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Abstract

For anundirectedgraphG without self-loop,we prove: (i) thatthe number of closedpatternsn the adjaceisy matrix
of G is even; (ii) thatthe numberof the closedpatternsis preciselydouble the numberof maximal completebipartite
subgaphsof G; (iii) thatfor every maximal completebipartite subgraphtherealways exists a uniqueand distinct pair
of closedpatternghat matcheghe two vertex setsof the subgraph.Therefore we canefficiently enumeratell maximal
completebipartite subgaphsby using algorithmsfor mining closedpatternswhich have beenextensiely studiedin the
dataminingfield.

1 Intr oduction

Interest in graghs andtheir applicatiors hasgrovn exponentially in the pasttwo decae@s(Gross& Yellen,2004; Makino
& Uno, 2004, largely dueto the usefunessof graphs asmodelsin mary areassuchas mathenatical researchelectrical
engireering,compuer progamming businessadministratio, sociology econonics, marketing, biology, and networking
andcomnunicatiors. In particdar, mary prodemscanbe modelled with maximalcompletebipartite subgaphs(seethe
definition belav) formed by grouping two nonoverlappingsubsetof verticesof a certaingraphthat shov a kind of full

conrectiity betweerthem.

We considertwo exampes. Suppaetherearep customesin a mobilecommunicationnetwork. Somepe®le have awide
range of contactwhile othes have few. Which grougs of customes (with a maximd number) have a full interactionwith
anottergroup of custoners,aprodemsimilarto one(Murata, 2004) studiedin webmining? This situationcanbemocklled
by a graph wherea mobile phane customelis a nodeanda communicationis anedge.Thus,a maximalbipartitesubgaph
of thisgraph correspond to two groupsof custonersbetweerwhom thereexist afull communication.Our secondexanple
is abou proteirs’ interactionin a cell. There areusuallythousandof proteirs in a cell thatinteractwith oneandher. This
situationagan canbemodelledby agraph wherea proteinis anodeanda pair of interactirg prateinsformsanedge.Then
listing all maximalcompletebipartite subgaphsfrom this graphcananswerquestios suchaswhich two proteingroups
have afull interaction whichis aprodem studiedin biology (Reiss& Schwikowski, 2004; Tongetal., 20Q).

Listing all maximal complée bipartitesubgaphsis studiedtheoetically in (Eppstein,1994). Theresultis thatall maximal
comgete bipatite subgrahsof a graphcanbe enuneratedin time O(a ®22%n), wherea is the arboricity of the graphand
n is the numter of vettices of the gragh. Eventhoudh the algoiithm hasa linear comgexity, it is not practicalfor large
graghsdueto thelarge constanbvemead(a caneasilybearourd 10-20 in practice)(Zaki & Ogihaa, 1998) In this papey

we studythis prodem from datamining perspectie: We usea heuristicsdatamining algoiithm to efficiently enumerateall

maximad completebipatite subgraps from a large graph A main conceptof the datamining algorithmis calledclosed
patterns There aremary recentalgorithmsandimplenmentationslevotedto themining of closedpatterrs from theso-called



transactimal datatases(Bastideet al., 2000; Goethals& Zaki, 2003; Grahre & Zhu, 2003 Uno et al., 2004; Panetal.,

20@B; Pasquieretal., 1999 Peietal., 2000; Wanget al., 2008; Zaki & Hsiao,2002. Thedatastructuresareefficientand
the mining speedis trememouslyfast. Our main contritution hereis the obseration that the mining of closedpatterns
from theadjaceng matrix of a graph, termeda specialtransactioal databases equialentto the problemof enunerating
all maximal compete bipartitesubgaphsof this gragh.

Therestof this shortpaperis organizedasfollows: Sections2 and3 provide basicdefinitionsandpropositionson graghs
andclosedpatterns. In Section4 we prove that thereis a oneto-ore correspondene betweenclosedpatternpairs and
maximd comgetebipartitesubgaphsfor ary simplegragh. In Sections, we presehourexperinentalresultsona prateins’
interaction graph. Section6 discussesomeotherrelatedwork andthenconcludesthis pager.

2 Maximal Complete Bipartite Subgraphs

A graph G = (VY ES) is compisedof a setof verticesV ¢ anda setof edgesE® C V¢ x V&, We often omit the
superscrifsin V¢, E¢ andotherplaceswhenthe context is clear Throughot this paper we assume' is anundireded
gragh withoutary self-loos. In otherwords,we assumehat(i) thereis noedge(u, u) € E ¢ and(ii) for every (u,v) € E¢,
(u,v) canbereplacedy (v, u)—thatis, (u,v) is anunorceredpair.

A graph H is asubgraphof agraph G if VH C V¢ andEH C EY. A graphG is bipartite if V¢ canbepartitioredinto
two nonemptyandnon-irtersectingsubsetsd/; andV, suchthatE¢ C Vi x V,.ThisbipartitegraphG is usuallydended
by G = (V1 U V», EY). Notethatthereis noedgein G thatjoins two verticeswithin V; or V. G is completebipartite if
Vi x Vo = E¢.

Two vertices u, v of agraphG aresaidto be adjacenif (u,v) € E%—thatis, thereis anedgein G thatconnectghem.
Theneighborhoad 5% (v) of avertex v of agragh G is thesetof all vertices in G' thatareadjacehto v—thatis, 5 (v) =
{u | (u,v) or (v,u) € E¥}. Theneigtborhood 3% (X) for a nonemptysubsetX of verticesof a graph G is the setof
comnon neightorhood of theverticesin X—thatis, 8% (X) = Nyex 8% (x).

Note that for any subsetX of vettices of a gragh G' suchthat X and 8% (X) are both nonempty it is the casethat
H = (X UB%X),X x BY9(X)) is acompletebipartitesubgrap of G. Notealsoit is possiblefor avertex v ¢ X of
G to be adjacento every vertex of 3%(X). In this case,the subsetX canbe expardedby addingthe vertex v, while
maintairing the sameneighborhood. Whereto stopthe expansion?We usethe following definition of maximad conplete
bipatite subgraps.

Definition 2.1 Agraph H = (V; U V», E) is a maximal completebipartite subgraph of G if H is a compete bipartite
subgephof G suc that 3% (V1) = V5 andB% (1,) = V3.

Not all maximd compgete bipartite subgraps are equally interesting. Recall our earlier motivating examge involving
the customes in a mobile communicationnetwork. We would prokably not bevely interestedn two groupsof customers
betweerwhomthereexistafull comrunication if thegroypsbothcompiseasinglepersa. In contrast,wewould prabably
be corsiderablymoreinterestedf oneof the group is large, or both of the groyps arelarge. Hence we canintroducethe
notionof densityon maximalcompletebipatite subgrahs.

Definition 2.2 A maximéa completebipartite subgaph H = (V; U V5, E) of agraphG is saidto be (m, n)-densef |V |
or V5| is atleastm, andtheotheris at leastn.

A comgetebipartitesubgaphH = (V; UVs, E) of G suchthat3% (V) = V5 andB% (V) = V4 is maximalin thesensehat
thereis no othercomgete bipartitesubgrap H' = (V{ U V3, E') of G with V; C V{ andV;, C V; suchthat3%(V/) = Vi
andB%(Vy) = V{. To appredtethis notion of maximality, we prove the propositionbelaw.



Proposition 2.3 Let H = (V1 U V,, E) and H' = (V/ U V4, E') betwo maximalcompletebipartite subgaphsof G sut
thatVy, C V{ andV, C V. ThenH = H'.

Proof: SuposeH = (V1 U W, E) andH' = (V{ UV, E') are two maximalcompletebipartite subgaphsof G such
thatV, C V/ andV, C Vy. SinceV; C V{ andV, C V4, wehaveB®(V/) C B% (V1) and B¢ (Vy) C BY (V). Using
the defirition of maximalcompete bipartite subgaphs, we derive V) = g%(V{) C f%(W1) = Vs andV} = B9 (V) C
BE (Vo) = V4. ThenE = V4 x Vo = V{ x VJ = E'. ThusH = H' asdesied. O

3 ClosedPatterns of an Adjacency Matrix

Theadjaceny matrix of a graphis importantin this study Let G beagragn with V ¢ = {vy,vs,...,v,}. Theadjacency
matrix A of G isthep x p matrix definedby

o1 if (v,v;) € BY
Ali, j] ——{ 0 othewise

Recallthatour grapls do nothave self-logp andareundirected.Thus A is asymmetricmatrixandevery entryonthemain
diagmalis 0. Also, {Uj | A[kaJ] =1,1<5< p} = ﬂG(’Uk) = {Uj | A[]a k] =L1<j< p}'

Theadjaceng matrix of agraphcanbeinterpretedinto atransactional database(DB), whichis aconeptusedvelty often
in thedatamining community. To definea DB, we first defineatransaction. Let I bea setof items. Thenatransactions
definedasasubsebf I. For exanple,assumd to beall itemsin asupernarket, atransactiorby a custoneris theitemsthat
the custoner boudht. A DB is a nonemptysetof transactios. Eachtransactiori” in a DB is assigned unigue identity
id(T). A pattern is definedasa non-enpty set' of itemsof I. A patternmaybe or maynotbe contairedin atransaction
Givena DB andapatternP, thenumberof transactiosin DB cortaining P is calledthesupport of P, dendedsup B (P).
In this paper unlessmention& otherwise we consideronly patternghatapper in a given transactioal databaseéB. In
fact, for datamining, we areofteninterestecbnly in patterrs that apper sufiiciently frequent. Thatis, we consideronly
patterrs P satisfyingsup™®(P) > ms, for athresholdns > 0. Unlessmentione othewise,we setms = 1 in this paper

Let G beagraphwith V& = {vy,vs,...,v,}. If eachvettex in V¢ is definedasanitem, thentheneighrhoal 3 (v;) of
v; is atransactionThus,{3% (v1), 8% (v2), - .., 8% (v,)} is a DB. SuchaspecialDB is dendedby DB . Theidentity of a
transactiorin DB is definedasthe vertex itself—thatis, id(3% (v;)) = v;. Notethat DB hasthe samenumbe of items
andtransactias. Notealsothatv; € 3% (v;) sincewe assumeS' to beanundirectedgraphwithout self-loop.

DB canberepresentedisabinaly squae matrix. This binary matrix B is definedby

Lo 1 if Vj E,BG(W)
B[i,j] = { 0 otherwise

Sincev; € B%(v;) iff (v;,v;) € EC, it canbeseenthatA = B. So,“a patternof DB¢” is equivalert to “a patternof the
adjaceny matrix of G”.

Closedpatterrs area type of interestingpatternsin a DB. In thelastfew years,the problemof efficiently mining closed
patterrs from a large DB hasattracteda lot of researcherin the datamining comnunity (Bastideetal., 200; Goethals
& Zaki, 2003 Grahre & Zhu,2003 Unoetal.,2004; Panetal., 2003; Pasquieretal., 1999 Peietal.,200Q Wangetal.,
200; Zaki & Hsiao,2002. Let I beasetof items,andD beatransactionbdatabaselefinal onI. For apatternP C I, let
fP(P)={T € D| P C T}—thais, fP(P) areall transactionsn D containirg the patternP. For a setof transactions
D' C D,letg(D') = Nyep T = [ D'—thatis, the setof itemswhich aresharedby all transactiosin D’. Usingthese

1The § is usuallydefined asa valid paternin the datamining communiy. However, in this pape, to be consitentto the definition of £ (X), it is
excluded.



two functions,we candefinethe notion of closedpatterns. For apatternP, CL P (P) = g(fP(P)) is calledtheclosure of
P. A patternP is saidto beclosedwith respecto atransactioal datalaseD iff CLP(P) = P.

We definethe occurrencesetof apatternP in DB asoccPZ (P) = {id(T) | T € DB,P C T} = {id(T) | T € fP2(P)}.
It is straightbrward to seethatid(T) € occPB (P) iff T € fPB(P). Thereis atight connetion betweerthe notionsof
neigtbourtoodin agraphG andoccurencein thecorrespodingtransactioal databaséB .

Proposition 3.1 Givena graph G anda (non-empty)patternP thatoccurs at leastms timesin DB ¢. ThenoccPPe (P) =
B%(P). Notethatwe do notrequire occ?P¢ (P) to occurat leastms timesin DBg.

Proof: If v € occ(P), thenw is adjacer to every vertex in P. Theefore, v € B(v') for each v’ € P. Thatis, v €
Ny ep B = B(P).

If u € B(P), thenu is adjacentto everyvertexin P. So,3(u) D P. Theefore, §(u) is atransactio of DB contairing P.
So,u € oce(P). O

Thereis also a nice conrection betweenthe notions of neigtbortood in a gragh andthat of closureof patterrs in the
correspondimy transactioal datalase.

Proposition 3.2 Givena graphG anda (nonempty)patternP thatoccurs at leastms timesin DB ¢. Then3% (8% (P)) =
CLPBs (P). ThusBY o B¢ is a closure opemtion on patternsthat occurat leastms timesin DB .
Proof: By construction 3(8(P)) = B(occ(P)) = igryeocepy T = Nreppy T = 9(f(P)) = CL(P). O

We discussn thenext sectiondeegr relationshi betweerthe closedpatternsof DB ¢ andthe maximalcompletebipartite
subgaphsof G.

4 Results

The occurencesetof a closedpatternC in DB playsakey role in the maximalcomgete bipartitesubgraps of G. We
introducebelon someof its key propeties.

Proposition 4.1 LetG beagraph LetCy andC, beclosedpatternsthatapper atleastms timesin DBg. ThenC; = C,
iff occPB< (Cy) = ocePBe (Cy).

Proof: Theleft-to-rightdirectionis trivial. To provetheright-to-leftdirection,let ussuppaethatocc(C1) = oce(Cs). It is
straightforwaid to seethatid(T") € occ(P) iff T € f(P). Thenweget f(C1) = f(C2) fromocc(C1) = oce(Cs). SinceCy
andC- are closedpatternsof DBg, it followsthatCy = g(f(C1)) = g(f(C2)) = C>, andfinishesthe proposition O

Proposition 4.2 LetG beagraphandC aclosedpatternthatoccuis atleastms timesin DB . ThenC' andits occurence
sethasemptyintersection.Thatis, occ?Pe (C) N C = {}.

Proof: Letv € occ(C). Thenv is adjacentto everyvertexin C. Sincewe assume? is a graphwithoutself-loop,v ¢ C.

Theefore, occPPe (C) N C = {}. O

In factthis proposition holdsfor ary patternP, notnecessarilya closedpatternC'.



Lemma 4.3 LetG beagraph. LetC bea closedpatternthatoccuis at leastms timesin DB . Thenf PB¢ (occPBe (C)) =

{8%(c) | c € C}.

Proof: AsC is a closedpattern, by definitin, then{c | ¢ € C} are all andonly itemscontairedin everytransactim of
DB that contairs C. Thisis equivalem to that {c | ¢ € C} are all and only verticesof G that are adjacentto every
vertex in occ(C). Thisimpliesthat {3(c) | ¢ € C} are all andonly transactios that contan occ(C). In otherwords,

floce(C)) ={B(e) | c € C}. =

Proposition 4.4 Let G bea graphand C a closedpatternthat occuss at leastms timesin DB . ThenoccPP¢ (C) is a
closedpatternof DBg.

Proof: By Lemma4.3, f(occ(C)) = {B(c) | ¢ € C}. SOCL(oce(C)) = g(f(oce(C))) = N foce(C)) = N,oee Bc) =
B(C) = occ(C). Thusoce(C) is a closedpattern. O

Thethreepropasitionsabove give riseto a coupleof interestingcordlaries below.

Corallary 4.5 LetG bea graph. Thenthenumberof closedpatternsthatappear at leastonae in DB  is even.

Proof: Supmsethere are n closedpatternsthatappear at leastoncein DB g, derotedasCh, Cs, ..., C,. Asper Proposi-
tion 4.4, 0cc(C1), oce(Cs), ..., occ(Cy,) are all closedpatternsof DB¢. Asper Proposition4.1, occ(C;) is differert from
occ(Cy) iff C; is differert from C;. Soevery closedpatterncan be paired with a distinct closedpatternby occ(-) in a
bijectivemanrer. Furthermoe, as per Proposition4.2, no closedpatternis pairedwith itself. Thisis possibleonly when
thenumbe n is even. O

Corallary 4.6 LetG beagraph Thenthe numier of closedpatternsC, sud thatbothC' andocc PPe (C) appear at least
ms timesin DBg, is even.

Proof: Asseenfromthe proof of Corollary 4.5, every closedpatternC of DB can be paired with occPP¢ (C), andthe
entire setof closedpatternscanbe partitionedinto suc pairs. Soa pair of closedpatternsC' andocc PB¢ (C) eithersatisfy
or do not satisfythe cordition that both C' and occPB¢ (C) appea at leastms timesin DBg. Theefore, the numberof
closedpatternsC, suc thatbothC' andoccPP¢ (C) appear atleastms timesin DB, is even. O

Note that this cordlary doesnot imply the number of closedpatterrs that appearat leastms timesin DB g is even. A
courter exanpleis given below.

Example 4.7 Considera DB givenby thefollowing matrix:

| ||p1|p2|p3|p4|p5|
Bp)[O[1[1]0]0
Blpe) | 10111111
Bp) [T ]1[0[1[1
Bpa) || O] 1 ]2|0]O0
Bps) [O]1[1]0]0

Wk list its closedpatterns their supprt, andtheir occ(-) counterpart patternsbelow:

| supprtof X || closepatternX | Y = oce(X) | suppat of Y |

3 {p2,p3} {p1,p4,p5} 2
4 {pQ} {p17p37p47p5} 1
4 {p3} {p17p27p47p5} 1




Sumposewe take ms = 3. Thenthere are only 3 closedpatterns—a odd number—tha occur at leastms times, viz.
{p2,p3}, {p2}, and{ps}.

Finally, we demorstrateour mainresultontherelatiorshipwith closedpatterrs andmaximalcomgete bipartitesubgraps.
In particdar, we discover thatevery pair of a closedpatternC andits occurencesetocec PB¢ (C) yieldsa distinctmaximal
comgpete bipartitesubgrap of G.

Theorem4.8 Let G be an undirectedgraph without self-loop. Let C' be a closedpatternof DB . Thenthegraph H =
(C UoccPBe(C),C x occPBe (C)) is amaximalcompletevipartite subgaph of G.

Proof: By assumptionC' is non-enpty and C' hasa nonzew supprt in DB . Theefore, oce(C) is nonempty By
Proposition4.2,C N occPBe (C) = {}. Furthermoe, Vv € occ(C), v is adjacent to everyvertex of C. So,C x oce(C) C
E¢, andeveryedge of H conrectsa vertex of C' anda vertex of occ(C). Thus,H is a completebipartite subgiaph of G.
By Proposition3.1, we haveoccPB¢ (C) = B%(C). By Proposition3.2,C = % (3% (C)). By Proposition3.1, we derive
C = B%(0ccPBe (C)). SoH is maximal.Thisfinishesghetheoem. o

Theorem4.9 Let G be an undirectedgraph without self-loop. Let graph H = (V3 U V3, E) be a maximalcomplete
bipartite subgaph of G. Then,V; andV; are botha closedpatternof DB, occPB¢ (V) = Vi andocePPe (V) = 4.
Proof: SinceH is a maximalcompletebipartite subgiaph of G, theng(V,) = V» and 8(V2) = V4. By Proposition3.2,
CL(W) = B(B(V1)) = B(Vz2) = V4. So,V; is a closedpattern. Similarly, we can get V5 is a closedpattern. By
Proposition3.1,0cc(V71) = (V1) = Va andoce(Va) = B(V2) = V4, asrequired. O

Theabove two theorens saythatmaximalcomgetebipartitesubgrapsof G areall in theformof H = (V1 UV, E), where
¥, andV;, arebothaclosedpatternof DB. Also, for every closedpatternC' of DB, thegraphH = (CUoccPB¢ (C), C' x

occPBe (C)) is amaximal comgete bipartitesubgrap of G. So, thereis a one-teonecorrespnderte betweenmaximal

competebipartitesubgrapsandclosedpatternpairs.

We canalsoderive acorollary linking suppot threshdd of DB ¢ to thedensityof maximalcompletebipartitesubgaphsof
G.

Corallary 4.10 LetG beanundirectedgraphwithoutself-loop.ThenH = (C'Uocc PB¢ (C), C x occPBe (C)) isa (m,n)-
densemaximalcompletebipartite subgaphof G iff C is a closedpatternsud that C' occurs at leastm timesin DB ¢ and
occPBe (C) occurat leastn timesin DBg.

Thecordlary abore hasthefollowing importantimplication.

Theorem4.11 LetG beanundrectedgraph withoutself-loop.ThenH = (C UoccPBs (C), C x occPBe (C)) isa (m,n)-
densemaximalcompletebipartite subgaphof G iff C is a closedpatternsud that C' occurs at leastm timesin DB g and
IC| > mn.

Proof: SuposeH = (C U occPBe (C),C x occPPe (C)) is a (m, n)-densemaximalcompletebipartite subgaphof G.
By Theoem4.9 C = occ(oce(C)). By defirition of occ(-), sup(oce(C)) = |occ(occ(C))| = |C|. Substitutethis into
Corollary 4.10 weget H is a (m, n)-densemaximalcompletebipartite subgaph of G iff C is a closedpatternsuc that C
occurs at leastm timesin DB and|C| > n asdesited. ]

Theaems4.8 and4.9 shawv thatalgorithns for mining closedpatterrs canbe usedto extractmaxinal compete bipartite
subgephsof undirected graghs without self-loop. Suchdatamining algorithns are usually significantlymore efficient at
highe suppot threshdd ms. ThusTheoren 4.11 suggestsanimportant optimizationfor mining (m, n)-densemaximal
comgete bipartitesubgrphs. To wit, assumingn > n, it suficesto mine closedpatternsat suppot thresholdms = m,
andthengetthe answelby filtering outthosepatters of lengthlessthann.



Tablel: Closepatterrsin ayeastpratein interation network.

suppat threshdd | # of frequentclosepatterns | # of qualifiedclosepatterrs | timein sec.
1 121314 121314 3.8®
2 117895 114%4 2.7
3 105854 959D 2.18
4 94781 803%®% 1.76
5 81708 60038 1.3
6 66429 36478 0.9
7 50506 158M 0.65
8 3623 3716 0.38
9 25147 406 0.28
10 1746 34 0.171
11 12402 2 0.1®
12 9138 0 0.08

5 Experimental Results

We useanexanple to demorstratethe efficiency of listing all maximad completebipartitesubgaphsby usinganalgorithm
for mining closedpatterrs. The graph is a proteininteraction network with proteirs asverticesandinteractions asedges.
As therearemary physicalpratein interaction networks correspadingto different speciesherewe take the simplestand
mostcompehensre yeastphysical and geneticinteractionnetwork (Breitkreuz et al., 2003 asanexampe. This graph
consistsof 4904 verticesand 1744) edges(after remaving 185 self loops and 1413 redurdant edges from the original
19@8interactiors). Therefae, theadjaceng matrixis atransactioal databaewith 4904itemsand4904 transactionsOn
averag, thenunberof itemsin atransactions 3.56 Thatis, theaverag sizeof the neighborhoodof a proteinis 3.56.

We useFPclose’{Grameé& Zhu,20(), a state-ofthe-artalgaithm for mining closedpattern for enurneratingthemaximal
compete bipatite subgra@hs. Our mactine is a PC with a CPU clock rate3.2GHzand2GB of memoy. Theresultsare
repatedin Tablel, wherethe seconccolunm shaws the total nunber of fr equent closepatternsvhosesuppot level is at
leastthe threstold numter in the columnone. Thethird columm of this table shavs the numbe of closepatternswhose
cardirality andsuppot arebothat leastthe suppat threshold all suchclosedpatternsaretermedqualifiedclosedpatterns.
Only thesequdified closedpatternsanbeusedto form maximalcompletebipartitesubgrahs H = (V; U V2, E) suchthat
bothof |V;| and|V5| areatleastathreshold Fromthetable,we cansee:

e Thenumler of all closedpatterrs (correspondirg to thosewith the suppat threshdd of 1) is even Moreover, the
numbe of qualified close patternswith cardinality no lessthanary suppat level is also even as expectedfrom
Corollary4.6.

¢ Thealgoithmis efficient—Thealgoiithm takeslessthan4 second$o comgetetheprogamfor all situationgepoted
here.This indicateshatenumeatingall maximd completebipartitesubgaphsfrom a large graphcanbe efficiently
solvedby usingalgorithmsfor mining closedpatterrs.

e A so-called'many-few” property (Maslor & Snepn,2002 of proteininteradionsis obseredagainin our exper
imentresults. The “many-few” property saysthat: a proteinthatinteractswith lots of otherproteirs tendsnot to
interactwith anotherproteinthatinteractswith lots of othe prateins(Maslov & Sneppen20@®). Thisis mostclearly
seenin Table1 at the highersuppot threshdds. For exanple, at the suppaot threshdd 11, thereare 12402 protein
grougs thathave full interactimswith atleast11 proténs. But thereareonly two grougs thateachcontainatleast11
proteinsandthathave full mutualinteractian.



6 Discussionand Conclusion

Therearetwo recentresearctresultsrelatedto our work. The problem of enumeating all maximal complée bipartite
subgephs(calledmaximalbipartitecliquesthere)from a bipartite graph hasbeeninvestigatedy (Makino & Uno,2004.

Thedifferenceis thatour work is to enunerateall the subgaphsfrom ary graghs (without self loops andundrected),but
MakinoandUno’s work is limited to enumeratingfrom only bipartitegraghs. So,our metha is moregeneal. Zaki (Zaki &

Ogihar, 1998 obseredthatatransactioal databasd)B canberepresetedby abipartitegraphH, andalsoarelationthat
closedpatterrs (wrongly statedasmaximalpatterrs in (Zaki & Ogihar, 1998) of DB oneto-ore correspod to maximal
comgete bipatite subgaphs(called maximalbipartite clique there)of H. However, our work is to corvert a graphG,

including bipartite grapts, into a specialtransactioal databaseDB ¢, andthento discover all closedpatternsDB for
enuneratingall maximal completebipatite subgrapsof G. Furthemore,the occurencesetof a closedpatternof Zaki's
work maynotbea closedpattern but thatof oursis alwaysa closedpattern.

Finally, let's summaize the resultsachieved in this paper We have studiedthe problem of listing all maximalcomgete
bipatite subgaphsfrom a graph We proved thatthis problem is equivalent to the mining of all closedpatternsrom the
adjacewy matrix of this graph. Experinentalresultson a large proteininteractiors’ datashav thatour methodis efficient
andthelisting is fast.
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