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Abstract
The four most important data-related considerations for
the bioinformatic analysis of biological systems are
understanding of: the complexity and hierarchical nature
of processes that generate biological data, fuzziness o
biological data, biases and potential misconceptions in
data, and the effects of noise and errors. We discus
these issues and summarize our findings by defining 
Data Learning Process (DLP). DLP comprises a series
of steps for comprehension of biological data within the
bioinformatics framework. DLP is a formalization
aimed at facilitating knowledge discovery in biological
databases.

Introduction

Biological databases continue to grow rapidly. Th
growth is reflected in increases in both the size a
complexity of individual databases as well as in t
proliferation of new databases. We have eve
increasing requirements for both speed and sop
tication of data analysis to maintain the ability 
effectively use the available data. Bioinformatics
a field emerging at the overlap between biolo
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and computer science. Biological science provid
deep understanding of this complex domain, wh
computer science provides effective means to st
and analyse volumes of complex data. Combini
the two fields gives the potential for great strides
understanding biological systems and increas
the effectiveness of biological research. The dif
culties in effective use of bioinformatic tools aris
at both ends: an average biologist has a limit
understanding of sophisticated data analys
methods, of their applicability and limitations
while an average computer scientist lacks und
standing of the depth and complexity of biologic
data. Bioinformaticians need to develop an overl
of understanding between the two fields. Here 
discuss the issues related to biological data wh
have implications on selection and critical usage
computer science methods in biological resear
The aim of this article is to clarify some importan
aspects of biological data for computer scientists

What do we need to know about 
biological data?

The four most important data-related conside
ations for the analysis of biological systems a
understanding of: a) the complexity and hiera
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chical nature of processes that generate biolog
data, b) fuzziness of biological data, c) biases a
potential misconceptions arising from doma
history, reasoning with limited knowledge, 
changing domain and methodological artefac
and d) the effects of noise and errors. Despit
broad awareness, biological-data-specific issu
have not been reported extensively in the bioinfo
matics literature. This awareness is exemplified
the words of Altschul et al.,1994:

“Surprisingly strong biases exist in protein and nucle
acid sequences and sequence databases. Many of t
reflect fundamental mosaic sequence properties that
of considerable biological interest in themselves, such
segments of low compositional complexity or shor
period repeats. Databases also contain some very la
famil ies of related domains, motifs or repeate
sequences, in some cases with hundreds of member
other cases there has been a historical bias in the m
cules that have been chosen for sequencing. In pract
unless special measures are taken, these biases c
monly confound database search methods and inter
with the discovery of interesting new sequence simila
ties.”

Biological data are sets of facts stored in da
bases which represent measurements or obse
t ions of  complex bio logical  systems. Th
underlying biological processes are highly inte
connected and hierarchical; this complexity 
usually not encoded in the data structure, but i
part of “background” knowledge. Knowledge o
the biological process from which data are deriv
enables us to understand the domain features 
are not contained in the data set. Raw informat
thus has a meaning only in the broader conte
understanding of which is a prerequisite for aski
“right” questions and subsequent selection of t
appropriate analysis tools. According to Bento
1996, the complexity of biological data is due bo
to the inherent diversity and complexity of th
subject matter, and to the sociology of biology.

Biological data are quantified using a variety 
direct or indirect experimental methods. Even in
study of a clearly delineated biological phenom
enon a variety of experimental methods are usua
available. An experimental method is consider
useful if a correlation can be established betwe
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its results and a studied phenomenon. This corre
tion is rarely, if ever, perfect. Distinct experiment
methods in the study of the same biologic
phenomenon would generally produce sets 
results that overlap, but not fully. Comparing the
results involves scaling and granularity issue
Within the same experimental method, differenc
of results arise from our inability to reproduc
identical conditions (eg. temperature, pH, use
different cells or cell lines, use of chemicals fro
different suppliers etc.). Quantification of th
results is commonly a result of a human decision
it may vary due to calibration of equipment. 
reported quantitative result is typically the avera
value of several independent experiments. Qua
tative biological data are fuzzy due both to inhere
fuzziness of the biological systems themselves, a
to the imprecision of the methods used to colle
and evaluate data. Quantitative biological da
therefore represent approximate measurements.
the other hand, the classes to which qualitat
biological data are assigned are arbitrary, b
objective in that they represent some biologic
fact. Biological research is largely driven b
geographically dispersed individuals, who us
unique experimental protocols and biologic
experimental data are produced with neither sta
dard semantics nor syntax (Benton, 1996). Und
standing the fuzzy nature of biological data 
therefore crucial for the selection of appropria
data analysis tools.

A set of biological data rarely represents 
random sample from the solution space. Typical
new results are generated around previously de
mined data points. Some regions of the soluti
space are therefore explored in depth, while so
regions remain totally unexplored. Historica
reasons are a common cause of such biases, w
a set of rules might be defined in an attempt
describe a biological system. If these rules g
accepted by a research community, further resea
will get directed by applying these rules. If thos
rules circumscribe a subset of the solution spa
the consequence is the refinement of the knowle
of the subset of solutions that satisfies the rul
while the rest of the solution space remain large



    

as
re

on
at

ell
 is
e
he

  

c-
to
n
le

ter-
at
e

    

s
di-
l
s

on
n

  

h
si-
0
ns

  

 or
of
 to
e
ut

n-
ll
in
n
n
c-
f

ignored. Similarly, reasoning with limited knowl
edge can lead to over- or under-simplificatio
errors. A careful assessment of the relative imp
tance of each data point is thus necessary for 
data analysis. Improvements in the technology a
influence biological data. Older data are often 
lower granularity both quantitatively and qualita
tively, while newer data are typically of highe
precision, due to both expanded backgrou
knowledge and improved experimental technolog

Sources of noise in biological data includ
experimental, measurement, reporting, annotat
and data processing errors. While it is not possi
to eliminate errors from data sets, a good estim
of the level of noise within the data helps selecti
of the appropriate method of data analysis. Due
the complexity of biological systems, theoretic
estimation of error levels in the data sets is difficu
It is often possible to make a fair estimate of t
error level in biological data by interviewing expe
imental biologists who understand both the proce
that generated that data and the experimental m
odology. In the absence of a better estimate i
reasonable to assume the error level in biologi
data at 5%. 

To illustrate the above points we give a
example where the usefulness of the overlap
biology and computer science has been dem
strated. Here we briefly describe the data learn
process in bioinformatic prediction of pattern
within peptides which can trigger and regula
immune responses.

Prediction of T-cell epitopes

The biology. T cells of the immune system in verte
brates recognise short antigenic peptides deriv
from the degradation of proteins. These peptid
are presented on the surface of antigen presen
cells to the T cells by MHC (major histocompat
bility complex) molecules. A cancer cell or a ce
infected by a virus, for example, presents a sub
of peptides that are different from those presen
by a healthy cell. In a healthy organism, cel
displaying ‘foreign’ antigenic peptides ar
destroyed by the immune response following T-c
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recognition. Antigenic peptides therefore act 
recognition labels for the immune system and a
keys in the mechanism of triggering and regulati
of the immune response. Antigenic peptides th
mediate an immune reaction are termed T-c
epitopes. The ability to determine T-cell epitopes
critical for our understanding how the immun
system functions and opens ways towards t
design of peptidic drugs and vaccines. 

The MHC/peptide binding problem. MHC
molecules play a central role in immune intera
tions at the molecular level. Binding of a peptide 
a MHC molecule is mediated through hydroge
bonds between the groove of the MHC molecu
and the peptide backbone as well as through in
action between side chains of amino acids th
form a peptide and specific pockets within th
groove (Bjorkman et al., 1987; Brown et al., 1993).
Peptide/MHC binding is thus influenced by it
overall structure and by the side chains of the in
vidual amino acids. Contribution of individua
amino acids in particular positions within peptide
may have positive, neutral or negative contributi
to MHC binding. These contributions have bee
exemplified in binding motifs (Rammensee et al.,
1995). Binding motifs provide a qualitative
description of the contribution to binding of eac
amino acid (of the possible 20) at a particular po
tion within MHC-binding peptides. More than 50
variants of MHC molecules are known in huma
(see Travers P.J. – Histo database). Different MHC
molecules bind peptide sets that may be distinct
may overlap to various degrees. Prediction 
T-cell epitopes is therefore possible only relative
specific MHC alleles. Furthermore, peptid
binding to the MHC molecule is a necessary, b
not sufficient condition for its ‘T-cell epitopicity’.
To be a T-cell epitope, a peptide must be recog
ised by a matching T cell and thus the T-ce
epitopicity of a peptide can only be determined 
the context of a target biological system (a
organism or a particular cell line). The predictio
of T-cell epitopes is often confused with the predi
tion of MHC-binding peptides. In determination o
T-cell epitopes, prediction of MHC binding
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peptides equates to the narrowing of the pool
potential T-cell epitopes.

The models. Three types of models that incor
porate biological knowledge have been used 
prediction of MHC binding peptides: binding
motifs (Rammensee et al., 1995), quantitative
matrices (Parker et al., 1994; Hammer et al., 1994)
and artificial neural networks (Brusic et al., 1994;
Brusic et al., 1998a). Binding motifs (Fig. 1a) are
the simplest models, which represent the anchor
patterns and the amino acids commonly observ
at anchor positions. Quantitative matrices (Fig. 1
provide coefficients that quantify contribution o
each amino acid at each position within a pepti
to MHC/peptide binding. Matrices encode high
complexity than binding motifs but ignore th
effect of the overall structure of peptide, such 
influences of neighbouring amino acids. We c
encode an arbitrary level of complexity in artificia
neural network (ANN) models (Fig. 1c) by varyin
the number of hidden layer nodes or the number
hidden layers. ANN models can therefore enco
both the effects of the overall peptide structure a
of individual amino acids to MHC/peptide binding
If sufficient data are available, more comple
models perform better, as shown in a comparat
study (Brusic et al., 1998a). On the other hand, it i
not beneficial to use models whose complex
exceeds the complexity of the process that gen
ated data. This will increase required amounts
data for model building and possibly worsen th
predictive performance of the model.

The data and analysis. The purpose of predic-
tive models of MHC/peptide interactions is to he
determine peptides that can bind MHC molecul
and therefore are potential targets for immu
recognition in vivo. Various experimental method
have been developed to measure (directly or in
rectly) peptide binding to MHC molecules. Va
Elsas et al., 1996 reported the results of thre
experimental binding methods in determining 
cell epitopes in a tumour-related antigen (Melan-
MART-1) in context of human MHC molecule
HLA-A*0201. The summary of their report is
given in Fig. 2, being an instance of poor corre
tion of results between various experiment
 of
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binding methods. In the development of predicti
models, we want to maximally utilize availabl
data. Combining data from multiple experiment
methods requires dealing with imprecise an
inexact measurements. For MHC binding, fuzz
measures of high-, moderate-, low- and zer
affinity binding have been commonly used. Th
application of fuzzy logic (Zadeh, 1965) enable
quantification of fuzzy data sets and the extracti
of rules for model building. Artificial neural
networks are particularly useful for extracting rule
from fuzzy data (Kosko, 1993) and have bee
successfully used for prediction of MHC bindin
peptides (reviewed in Brusic and Harrison, 1998
By trimming ANN models of MHC/peptide
binding we can demonstrate that binding moti
and quantitative matrices represent different lev
of complexity of the same model, showing that t
basic rules of MHC/peptide interactions, ie. bac
ground knowledge, has been captured in all the
models.

Misconceptions and biases. A decade after the
basic function of MHC molecules was describe
(Doherty and Zinkernagel, 1975), a small databa
of T-cell epitopes was compiled, followed by prop
ositions of predictive models of T-cell epitope
One such model (DeLisi and Berzofsky, 1985) w
based on the assumption that a T-cell epitope for
an amphipatic helix6 which binds into the groove
of MHC molecules. Although the amphipati
model was incorrect, it was used for a decad
Those predictions that were fortuitously corre
were also preferentially reported in the literatur
reinforcing the presumed usefulness of the mod
It was another decade before the models based
detailed knowledge of peptide/MHC interaction
emerged (reviewed in Brusic and Harrison, 199
Biases in available data arise from a non-critic
usage of proposed binding motifs which reinforc
data around peptides that conform well wit
proposed binding motifs. There are many examp
of peptides that do not conform to the propos
binding motifs, yet bind the corresponding MH

6. amphipatic helix – a helical structure of a peptide which has
one side hydrophylic (attracts water molecules) and the other 
hydrophobic (repels water molecules).



  

s the

ution to

ted as a

prises

 binary
Figure 1. The models used for prediction of MHC-binding peptides. A) An example of a binding motif which indicate

positions and amino acids of main anchors, preferred and forbidden residues. B) A matrix that quantifies a contrib

MHC/peptide binding of each amino acid at each position of a 9-mer peptide. The predicted binding affinity is calcula

sum of coefficients for amino acids within a peptide. C) An ANN model used to learn MHC-binding patterns which com

180 input layer units, 2 hidden layer units and a single output unit. A representation of an individual amino acid is a

vector of length 20.

Relative position
1 2 3 4 5 6 7 8 9

Anchor (bold), F,Y F,W N,S pol.* pol.*
preferred or W,I I,L T,Q chg.* ali.*
forbidden (italic) L,V D,E H,R ali.* K
residues M no

R,K

*pol.: polar; chg.:charged; ali.:aliphatic residues.

A) A Binding Motif of human HLA-DRB1*0401 (Rammensee et al., 1995)

B) A Quantitative Matrix of human  HLA-DRB1*0401 (adapted from Hammer et al., 1994)

Position                               Amino acid

         A   C   D   E   F   G   H   I   K   L   M   N   P   Q   R   S   T   V   W   Y

P1       *   *   *   *   0   *   * -10   * -10 -10   *   *   *   *   *   * -10   0   0
P2       0   0 -13   1   8   5   8  11  11  10  11   8  -5  12  22  -3   0  21  -1   9
P3       0   0 -13 -12   8   2   2  15   0  10  14   5   3   0   7   2   0   5   0   8
P4       0   0  17   8  -8 -15   8   8 -22  -6  14   5 -21  11 -15  11   8   5 -12 -10
P5       0   0  -2  -1   3   2  -1   1   3   1   3   2   5   1   0   4   6   4  -1  -2
P6       0   0   0 -12 -13 -11 -16  -2 -23 -13 -13  17   1 -12 -22  17  19  13  -9 -11
P7       0   0 -11  -2  -8 -15  -8  -2 -12   4   7  -1  -3  -5 -12  -4  -2   5 -13  -7
P8       0   0 -11  -2   1  -5   0  -1   9   6   4   7  -2  16   7   6   5   4   6  13
P9       0   0 -25 -18  -8  -2   3  -4  -9 -13  -4 -11 -16   7  -9  12  -3   5  -3 -15

* forbidden amino acid

A C DE F G H I K L MN P Q R S T VWY A Y A Y A Y A Y A Y A Y A Y A Y

1 2 3 4 5 6 7 8 9

Binding prediction score
for 9-mer peptide

C) An ANN model for prediction of MHC-binding peptides (see Brusic et al., 1998a)
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Figure 2. A summary comparison of the results three experimental methods for determination of HLA-A*0201 bi
peptides from a tumour antigen MART-1 (adapted from van Elsas et al., 1996). The fuzzy measures of binding affinity (hig
moderate, low and none) are used at the vertical scale. Binding results for controls correlate well, while those for M
peptides correlate poorly. The diamonds indicate T-cell epitopes.
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molecule; many of these peptides are also repor
as T-cell epitopes (see Brusic et al., 1998b).

Sets of MHC-related peptides usually conta
large subsets which comprise variants of a sin
peptide – single point mutation products. Th
information contained in these variant peptides
important for building accurate models, but it als
introduces solution space biases. The first step
model building involves peptide alignment, and a
uncritical usage of the complete set is likely 
produce alignment skewed towards the over-rep
sented subsets. An example of a de-biasing te
nique is given in Brusic et al., 1998a where a
scheme was used to weight peptides and pena
similarity between them.

Data errors. Noise and errors in the data se
affect our ability to derive useful models. Brusic et
al., 1997 studied the effect of noise in data sets
development of quantitative matrix models. The
showed that the moderate level of noise sign
cantly affects our ability to develop matrix model
For example, 5% of erroneous data in a data 
will double the number of data points, relative to
‘clean’ data set, required to build a matrix model 
a pre-set accuracy. On the other hand, 5% of err
does not significantly affect the overall sucess
ted
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prediction of ANN models due to their ability to
handle imperfect or incomplete data (Hamme
strom, 1993).

Conclusions

When sufficient data are available and the biolo
ical problem is well-defined, standard statistic
methodology should be applied. A field where th
approach has been routinely used is epidemiolo
(see Coggon et al., 1997). Most of biological
research, particularly in molecular biology, i
conducted in domains characterized by limite
background knowledge and by data from vario
sources and of variable accuracy. In such cases
artificial intelligence techniques are more useful, 
shown in ‘T-cell epitope prediction’ example. Her
we provide a set of guidelines which should he
computer scientists to understand biological da
and aid the design of the appropriate data analy
methods. To facilitate bioinformatic analysis o
biological systems, we have defined a Data
Learning Process (DLP), comprised of a series o
steps (Fig. 3). The DLP steps are: a) develop und
standing of the biological system and methodolo
ical processes that generate data, b) develo
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standardized fuzzy representation of the data,
relate data from various sources using this sta
dardized representation, d) identify potenti
sources of biases in data, e) assess the validit
relevant models reported in the literature, f) es
mate the amount and types of errors in the d
sets, and g) integrate knowledge acquired
previous steps in some coherent form (e.g., mo
or description). Performing the DLP steps requir
significant inputs from both biologists an
computer scientists and must involve two-wa
communication. 

Figure 3. A flow diagram of Data Learning Process.

develop understanding of the biological system
and experimental methods that generate data

develop standardised fuzzy measures of the data

relate data from various sources
using the standardised measure

identify potential sources of biases in data

assess the validity of relevant
models reported in the literature

estimate the amount and types of
errors in the available data sets

integrate knowledge acquired in previous steps
in some coherent form (eg. model or description)

working conceptual
model or description
 c)
n-

al
y of
ti-
ata
 in
del
es
d
y

A useful starting point is the development of
conceptual model of the studied biological syste
Conceptual graphs (Sowa, 1984) integrate form
logic and the clarity of graphic representation, th
providing notation that is understandable to expe
from different fields and which is useful for forma
ization and unification of interdisciplinary knowl
edge. The DLP is an iterative process in which 
of the latter steps help improve the first step
understanding of the background biology an
methods that generate data. The model or desc
tion generated by DLP can then be used a
starting point for the design of a data analysis alg
rithm and the selection of the appropriate data an
ysis tools. Learning the application domain is th
first step in the process of Knowledge Discovery in
Databases (Fayyad et al., 1996). DLP is thus a
formalization of the procedure aimed at the facilit
tion of knowledge discovery in biological data
bases.
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