA type No.of length (bp) (G+C)% ∆MFEDtr−ntr MFEDtr ∆MFEDtr−ntr

seqs (mean±sd) (kcal/mol·bp) (kcal/mol·bp) MFEDtr

mean±sd mean±sd

mRNAs 614 499±239 47.9 0.00365 ± 0.042 -0.295 ± 0.062 -1.2%
all ncRNAs 753 191±126 47.7 -0.0379 ± 0.062 -0.337 ± 0.11 11.2%

miRNA 100 87±17 46.0 -0.0907 ± 0.073 -0.435 ± 0.067 20.8%
5.8S rRNA 50 152±11 50.4 -0.0165 ± 0.041 -0.288 ± 0.067 5.7%

5S rRNA 50 116±6 52.8 -0.0237 ± 0.054 -0.336 ± 0.061 7.1%

7SK 50 316±13 51.3 0.0182 ± 0.023 -0.308 ± 0.023 -5.9%
Hammerhead 1 26 48±9 51.8 -0.00459 ± 0.064 -0.244 ± 0.08 1.9%

Hammerhead 3 17 55±2 49.4 -0.00869 ± 0.045 -0.347 ± 0.048 2.5%
Intron gpI 50 418±89 35.1 -0.0119 ± 0.026 -0.233 ± 0.045 5.1%

Intron gpII 50 79±14 45.8 -0.116 ± 0.067 -0.341 ± 0.091 34%

IRES 50 286±117 54.1 -0.0250 ± 0.037 -0.359 ± 0.073 6.9%
RNase MRP 21 276±35 43.8 -0.0289 ± 0.036 -0.321 ± 0.061 9%

Nuclear RNase P 39 293±55 55.1 -0.0423 ± 0.043 -0.387 ± 0.052 11%
snoRNA CD-box 50 92±34 41.8 -0.0205 ± 0.049 -0.219 ± 0.08 9.3%
snoRNA HACA-box 50 135±27 45.8 -0.0422 ± 0.047 -0.287 ± 0.055 14.7%

SRP euk arch 50 293±13 47.9 -0.0651 ± 0.067 -0.511 ± 0.14 12.7%

tmRNA 50 359±42 47.8 -0.0256 ± 0.026 -0.329 ± 0.08 7.8%
tRNA 50 73±5 47.7 -0.0134 ± 0.053 -0.309 ± 0.097 4.3%

To investigate whether the structural strand differentials are more likely to be
primarily due to actual RNA secondary structural signals, or whether they could
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be explained by base compositional biases alone, we shuffled the original ncRNA
and mRNA sequences while maintaining either mono-nucleotide or di-nucleotide
base compositions. We then computed ∆MFEDtr−ntr for the shuffled versions (See
Methods). The shuffled version would be expected to show smaller differentials
between the two complementary sequence strands if the structural strand asym-
metry is primarily caused by RNA secondary structures; this smaller difference in
the shuffled sequences being due primarily to base composition biases. Increased
G and U content in the transcribed strand can itself lead to increased probabil-
ity of G::U base pairings and hence structural asymmetries. We therefore com-
pared the original structural strand differentials with the distributions generated by
the shuffled versions. Figure 1 shows the distributions of the mean ∆MFEDtr−ntr

values of the shuffled sequences (di-nucleotide shuffling) compared with the mean
∆MFEDtr−ntr values of the original miRNA, ncRNA and mRNA sets separately.
The mean ∆MFEDtr−ntr values of the original miRNA and ncRNA sets are clearly
significantly different from the shuffled distribution, whereas the mean value of the
mRNA set is close to the shuffled distribution. The mono-nucleotide shuffled version
showed results similar to the di-nucleotide shuffled version (data are not shown).
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Fig. 1. The distribution of ∆MFEDtr−ntr values for di-nucleotide shuffled sequences compared

to the mean ∆MFEDtr−ntr values for the original sequences for (a) miRNA set, (b) ncRNA set,
and (c) mRNA set. The red arrow shows the mean ∆MFEDtr−ntr of the original miRNA, ncRNA,
and mRNA sequences and blue line shows the mean values of the distribution obtained from the
di-nucleotide shuffled sequences.

In particular (shown in table 2), the mean ∆MFEDtr−ntr values for the orig-
inal miRNA sequences (-0.0907 kcal/mol·bp; 20.8% decrease from the transcribed
strand) is substantially lower than the mean of the di-nucleotide shuffled version
(-0.0375 kcal/mol·bp; 15.2% decrease from the transcribed strands). This strand
asymmetry difference between the original and the di-shuffled version is statisti-
cally significant: over the 100 permutations, no sequence had a value as extreme as
this, and so the differences are statistically significant at p-value < 0.01. This strand
differential, to a lesser extent, is also shown by the total ncRNA set and its decrease
in comparison with its shuffled version: -0.0379 to -0.0165 kcal/mol·bp (11.2% to
6.7%) on the original and di-nucleotide shuffled sequences respectively.

The stronger structural strand asymmetry signals in ncRNAs, especially pro-
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nounced in miRNA precursors, may indicate that secondary structures have pre-
dominately evolved on the transcribed strands and that the stable structure is im-
portant for the function of these ncRNAs. The MFE calculated on the transcribed
strand (MFEDtr) of miRNA sequences showed a particularly pronounced negative
shift from that of its shuffled version (Figure 2). We calculated Z-scores to indicate
the thermodynamic stability of an RNA structure compared to the distribution of
the shuffled versions. For each original RNA sequence, a Z-score was calculated for
the transcribed sequence strand MFEDtr (See Methods) and the average Z-score
values are shown in Table 2. Specifically, the Z-score of MFEDtr in the miRNA
set is very substantial (mean values of -5.54) , which is consistent with the results
of Bonnet et al.8 The Z-score over all ncRNA is -2.3, which is consistent with the
results of Rivas et al.6 Figure 3 gives the Z-score distributions of MFEDtr in the
miRNA, ncRNA, and mRNA datasets.
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Fig. 2. The distribution comparison for the MFEDs calculated on miRNA transcribed strand
(red) and that on miRNA di-nucleotide shuffled version (black). The dashed lines are the mean

values of MFEDs.

As discussed above, the permutation test results indicate that the potential
structural strand asymmetry as measured by ∆MFEDtr−ntr is unlikely to be a result
of global base compositional biases. We conjecture that this structural differential
between strands is caused by RNA structural constraints.

(a)

Z−score
−12 −10 −8 −6 −4 −2 0

0
5

01
51

02
Fr
eq
ue
nc
y

(b)

Z−score
−30 −25 −20 −15 −10 −5 0 5

0
001

002
003

004
005

Fr
eq
ue
nc
y

Z−score
−8 −6 −4 −2 0 2 4

0
05

001
051

002

(c)

Fr
eq
ue
nc
y

Fig. 3. The histogram of Z-score values for the di-nucleotide shuffled sequences in (a) miRNA
set, (b) ncRNA set, and (c) mRNA set. The blue line shows the mean z-score.

To measure how consistently ∆MFEDtr−ntr favours the transcribed strand, as
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we conjecture it will, we measured the classification accuracy of this feature for
predicting the transcribed strand (see Methods). Results are shown in Table 2.
Using the global strand asymmetry feature gave a 73% overall accuracy for ncRNA.
The local strand asymmetry feature for L=150 shows accuracy for ncRNAs within
3% of the global measure despite being limited to a fixed window size. Dinucleotide-
shuffling the ncRNA set reduced the accuracy from 70% to 61%. For mRNAs,
using global ∆MFEDtr−ntr gave a random level of 49%, and for local (L=150)
∆MFEDtr−ntr, accuracy improved above random levels to 64% accuracy, which is
statistically significant (p < 0.01). Using a di-nucleotide shuffled version of mRNA
gave random accuracy results of 51%, indicating that the 64% accuracy result is
unlikely to be due to global base compositional asymmetries alone.

Base composition biases can also be useful features for classification of RNA. For
comparison with the structural asymmetry feature, the transcribed strand predic-
tion results for a base composition feature are presented in Table 2. We use fG+fU

fA+fC
,

which as described in3,17 shows a strand asymmetry in transcribed regions caused
by differences in base mutation rates. We note that the increased G and U con-
tent in the transcribed strand is also consistent with increased structure–forming
potential in this strand. This feature shows some discriminability, although inferior
accuracy relative to the local structural strand asymmetry feature.

4. Conclusion

This study has not focused on the RNA optimal minimum-energy folded struc-
tures, but rather on the strand asymmetry of RNA secondary structures, extending
our previous study9 to known ncRNA datasets. We have shown that there exists a
substantial asymmetry in RNA structure potential between the complementary se-
quence strands in ncRNAs (including miRNAs), and that this bias is in addition to
that due to base compositional strand asymmetries. We conjecture that this is due
to structural constraints on the transcribed strand of functional RNA sequences.

This structural strand asymmetry should be useful as an independent feature in
helping to distinguish transcribed regions, including transcription orientation, for
gene-finding (particularly ncRNA) purposes. This approach can be applied across
an entire genome as the local structural asymmetry feature can be easily computed
in this case. The non-coding gene prediction framework of Glusman et al3 is an
example which could be extended with this feature. It will be required to combine
with additional statistical features to achieve higher discriminability for ncRNA
prediction. The possible candidate features include base compositional biases and
conserved ncRNA elements. Both our previous work9 and other studies18 have sug-
gested that base compositional biases may serve as indicators of ncRNAs. Also,
RNA structural conservation using comparative sequence analysis has also shown
promise for ncRNA prediction.7,19 In future work, we will investigate combining
these features using machine learning approaches and apply to whole genomes, in-
cluding UTR, intergenic and intronic regions.
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