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Abstract

For anundirectedgraph � without self-loop,we prove: (i) that thenumber of closedpatternsin theadjacency matrix
of � is even; (ii) that the numberof the closedpatternsis preciselydoublethe numberof maximal completebipartite
subgraphsof � ; (iii) that for every maximalcompletebipartitesubgraph, therealwaysexists a uniqueanddistinct pair
of closedpatternsthat matchesthe two vertex setsof the subgraph.Therefore,we canefficiently enumerateall maximal
completebipartitesubgraphsby usingalgorithmsfor mining closedpatternswhich have beenextensively studiedin the
datamining field.

1 Intr oduction

Interest in graphsandtheir applications hasgrown exponentially in thepasttwo decades(Gross& Yellen,2004; Makino
& Uno, 2004), largely dueto theusefulnessof graphs asmodelsin many areassuchasmathematical research, electrical
engineering,computer programming, businessadministration, sociology, economics, marketing, biology, andnetworking
andcommunications. In particular, many problemscanbemodelledwith maximalcompletebipartite subgraphs(seethe
definitionbelow) formedby grouping two non-overlappingsubsetsof verticesof a certaingraphthatshow a kind of full
connectivity betweenthem.

We considertwo examples. Supposethereare� customers in a mobilecommunicationnetwork. Somepeople havea wide
range of contact,while others have few. Which groups of customers (with a maximal number) have a full interactionwith
anothergroupof customers,aproblemsimilar to one(Murata,2004) studiedin webmining? Thissituationcanbemodelled
by a graph wherea mobilephonecustomeris a nodeanda communicationis anedge.Thus,a maximalbipartitesubgraph
of thisgraph corresponds to two groupsof customersbetweenwhom thereexist a full communication.Oursecondexample
is about proteins’ interactionin a cell. There areusuallythousandsof proteins in a cell thatinteractwith oneanother. This
situationagain canbemodelledby agraph, whereaproteinis anodeandapairof interacting proteinsformsanedge.Then,
listing all maximalcompletebipartitesubgraphsfrom this graphcananswerquestions suchaswhich two proteingroups
havea full interaction, which is aproblem studiedin biology (Reiss& Schwikowski, 2004; Tonget al., 2002).

Listing all maximal complete bipartitesubgraphsis studiedtheoretically in (Eppstein,1994). Theresultis thatall maximal
completebipartite subgraphsof a graphcanbeenumeratedin time �����
	���
������ , where � is thearboricityof thegraphand� is the number of verticesof the graph. Even though the algorithm hasa linear complexity, it is not practicalfor large
graphsdueto thelargeconstantoverhead( � caneasilybearound 10-20 in practice)(Zaki & Ogihara,1998). In this paper,
westudythisproblemfrom dataminingperspective: We useaheuristicsdataminingalgorithm to efficiently enumerateall
maximal completebipartite subgraphs from a largegraph. A mainconceptof thedatamining algorithmis calledclosed
patterns. Therearemany recentalgorithmsandimplementationsdevotedto theminingof closedpatterns from theso-called
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transactional databases(Bastideet al., 2000; Goethals& Zaki, 2003; Grahne & Zhu, 2003; Uno et al., 2004; Panet al.,
200� 3; Pasquieret al., 1999; Peiet al., 2000; Wanget al., 2003; Zaki & Hsiao,2002). Thedatastructuresareefficient and
the mining speedis tremendouslyfast. Our main contribution hereis the observation that the mining of closedpatterns
from theadjacency matrix of a graph, termeda specialtransactional database,is equivalentto theproblemof enumerating
all maximal completebipartitesubgraphsof this graph.

Therestof this shortpaperis organizedasfollows: Sections2 and3 provide basicdefinitionsandpropositionson graphs
andclosedpatterns. In Section4 we prove that thereis a one-to-one correspondence betweenclosedpatternpairsand
maximal completebipartitesubgraphsfor any simplegraph. In Section5,wepresent ourexperimentalresultsonaproteins’
interaction graph. Section6 discussessomeotherrelatedwork andthenconcludesthis paper.

2 Maximal CompleteBipartite Subgraphs

A graph �����������! "�
# is comprisedof a setof vertices �$� anda setof edges ��&%'�"�)(*�"� . We oftenomit the
superscripts in �+� ,  "� andotherplaceswhenthecontext is clear. Throughout this paper, we assume� is anundirected
graph withoutany self-loops. In otherwords,weassumethat(i) thereis noedge�-,.�/,0�
12 � and(ii) for every �-,.�/34�516 � ,��,7�!38� canbereplacedby ��39�!,:� —thatis, ��,7�!38� is anunorderedpair.

A graph ; is a subgraph of a graph � if �=<>%?�@� and  @<A%? @� . A graph� is bipartite if ��� canbepartitionedinto
two non-emptyandnon-intersectingsubsets�
B and � 
 suchthat  @�C%D�:BE(F� 
 .Thisbipartitegraph� is usuallydenoted
by �>�&���0BHG2� 
 �! "�
# . Notethatthereis noedgein � that joins two verticeswithin �HB or � 
 . � is completebipartite if�:BI(2� 
 �J � .

Two vertices ,7�!3 of a graph � aresaidto beadjacent if ��,7�!38�@1K L� —that is, thereis anedgein � thatconnectsthem.
Theneighborhood MN�O�-34� of a vertex 3 of a graph � is thesetof all vertices in � thatareadjacent to 3 —thatis, MP�O�-34�
�Q ,*RS��,7�!38� or �-3S�/,0�+1? @�UT . The neighborhood M5�O�-VW� for a non-emptysubsetV of verticesof a graph � is thesetof
commonneighborhoodof theverticesin V —thatis, MX�X�-VW�Y�DZN[]\�^XM��X��_S� .
Note that for any subsetV of vertices of a graph � suchthat V and MP�O�-V`� are both non-empty, it is the casethat;a���-V�GbM��O�-V`�c�/Vd(WM7�O�-VW�!# is a completebipartitesubgraph of � . Notealsoit is possiblefor a vertex 3Ce1?V of� to be adjacent to every vertex of M5�O��VW� . In this case,the subsetV canbe expandedby addingthe vertex 3 , while
maintaining thesameneighborhood. Whereto stoptheexpansion?We usethe following definitionof maximal complete
bipartite subgraphs.

Definition 2.1 A graph ;f�g��� B GF� 
 �� @# is a maximal completebipartite subgraph of � if ; is a completebipartite
subgraphof � such that MH�O��� B �H�h� 
 and M.�O��� 
 �Y�C� B .
Not all maximal complete bipartitesubgraphs are equally interesting. Recall our earliermotivating example involving
thecustomers in a mobilecommunicationnetwork. We would probably not bevery interestedin two groupsof customers
betweenwhomthereexist afull communication, if thegroupsbothcompriseasingleperson. In contrast,wewouldprobably
beconsiderablymoreinterestedif oneof thegroup is large,or bothof thegroupsarelarge. Hence,we canintroducethe
notionof densityonmaximalcompletebipartite subgraphs.

Definition 2.2 A maximal completebipartite subgraph ;i�'��� B GF� 
 �� @# of a graph � is saidto be �-j`�/��� -denseif R � B R
or R � 
 R is at least j , andtheotheris at least � .

A completebipartitesubgraph;��>��� B G�� 
 �! �# of � suchthat MN�O��� B �Y�D� 
 andM7�O�k� 
 �Y�D� B is maximal in thesensethat
thereis noothercompletebipartitesubgraph ;Jl9�m�k�"lB G6�@l
 �� "ln# of � with � BPo �@lB and � 
 o �"l
 suchthat M � �k�"lB �Y�C�@l

and M.�O��� l
 �
�h� lB . To appreciatethis notion of maximality, we prove thepropositionbelow.
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Proposition 2.3 Let ;p�q��� B G2� 
 �� @# and ; l �'��� lB G2� l
 �! l # betwo maximalcompletebipartite subgraphsof � such
thatr � B %?� lB and � 
 %?� l
 . Then;��C; l .
Proof: Suppose ;s�t��� B G*� 
 �� @# and ; l �t�k� lB G*� l
 �� l # are two maximalcompletebipartite subgraphsof � such
that � B %q� lB and � 
 %u� l
 . Since � B %q� lB and � 
 %u� l
 , we have M.�X��� lB �+%&M��O�k� B � and M.�O��� l
 �+%&M��O�k� 
 � . Using
thedefinition of maximalcomplete bipartite subgraphs,we derive � l
 �'M � ��� lB �+%>M � ��� B �E�g� 
 and � lB �'M � �k� l
 �@%M7�O��� 
 �Y�D� B . Then A�D� B (2� 
 �C� lB (L� l
 �h l . Thus;��J; l asdesired. vw
3 ClosedPatterns of an AdjacencyMatrix

Theadjacency matrix of a graphis important in this study. Let � bea graph with �x�y� Q 3zB{�/3 
 �}|~|}|��!3��4T . Theadjacency
matrix � of � is the �2(+� matrixdefinedby

�b� �������:���q��� if �-3��/�!3����U16 @��
otherwise

Recallthatourgraphs donothaveself-loop andareundirected.Thus � is asymmetricmatrixandevery entryon themain
diagonal is 0. Also,

Q 3��ER}�W� �0�k���:� � � �E� � � ��TI�?M7�O�-3��z�Y� Q 3��IR~�W� �z�����0� � � �E� � � ��T .
Theadjacency matrixof agraphcanbeinterpretedinto a transactional database( �H� ), whichis aconceptusedvery often
in thedataminingcommunity. To definea �H� , we first definea transaction. Let � bea setof items. Thena transactionis
definedasasubsetof � . For example,assume� to beall itemsin asupermarket,atransactionby acustomer is theitemsthat
thecustomer bought. A �H� is a non-emptysetof transactions. Eachtransaction� in a �
� is assigneda unique identity���S�-�P� . A pattern is definedasa non-empty set1 of itemsof � . A patternmaybeor maynot becontainedin a transaction.
Givena �
� andapattern� , thenumberof transactionsin �H� containing � is calledthesupport of � , denoted �~,��E�8�X���"� .
In this paper, unlessmentioned otherwise,we consideronly patternsthatappear in a given transactional database�H� . In
fact, for datamining, we areoften interestedonly in patterns that appear sufficiently frequent. That is, we consideronly
patterns � satisfying�~,��0�8�X���"�5�yj2� , for a thresholdj2��� � . Unlessmentioned otherwise,we set j2�X� � in thispaper.

Let � beagraphwith �$��� Q 3zB �/3 
 �}|}|~|��/3��4T . If eachvertex in �$� is definedasanitem,thentheneighborhood MO�O�-3 � � of3 � is a transaction.Thus,
Q MN����3zB}���/M��X�-3 
 �c�}|~|}|~�/M��O��3��z��T is a �H� . Suchaspecial�H� is denotedby �
� � . Theidentityof a

transactionin �
� � is definedasthevertex itself—thatis, ���S�-M¡�O��3 � �!�5�D3 � . Notethat �
� � hasthesamenumber of items
andtransactions.Notealsothat 3 � e16M � �-3 � � sinceweassume� to beanundirectedgraphwithoutself-loop.

�
� � canberepresentedasa binary square matrix. This binary matrix ¢ is definedby

¢£� ���k���S�'�¤� if 3��"16M��O��3]����
otherwise

Since 3 � 1bM7�O�-3 � � if f �-3 � �/3 � �X1W "� , it canbeseenthat ���¥¢ . So,“a patternof �H� � ” is equivalent to “a patternof the
adjacency matrixof � ”.

Closedpatterns area typeof interestingpatternsin a �H� . In the last few years,theproblemof efficiently mining closed
patterns from a large �H� hasattracteda lot of researchers in thedatamining community (Bastideet al., 2000; Goethals
& Zaki, 2003; Grahne & Zhu,2003; Uno et al., 2004; Panet al., 2003; Pasquieret al., 1999; Peiet al., 2000; Wanget al.,
2003; Zaki & Hsiao,2002). Let � beasetof items,and � beatransactional databasedefined on � . For apattern�&%K� , let¦ � ���"�O� Q �&1*�AR§�g%C��T —that is,

¦ � ���"� areall transactionsin � containing thepattern� . For a setof transactions� l %D� , let ¨0��� l ���>©�ª \ �Y« �¥�&©x� l—that is, thesetof itemswhich aresharedby all transactions in � l . Usingthese
1The ¬ is usuallydefined asa valid pattern in the datamining community. However, in this paper, to beconsistentto the definition of ­ ®N¯±°E² , it is

excluded.
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two functions,wecandefinethenotion of closedpatterns. For apattern� , ³E´������"�H�?¨:� ¦ �����"�!� is calledtheclosureof� . A
µ

pattern� is saidto beclosedwith respectto a transactional database� if f ³E´"�����"�H�h� .

We definetheoccurrencesetof apattern� in �H� as ¶ ·�·��8�P���"�H� Q ���9���P�HR~�)16�
�=�!�&%y��TO� Q ���S�-�P�
R��)1 ¦ �8�X���"�cT .
It is straightforward to seethat ���9���P��1y¶ ·}· ���I���"� if f �g1 ¦ ���I���"� . Thereis a tight connection betweenthenotionsof
neighbourhoodin agraph� andoccurrencein thecorrespondingtransactional database�
� � .

Proposition 3.1 Givena graph � anda (non-empty)pattern � thatoccursat least j2� timesin �
� � . Then¶ ·�·}�8��¸5���"�Y�M7�O���"� . Notethatwedonot require ¶ ·�·{�8��¸5���"� to occurat least j2� timesin �H� � .

Proof: If 3)1A¶ ·�·]���"� , then 3 is adjacent to every vertex in � . Therefore, 3D1>MH�-3 l � for each 3 l 1>� . That is, 3)1©�¹ « \�º MH�-3 l �Y�JMH���"�c|
If ,F16MH���"� , then , is adjacentto everyvertex in � . So,M
�-,0�5»y� . Therefore, M
�-,0� is a transaction of �H� � containing � .
So, ,F1L¶ ·�·]���"� . vw
Thereis also a nice connection betweenthe notions of neighborhood in a graph and that of closureof patterns in the
corresponding transactional database.

Proposition 3.2 Givena graph � anda (non-empty)pattern � thatoccursat least j2� timesin �H� � . ThenM � �-M � ���"�/�Y�³E´
�8��¸H���"� . ThusM7�b¼
M�� is a closureoperation onpatternsthatoccurat least jL� timesin �
� � .

Proof: Byconstruction, MH�-M
���"�/�5�?MH��¶ ·�·]���"�/�
� © �n½~¾ ªS¿ \zÀ�Á�Á!¾Âº ¿z�J� © ª \zÃ�¾Âº ¿z�C�y¨0� ¦ ���"�/�Y�D³E´X���"� . vw
Wediscussin thenext sectiondeeper relationshipsbetweentheclosedpatternsof �H� � andthemaximalcompletebipartite
subgraphsof � .

4 Results

Theoccurrencesetof a closedpattern³ in �H� � playsa key role in themaximalcompletebipartitesubgraphsof � . We
introducebelow someof its key properties.

Proposition 4.1 Let � bea graph. Let ³ B and ³ 
 beclosedpatternsthatappear at least j2� timesin �
� � . Then³ B �h³ 

iff ¶ ·�·��8��¸5��³ B �Y�h¶ ·}·��8��¸H�k³ 
 � .
Proof: Theleft-to-rightdirectionis trivial. To provetheright-to-leftdirection,let ussupposethat ¶ ·}·]��³ B �Y�h¶ ·�·���³ 
 � . It is
straightforward to seethat ���9���P�
16¶ ·}·]���"� iff �D1 ¦ ���"� . Thenweget

¦ �k³ B �Y� ¦ ��³ 
 � from ¶ ·�·���³ B �Y�h¶ ·�·���³ 
 � . Since³ B
and ³ 
 areclosedpatternsof �H� � , it followsthat ³ B �y¨0� ¦ �k³ B �/�Y�J¨0� ¦ ��³ 
 �/�H�C³ 
 , andfinishestheproposition. vw
Proposition 4.2 Let � bea graphand ³ a closedpatternthatoccursat least jL� timesin �H� � . Then³ andits occurrence
sethasemptyintersection.Thatis, ¶ ·�·{�8� ¸ �k³���ZL³)� Q T .
Proof: Let 3F1W¶ ·}·]��³�� . Then 3 is adjacentto everyvertex in ³ . Sinceweassume� is a graphwithoutself-loop,3�e1�³ .
Therefore, ¶ ·�·}�8� ¸ ��³���Z6³m� Q T . vw
In factthis propositionholdsfor any pattern� , notnecessarilyaclosedpattern³ .
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Lemma 4.3 Let � bea graph. Let ³ bea closedpatternthatoccursat least jL� timesin �
� � . Then
¦ ��� ¸ ��¶ ·}·��8� ¸ �k³��/�H�Q M��O��·}�
R�·I12³�T .

Proof: As ³ is a closedpattern,by definition, then
Q ·"R�·=1?³�T are all andonly itemscontained in every transaction of�
� � that contains ³ . This is equivalent to that

Q ·$RÄ·W1¥³�T are all and only verticesof � that are adjacent to every
vertex in ¶ ·�·]�k³�� . This impliesthat

Q M
��·}��R4·W1)³�T are all and only transactions that contain ¶ ·�·]�k³�� . In other words,¦ ��¶ ·�·]�k³��/�H� Q MH��·}�5R~·I12³�T . vw
Proposition 4.4 Let � be a graphand ³ a closedpatternthat occurs at least j2� timesin �H� � . Then ¶ ·}· �8��¸ ��³�� is a
closedpatternof �
� � .

Proof: By Lemma4.3,
¦ ��¶ ·�·]�k³��/�O� Q MH��·~�OR ·�1*³�T . So ³E´X��¶ ·�·]�k³��/�X�¥¨:� ¦ ��¶ ·�·]�k³��/�!�X� © ¦ ��¶ ·�·���³��/�P� © Á!\�Å MH��·}�O�M
��³��H�C¶ ·�·]�k³�� . Thus¶ ·�·]�k³�� is a closedpattern. vw

Thethreepropositionsabovegive riseto acoupleof interestingcorollariesbelow.

Corollary 4.5 Let � bea graph. Thenthenumberof closedpatternsthatappear at leastonce in �H� � is even.

Proof: Supposethere are � closedpatternsthat appear at leastoncein �H� � , denotedas ³PB , ³ 
 , ..., ³UÆ . Asper Proposi-
tion 4.4, ¶ ·�·���³PB}� , ¶ ·�·]��³ 
 � , ..., ¶ ·�·]�k³UÆÄ� are all closedpatternsof �
� � . Asper Proposition4.1, ¶ ·}·]��³ � � is different from¶ ·}·]��³ � � iff ³ � is different from ³ � . Soevery closedpatterncan be paired with a distinct closedpatternby ¶ ·}·]�§ÇÈ� in a
bijectivemanner. Furthermore, asper Proposition4.2,no closedpatternis pairedwith itself. This is possibleonly when
thenumber � is even. vw
Corollary 4.6 Let � bea graph. Thenthenumber of closedpatterns³ , such that both ³ and ¶ ·�·7��� ¸ ��³�� appear at leastj2� timesin �H� � , is even.

Proof: As seenfrom theproof of Corollary 4.5, everyclosedpattern ³ of �
� � canbepairedwith ¶ ·�·{�8� ¸ �k³�� , and the
entiresetof closedpatternscanbepartitionedinto such pairs. Soa pair of closedpatterns³ and ¶ ·�·0�8� ¸ �k³�� eithersatisfy
or do not satisfythe condition that both ³ and ¶ ·�· ����¸ ��³�� appear at least jL� timesin �
� � . Therefore, thenumberof
closedpatterns³ , such thatboth ³ and ¶ ·}·z����¸
��³�� appear at least j2� timesin �H� � , is even. vw
Note that this corollary doesnot imply the number of closedpatterns that appearat least j2� times in �H� � is even. A
counter example is given below.

Example4.7 Considera �H� � givenby thefollowingmatrix:

� B � 
 � 	 �9É �9ÊMH�Ë� B � 0 1 1 0 0MH�Ë� 
 � 1 0 1 1 1MH�Ë� 	 � 1 1 0 1 1MH�Ë�ÌÉ�� 0 1 1 0 0MH�Ë� Ê � 0 1 1 0 0

We list its closedpatterns,their support, andtheir ¶ ·�·]�/Ç � counterpart patternsbelow:

support of V closepattern V Í>�h¶ ·�·]�-V`� support of Í
3

Q � 
 ��� 	 T Q � B ���ÌÉz���SÊ T 2
4

Q � 
 T Q � B ��� 	 ���ÌÉ����9Ê]T 1
4

Q � 	 T Q � B ��� 
 ���ÌÉ����9Ê]T 1
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Supposewe take jL�x�tÎ . Thenthere are only 3 closedpatterns—an odd number—that occur at least j2� times,viz.Q � 
 ��� 	 T , Q � 
 T , and
Q � 	 T .

Finally, wedemonstrateourmainresultontherelationshipwith closedpatterns andmaximalcompletebipartitesubgraphs.
In particular, we discover thateverypair of a closedpattern³ andits occurrenceset ¶ ·�·0�8� ¸ ��³�� yieldsa distinctmaximal
completebipartitesubgraph of � .

Theorem4.8 Let � bean undirectedgraph withoutself-loop. Let ³ bea closedpatternof �H� � . Thenthegraph ;Ï��k³?G£¶ ·}· �8� ¸ �k³��c��³q(L¶ ·�· �8� ¸ ��³��!# is a maximalcompletebipartite subgraph of � .

Proof: By assumption, ³ is non-empty and ³ has a non-zero support in �H� � . Therefore, ¶ ·�·���³�� is non-empty. By
Proposition4.2, ³JZ£¶ ·}·{�8��¸H�k³��5� Q T . Furthermore, ÐS3£1F¶ ·�·]�k³�� , 3 is adjacent to everyvertex of ³ . So, ³&(2¶ ·�·]��³��O% @� , andeveryedge of ; connectsa vertex of ³ anda vertex of ¶ ·�·]�k³�� . Thus, ; is a completebipartite subgraph of � .
By Proposition3.1,wehave ¶ ·�·]�8� ¸ ��³��O�AM��O��³�� . By Proposition3.2, ³u�¥MY�O��M��X�k³��/� . By Proposition3.1,wederive³¥�hM � ��¶ ·}· �8� ¸
�k³��/� . So ; is maximal.Thisfinishesthetheorem. vw
Theorem4.9 Let � be an undirectedgraph without self-loop. Let graph ;Ñ�a��� B Gx� 
 �! �# be a maximalcomplete
bipartite subgraph of � . Then, � B and � 
 are botha closedpatternof �H� � , ¶ ·�·��8��¸
��� B ���'� 
 and ¶ ·�·~�8��¸5��� 
 �E�'� B .
Proof: Since; is a maximalcompletebipartite subgraph of � , then MH��� B �I�'� 
 and MH��� 
 �E�'� B . By Proposition3.2,³E´P���:B}�F�iMH��MH���:B��/�b�iMH��� 
 �b�Ò�:B . So, ��B is a closedpattern. Similarly, we can get � 
 is a closedpattern. By
Proposition3.1, ¶ ·�·����7B}�H�JMH���:B��Y�C� 
 and ¶ ·�·]�k� 
 �H�?MH�k� 
 �Y�D�SB , asrequired. vw
Theabovetwo theoremssaythatmaximalcompletebipartitesubgraphsof � areall in theform of ;��>��� B GE� 
 �! @# , where� B and � 
 arebothaclosedpatternof �
� � . Also, for everyclosedpattern³ of �
� � , thegraph;��m�k³ÓGO¶ ·}·��8��¸5��³�����³�(¶ ·}·��8��¸H�k³��/# is a maximal completebipartitesubgraph of � . So, thereis a one-to-onecorrespondencebetweenmaximal
completebipartitesubgraphsandclosedpatternpairs.

We canalsoderiveacorollary linking support threshold of �
� � to thedensityof maximalcompletebipartitesubgraphsof� .

Corollary 4.10 Let � beanundirectedgraphwithoutself-loop.Then;��>��³6GX¶ ·�·S�8� ¸ ��³�����³K(E¶ ·�·��8� ¸ �k³��/# is a �-j`�/��� -
densemaximalcompletebipartite subgraphof � iff ³ is a closedpatternsuch that ³ occurs at least j timesin �H� � and¶ ·}·��8��¸H�k³�� occurat least � timesin �
� � .

Thecorollary above hasthefollowing importantimplication.

Theorem4.11 Let � beanundirectedgraph withoutself-loop.Then;��A��³bG"¶ ·�·Ì����¸5�k³��c��³h(@¶ ·�·��8��¸5��³��!# is a �-j`�/��� -
densemaximalcompletebipartite subgraphof � iff ³ is a closedpatternsuch that ³ occurs at least j timesin �H� � andR ³$R8Ôy� .

Proof: Suppose;Õ�Ö��³DGF¶ ·�·]�8��¸H�k³��c��³g(b¶ ·�·}����¸5�k³��/# is a �-j`�/��� -densemaximalcompletebipartite subgraphof � .
By Theorem4.9, ³×��¶ ·}·]��¶ ·�·���³��/� . By definition of ¶ ·�·��§ÇÈ� , �~,��7��¶ ·}·]��³��!�=�iR ¶ ·�·]��¶ ·}·]��³��!�}R
�ÒR ³$R . Substitutethis into
Corollary 4.10, weget ; is a ��jW�!��� -densemaximalcompletebipartitesubgraphof � iff ³ is a closedpatternsuch that ³
occursat least j timesin �H� � and R ³$RÄÔØ� asdesired. vw
Theorems4.8 and4.9 show thatalgorithms for mining closedpatterns canbeusedto extractmaximal completebipartite
subgraphsof undirectedgraphswithout self-loop. Suchdatamining algorithms areusuallysignificantlymore efficient at
higher support threshold jL� . ThusTheorem 4.11suggestsan important optimizationfor mining ��jW�!��� -densemaximal
completebipartitesubgraphs. To wit, assumingjd�¥� , it sufficesto mineclosedpatternsat support thresholdjL���>j ,
andthengettheanswerby filtering out thosepatterns of lengthlessthan � .
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Table1: Closepatterns in ayeastprotein interaction network.

support threshold # of frequentclosepatterns # of qualifiedclosepatterns time in sec.
1 121314 121314 3.859
2 117895 114554 2.734
3 105854 95920 2.187
4 94781 80306 1.765
5 81708 60038 1.312
6 66429 36478 0.937
7 50506 15800 0.625
8 36223 3716 0.398
9 25147 406 0.281
10 17426 34 0.171
11 12402 2 0.109
12 9138 0 0.078

5 Experimental Results

We useanexample to demonstratetheefficiency of listing all maximal completebipartitesubgraphsby usinganalgorithm
for mining closedpatterns. Thegraph is a proteininteraction network with proteins asverticesandinteractionsasedges.
As therearemany physicalprotein interaction networks correspondingto differentspecies,herewe take thesimplestand
mostcomprehensive yeastphysical andgeneticinteractionnetwork (Breitkreutz et al., 2003) asan example. This graph
consistsof 4904verticesand17440 edges(after removing 185 self loopsand1413redundant edges from the original
19038 interactions). Therefore, theadjacency matrix is a transactional databasewith 4904itemsand4904 transactions.On
average, thenumberof itemsin a transactionis 3.56. Thatis, theaverage sizeof theneighborhoodof aproteinis 3.56.

WeuseFPclose*(Grahne& Zhu,2003),astate-of-the-artalgorithm for miningclosedpattern,for enumeratingthemaximal
complete bipartite subgraphs. Our machine is a PC with a CPU clock rate3.2GHzand2GB of memory. The resultsare
reportedin Table1, wherethesecondcolumn shows thetotal numberof fr equent closepatternswhosesupport level is at
leastthe threshold number in the columnone. The third column of this tableshows the number of closepatternswhose
cardinality andsupport arebothat leastthesupport threshold; all suchclosedpatternsaretermedqualifiedclosedpatterns.
Only thesequalified closedpatternscanbeusedto form maximalcompletebipartitesubgraphs ;Ö�>����B�G�� 
 �� @# suchthat
bothof R ��BzR and R � 
 R areat leasta threshold. Fromthetable,wecansee:

Ù The number of all closedpatterns (corresponding to thosewith the support threshold of 1) is even. Moreover, the
number of qualifiedclosepatternswith cardinalityno lessthanany support level is also even, as expectedfrom
Corollary4.6.Ù Thealgorithm is efficient—Thealgorithm takeslessthan4 secondsto completetheprogramfor all situationsreported
here.This indicatesthatenumeratingall maximal completebipartitesubgraphsfrom a largegraphcanbeefficiently
solvedby usingalgorithmsfor mining closedpatterns.Ù A so-called“many-few” property (Maslov & Sneppen,2002) of proteininteractions is observedagainin our exper-
iment results. The “many-few” property saysthat: a proteinthat interactswith lots of otherproteins tendsnot to
interactwith anotherproteinthatinteractswith lotsof other proteins(Maslov & Sneppen, 2002). This is mostclearly
seenin Table1 at thehighersupport thresholds. For example, at thesupport threshold 11, thereare12402 protein
groups thathavefull interactionswith at least11proteins. But thereareonly two groups thateachcontainat least11
proteinsandthathavefull mutualinteraction.
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6 Discussionand Conclusion

Thereare two recentresearchresultsrelatedto our work. The problem of enumerating all maximal complete bipartite
subgraphs(calledmaximalbipartitecliquesthere)from a bipartite graph hasbeeninvestigatedby (Makino & Uno,2004).
Thedifferenceis thatour work is to enumerateall thesubgraphsfrom any graphs(without self loops andundirected),but
MakinoandUno’swork is limited to enumeratingfrom onlybipartitegraphs.So,ourmethod is moregeneral. Zaki (Zaki &
Ogihara,1998) observedthata transactional database�
� canberepresentedby abipartitegraph; , andalsoarelationthat
closedpatterns (wrongly statedasmaximalpatterns in (Zaki & Ogihara,1998)) of �H� one-to-one correspond to maximal
complete bipartite subgraphs(calledmaximalbipartiteclique there)of ; . However, our work is to convert a graph � ,
including bipartitegraphs, into a specialtransactional database�
� � , and thento discover all closedpatterns�
� � for
enumeratingall maximal completebipartite subgraphsof � . Furthermore,theoccurrencesetof a closedpatternof Zaki’s
work maynotbea closedpattern, but thatof oursis alwaysaclosedpattern.

Finally, let’s summarize the resultsachieved in this paper. We have studiedthe problem of listing all maximalcomplete
bipartite subgraphsfrom a graph. We provedthat this problem is equivalent to themining of all closedpatternsfrom the
adjacency matrix of this graph. Experimentalresultson a largeproteininteractions’ datashow thatour methodis efficient
andthelisting is fast.
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