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Abstract and computer science. Biological science provides
The four most important data-related considerations fordeep unders_tandmg Of_thIS comp_lex domain, while
the bioinformatic analysis of biological systems are computer science provides effective means to_st_ore
understanding of: the complexity and hierarchical nature@nd analyse volumes of complex data. Combining
of processes that generate biological data, fuzziness ofhe two fields gives the potential for great strides in
biological data, biases and potential misconceptions inunderstanding biological systems and increasing
data, and the effects of noise and errors. We discusghe effectiveness of biological research. The diffi-
these issues and summarize our findings by defining &, 1ies in effective use of bioinformatic tools arise
Data Learning ProcesfDLP). DLP comprises a series . . . .
of steps for comprehension of biological data within the at both ends_' an averag_e p'O'OQ'St has a “m'te_d
bioinformatics framework. DLP is a formalization Understanding of sophisticated data analysis
aimed at facilitating knowledge discovery in biological methods, of their applicability and limitations,
databases. while an average computer scientist lacks under-
standing of the depth and complexity of biological
) data. Bioinformaticians need to develop an overlap
Introduction of understanding between the two fields. Here we

Biological databases continue to grow rapidly. Thescuss the issues related to biological data which
growth is reflected in increases in both the size df@ve implications on selection and critical usage of
complexity of individual databases as well as in ti§@mputer science methods in biological research.
proliferation of new databases. We have evekhe aim of this article is to clarify some important

increasing requirements for both speed and sopldspects of biological data for computer scientists.

tication of data analysis to maintain the ability to
effectively use the available data. Bioinformatics is

a field emerging at the overlap between biology ~Vhat do we need to know about

biological data?

5. corresponding author, V. Brusic, Kent Ridge Digital Labs, 21 . .
Heng Mui Keng Terrace, Singapore 119613 The four most important data-related consider-

Copyright © 1998, American Association for Artificial Intelligence ations for the analysis of biological systems are
(www.aaai.org). All rights reserved. understanding of: a) the complexity and hierar-



chical nature of processes that generate biologitalresults and a studied phenomenon. This correla-
data, b) fuzziness of biological data, c) biases atiwh is rarely, if ever, perfect. Distinct experimental
potential misconceptions arising from domaimethods in the study of the same biological
history, reasoning with limited knowledge, @henomenon would generally produce sets of
changing domain and methodological artefact®sults that overlap, but not fully. Comparing these
and d) the effects of noise and errors. Despiteesults involves scaling and granularity issues.
broad awareness, biological-data-specific issu&&thin the same experimental method, differences
have not been reported extensively in the bioinfatf results arise from our inability to reproduce
matics literature. This awareness is exemplifiediohentical conditions (eg. temperature, pH, use of
the words of Altschuét al,1994: different cells or cell lines, use of chemicals from
“Surprisingly strong biases exist in protein and nucle@ifferent suppliers etc.). Quantification of the
acid sequences and sequence databases. Many of thesellts is commonly a result of a human decision or
reflect fundamental mosaic sequence properties that grgnay vary due to calibration of equipment. A
of considerable biological int_erest in themse_zlves, such @ported quantitative result is typically the average
segments of low compositional complexity or shor,) e of several independent experiments. Quanti-
perl(_)o_l repeats. Databases a_llso contqm some very Ia{;’ge . . .
families of related domains, motifs or repeatelplVe biological data are fuzzy due both to inherent
sequences, in some cases with hundreds of memberdUigziness of the biological systems themselves, and
other cases there has been a historical bias in the mdtethe imprecision of the methods used to collect
cules that have been chosen for sequencing. In practgaid evaluate data. Quantitative biological data
unless special measures are taken, these biases Cqarefore represent approximate measurements. On
monly confound database search methods and interfgge, e hand, the classes to which qualitative
with the discovery of interesting new sequence similari-. . . .
ties” biological data are assigned are arbitrary, but
objective in that they represent some biological

Biological data are sets of facts stored in daf@ct. Biological research is largely driven by
bases which represent measurements or obseBgegraphically dispersed individuals, who use
tions of complex biological systems. Th&nique experimental protocols and biological
underlying biological processes are highly integxperimental data are produced with neither stan-
connected and hierarchical; this complexity @ard semantics nor syntax (Benton, 1996). Under-
usually not encoded in the data structure, but i§t@&nding the fuzzy nature of biological data is
part of “background” knowledge. Knowledge otherefore crucial for the selection of appropriate
the biological process from which data are derivé@ta analysis tools.
enables us to understand the domain features thata set of biological data rarely represents a

are not contained in the data set. Raw informatigfhdom sample from the solution space. Typically,
thus has a meaning only in the broader contexbyy results are generated around previously deter-
understanding of which is a prerequisite for askifgined data points. Some regions of the solution
‘right” questions and subsequent selection of tdgace are therefore explored in depth, while some
appropriate analysis tools. According to Bentopegions remain totally unexplored. Historical
1996, the complexity of biological data is due bofgasons are a common cause of such biases, where
to the inherent diversity and complexity of thg set of rules might be defined in an attempt to
subject matter, and to the sociology of biology. gescribe a biological system. If these rules get
Biological data are quantified using a variety @fccepted by a research community, further research
direct or indirect experimental methods. Even invall get directed by applying these rules. If those
study of a clearly delineated biological phenomules circumscribe a subset of the solution space,
enon a variety of experimental methods are usualhe consequence is the refinement of the knowledge
available. An experimental method is considered the subset of solutions that satisfies the rules,
useful if a correlation can be established betweehile the rest of the solution space remain largely



ignored. Similarly, reasoning with limited knowl+ecognition. Antigenic peptides therefore act as
edge can lead to over- or under-simplificatio®cognition labels for the immune system and are
errors. A careful assessment of the relative impdeys in the mechanism of triggering and regulation
tance of each data point is thus necessary for tfehe immune response. Antigenic peptides that
data analysis. Improvements in the technology als@diate an immune reaction are termed T-cell
influence biological data. Older data are often gpitopes. The ability to determine T-cell epitopes is
lower granularity both quantitatively and qualitecritical for our understanding how the immune
tively, while newer data are typically of highegystem functions and opens ways towards the
precision, due to both expanded backgrourdsign of peptidic drugs and vaccines.

knowledge and improved experimental technology. ) -
Sources of noise in biological data include The MHC/peptide binding problemMHC

experimental, measurement, reporting, annotatig}?lecmes play a central rolg 'n Immune |nt'erac-
and data processing errors. While it is not possitii@ns at the molecular level. Binding of a peptide to
to eliminate errors from data sets, a good estim&&HC molecule is mediated through hydrogen
of the level of noise within the data helps selecti?Nds between the groove of the MHC molecule
of the appropriate method of data analysis. Due@Bd the peptide backbone as well as through inter-
the complexity of biological systems, theoretic&ction between side chains of amino acids that
estimation of error levels in the data sets is difficufer™m @ peptide and specific pockets within the
It is often possible to make a fair estimate of tiggoove (Bjorkmaret al., 1987; Browret al.,1993).
error level in biological data by interviewing expeffeptide/MHC binding is thus influenced by its
imental biologists who understand both the proced¢erall structure and by the side chains of the indi-
that generated that data and the experimental matifual amino acids. Contribution of individual
odology. In the absence of a better estimate it88ino acids in particular positions within peptides
reasonable to assume the error level in biologidafy have positive, neutral or negative contribution
data at 5%. to MHC binding. These contributions have been
To illustrate the above points we give a@xemplified in binding motifs (Rammensetal.,
example where the usefulness of the overlap ¥995). Binding motifs provide a qualitative
biology and computer science has been demalescription of the contribution to binding of each
strated. Here we briefly describe the data learniagino acid (of the possible 20) at a particular posi-
process in bioinformatic prediction of patternson within MHC-binding peptides. More than 500
within peptides which can trigger and regulatariants of MHC molecules are known in humans
immune responses. (see Travers P.J.Histo database). Different MHC
molecules bind peptide sets that may be distinct or
o ) may overlap to various degrees. Prediction of
Prediction of T-cell epitopes T-cell epitopes is therefore possible only relative to

The biologyT cells of the immune system in verteSPecific MHC alleles. Furthermore, peptide
brates recognise short antigenic peptides derivéigding to the MHC molecule is a necessary, but
from the degradation of proteins. These peptid@gt sufficient condition for its “T-cell epitopicity’.
are presented on the surface of antigen presentl@gde a T-cell epitope, a peptide must be recogn-
cells to the T cells by MHC (major histocompatised by a matching T cell and thus the T-cell
bility complex) molecules. A cancer cell or a cefpitopicity of a peptide can only be determined in
infected by a virus, for example, presents a subtee context of a target biological system (an
of peptides that are different from those presentetjanism or a particular cell line). The prediction
by a healthy cell. In a healthy organism, cellsf T-cell epitopes is often confused with the predic-
displaying ‘foreign’ antigenic peptides arg¢ion of MHC-binding peptides. In determination of
destroyed by the immune response following T-célicell epitopes, prediction of MHC binding



peptides equates to the narrowing of the pool lmhding methods. In the development of predictive
potential T-cell epitopes. models, we want to maximally utilize available

The modelsThree types of models that incordata. Comb|n|ng data frO.m mUltlple eXper.imentaI
porate biological knowledge have been used fé&ethods requires dealing with imprecise and
prediction of MHC binding peptidedtinding inexact measurements. For MHC binding, fuzzy
motifs (Rammenseet al., 1995),quantitative measures of high-, moderate-, low- and zero-
matrices(Parkeret al., 1994; Hammeet al.,1994) affinity binding have been commonly used. The
andartificial neural networkgBrusicet al.,1994; application of fuzzy logic (Zadeh, 1965) enables
Brusicet al., 1998a). Binding motifs (Fig. 1a) ar@uantification of fuzzy data sets and the extraction
the simplest models, which represent the anchor@grules for model building. Artificial neural
patterns and the amino acids commonly observa@fworks are particularly useful for extracting rules
at anchor positions. Quantitative matrices (Fig. 18pm fuzzy data (Kosko, 1993) and have been
provide coefficients that quantify contribution ofuccessfully used for prediction of MHC binding
each amino acid at each position within a pepti@éptides (reviewed in Brusic and Harrison, 1998).
to MHC/peptide binding. Matrices encode highdty trimming ANN models of MHC/peptide
complexity than binding motifs but ignore th®inding we can demonstrate that binding motifs
effect of the overall structure of peptide, such 8§d quantitative matrices represent different levels
influences of neighbouring amino acids. We c&h complexity of the same model, showing that the
encode an arbitrary level of complexity in artificidpasic rules of MHC/peptide interactions, ie. back-
neural network (ANN) models (Fig. 1c) by varyinground knowledge, has been captured in all these
the number of hidden layer nodes or the numberBpdels. _ _
hidden layers. ANN models can therefore encode Misconceptions and biases.decade after the
both the effects of the overall peptide structure aR@sic function of MHC molecules was described
of individual amino acids to MHC/peptide binding{Doherty and Zinkernagel, 1975), a small database
If sufficient data are available, more compleXf T-cell epitopes was compiled, followed by prop-
models perform better, as shown in a comparatRgitions of predictive models of T-cell epitopes.
study (Brusicet al., 1998a). On the other hand, it e such model (DeLisi and Berzofsky, 1985) was
not beneficial to use models whose complexifsed on the assumption that a T-cell epitope forms
exceeds the complexity of the process that gendf @amphipatic helfwhich binds into the groove
ated data. This will increase required amounts @ MHC molecules. Although the amphipatic
data for model building and possibly worsen tqgodel was incorrect, it was used for a decade.
predictive performance of the model. Those Ipredic';ions t_hﬁt were fo;tgito#slly_/ correct

: . _were also preferentially reported in the literature,

The data and analysid.ne purpose of predic ginforcing the presumed usefulness of the model.

tive models of MHC/peptide interactions is to hel
determine peptides that can bind MHC molecul was another decade before the models based on

and therefore are potential targets for immu gtalled knowledge of peptide/MHC interactions

recognitionin vivo. Various experimental method merged (reviewed in Brusic and Harrison, 1998).

have been developed to measure (directly or in iases in available data arise from a non-critical

rectly) peptide binding to MHC molecules. vajysage of proposed binding motifs which reinforces

Elsaset al, 1996 reported the results of thre§at@ around peptides that conform well with

experimental binding methods in determining .p_roposed binding motifs. There are many examples

cell epitopes in a tumour-related antigen (Melan-R[ p?p“des _that do r.IOt conform to the_proposed
MART-1) in context of human MHC moleculé inding motifs, yet bind the corresponding MHC

e . .
HLA-A*0201. The summary of their report ISG. amphipatic helix — a helical structure of a peptide which has

given in Fig. 2, being an instance of poor correlgne side hydrophylic (attracts water molecules) and the other
tion of results between various experimentajdrophobic (repels water molecules).




A) A Binding Motif of human HLA-DRB1* 0401 (Rammensee et al., 1995)

Relative position

1 2 3 4 5 6 7 8 9
Anchor (bold), FY Fw N,S pol.* pol .*
preferred or W, I,L T,Q chg* ai.*
forbidden (italic) L, D.E HR ai* K
residues M no
RK

*pol.: polar; chg.:charged; ali.:aliphatic residues.

B) A Quantitative Matrix of human HLA-DRB1*0401 (adapted from Hammeret al., 1994)

Position Amino acid

A C D E F G H I K L M N P Q RS T V W Y
P1 * * * * 0 * * =10 * =10 -10 * * * * * * —10 0 0
P2 0 0-13 1 8 5 8 11 11 10 11 8 -5 12 22 -3 0 21 -1 9
P3 0 0-13-12 8 2 2 15 0 10 14 5 3 0 7 2 0 5 0 8
P4 o o0 177 8 -8-15 8 8-22 -6 14 5-21 11 -15 11 8 5 -12 -10
P5 0 0 -2 -1 3 2 -1 1 3 1 3 2 5 1 0 4 6 4 -1 -2
P6 0 0 0 -12 -13 -11 -16 -2 -23 -13 -13 17 1-12-22 17 19 13 -9 -11
P7 o 0-1 -2 -8-15 -8 -2-12 4 7 -1 -3 -5-12 -4 -2 5 -13 -7
P8 0 0-11 -2 1 -5 0 -1 9 6 4 7 -2 16 7 6 5 4 6 13
P9 0 0-25-18 -8 -2 3 4 -9-13 -4-11-16 7 -9 12 -3 5 -3 -15

* forbidden amino acid

C) An ANN model for prediction of MHC-binding peptides (see Brusic et al., 1998a)

Binding prediction score
for 9-mer peptide

777

=7

7%

= Z ~ 4
=== 777 7V

FHTHTTTTTT £ ¢

CDEFGH I KLMNPQRST VWY
1 2 3 4 5 6 7 8 9

Figure 1. The models used for prediction of MHC-binding peptides. A) An example of a binding motif which indicates the
positions and amino acids of main anchors, preferred and forbidden residues. B) A matrix that quantifies a contribution tc
MHC/peptide binding of each amino acid at each position of a 9-mer peptide. The predicted binding affinity is calculated as &
sum of coefficients for amino acids within a peptide. C) An ANN model used to learn MHC-binding patterns which comprises
180 input layer units, 2 hidden layer units and a single output unit. A representation of an individual amino acid is a binary
vector of length 20.




| Stabilisation
@ Competitive binding
O Half-time dissociation =
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Medium |
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1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Peptides from Melan-A/MART-| antigen (1-26) and control peptides (27-31)

Figure 2. A summary comparison of the results three experimental methods for determination of HLA-A*0201 binding
peptides from a tumour antigen MART-1 (adapted from van [Efsak, 1996). The fuzzy measures of binding affinity (high,
moderate, low and none) are used at the vertical scale. Binding results for controls correlate well, while those for MART-1
peptides correlate poorly. The diamonds indicate T-cell epitopes.

molecule; many of these peptides are also reporfrediction of ANN models due to their ability to
as T-cell epitopes (see Brugital, 1998b). handle imperfect or incomplete data (Hammer-

Sets of MHC-related peptides usually contaffrom, 1993).
large subsets which comprise variants of a single
peptide — single point mutation products. The .
information contained in these variant peptides is Conclusions

important for building accurate models, but it alSg/hen sufficient data are available and the biolog-
introduces solution space biases. The first stedg| problem is well-defined, standard statistical
model building involves peptide alignment, and gfjethodology should be applied. A field where this

uncritical usage of the complete set is likely t&’pproach has been routinely used is epidemiology
produce alignment skewed towards the OVer-repf€ge Coggoret al., 1997). Most of biological

sented subsets. An example of a de-biasing tegfsearch, particularly in molecular biology, is
nique is given in Brusiet al., 1998a where aconducted in domains characterized by limited
scheme was used to weight peptides and penajigekground knowledge and by data from various
similarity between them. sources and of variable accuracy. In such cases the
Data errors.Noise and errors in the data settificial intelligence techniques are more useful, as
affect our ability to derive useful models. Brusic shown in ‘T-cell epitope prediction’ example. Here
al., 1997 studied the effect of noise in data sets we provide a set of guidelines which should help
development of quantitative matrix models. Thegomputer scientists to understand biological data
showed that the moderate level of noise signiéind aid the design of the appropriate data analysis
cantly affects our ability to develop matrix modelsnethods. To facilitate bioinformatic analysis of
For example, 5% of erroneous data in a data betlogical systems, we have definedata
will double the number of data points, relative tolaearning Proces¢DLP), comprised of a series of
‘clean’ data set, required to build a matrix model steps (Fig. 3). The DLP steps are: a) develop under-
a pre-set accuracy. On the other hand, 5% of errstanding of the biological system and methodolog-
does not significantly affect the overall sucess ifal processes that generate data, b) develop a



standardized fuzzy representation of the data, c) A useful starting point is the development of a
relate data from various sources using this stamonceptual model of the studied biological system.
dardized representation, d) identify potenti&@onceptual graphs (Sowa, 1984) integrate formal
sources of biases in data, e) assess the validityogfic and the clarity of graphic representation, thus
relevant models reported in the literature, f) esproviding notation that is understandable to experts
mate the amount and types of errors in the ddtem different fields and which is useful for formal-
sets, and g) integrate knowledge acquired iration and unification of interdisciplinary knowl-
previous steps in some coherent form (e.g., moe@elge. The DLP is an iterative process in which all
or description). Performing the DLP steps require$ the latter steps help improve the first step —
significant inputs from both biologists andinderstanding of the background biology and
computer scientists and must involve two-wayethods that generate data. The model or descrip-

communication.

develop understanding of the biological system
and experimental methods that generate data

\

y

develop standardised fuzzy measures of the data

/

A

relate datafrom

various sources

using the standardised measure

A

A

identify potential sources of biasesin data

\

y

assess the validity of relevant
models reported in the literature

\

y

estimate the amount and types of
errors in the available data sets

A

A

integrate knowledge acquired in previous steps
in some coherent form (eg. model or description)

l

working conceptual
model or description

Figure 3.A flow diagram ofData Learning Process

tion generated by DLP can then be used as a
starting point for the design of a data analysis algo-
rithm and the selection of the appropriate data anal-
ysis tools. Learning the application domain is the
first step in the process Ehowledge Discovery in
DatabasegqFayyadet al.,1996). DLP is thus a
formalization of the procedure aimed at the facilita-
tion of knowledge discovery in biological data-
bases.
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