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Abstract

We present a new principle for the development of database query languages that the primitive opera-
tions should be organized around types. Viewing a relational database as consisting of sets of records,
this principle dictates that we should investigate separately operations for records and sets. There are
two immediate advantages of this approach, which is partly inspired by basic ideas from category the-
ory. First, it provides a language for structures in which record and set types may be freely combined:
nested relations or complex objects. Second, the fundamental operations for sets are closely related to
those for other “collection types” such as bags or lists, and this suggests how database languages may
be uniformly extended to these new types.

The most general operation on sets, that of structural recursion, is one in which not all programs are well-
defined. In looking for limited forms of this operation that always give rise to well-defined operations,
we find a number of close connections with existing database languages, notably those developed for
complex objects. Moreover, even though the general paradigm of structural recursion is shown to be no
more expressive than one of the existing languages for complex objects, it possesses certain properties
of uniformity that make it a better candidate for an efficient, practical language. Thus rather than
developing query languages by extending, for example, relational calculus, we advocate a very powerful
paradigm in which a number of well-known database database languages are to be found as natural
sublanguages.
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1 Introduction

Overcoming the limitations of first-order logic as a database query language has always been a major
focus of relational database research. The limitations are well-known: first-order logic cannot express
certain simple computations on relations [4]; also, by its nature, it cannot directly express queries on
structures that are not simple relations, such as nested relations or other useful database types such as
bags (multisets) and lists. To overcome these limitations, there have been two general strategies. The
first has been to add extra operations such as a fixpoint or while [14, 3]. The second has been to consider
higher-order logics [1] or restricted algebras for higher-order (nested) relations [51, 57, 16]. However
these extensions to first-order logic leave much to be desired; it is not clear how they fit together; they do
not address the problems of bags and lists; and it is not clear when this process of extending first-order
logic will stop! It should be noted that practical query languages for object-oriented databases require
such extensions, as does SQL, with its aggregate operations and use of bags.

There are special problems in writing programs that operate on sets or bags. Many database systems
provide an interface to conventional programming languages that allows us to write programs that
iterate over some collection:

program SUM: int sum = O;
foreach x in S do
sum = x + sum;

program DIFF: int foo = 0;
foreach x in S do
foo = x - foo;

in which the collection S may typically be a list, bag (multiset) or set. The meaning of SUM appears
obvious, but what meaning are we to attach to DIFF when the collection S is a set? The outcome
depends on the order in which the set is traversed. An awkward way of dealing with this problem is to
assume non-deterministic semantics, meaning that there is a set of outcomes for programs such as DIFF.
Another possibility [27] is to assume that each set carries an intrinsic ordering that dictates the order
in which the iteration progresses. Such an ordering will only be of use if it is known to the programmer,
and while there is a natural order to choose for integers, generating an ordering for complex structures
is non-trivial and sensitive to otherwise arbitrary choices of database design.

Practical languages that contain general-purpose iterators allow the construction of such ill-defined
programs, and ensuring that a program is well defined is left to the programmer. Our approach to this
problem is to characterize languages that can iterate over collections and then to look for well-defined
fragments of such languages. Database query languages appear to avoid the issue by having a few
built-in aggregate functions, such as SUM, rather than a general-purpose iterator, however, without an
assumption that an iteration will never encounter the same element of a set twice, even the program
SUM is ill-defined for sets, and that this issue arises even in query languages such as SQL.

We are therefore led to look for basic programming constructs for collections that allow us to reason
about the well-definedness of programs, and propose structural recursion as the general paradigm,
together with certain operations for constructing sets. If we add to these the relatively simple operations



on records we obtain, a language for manipulating collections of records, i.e., relations when we restrict
collections to sets. In fact we do better, for we obtain a language that will query structures produced
by freely combining these types, i.e complex object or nested relational databases. This brings us to the
main point of this paper; we find that known languages for nested relations can be cleanly described
within this approach. A further benefit is that the same principles provide us with languages for other
collection types, though we do not fully develop these languages here.

The process of organizing programming primitives around types is well-known in category theory, and
we have found it useful to take some basic ideas from this subject. In particular, we shall present a
“calculus” and an equivalent “algebra” of functions for nested relations. The algebra is inspired by
a well-understood categorical construction, the monad (or triple). The idea that monads could be
used to organize semantics of programming constructs is due to Moggi [46]. Wadler [61] showed that
they are also useful in organizing syntax, in particular they explain the “list-comprehension” syntax of
functional programming. Moreover Trinder and Wadler [59] showed that an extension of comprehensions
can implement the (flat) relational calculus. Trinder and Watt [58, 62], have also sought after a uniform
algebra, for several different bulk types; in particular they have proved a number of optimizations using
categorical identities. The technical development in the paper does not require familiarity with category
theory; however readers interested in understanding our motivation may wish to refer to the introductory
material in texts such as such as [39] or [42].

This paper does not deal with the practical aspects of the design of syntax for query languages, but
focusses on the semantics of the constructs that could be used in such a langauge. We comment on
some of the problems of syntax in the conclusions to this paper.

Organization

In section 2 we introduce two forms of structural recursion on collections and give conditions for their
well-definedness. Because there is no general method of checking that a program satisfies these con-
ditions, we examine a natural restriction of structural recursion that ensures well-definedness. This
restriction leads immediately to a core language for nested collections which, in section 3, enables us to
develop both a calculus and a functional algebra. We exhibit translations between the two languages
that preserve meaning as well as preserving and reflecting their equational theories (see appendices).
Hence the two can be freely combined into a single language M, upon which we build our nested
relational language.

Although M can express a number of familiar operations on relations and nested relations, we show, in
section 4 that it cannot express empty set and set union. Adding these to M gives us a stronger language
R, but this language cannot express operations such as an equality test, a subset test, a membership
test, relational nesting, or set intersection, that are non-monotonic with respect to a certain ordering.
We show that the languages obtained by adding any one of these operations to R are equally expressive.
These languages have polynomial time complexity. A similar but weaker result was obtained in [21]
by assuming the presence of a powerset operation. We then show that R augmented with equality
testing is equivalent to the well-known nested relational algebra of Thomas and Fischer [57]. By [49] it
follows that our nested relational language is conservative with respect to flat relational algebra. That
is, the queries with flat relations as input and flat relations as output are expressible in (flat) relational



algebra. Because, both flat and nested relational algebra are now seen as natural fragments of a general
programming paradigm, we are in a position to extend them to other collection types, though we do
not do this here; see [33, 37, 35].

In section 5 we further augment the language with a powerset operation R(=,cond), to obtain the
algebra of Abiteboul and Beeri [1]. In view of conservativity over relational algebra, this algebra cannot
express functions such as transitive closure and parity test without a potentially expensive excursion
through an powerset type. Furthermore, we show that it cannot uniformly compute the cardinality
of a set no matter what extra arithmetic primitives are added. The power of unrestricted structural
recursion is also considered in section 5. We show that it can compute powerset and hence is at least
as powerful as the language of Abiteboul and Beeri. More importantly prove that efficient uniform
algorithms for transitive closure, cardinality, etc. can be expressed using structural recursion (with
simple arithmetic primitives.) It is not clear that such efficiency can be obtained in the Abiteboul and
Beeri algebra. Lastly, we also show that under certain conditions the language of Abiteboul and Beeri
can simulate structural recursion.

In section 6 we show how the axioms of a monad can be used to derive and generalize well-known opti-
mizations for relational languages, and we also show how the categorical notion of naturality provides
some very general equational techniques. We conclude by mentioning some recent practical develop-
ments from this work.

2 Structural recursion on collection types

The definitions by structural recursion that we consider follow from mathematical characterizations of
certain algebras of operations on collection types. They are closely related to the familiar definitions of
functions by simple recursion on natural numbers, for example:

double(0) =0
double(n +1) = double(n)+2

The fact that there is a function double satisfying these two equations, and moreover that such a
function is unique, follows from the “universality” property enjoyed by the natural numbers N together
with 0 and the successor operation s(n) := n + 1. Indeed the algebra (N, 0, s) is initial among similar
algebras, that is, there exists a unique homomorphism from it to any such algebra. In this case, double
is the homomorphism to (N, 0,d) where d(m) := m + 2, and the two equations above state precisely
that double is a homomorphism. An important remark (and a necessary condition for initiality) is
that any natural number can be obtained by finitely many applications of 0 and s, hence we call these
operations constructors for the data type of natural numbers. Functions defined by simple recursion
are homomorphisms with respect to these constructors.

Structural recursion is the concept that generalizes simple recursion to any data type that can be defined
by a similar algebraic universality property[19]. Consequently, we devote the next subsection (2.1) to
exhibiting two groups of constructors for each of the collection types that interest us. This is followed
in subsection 2.2 by the presentation of two forms of structural recursion that correspond to these two
groups of constructors, and their applicability conditions.



2.1 Three collection types and their constructors
The collection types of interest to us are

{o} the type of all finite sets of elements of type o,
{o[} := the type of all finite bags of elements of type o,
[c] := the type of all finite lists of elements of type o.

When we wish to refer generically to any of these types we will use the common notation
coll(c) := the type of all finite collections of elements of type o.
The other two type constructions that we shall make use of are:

o xT1 := the type of all pairs (z,y) where z is of type o and y is of type 7,
o — 1 := the type of all functions with argument of type ¢ and result of type 7.

Which operations play the role of constructors for collection data types? We observe that there appear
to be two principal ways of constructing a collection. For sets, we can obtain any finite set from the
empty set {} by finitely many insertions (notation: 7). We may alternatively start with the singleton
set constructor {-} and perform finitely many unions (notation: U), adding the empty set as a special
operation. There are analogous constructors for lists and bags. They are all summarized in the following
table, which also includes a common notation that will allow us to give definitions for all three types
simultaneously.

‘ | Empty | Addition | Singleton | Combination |

Lists H T L [{L‘] Ll@LQ
nil cons append
Bags {} z+ B {z[} B W By
increment sum
Sets {} z78 {z} S1U S
insert Union
Common || empty | add(z,C) sng(z) | comb(Cy,Cs)

The list operations should be familiar. z + B is the bag operation that increments by 1 the number of
occurrences of z in the bag B, while W sums the number of occurrences of each element.

We have therefore two groups of constructors for each of the three collection types: empty and addition
form one group, while empty, singleton and combination form the other. By analogy with simple
recursion on natural numbers, we will look in the next subsection at the universality properties enjoyed
by the algebras (coll(¢),add(-,-),empty) and (coll(c),comb(-,-),sng(-), empty).



2.2 Two forms of structural recursion for each collection type

The case of lists with the constructors nil and cons is an immediate generalization of the natural numbers
situation. N is isomorphic to lists containing some fixed element c¢; in this case nil is zero and cons of
¢ is the successor function. Here too we have an initial algebra, and this yields functions defined by
structural recursion with respect to the constructors such as the following one:

sum([]) =0
sum(z L) = x4+ sum(L)
sum is the unique homomorphism between the list algebra ([N,::,[]) and the algebra (N,,0) where

i(z,n) ==z +n.

As mentioned above, we have two kinds of algebraic structures on each of the three collection types:
(coll(o),add(-, -), empty) and (coll(c), comb(-,-),sng(-),empty). ! Each of these algebras is initial among
an appropriate class of similar algebras. This gives two forms of definition by structural recursion, one
for each kind of algebraic structure. The first form is

g(empty) = e . e:T 1iOXT—T
9(add(z,C)) = i(z,g(C)) Typing: g coll(o0) = 7

In this, the function g depends on i and e, so we shall use the notation g = sr_add(i,e). (sr_add for
structural recursion on “insertion”). We shall also use the notations sr_addy;, sr_addy.g, sradd,e; for
each of the individual collection types. For lists, sr_add is the familiar “fold” or “reduce” operation of
functional programming languages.

The second form of structural recursion is
h em = e
(empty) e: T f:o—>7T UITXT =T

h(sng(x)) f(.’B) Typing;: -
h(comb(C1,C2)) = u(h(C1),h(Cs)) h:coll(o) = 7

Here, h depends on u, e and f. We shall use the notation h = sr_comb(u, f, e) for structural recursion on
“union”. As above, we may use sr_comby;s, sr_combygg, sr_comb,; respectively for each of the individual
collection types we consider.

'Fixing an arbitrary o, we will consider these as homogeneous (one-sorted) algebras over infinite signatures: for each z
we have a unary operation add(z,-) and a nullary operation sng(z).



Some examples of these forms of structural recursion:

sum({[}) = 0 sum : {of} - N
sum(z+ B) = z + sum(B)
countpeg({I}) = 0 countpeg : {of} = N
countpg({z}) = 1
countpag(B1WB2) = countpeg(B1) + countpey(B2)
reverse([]) = [] reverse : [o] — [o]
reverse([z]) = [z]
reverse(L1@Ly) = reverse(Lg)@reverse(Ly)
maz ({}) = 0 maz : {N} = N
maz(z7S) = max2(x, maz(S))
Alternatively, we could have written counts,y as sr_addpey(i,0) where i(z,n) := 1+ n, and maz as

sr_combges(mas2,id, 0) where id(z) := z.

Well-definedness conditions As it happens, the functions shown above are all well-defined on the
stated types. Note however that the equations in the definitions by structural recursion only state that
the desired functions are homomorphisms. They do not state that the algebras which are the targets
of these functions belong to the class for which the collection type algebras are initial—a necessary
condition for the existence of the desired functions. Indeed, a naive analog for sets of the definition of
countp,g will not work:

badcountset({z}) = 1
badcount st (S1 U S2) = badcountset(S1) + badcount set(S2)

And this doesn’t work not because badcount s.; is some erroneous function that counts twice the elements
that are in both S7 and Sy. Rather, this doesn’t work because there exists no mathematical function
badcountse satisfying the two equations above. Indeed, if it existed, then:

1 = badcount sei({a}) = badcountser({a} U {a}) = badcountser({a}) + badcountser({a}) =1+1=2

It is therefore essential to note that the algebra of bags with the summation, singleton, and empty bag op-
erations is initial only among algebras of the form (7, u, f, e) such that (7, u, €) is a commutative monoid,
that for the algebra of lists with append, singleton, and nil we require just monoid structures, and that
for the algebra of sets with union, singleton, and empty set we need commutative-idempotent monoids
(equivalently, upper semilattices with least element). Similarly, the algebra of sets with the insertion
and empty set operations is initial among similar algebras with a left-commutative and left-idempotent
operation, while the for the algebra of bags with increment we require only left-commutativity.

The table below summarizes these well-definedness conditions for the structural recursion constructs.
Note that the conditions are downwards cumulative. Thus, what is well-defined on sets is also well-



defined on bags and lists, and what is well-defined on bags is also well-defined on lists. 2

sr_add (i, e) sr_comb(u, f,e)
Lists u associative:
no condition u(u(a1,a2),a3) = u(ar,u(az,as))

e identity for u:
u(a,e) = a = u(e,a)

Bags ¢ left-commutative: also u commutative:
i(w,i(y,a)) :z(y,z(x,a)) U((Ll,ag) = u(a'2aa1)
Sets also i left-idempotent: also u idempotent:
i(z,i(z,a)) =i(z,a) u(a,a) =a
More examples First we observe that srcomb(u, f,e) = sr_add(i,e) where i(z,z) = u(f(x),z).

Hence, everything expressible with sr_comb is immediately expressible with sr_add. 3

A number of powerful functions can be obtained by structural recursion. For example a general form
of mapping is given as follows. If f : ¢ — 7 is an arbitrary function then map(f) is defined by

map(f)(empty) = empty map(f) : coll(c) — coll(7)
map(f)(add(z, C)) add(f(z), map(f)(C))

On sets, for example, the meaning of map(-) is map(f)({a1,...,an}) := {f(a1),..., f(an)}. It is straight-
forward to show that map() is well defined for any collection type.

Carrying this further, we can define a “power” operator

power (empty) sng(empty) power : coll(o) — coll(coll(0))
power(add(y,C)) = comb(power(C), map(h)(power(C)))
where h(c) := add(y, ¢)

This gives a generalization of powerset to all collection types and, again, it can be shown to be well-
defined.

Another example is

BagToSet({|[}) {} BagToSet : {o} — {0}
BagToSet(z+ B) = x7BagToSet(B)

BagToSet can also be obtained as sr_combyqg(U, {-},{}). Similarly we can easily write ListToBag and
ListToSet, both with sr_add and with sr_comb.

Section 5.2 contains further examples of functions definable by structural recursion.

%In fact, if we consider only sr_comb and what can be from it, then our definitions and results further generalize to
binary trees (by dropping the associativity requirement) hence to all the levels of Boom’s hierarchy of types [43].

3Using some higher-order programming [8], or some exponential computations [56], one can also define sr_add in terms
of sr_comb.



Some identities Because initiality postulates unique homomorphisms and because the composition
of two homomorphisms is also a homomorphism it follows immediately that if ¢ is left-commutative then

sr_addy;s¢ (i, e) = sraddygg (i, e) o ListToBag

and in particular
ListToSet = BagToSet o ListToBag.

It also follows that if ¢ is left-commutative and left-idempotent then
sr_addpag (i, e) = sr_add,e(i,e) o BagToSet.

Analogous identities for sr_comb are easily seen to hold.

The bad news Unfortunately, even for simple programming languages featuring structural recursion
(together with a few basic constructs such as the ability to manipulate pairs), asking whether equational
conditions like associativity, left-idempotence, commutativity, etc., are true about program phrases is
undecidable, in fact, not even recursively axiomatizable [8, 53].

A programming languages based on full-fledged structural recursion on collections is therefore not an
r.e. language—mnot an easy sell! As we will see however, in database programming this is not necessarily
a serious inconvenience, as most programming can be done with restrictions that are always well-defined.

2.3 A restriction of structural recursion

In view of the fact that checking the well-definedness of structural recursion is not decidable, we consider
the following limited form that is always well-defined, for each of sets, bags, and lists.

h(empty) empty
h(sng(z)) = f(=) Typing:
h(comb(Cl, 02)) = comb(h(Cl), h(CQ))

f o —coll(r)
ext(f) : coll(g) — coll(7)

Notation: h = ext(f).

We will also use the specializations extges(f), extpeq(f), extyist(f). The meaning of ext(f)(S) is to apply
f to each member of S and then to “flatten” the resulting collection of collections. That is,

extoet(f)({z1,- - 2n}) = fla) U---Uf(zn)
extpag (f) ({21, 2nl}) = flz1) W--- W f(2n)
extiist(f)([21,- -, 2n]) = f(21)@---Qf (24)

Expressiveness of ext(-) The following examples of the expressive power of ext(-) suggest its interest
for database programming.



e map(f) := ext(g) where g(z) := sng(f(z)).

e flatten : coll(coll(c)) — coll(c) which “Hattens” a collection of collections by combining its members
is given by flatten := ext(id).

e II; : coll(c x 7) — coll(c) which projects the first component is given by II; := map(f) where
f(z,y) :== z. Similarly II, : coll(c x 7) — coll(7). For sets, these are the relational projections.

e The function pairwithy : o x coll(7) — coll(¢ x 7) that pairs an element with each element of a
collection is given by pairwiths(e, C') := map(f)(C) where f(y) := (e,y). Similarly, pairing on the
right pairwith; : coll(o) x 7 — coll(o x 7).

e Depending on which argument we traverse first, we have two generalizations of the cartesian
product, both of type coll(a) x coll(7) — coll(o x 7). The first one is cartprod; (S1, S2) := ext(f)(S1)
where f(z) := pairwitha(z,Ss) while the second one is cartprody(Si,S2) = ext(g)(S2) where
g(y) := pairwith1(S1,y). For bags and sets the two coincide. For sets this is the usual cartesian
product.

e The function unnests : coll(o x coll(7)) — coll(o x 7) that unnests a nested collection is given by
unnesty := ext(pairwiths).

We see therefore that this simple and always well-defined instance of structural recursion can already
express important operations which, when interpreted for sets, are operations of relational or nested
relational algebra.

Monads ext(-) is interesting not only because it is expressive, but also because it is an instance of
a mathematically ubiquitous and hence well-studied concept, that of monad (see [39] or [42] where
monads are called algebraic theories). An introduction to category theory and to monads is beyond the
scope of this paper. While the main body of the paper makes several references to monads, notably in
section 3, these references are mainly about terminology. For the reader interested in more information
about monads, we present in appendix A the category-theoretic version of the monad axioms, preceded
by a short discussion of the relationship between structural recursion and monads.

3 A core language built around monad constructs

We now want to develop a “core” language starting from the the expressive power of ext(-). Only sets
are treated in what follows. Bags and lists can be treated similarly. We shall take complez object types
to be those types that can be constructed using the set and product onstructors. These types are given
by:

Tu=blunit | Tx71| {1}

where b ranges over base types. For example, b can be instantiated by a basic data type such as integers,
strings, etc. The type unit contains just one element (). This can be taken as the type of “0-ary” tuples

10



(there can only be one such tuple), The product and set types have already been described in subsection
2.1.

In this section we present two equivalent formulations for such a monad-based core language for complex
objects. The first one (subsection 3.1) is calculus-like because it makes heavy use of bound variables.
The second one (subsection 3.2)is algebraic since it is variable-free. They are equivalent in the sense that
they describe the same class of functions that map complex objects to complex objects (subsection 3.3).
In appendix B we give a deeper equivalence result, one that relates the equational theories of the two
formulations.

3.1 A core calculus of complex objects

We assume given an infinite collection of variables, and, for simplicity, each is assigned once and forever
a complex object type, z°. Hence variables can range only over complex objects — an important
restriction that precludes variables being bound to functions. expressions and their types are given by
the rules below. Within these rules, e, e1, e range over expressions, x over variables, and o, T over
complex object types.

In order to make the additional point that function definitions can be avoided in the core language and
that everything can be done only with expressions that denote data objects, we shall use the syntax

®27€S.T
to denote
ext(f)(S) where f(z:0)=T
In lambda notation, ®z°€ S.T := ext(Az?.T)(S).

The typing of ®2°€ S.T is
T:{r} S:{o}
&2°e€S.T: {1}

The expression ®z° € S.T is a little special, because z is a bound wvariable here, similar to variables
bound by lambda abstractions; and the purpose of introducing this special notation is specifically to
avoid introducing into our language the more general construct of lambda abstraction. The scope of
z? is the subexpression 7. Note that S is not part of the scope. This is easier to see if we recall that
®xr7€ S.T was suggested as an alternative notation for ext(Az?.7)(S). As is customary, we identify
those expressions that differ only in the name of the bound variables, and we adopt the bound variable
convention [6] which says that in any given mathematical context, we can assume that all the bound
variables are distinct among themselves and distinct from the free variables occurring in that context.

In addition to ® we add to our language the expected operations associated with products, with the
type unit and singleton set formation.

Variables:

11



e1:0 e : T e:0XT

Products: (e e2) o X7 m(e) : o ma(e) : T () : unit
) e:T S: {U} T: {T}
Sets: {6} . {7_} dr°cS. T - {7-}

Note that each well-typed expression e has a unique type, which we sometimes denote type(e).

Note that many operations on sets are absent, notably emptyset and union. We made this choice in
order to present a language that corresponds closely to the monad operations, and thus obtain an exact
correspondence with an equivalent formulation based on category-theoretic operations on functions.
(see subsection 3.2 theorem 3.1). Emptyset, union, and other operations can be added to either of the
two formalisms (this calculus of complex objects or the equivalent algebra of functions presented next),
and we consider such extensions in section 4.

While the informal meaning of these expressions is quite clear, the theorems that follow will benefit
from a (concise) formal definition of the standard meaning. Since expressions have free variables, we
introduce valuations, or environments, which are type-preserving functions p from variables to complex
objects. Since p assigns a value to each free variable of e, we can define the meaning of expression e in
the environment p, denoted [e]p, as follows

[z°]p = p(z7)
[(e1, e2)p := ([er]p, [e2]p)
[71(e)]p := a and [m2(e)]p := b where [e]p = (a,b)

[O]p := the unique element of unit (can also be viewed as the “tuple with 0 components” since unit
can be viewed as a 0-ary cartesian product)

[{e}lp := {[elp}
[®z°€ S.T]p := [T]plai /x| U---U[T]plan/x°] where [S]p = {ai,...,a,} and where

b ifz=y
p(z) otherwise

plb/yl(2) = {

If [S]p = 0 then [®z7€S.T]p := 0.

It is easy to see that [e]p depends only on the values that p takes on the free variables of e. Hence, the
meaning of expressions with free variables can be also understood as a function. For example, let e : 7
be an expression with free variables z9' and z5?. We can associate with it the function o1 X 09 — 7
which takes (a1, a2) to [e]pla1/z1][az/z2]. Remarkably, there is an elegant alternative description of
the functions that are thus definable by complex-object expressions in the core calculus, which will be
presented in the next subsection.

12



3.2 An equivalent (variable-free) core algebra of functions

Here we present an algebraic (no variables!) alternative to the complex object calculus introduced
in subsection 3.1. There is an important distinction however: while the operations of the calculus
manipulate complex objects, the operations of the algebra manipulate functions (from complex objects
to complex objects). It is natural to look to category theory for inspiration with such operations,
and we borrow general category-theoretic terminology and notation, such as terminators and functorial
strength, for our algebra. Nonetheless, we are only talking about sets and set-theoretic functions here, so
the meaning of the operations can be easily explained in elementary terms, and we do so right away (the
interested reader can consult appendix A for the category-theoretic axiomatization of these operations).

The algebra is given as a many-sorted language. As usual in the language of category theory, the sorts
have the form ¢ — 7 where o denotes a source or domain object and 7 denotes a target or codomain
object. In our case o and 7 are complex object types. The operations of our algebraic presentation are
the following:

fro—=>T1 g:T—wW
gof:o0—w ide 0 —0

Category:

firo—=>1 foro—1
(f1,f2) 10 > 11 X1 fstor:oXT >0 sndy; 0 XT =T

Binary products:

Terminator: -
ter; : T — unit

fio—>T

Monad: sng, - T — {7} map(f) : {o} = {7} flatten, : {{7}} — {7}

ial h: —
Functorial strengt pairwithy , . : 0 x {7} = {o x 7}

We omit type subscripts whenever there is no possibility for confusion. The standard model for this
presentation is that of functions over complex objects. The meaning of the operations in this model
is the following: o is function composition, id are the identity functions, (f1, f2)(a) := (fi(a), f2(a)),
fst and snd are the first and second projection functions, ter maps everything to the unique element
of unit, sng produces singleton sets from single elements, map(f)({a1,--.,an}) := {f(a1),..., f(an)},
flatten({S1,...,Sm}) := S1U--- U Sy, and pairwitha(b, {a1,...,ar}) := {(b,a1),..., (b, ax)}

A useful abbreviation when dealing with products is the following. For f; : 01 = 71, fo: 09 — o, write
fi X fo:=(f1 ofst,fo osnd) : 01 X 09 = T3 X To.

The choice of sng, map(-) and flatten to describe monads is only one of several [42]. For example, monads
can be equivalently described with sng and ext(-) in view of the identities:

map(f) = ext(sngo f)
flatten, = ext(idg,y)
ext(f) = flatten o map(f)
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As examples of functions definable in this algebra consider:

e II; := map(fst) and II; := map(snd) are relational projections on sets of pairs.
e pairwith; := map((snd, fst)) o pairwithe o (snd, fst). pairwith; is like pairwithg, but pairs to the left.
e cartprod := flatten o map(pairwith;) o pairwiths

e unnesty := flatten o map(pairwithy).

It is interesting to note that FQL [11], a language designed for the pragmatic purpose of communicating
with functional/network databases was based roughly on the same set of functional operators.

3.3 Translations between the calculus and the algebra

As we mentioned before, expressions in the calculus define functions when we consider their free variables
as arguments. More generally, we want to consider finite sequence of distinct variables z7*, ..., zJ" that
include the free variables of the expression. We will use I' to range over such sequences. To deal with
closed expressions (without free variables) we also want to consider the empty sequence, (). T', 27 denotes
the sequence obtained by adding the variable z at the end of I', provided z“ is not already in I'. To
each such sequence we associate a type which is the cartesian product of the types of the variables in
the sequence:

type(0) = wunit
type(T,z7) = type(T) X o

We will use the notation I' > e for a pair consisting of a well-typed calculus expression e and a sequence
of variables I' containing all the free variables in e. To each such pair we associate a function A[I' > e] :
type(T') — type(e) (recall that type(e) is the unique type of e) as follows:

Alzt, .. zpr >zl = projj
.A[P > (el, e2)] = (A[l'>ei], Al > eq])
Al'>7i(e)] = fsto A[l'>¢]
Al > ma(e)] = snd o A[l'>e]
Al ()] = tertype(r)
Al>{e}] := sngo A[l'p>e€]
]

Al> ®2°€S.T] := flatten o map(A[l',z7 > T]) o

pairwithy e 1) 5 © (idgype(rys AL > S))

Where proj? is defined by proji = id, proj? := snd for for 1 < i = n, and proj?* := proj?_1 o fst for
1< <n.

In the translation of I' > ®2°€ S. T, we assume, according to the bound variable convention, that z¢ is
not in I'. Note also that this translation makes essential use of the functorial strength pairwith,.
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To translate from the algebra of functions to the calculus of complex objects, we associate to each
function f : 0 — 7 a pair C[f] = 27 > e where e is a well-typed calculus expression with exactly one free
variable, namely xz?. The translation goes as follows:

Clg o f] ==z > €[e/y] where C[f] = 2 >e and C[g] = y" > €'. Here €'[e/y] is the result of substituting
e for y in €.

Clidy] :== 27 > 7.

Cl(f1, f2)] := z7 > (e1, e2) where C[f1] = 27 > e; and C[fs] = z7 > ey.
Clfstyr] := 277 b1 (2).

Clsndg 7] := 27%7 b ().

Clter;] := 2" > ().

Clsng,] :=z" > {z}.

C[map(f)] := sl7} b ®z7¢c 5. {€} where C[f] = z° be.

C[flatten,] := SHH b @slre ..

Clpainwith 5] = w7} b dye my(w). {(m1 (w), 1)}

Both translations preserve meaning. Formally

Theorem 3.1

1. For any pair I' > e in the calculus, denoting A[I'>e] by f, we have:

o if ' =0 then f(u) = [e]p where u is the unique element of type unit and p is arbitrary;

o if ' =2z',..., 22" then for any ai,...,a, we have f(...(u,a1),...,an) = [e]plar/z1] - [an/zn]
where u is the unique element of type unit and p is arbitrary.

2. For any function f : 0 — 7 in the algebra, denoting C[f] by z° > e, we have [e]p = f(p(z?)) for
any p.

The proof of this theorem is by straightforward inductions on calculus expressions (part 1) and on
algebra expressions (part 2) and is omitted.

This semantic relationship between the calculus and the algebra is sufficient when we concern ourselves
with query language expressiveness. Even though the standard model of functions over complex objects
is the only one we are considering in this paper, it is worthwhile considering the associated equational
theories that may have other possible models. As we explain in section 6 the equational axiomatization
of these standard mathematical properties seems to play an important role in validating and discovering
optimizations.
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For the algebra the equational theory is axiomatized by “commutative diagrams” in standard category
theory style (appendix A). For the calculus one can find a corresponding axiomatization, in the style
of lambda calculus (appendix B, and see [46]). If we think of the equational theories as semantics, it
turns out that a more profound relationship exists between the calculus and the algebra: we show in
appendix B that the translations given above “preserve and reflect” these equational theories.

Notation. Since the calculus and the algebra are equivalent, we can speak conceptually of a core
language M whose constructs are those associated with a monad. We can then choose either one of the
two formalisms when we need to prove something about this core language.

Since the equivalence between the calculus and the algebra is given by effective translations we can use
syntactic sugar that mixes the two formalisms when we wish to show that something is expressible in
M. For example, if f : 0 — 7 is a function in the algebra, and e : ¢ is an expression in the calculus, we
can “apply” f to e, writing f e instead of the calculus expression €'[e/z?] of type 7 that is obtained by
translating f into the calculus: z7 > e’ := C[f].

Also, if e : 7 is an expression in the calculus, and z7',...,z2",n > 1 is a sequence of distinct variables

containing the free variables of e, we can obtain a function in the algebra by “abstract” these variables
over e. We would then add the auxiliary function definition

fname(z1,...,2,) =€

and then we would use frname : 01 X --- X 0y, = 7 as a function in the algebra, knowing that fname
stands for the algebra expression f o (---((ter,id) x id) x --- X id) that is obtained by translating e into
the algebra: f:= Alz7",...,zo" >e].

In the following sections we will extend M with other primitives. It is important to keep in mind that
the extensions are done differently in the two formalisms. In the complex object calculus we would add
an expression construct of the form

e1: Argitype(C) -+ e, : Argytype(C)
Clet, ... en) : Type(C)

while in the algebra of functions we would add a functional constant:

¢ : DType(c) — CType(c)

The equivalence between the calculus and the algebra would be preserved because typically A[l' >
C(e1,...,ey)] is straightforwardly expressed in terms of ¢, and so is C[c] in terms of C.

Notation. If ¥ is a signature of additional primitives, we will denote the extension of M with these
primitives by M(X).
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4 Nested relational algebra

We now proceed to enrich M in order to express the operations of the relational algebra and, of
particular interest, those of the nested relational algebra. There are several equivalent formulations of
the nested relational algebra and one of the goals of this section is a rational reconstruction for it. We
mention two specific operations of the nested relational algebra unnesty : {o x {7}} — {0 x 7} which, as
we saw in Section 2.3, is already expressible in M, and nesty : {o X 7} — {0 x {7}} which is considered
below.

As for the operations that are already in the relational algebra, we have seen in Section 2.3 that relational
projections II; and Ils and cartesian product cartprod can be expressed in M. However, union cannot
be expressed in M. In this section we extend M parsimoniously, while staying within polynomial-time
computability. We reach a formulation that is equivalent to those given to the nested relational algebra,
then we argue for the utility of a conditional and we conclude the section with a discussion of the
advantages of our formulation.

4.1 Adding union and the empty set

Theorem 4.1 Neither binary union nor emptyset can be expressed in M.

Proof. Assume a domain of complex objects over some base type with at least two distinct elements
c1 and co. Consider the sub-domain in which every set — of whatever type — has exactly one member.
This sub-domain is closed under the operations of the functional algebra of M and hence under M by
Theorem B.1. It does not contain empty set; nor is it closed under union because the union of {c; } and
{c2} has two members. Hence neither the set union operation nor empty set are definable in M. O

We therefore add these as primitives at all types. In the complex object calculus we have

Si:{r} Sa:{r}
{}r: {7} S1USy: {7}

while in the algebra of functions we have

emptyset, : unit — {7} union, : {7} x {7} — {7}

Notations. We shall use R for M({},U). Wadler has already noted the usefulness of this extension
to a monad and termed it a ringad, hence the R; see [58]. We shall also use the shorthand notations

e17ey:={ei1} Uey and {e1,...,ep} :={e1} U...U{en}.

The relational algebra operation of selection normally requires a boolean type. Some conceptual econ-
omy is possible if we simulate the booleans by representing true as {()} and false as {}, which are the
two values of type {unit} 4. Note that by U by is the disjunction of b; and by.

*An interesting remark is that {lunit[} can simulate the type of natural numbers. sr_addyay becomes the usual recursion
on natural numbers for this type.
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With this representation, selection is definable in R as
select z from S where P := ®z€ S.11; (cartprod({z}, P))

where z : 0, S : {0}, and P : {unit} is a predicate with free variable z. The trick here is that if P is
false, then it is empty. Consequently, cartprod({z}, P) is empty. So z does not contribute to the result.

4.2 Adding non-monotonic operations

The remaining operator of the flat relational algebra is the set difference operator. The weaker operation
of the positive relational algebra is the set intersection operator.

Theorem 4.2 Intersection cannot be expressed in R.

Proof. Define an ordering <? on complex objects of type o as follows:

e g <% g, for any object ¢ of base type b.
® (q1,q2) 27%7 (r1,m2), if ¢t 2771 and g2 X7 ra.

e Q <9} R, if for each g € Q, there is 7 € R, and ¢ <° r.

It can be checked that all functions definable in R are monotone with respect to this ordering, while
set intersection is not. O

It follows that set difference cannot be defined in R. A similar argument shows that equality cannot
be defined in R nor can membership or subset predicates. Also, the nesting operation of the nested
relational algebra cannot be defined in R. This is one of two mutually-definable operations nest; and
nesty. For example, nest, is the right-nesting operation of type {o x 7} = {0 x {7}}.

Thus a further extension is still necessary. It turns out that we can make this extension in several
equivalent ways. We shall use the notation R(X) for R augmented with additional primitive operations
3. For example R(=) is R augmented calculus-style with

e1:0 ey:o
e1 = ey : {unit}

or a corresponding function eq, : o X ¢ — {unit} in the functional algebra.

Theorem 4.3 Let X be any additional primitive signature. The following languages are equivalent:
R (intersection, X), R(=, %), R(difference, X)), R(subset,¥), R(member, ), and R(nest,X).

Proof. To show these equivalences we have to exhibit translations between these functions. In the
course of this, we also provide the usual complement of boolean functions.
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Given equality, define nn(z,y) := II;(cartprod({z},eq(z,y))). Then nn(z,y) returns the singleton set
{z} if eq(z,y) is true and {} otherwise. Set intersection is now obtained by flat-mapping this func-
tion over the cartesian product: intersection(z,y) := ®z € cartprod(z,y).nn(z). Conversely, equal-
ity may be defined from intersection by eq(z,y) := map(ter)(intersection({z},{y})). Thus R(=,%) =
R (intersection, X).

Recall that we have implemented the booleans by the two values of type {unit}, using {} for false and
{()} for true. Disjunction and conjunction are then directly implemented by union and intersection. To
implement negation, consider the relation {({},{()}), ({(},{})} which pairs false with true and true
with false. We can select from this relation the tuple whose left component matches the input and
project the right component:

not(z) := flatten(II(select y from {({},{(0)}), ({O},{})} where eq(z, 71 (y))))

We can use these to implement existential and universal quantification. Define:

some z in S satisfies P := ®zeS.P

every z in S satisfies P := not(some z in S satisfies not(P))

Thus, if P : {unit} is a predicate expression with a free variable x, we can represent the predicate
calculus notation 9z € S. P as some z in S satisfies P and the predicate calculus notation Vz € S. P as
every x in S satisfies P.

This brings us to the implementation of set difference in terms of equality:
difference(R, S) := select x from R where (every y in S satisfies not(eq(z,y)))-

Noting that intersection is easily obtained from difference, we now have R(=,¥) = R (intersection, ¥.) =
R (difference, X).

Equality can be obtained from membership by: eq(z,y) := member(z,{y}). Membership is obtained
from equality by: member(z,S) := some y in S satisfies eq(z,y). The mutual dependence of member
and subset is immediate. So we have R(=,X) = R(member, ¥) = R(subset, X).

Finally, we examine nests, which can be derived from equality as follows. First consider a function
f:ox{ox7} = ox{r} such that f(z,S) returns the pair (z,{y | (z,y) € S}). It can be defined
as f(z,S) := (x,y(select y from S where eq(z, m1(y)))). Now nesta(R) is obtained by pairing each
member of the left column of R with the whole of R and mapping f over the relation so formed:
neste(R) := map(f)(pairwithy (II; R, R)).

Conversely, we show that difference can be derived from nest; and nesto. First, we observe that negation
can be obtained from nest; as follows. Writing T for {()} and F for {}, consider a boolean variable
z, and form the set {((F,F),T),((T,F),F),((F,T),z)} and apply nest; and then II;. This yields
{{(F, F),(F,T)},{(T,F)}} if z is true and {{(T, F)},{(T, F),(F,T)}} if = is false. Now apply

flatten o map(map(fst x snd) o cartprod o (id,id))

to obtain {(F, F),(F,T),(T,F)} and {(T, F),(T,T),(F, F),(T,T)} respectively. Since F' is an empty
set its cartesian product with anything is an empty set, so applying flatten o map(fst o cartprod) gives
us F' and T respectively.
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To obtain the difference of two sets R and S, pair each member of R with F' and each member of S
with 7" and nest on the left column. That is, compute (nesty o union)(pairwith; (R, F'), pairwith;(S,T)).
Tuples in this relation are of one of the three form (a, {F,T}), (b,{F}), and (¢,{T}), where a € RU S,
b € difference(R, S), and ¢ € difference(S, R). If we now apply flatten to the right-hand column and
apply sng to the left, these tuples are of the form ({a},T), ({b}, F), and ({c},T). Negate the second
column (we have just shown that this can be done with nest;) and apply cartesian product to each tuple
to obtain only those elements in difference(R, S). This completes the proof. O

A related result was proved by Gyssens and Van Gucht [21] who showed that these non-monotonic
operators are inter-definable in the language of Schek and Scholl [51] when the powerset operator was
made available as an additional primitive. In view of two results that follow, Theorem 4.4 (which
indicates can our language is of polynomial time complexity) and Theorem 4.5 (which shows that our
language is equivalent to that of Schek and Scholl), Theorem 4.3 is a significant improvement.

Given this equivalence result, we choose one of the non-monotonic operations, namely equality, and add
it to R.

Theorem 4.4 (PTIME computability) Assuming that the functions denoted by the primitive func-
tion symbols to be computable polynomial time with respect to the size of their input. Then any functions
that are definable in R(=,%) are computable in polynomial time with respect to the size of their input,
for any reasonable definition of complex object size.

Proof. We consider the presentation of R(=,X) as an algebra of functions. For each function f
definable this way a polynomial time-bound function |f|: N — N is given by

lgl(r) + [R|(n) if f is (g, h)

lg1(|R[(r)) if fisgoh

1fl(n) = ¢ n-lgl(n) if f is map(g)
O(nk») if f is a primitive function p, bound is by assumption
O(n) otherwise

In fact this result can be strengthened by showing that the implementation suggested by the operational
semantics of structural recursion is also polynomial.

4.3 Relating R(=) to other nested relational algebras.

The language of Thomas and Fischer [57] is the most widely known of nested relational algebras. The
language of Schek and Scholl [51] is an extension of Thomas and Fischer’s with a recursive projection
operator. The language of Colby [16] is in turn an extension of Schek and Scholl’s that makes all
operators recursive. It is a theorem of Colby [16] that her algebra is expressible in the algebra of
Thomas and Fischer.
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This result can be strengthened by showing that R(=) coincides in expressive power with these three
nested relational languages. Hence it can be argued that R(=) possesses just the right amount of
expressive power for manipulating nested relations.

A detailed description of Thomas and Fischer’s language is required for proving this result.

e Union of sets. union, : {o} x {o} — {o}. This is already present in R(=).

o Intersection of sets. intersection, : {o} x {o} — {o}. This is definable in R(=) by Theorem 4.3.
o Set difference. difference, : {o} x {o} — {o}. This is definable in R(=) by Theorem 4.3.

e Relational nesting. nesty, . : {o X 7} — {0 x {7}}. This is definable in R(=) by Theorem 4.3.

e Relational unnesting. unnesty, . : {o x {7}} = {0 x 7}. It can be defined in R(=) as given in
Section 2.3.

e Cartesian product. cartprod,, : {o} x {T} = {0 x 7}. It can be defined in R(=) as given in
Section 3.2.

e Their projection operator is the relational projection. General relational projection works on
multiple columns and has the form projection(f). This can be interpreted in R(=) as map(f),
where a restriction is placed on the form of f: it must be built entirely from fst, snd, (-,-), - o -,
and id.

e Their selection operator is the relational selection and has the form selection(f,g). It can be
interpreted in R(=) as select = from R where eq(f z, g x), where R stands for the input relation.
However, the same restriction given in projection is placed on f and g.

e As in the traditional relational algebra, Thomas and Fischer used letters to represent input rela-
tions. Without loss of generality, only one input relation is considered. We reserve the letter R for
this purpose and it is assumed to be distinct from all other variables. Finally, constant relations
are written down directly. For example, {{}} is the constant relation whose only element is the
empty set.

A query is just an expression e of complex object type such that R is its only free variable. We view
such a Thomas& Fischer query as the function f such that f(R) = e.

Theorem 4.5 R(=) = Thomas&Fischer = Schek&Scholl = Colby.

Proof. It is sufficent to show that every function in R(=) is also in Thomas& Fischer. Since = is
clearly definable in terms of =, and not, we can instead prove that every function definable in R(=y, not)
is also definable in Thomas& Fischer.

Let encode? : o — {unit x o} be the function encode’ (o) = {((), 0)}. Let decode™ : {unit x 7} — 7
be the partial function decode™ {((), 0)} = o. Note that both encode’ and decode” are definable in
Thomas&Fischer when o and 7 are both products of set types. Suppose
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Claim. For every closed morphism f : o — 7 in R (=4, not), for every complex object type 4, there is a
query f': {6 xa} = {6 x 7} in Thomas& Fischer such that f' denotes the same function as map(id x f).

Then calculate as below:

e decode o f' o encode
= decode o map(id X f) o encode By the above claim.
= decode o sng o (ter, f) Because encode = sng o (ter,id).

= f

It remains to provide a proof of the claim. This is not difficult if one define f’ by induction on the
structure of f. The complete proof can be found in Wong [64]. We provide the case when f has the
form map(g) for illustration.

To define map(g)’ : {dx{o}} = {0x{7}}, assume by hypothesis that ¢’ : {6 xc} — {§x 7} exists. Define
A(R) := projection(fst o fst, id o snd)(nesta(g'(unnesta(map((id,snd))(R))))). Then A(R) = map(id x
g)(R1), where Ry contains exactly those pairs in R whose right component is nonempty. Define B(R) :=
cartprod(projection(fst o fst)(selection(snd o fst, snd)(cartprod(R,{{}}))),{{}})- Then B(R) = map(id x
g)(R2), where Ry contains exactly those pairs in R whose right component is empty. Finally, we set
map(g)’(R) := union(A(R), B(R)).

As can be seen, the definition for map(g)’ is not simple. There are two reasons for this. The first

reason is that ¢ may not satisfy the severe restriction that Thomas and Fischer put on their projection
operation. The second reason is that the only way to implement the emptiness test in the language of
Thomas and Fischer is via their selection operation. O

It is an immediate corollary of this theorem that

Corollary 4.6 Every function from flat relations to flat relations expressible in R(=) is also expressible
in flat relational algebra.

Proof. It is known from Paredaens and Van Gucht [49] that every function from flat relations to flat
relations expressible in Thomas& Fischer is also expressible in flat relational algebra. The corollary
thus follows from Theorem 4.5. |

In fact, elsewhere we are able to strengthen the theorem of Paredaens and Van Gucht to a general
theorem on the conservative extension property of R(=) and its various extensions. That is, we can
show that the definability of a function in R(=) is independent of any restriction that can be imposed
on the depth of set nesting in intermediate data [34, 35, 63].

4.4 ®onditionals

An if-then-else construct is often needed in programming. Consider the function cond, : {unit} x (o x
o) — o such that cond(B, ¢, r) returns g if B is nonempty and r otherwise. This function is not definable
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in R(=) at all types o. The techniques used in the proof of Theorem 4.3 allow us to define it when o
has the form {o1} X - -+ x {0, }. However, cond, is not definable in R(=) when o is a base type, because
any function in R(=) whose output type is a base type must either be a constant function or is a chain
of projection operations. We find it useful to have a conditional in the calculus-style

e:{unit} e :0 ex:o
if e then ey else eg : o

or in the algebra-style

cond, : {unit} x o x o = o

It should be noted [64] that the addition of the conditional is a convenience; it does not greatly affect
the expressive power of R(=).

4.5 Discussion

Nested relational algebras were introduced to relax the first normal form restriction originally imposed
by Codd [15] and considered unacceptable in many modern applications [41, 40, 26, 29]. The earliest
definition was that of Jaeschke and Schek [29] who allowed the components of tuples to be sets of
atomic values. That is, nesting of relations was restricted to two levels. This restriction was relaxed by
Thomas and Fischer [57] who allowed relations to be nested to arbitrary depth. Their algebraic query
language consisted of the operators of flat relational algebra generalized to nested relations together
with two operators for nesting and unnesting relations. However, their operators can only be applied
to the outermost level of nested relations. Before a deeply nested relation could be manipulated, it
is necessary to bring it up to the outermost level by a sequence of unnest operations; and after the
top-level manipulation, to push the result back down to the right level by nesting. However, nest and
unnest are not mutual inverses, and some care has to be taken during restructuring, as can be gauged
from the full proof of Theorem 4.5 [64].

This constant need for restructuring was eliminated by Schek and Scholl [51] who introduced a recursive
projection operator for navigation and later by Colby [16] who made all her operators recursive. Their
method is ad hoc in the sense that individual definitions are required for each recursive operator. For
example, the semantics given by Schek and Scholl [51] for the recursive projection operator has over 10
cases.

The map(-) construct of R(=,cond) allows all operations to be performed at all levels of nesting; thus
completely eliminating the need for restructuring through nest and unnest, as in Thomas and Fischer’s
algebra. The recognition that any function can be passed to map(-) at once simplifies the language;
thus eliminating the need for ad hoc operations and complicated semantics. Every expression construct
in R(=, cond) enjoys the same status and can be freely mixed as long as typing rules are not violated;
thus eliminating the need for special syntax for the parameters to different operators. In addition, it
provides a framework with which to extend nested relational algebra to other collection types, and allows
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us to reason about languages with external functions such as the aggregate operations of SQL [28]. We
therefore believe that R(=, cond) may be profitably considered as the “right” nested relational algebra.

5 The power of structural recursion and languages with powerset

We have shown that the nested relational algebra admits an elegant formulation using operations on
complex objects suggested by the concept of monad. At the same time the nested relational algebra has
severe limitations on expressiveness. Indeed, in view of corollary 4.6 and [4, 14], there are also polynomial
time operations such as transitive closure and parity that cannot be defined in R (=, cond). In this section
we consider constructs that extend the expressive power of R(=,cond). In subsection 5.1 we discuss
Abiteboul and Beeri’s complex object algebra which essentially adds the finite powerset operations to
R(=, cond). This increases the expressive power, but seems to suggest an inflexible programming style.
In subsection 5.2 we show that structural recursion can express efficient polymorphic algorithms for some
of the functions that are beyond the reach of the nested relational algebra. Finally, in subsection 5.3 we
show that in the absence of external functions the powerset operation can express the functions defined
by structural recursion, albeit in an inefficient and non-polymorphic manner.

5.1 Abiteboul and Beeri’s complex object algebra

In view of theorem 4.4, powerset is not definable in R(=,cond). In [1], Abiteboul and Beeri introduce
three languages that can all express powerset, and they show them to be equivalent: a “complex object”
algebra and calculus, and an extension to datalog with certain higher-order predicates such as subset
and membership. Gyssens and Van Gucht [22] show that several augmentations of the nested relational
algebra with recursive and iterative constructs are equivalent to the augmentation with powerset.

If we add for each complex object type o the primitive powerset” : {c} — {{o}}, we obtain a formalism
equivalent to the complex object algebra in [1]. For the purpose of this paper, let us define Abiteboul
and Beeri’s algebra as

A&B := R(=, cond, powerset)

Abiteboul and Beeri show how to express transitive closure of a relation R in A&B, by selecting from
powerset(cartprod (I1; (R), II3(R))) those relations which are transitive and contain R and then taking
their intersection. The intersection of a set of sets, S : {{7}} is readily defined, even in R(=, cond), via
complements:

(S := difference(flatten(S), ®siTle 8. difference(flatten(S), s))

We remark that a test for equal cardinality can also be expressed in A&B: given sets S and T we can
construct powerset(cartprod(S,T")) and then test whether it contains a bijection between S and T'. Then
we can test for parity of the cardinality of a set S by testing whether for some subset T' C S, the sets
T and difference(S,T') have equal cardinality.

We have not discussed operational semantics for the languages we have considered, but clearly these
expressions of transitive closure and parity using powerset suggest exponential time algorithms (obvious
implementaions are even be exponential space) when in fact the queries themselves are polynomial. In
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fact, by corollary 4.6, it is clear that queries such as transitive closure, equal cardinality, and parity,
are not definable in A&B without a potentially costly excursion through a powerset. This observation,
made in [9], begs the question: is there an “efficient” way of programming these queries in A&B? This
is a delicate question since it depends on accepting a “reasonable” notion of operational semantics for
A&B. Suciu and Paredaens [54] show that if we adopt the usual, eager, evaluation strategy for queries,
then any A&B expression for transitive closure must construct an intermediate result of exponential size,
hence obtaining an EXPSPACE lower bound. Abiteboul and Hillebrand [2] show that an operational
semantics with pipelining optimizations yields a PSPACE (but still EXPTIME) algorithm for the A&B
expression of transitive closure mentioned above. One is strongly inclined to think that A&B does not
offer a flexible enough programming style to be able to code transitive closure, or parity, efficiently.

As we shall see in subsection 5.2, structural recursion can express efficient algorithms for transitive
closure and parity in a rather straightforward manner.

We can make another aspect of this inflexibility precise by considering cardinality. It turns out that
cardinality, as a function into a primitive type N of natural numbers, is not definable, no matter what
arithmetic functions we take as primitives. Indeed, let A&B(N) be the extension of A& B with a primitive
type N and an arbitrary primitive arithmetic signature of constants and functions of the form

c:N p:NX--- XN—=N

We must be careful in what we mean by cardinality not being definable, because for each finite complex
object type o not containing N, there is a specific and trivial expression ¢, for the cardinality function
of type {o} — N. That is because all the sets of type {o} are “known” and definable in the language
(recall that it is assumed that o doesn’t contain N), so we can just compare the argument of ¢, with
each of them and build the answer into ¢,. Of course, the expressions ¢, do not depend uniformly on
the type. It is precisely such a uniform, “parametric,” or “polymorphic” definition that does not exist.

To describe precisely polymorphic definitions, we introduce type variables «, (3, etc., and consider
complex object type expressions

O:=a|unit|b|dx6| {0}

To avoid technical problems with type variables occurring in the type of usual variables, free or bound,
we consider only expressions in the functional algebra formalism, since they do not have bound variables.
Moreover we are interested only in closed variable-free expressions; call them polymorphic expressions.
Type variables may now occur in polymorphic expressions, namely in the subscripts of id, fst, sng, ter,
snd, flatten, pairwithy, emptyset, union, eq, and powerset; and we can substitute for them. For example:

(S"d{ax um’t},a) [{unit}/a] = SN yumity x unit} {unit}

We say that cardinality is polymorphically definable if there exists a polymorphic expression countges :
{a} — N, where « is a type variable, such that for each complex object type o, the expression
countsetlo/a) : {o} — N denotes the cardinality function from {o} — N.

Theorem 5.1 Cardinality is not polymorphically definable in A&B(N).
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Proof. For any complex object g, let max(q) be the largest natural number that occurs in g (0 if none
occurs). We show

Claim. For each polymorphic expression f of A&B(N), there exists an increasing map ¢y : N — N such
that for any instantiation f obtained by substituting complex object types for all the type variables in

~

f we have max(f(q)) < ¢(max(q)).

Proof of claim. Take ;4 1= @fst 1= *+* = Qcond ‘= Ppowerset ‘= the identity on N, which explains
why ¢ gives a bound for all instantiations of f. For any arithmetic primitive p, we take ¢p(n) :=
maxXz<n y<n(P(2,y)). The claim follows by induction on f.

To prove the theorem, assume a polymorphic cardinality function countge : {a} — N exists, and let
m = Yeount(0). Let o be a complex object type not containing N such that {o} has more than m
elements; for example, o can be of the form {--- {unit}---}. Then, by the claim, countse[o/a] cannot
denote the cardinality function of type {o} — N. O

As we shall see next, structural recursion allows a straightforward polymorphic definition of cardinality.

5.2 The power of structural recursion

The most powerful and at the same time flexible language on sets that we consider in this paper uses
structural recursion, specifically on the following construct first introduced in section 2:

g({}) e:T 1:0XT—T
9(z78) = i(z,9(5)) g:{o}—=r

Il
)

We have denoted g by sr_addse:(i,€). As we have seen in subsection 2.2, we can express sr_combge; in
terms of sr_addse;. Hence ext(-) and @ can also be expressed with sr_addge;. A direct formulation of this

is ®z€ S.T := f S where
My =4
flzr2z) = TUZ

The conditional can be expressed as if e then ey else ey := h e where

h{}) = e
h(u7Z) = e

Moreover, as we have seen in section 2, structural recursion can express powerset, powerset(S) := p S,

r({}) = {}}
p(z785) p(S) Umap(h)(p S)

and where h(Z) :=xz7 Z.

where
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Hence, structural recursion together with those primitives in R(=) which are distinct from ® is at least
as powerful as A&B. Given the problems that arise for A&B, some proven and some conjectured, it
will be interesting to show that structural recursion offers a flexible programming style which allows for
polymorphically expressing efficient algorithms for parity test, set cardinality, and transitive closure.

Parity test Notice that the predicate even : {a} — {unit} satisfies:

even({}) = true
even(z7S) = if member(z,S) then even S else not((even S))

This is not quite a use of structural recursion on collections as we have defined it. It is a more general
form:

g' (empty) = e e:T jrox{o}xT =71
g'(add(z,C)) = j(=,C,¢'(C)) g :coll(c) > 7

Recalling an idea of Kleene (who used it to code the predecessor function in the lambda calculus), this
apparently stronger form can be obtained from a simple structural recursion g’ = snd o sr_add(i', €’)
where i’ : o x (coll(g) x 7) — coll(c x 7) is defined by #'(z,C,a) := (add(z,C),j(z,C,a)) and € :=
(empty, e).

Suitably generalized forms of left-commutativity and left-idempotence

constitute sufficient conditions for g’ to be well-defined on sets. They are easily verified for the definition

of even. In the case of bags we only require generalized left-commutativity; no conditions are needed
for lists. °

Set cardinality As promised earlier, countse; : {a} — N is polymorphically definable with structural
recursion, in a similar manner as even:

countset({}) =0
countset(x7S) = if member(x,S) then countset(S) else 1+ (countserS)

Transitive closure It is clear that the implementation of transitive closure as given in section 5.1 is
severely inefficient. We now show that a much better algorithm for transitive closure can be expressed
with structural recursion. First, we need binary relation composition, which is expressible as

R#S := map(f)(select w from cartprod(R, S) where mo(m1(w)) = 71 (m2(w)))

SIn fact, with some higher-order lambda calculus, we can also express an efficient algorithm for testing equality of
cardinality.
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where

f(v) := (m1(m1(v)), w2 (m2(v)))
Now consider i : (@ X a) X {a X a} = {a x a} defined by

i(r,T) = {r} UT U ({r}#T) U (T#{r}) U (T#{r}#T)

and then transitive closure, TC : {a X a} — {a X a}, is given by

redy) = {3
TC(s?R) = i(s, TC(R))

We have to verify that T'C is well-defined. That is, that the semantics of 4 satisfiy the commutativity and
idempotence conditions on the right set of values, and that the meaning of T'C' is in fact the transitive
closure operator. In what follows, we will perpetrate a slight abuse of notation by writing semantic
proofs of semantic facts in programming syntax. (In fact, the proofs for the next lemma can all be
formalized in syntax too, by using one of the logics described in [8].) We still need one more notation:
the semantic transitive closure of R is denoted by R™.

Proposition 5.2

1. {} is transitive. If T is transitive then i(r,T) is also transitive.

2. Let T be transitive. Then i(r,i(s,T)) =i(s,i(r,T)) and i(r,i(r,T)) = i(r,T).

3. If T is transitive then i(r,T) = (r7T)™".

4. i(r,RT)=(r7R)™. O

The key observation in proving part 1 is the following simple fact: for any R, {s}#R#{s} C {s}.
Part 2, which implies that T'C is correctly defined (working with a range consisting only of transitive
relations), is shown using part 1. Part 3 follows immediately from part 1, and part 4 from part 3. Part
4 of the lemma is the essential step in showing by structural induction on the insert presentation of
sets, that for any R, TC(R) = R™.

This algorithm for transitive closure resembles Warshall’s algorithm, except that we are doing edge
insertion rather than node insertion. To obtain Warshall’s algorithm, suppose we are given a set of
nodes V : {a} and a set of edges E : {a x a} among these nodes. Then, the transitive closure of E is
given by W (V') where W is defined by

w{}) = E
W(v?d4) = W(A)UW(A)#{(v,0)}#W(A)

Indeed, one can show that W is well-defined and that for any A C V, W(A) is the set of pairs of nodes
which are connected by paths whose intermediate nodes all belong to A.

Warshall’s algorithm runs in O(n3) time while the edge insertion algorithm runs in e - n? time, where
n is the number of nodes and e is the number of edges. In any case, these are efficient algorithms
for transitive closure, in comparison to the A&B query mentioned earlier. In the spirit of Warshall’s
algorithm, one can also represent Floyd’s shortest paths algorithm.
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5.3 A&B is equivalent to structural recursion when external functions are absent

While we have explained through theorem 5.1 in what sense structural recursion is strictly more powerful
than A&B, we still want to explain the intuition that since A&B can do certain least fixed points, in
fact enough to simulate a Datalog-like language with predicates on sets [1], it will be able to express the
functions defined by structural recursion, which are also least relations given appropriate properties. It
will turn out that we can justify this intuition formally, but our reduction from structural recursion to
A&B will not be polymorphic.

The difficulty in formalizing this intuition comes from the fact that in order to express such least
relations with powerset and intersection of set of sets, we need some kind of “universe” which collects all
the elements that could be involved in the computation of the least fixed point. This was simple to get
in the case of transitive closure, it was simply all the elements occurring in the relation. Our situation
is more general and we quickly realize that nothing can be done in the presence of primitive functions.

Thus we consider A&B(C) with only finite many constants C := {c;,...,c,} of one base type ¢.

Theorem 5.3 The class of functions that are expressible in A&B(C) is (essentially) closed under
structural recursion.

Proof. First we define in A&B for each type o two functions FORTH? and BACK?:

FORTH? : 0 — {1} computes the set of all elements of type ¢ that occur in a complex object of type o:

FORTH'® := sng
FORTHY™! . emptyset
FORTH?*™ := union o FORTH® x FORTH™
FORTH!?} .= ext(FORTH?)

BACK? : {1} — {o} which, given a “basic” set of constants B : {¢}, computes a set which is the finite
“universe” of all complex objects of type ¢ that can be constructed using elements from B:

BACK'(B) = BUf{c1,...,cn}
BACK"™(B) = {()}
BACK®*™ := cartprod o (BACK?, BACKT)
BACK?} .= powerset o BACK®

We can verify these definitions by proving that
Claim I. For any complex object ¢ of type o, we have ¢ € BACK? (FORTH’ (q)).

Claim II. Let f : 0 — 7 be a function that can be expressed in A&B(C) plus structural recursion and
let B : {¢} be a basic set of constants. For any complex object g of type o, if ¢ € BACK’(B) then
f(q) € BACK™(B).
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The claims are proved by induction on complex objects and on function expressions in A&B(C). Details
omitted.

Next, we show that A&B(C) is closed under definitions by structural recursion. Let e : 7 and i(z7,2") =
e; where i : o xT — 7 be expressible in A&B(C). Let s} be a variable. We need an A&B(C) expression
G such that g := sr_add(i, ) can be expressed as g(s{?}) = G. In other words, G expresses the result
of applying g to s{7}.

Think of s{7} as expressing a complex object that g takes as argument. Then,
B := FORTH{?}s{7}

expresses the basic set of constants that occur in this argument. BACK” B then expresses the set of
all complex objects of type 7 that can be built with these constants. In view of Claim II, the result of
applying ¢ to s{?} must be among these complex objects.

The next step is to express the binary relation of type {{o} x 7} that is the graph of g restricted to
arguments that can be built out of the constants in B. The set

powerset(cartprod(BACK "} B, BACK™ B))

consists of all binary relations between complex objects built from these constants. Out of this set,
select only those relations R that contain ({},e) and which are such that

every z7 in 517} satisfies subset(R', R)
where R' := map(f)(R) and where f(t{7},27) := (z7 7t{7} ;).

Clearly all this can be expressed in A&B. We want the smallest relation among those selected, and this
is achieved by taking their intersection (see subsection 5.1). Let I be the resulting expression. From
the universality property that defines g it follows that I expresses the desired graph of g restricted to
arguments that can be built out of the constants in B. Therefore, we select from I all pairs whose
left component is s{?} (there will be only one such pair since g is a function) and then take the second
relational projection. The result is an expression of type {7} which is semantically equivalent to gsioh,
modulo the small unpleasantness that instead of the desired result, it returns a singleton set containing
the result. When 7 is a set type or a product of set types, this can be remedied by further composing
with relational projections and flattenings. The types of the overall translation must be adjusted to take
care of this unpleasantness (this is the reason for the qualifier “essentially” in the theorem’s statement,)
but this is straightforward. O

The point of this result is not a practical one, since the transformations it suggests are neither polymor-
phic nor efficient. In addition to formalizing certain intuitions about the flavor of these languages, we
hope that we might be able in the future to use it to transfer theoretical results, for example complexity
lower bounds, from A&B(C) to languages with structural recursion.
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6 Optimization and equational theories

6.1 An equationally provable optimization

The equational theory that we exhibit for our query languages can be used to validate algebraic op-
timizations. Trinder [58] has already studied optimizations for languages like the ones we present in
this paper. Using comprehension syntax, which is equivalent to ®, he identifies qualifier interchange as
an identity on comprehensions that generalizes the important optimization known as selection promo-
tion. To illustrate the power of the equational theories in the appendices, we will show, similarly, that
selection promotion is provable in these theories.

Let R: {c} and S : {7} be two sets, and let p: 0 x 7 — {unit} be a predicate. We wish to show that
when p really only tests the first component of its argument, that is, when p(z,y) is equivalent to p'z
for an appropriate p’ : ¢ — {unit} (for example we can take fun p(z) = p'm1(2)), then the selection

select z from cartprod(R, S) where pz

is provably equal to
cartprod((select = from R where p'z), S)

(this may reduce the size of one of the sets involved in the cartesian product, before the product is
computed).

To make the calculations less obscure, we will “redefine” selection as

select = from S where P := ®ze S.if P then {z} else {}.

This is only a small variation, since we have pointed out in section 4 that at such types the conditional
is in fact definable, and its definition would get us back to the original definition of selection.

Recall also that
cartprod(R, S) := ®z€ R. pairwithy(z, S)
and

pairwithy(z, S) := ®ye S. {(z,y)}

Expanding this syntactic sugar and applying some axioms for M (axiom 8 and axiom 7, appendix B)
select z from cartprod(R, S) where pz becomes

dze R. (Dye S. (if p(z,y) then {(z,y)} else {}))

Now replace p(z,y) with p’z. To make further progress in simplifying the expression we need axioms
for the extension R(=, cond) (namely axiom 6 and axiom 5, appendix C). Applying these, we get

dze R. (if p'z then (dye S. {(z,y)}) else {})

This is a sort of normal form®, so we will try to reach the same by transforming equationally the other
expression, namely cartprod((select z from R where p'z), S).

5In fact, Wong [63, 64] organizes these equational theories as confluent and terminating rewrite systems.
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Expanding the syntactic sugar we get

dz'c (dze R. (if p'z then {z} else {})). pairwithy(z’, S)
Applying axiom 8, appendix B

dxc R. (D2’ (if p'z then {z} else {}). pairwithy(z', S))

Again, to make further progress we need more axioms that are specific to R(=,cond) (axiom 3 and
axiom 2, appendix C). Applying these as well as axiom 7 of appendix B we get the normal form that
was also reached above, which completes the proof.

6.2 Naturality.

Beyond using the equational theory as a validation tool for optimizations, we hope that the category-
theoretic foundations on which it is based could be used to “discover” useful optimizations. For example
many algebraic optimizations take the form of commutations between constructs. One property known
from category theory has typically the form of a commutation—naturality.

To see this, consider again complex object type expressions with type variables. We can interpret
such type expressions with n type variables in them as functors SET™ — SET. Then, taking closed
polymorphic expressions in A& B (without eq, it turns out) we can show that their meanings for various
sets assigned to the type variables are natural transformations. Moreover, the action on morphisms
of the functors is expressible in the language. Hence the naturality can be expressed as a family of
equations that hold between expressions. Finally, since the equational theory can prove the naturality
of each construct separately, we know by general category-theoretic considerations that it will be able
to prove the naturality equations for any expression in A&B without eq.

More precisely, consider a type expression § without primitive types, and a list of distinct type variables
ai, -.., o that includes all the type variables in §. We define a functor 8 : SET™ — SET associated to
this type expression as follows. The action of § on objects is given by

(Ula s aan) = 0[5/&]
where [7/d] is an abbreviation for [01/ay] - - [0y, /ay]. The action on morphisms can be defined entirely
inside our language M, as follows. Given g1 : 01 — Ti,...,gn : Op — Ty, define a morphism (g1, ..., g,) :

0[5 /&) — 0[7/a] by the following induction on 6:

(91,5 9n) = G
unit(q) id it
(01 x 02)(g) = 61(g) x 02(9)
{6}(9) = map(0(g))
where ¢ is an abbreviation for g1, ..., g,. Now we have
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Theorem 6.1 (Naturality) Let f : 61 — 02 be a polymorphic expression in A&B without eq such that
the type variables of f, 61 and 0y are in the list aq, ..., a For any g1 : 01 = Ti,---,0n : On —> Tn, the
equation

fI7/a] o 61(g) = 02(9) o flo/dl]
is true, and is in fact provable from the equational theory in appendiz A, enriched with azioms that state
the naturality of emptyset, union, cond, and powerset.

As mentioned before, once we notice that the equational theory of M proves the naturality of each of
the language’s constructs, this theorem holds on general category-theoretical principles.

It appears that this generalizes several identities used in algebraic optimizations, especially regarding
commutations with projections. Indeed, recall the definition II; o, o, := map(fsty, 4,) and note that the
action of type expression functors on morphisms similarly combines map and tuple manipulation.

A simple application of the theorem yields that for any g1 : 01 — 71 and any g5 : 09 — 70 we have

HlTl,Tz o map(gl X 92) = map(gl) o H101,0'2-

In a more interesting application, let 8 and f : & — {a} have (for simplicity) just the type variable c.
We can take fst, ; : 0 X 7 — o in the role of g and the theorem gives

IIi 5 0 flo x 7/a] = flo/a] o O(fsty 7).

It turns out that if the meanings of the g’s are injective functions the we can deal with non-monotonic
primitives such as equality and the theorem holds (semantically) for all of A&B.

By taking the semantic statement and the g’s to be bijections, we get that all the queries definable
in A&B are generic or consistent [13]. Genericity with respect to additional primitive operations can
also be shown by working with bijections that are homomorphisms for these operations. These results
extend to structural recursion.

7 Recent Developments and Related Work

This paper is about the semantics of languages that derive from structural recursion over collection
types. Considerable effort is needed to realize this semantics in the syntax of a practical programming
language. Since the inception of this work in [7, 9], there have been two practical developments.
The first is the implementation of practical languages: Shaharazade by Naqvi and his colleagues at
Bellcore [50, 60]. Shahrazade has been used to model telecommunications operations support systems.
One such prototype system allows planners and designers to manipulate models of Digital Loop Carrier
systems with multiple choices of subcomponents, i.e., a parts explosion with functionally equivalent
subparts. In another experimental prototype system Shahrazade and VEIL have been used to design a
design manager for telecommunications equipment.

The second practical development is the the Collection Programming Language CPL, together with its
programming environment Kleisli, implemented by Wong and Hart at the University of Pennsylvania.
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This implementation uses optimizing transformations that derive directly from those presented in this
paper. In addition there has been a substantial body of research on the expressive power of various forms
of structural recursion, the complexity of languages based on structural recursion, and the investigation
of structural recursion on other collection types (in this paper we have focussed on sets.)

7.1 The collection programming language CPL

The observation that the monad operations we have used in this paper can be used to interpret the
syntax of comprehensions used in functional programming languages was first made by Wadler [61], and
the connection with database query languages was shown by Trinder, Wadler and Watt [58, 59, 62].
Comprehension syntax, as it is realized in CPL, superficially resembles Zermelo-Fraenkel set notation,
but there are important differences. For example the composition of binary relations R and S is
expressed in CPL as

{(z,2) | \2,\u1) <= R, (\y2,\2) <= 5,91 = 42}

The right hand part, or body, of the comprehension contains two syntactic forms: generators such as
(\z,\y1) <= R and conditions such as y; = y2. The general form of a generator is p <— e where p is
a pattern and e is an expression denoting some collection. Patterns serve to introduce variables. By
matching a pattern to successive components of a collection, variables are bound to values. The explicit
marking \z of a variable when it is introduced is important if one is to have a general form of pattern
matching. For example the expression above is equivalent to {(z,z) | (\z,\y) < R, (y,\z) <~ S}.
Wadler observed that a comprehension of the form

{e|\z <—¢€,coy...cn}

in which cy,...,c, are the remaining components — generators or conditions — of the body of the
comprehension, may be expressed as

dree.{e|cyy...cn}

An extension of this idea to account for general patterns and conditions can be used to interpret
comprehension syntax.

The language CPL exploits this to obtain a query that is based on the semantics given in this paper
and that manipulates the collection types lists, bags and sets together with records and variants. A
description of CPL is given in [10], from which the following example of an Employee type is taken.

{[Name : [FirstName : string,LastName : string],
DNum : int,
Status : <Regular : [Salary : int Extension : string],
Consultant : [Day_Rate : int, Phone : string]>,
Projects : { string }1}
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In which [FirstName : string,LastName : string] is a record type and <Regular : ..., Consultant : ...>
is a variant or “tagged union” type. Variants are well known in programming languages, but are often
overlooked in data models, where their absence creates needless fragmentation of the database and
confusion over null values. Variants can be conveniently used in pattern matching:

{[Name = n, Phone =1] |
[Name = \n,
Status = <Consultant =
[Phone = \t,...1>,...1 <~ Emp}

{[Name = n, NoProj = count(SetToBag(p))] |
[Name = \n,
Status = <Regular = \r>,
Projects = \p,...] <— Emp}

The first query finds the names and telephone numbers of all consultants, because the pattern in this
comprehension only matches consultants. The second query returns, for each regular employee, the
name and number of projects to which that employee is assigned. CPL allows the expression of such
queries. It also allows function definitions and the use of the more general forms of structural recursion
we have described in this paper.

There is an obvious similarity between comprehension syntax and well-known languages such as SQL
with some form of select ...from ...where. The authors believe that the ideas in this paper may be a
better starting point than relational algebra for the practical implementation of such query languages
for a number of reasons.

1. The need, that we have already mentioned, to extend query languages to new collection types and
to allow their use on nested collections.

2. The ability to incorporate variants and to give a clean interpretation of pattern matching.
3. The ability to construct data structures that are as complicated as those being analyzed.

4. The ability to implement functions or incorporate external functions in a systematic fashion. Few
implement query languages allow function definition. We believe a functional account of database
query languages is important here.

At the university of Pennsylvania interfaces have been constructed between CPL/Kleislli and several
biological databases that are part of the Human Genome Project [64, 25, 24]. This language has provided
biological researchers with a simple language for querying and integrating a number of biological data
sources, something that could not be performed by existing query languages. These sources not only
include standard (relational) databases, but also include data in a number of data exchange formats.
One of the data sources is expressed in ASN.1 a format that can describe sets, lists, variants and records,
and arbitrary combinations of these types (points 1 and 2 above.) A frequent requirement is for data
to be restructured to a complex format that makes it suitable for input to, say, a user interface (point
3). Also, much data is contained in special-purpose software such as sequence-matching programs, that
implement external functions (point 4).
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7.2 Further results on structural recursion and collection types

Since the appearance of the papers on which this work was based [7, 9], a substantial body of related
research has appeared. Following the conservative extension result of [63], [52] shows that by adding a
bounded fixed-point construct to R(=, cond) gives us, at relational types, inflationary datalog. In [34, 35]
it is shown that nesting at intermediate types does not add expressiveness in presence of aggregate
functions and certain generic queries. Other results on expressive power are to be found in [34, 36, 35].
Our approach can be used for different collections: languages for or-sets were studied in [33, 23, 38]
and bag languages in [37]. As mentioned before, [54] shows that transitive closure, which is efficiently
expressible using structural recursion, has a necessarily exponential implementation in complex-object
algebra [1]. [30] show how to encode related database languages in the simply-typed lambda-calculus.
The possibility of treating arrays as collection types is suggested in [12]. Connections with parallel
complexity classes are studied in [53]. [56] shows that, in the presence of suitable external functions,
sr_adds,; is strictly more expressive that sr_combg;. [55] studies foundational issues concerning complex
objects with queries over external functions.
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APPENDICES

A Monads and equational axiomatization for the algebra of functions

Saying that for each z (coll(c),comb(-,-),sng(z),empty) is initial in the appropriate class of algebras is
the same as saying that (coll(c),comb(:,-),empty) is the free (commutative(-idempotent)) monoid on
(generated by) o via sng(-). The category-theoretic terminology for this is that the forgetful functor
from the category of (commutative(-idempotent)) monoids to the category of sets and functions has a
left adjoint, and sng(-) is the unit of the adjunction.

As with any adjunction, by composing the functor that gives the free (commutative(-idempotent))
monoid with the forgetful functor we get a monad on the category of sets and functions. This is how
the (finite) list, bag and set monads arise out of the adjunctions that are the basis for structural recur-
sion. There are several equivalent formulations for monads (see [42] where monads are called algebraic
theories) and one of these has ext(-) as its salient operation (together with singleton). (monads in
“extension” form). Another formulation [39] is based on map(cot), flatten, and sng. We give below the
commutative diagrams that describe this last formulation, and hence we give an equational axiomati-
zation for our algebra of functions. From this perspective, only the essential axioms are listed below.
The reflexivity axiom, as well as the symmetry, transitivity, and congruence inference rules have been
omitted,

First, the axioms that make the algebra of functions a category.

fio—=d g:0' =7 h:7T 71

b ThooN=(hogofioor
9 fro—>T
Cidof=fio—oT

3. fro—>T

fod=f:o—>7

Next, the axioms that make X a binary products and unit a terminal object (hence we have all finite
products).
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7.

fivooxT

(fsto f,sndo f)=f:v—>0oxT

fivo0o giv—oT

fsto(f,g)=f:v—or1

fivo0o giv—>T

sndo (f,g)=g:v—7

[0 — unit

f = ter: o — unit

fst snd

oXT

Then, the axioms that say that we have a functor whose action on objects is s — {s} and on morphisms,
f — map(f). Moreover, the axioms that say that sng and flatten are natural transformations, and that
the functor s — {s}, together with these natural transformations is a monad.

10.

11.

fivo0 g:o—>T

map(g o f) = map(g) o map(f) : {v} = {7}

map(id) =id : {o} — {0}

f:o—=T

map(f) osng =sngo f:0 — {1}

fio—T

wy ") ()

map(f) o flatten = flatten o map(map(f))

map(g o f) men(s)
{r}
sng sng
{o} m’ {r}
(o)} flatten (o}
:{{o}} = {r} ~map(map(f)) map(f)
U} g {7}
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{{o}}

sng map(sng)
flatten o sng =id : {o} — {0}
{0} flatten {0}
flatten o map(sng) =id: {o} — {0}
id id
{0}
map(flatten)
{{o}}} ———— {{o}}
flatten o map(flatten) = flatten o flatten : {{{o}}} — {0} flatten flatten
{o}} flatten {o}

Finally, the axioms that make the monad into a strong monad via the natural transformation pairwithy [46].

s with
unit X {o} pairwthz . {unit x o}
15. — -
map(snd) o pairwithy = snd : unit x {o} — {0} snd
map(snd)
{o}
pairwithy o (id X sng) =sng: o0 x 17— {0 x 7}
pairwithy o (id x flatten) = flatten o map(pairwiths) o pairwithy : o x {{7}} = {0 x 7}
map(pairwiths) flatten
{o x {r}} > {{ox7}} ~{ox1}
pairwithy pairwithy sng
R i Raypravrrerom sadb R U R rpee L A0
18.

map(z) o pairwithe = pairwithy o (id X pairwithy) o i: (v x o) x {7} = {v x (o x 1)}
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where 7 is (fst o fst, (snd o fst, snd)).

(v x o) x {1} pairwith; - {(v x o) x 7}
) map(4)
v (03X AT G painwithg) X T iy WX (@ xT))

fio—=d gt
map(f X g) o pairwithy = pairwithy o (f x map(g)) : o x {7} = {0/ x 7'}

19.

pairwiths

ox{r} {o x 1}

(f x map(g)) map(f x g)

o x{1"} ———— {0’ x7'}
pairwiths

B Axioms for the complex object calculus

We present here an equational axiomatization for the core complex object calculus which follows im-
mediately from Manes’ axioms for monads in extension form [42]. A similar axiomatization is used by
Moggi [46].

In order to allow reasoning that is sound in models with empty types (in our case, this would occur iff
some base type is empty) we tag equations with sequences of distinct variables [20, 31, 44]: e; =r e2
where all the free variables of e; and ey are included in I'.

The reflexivity axiom, as well as the symmetry, transitivity, and congruence inference rules have been
omitted, except for congruence with respect to the ® construct, which is analogous to the ¢ rule in the
lambda calculus [6]:

Sl =T SQ . {O’} Tl =T,z° T2 : {T}
$xoc S1.T) =r ®27€ 5. T : {T}

1.

The axioms for binary and 0-ary products:

e1:0 ey :T

2.
7r1(61,€2) =re .o
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e1:0 ey T

3.
7r2(61,€2) =re:T
4 e:0XT
" (mi(e), ma(e)) =re:o xT
5 e: unit

e=r () : unit

The axioms for monads in “extension” form:

S:{o}
®z°cS. {27} =r S : {0}

e:o T:{1}
®zo€{e}. T =r Tle/z] : {1}

R:{v} S:{o} T:{r}
8. dz¥e (Py’eS.R). T
=r ®y°€S. (Pz’€R.T) : {7}

We can now state a result that relates the translations in section 3 with this equational theory and the
one in appendix A. We need one more notation; define a “tupling” transformation that constructs from
each each sequence of distinct variables I an expression in the calculus:

tuple() = ()
tuple(T,z%) = (tuple(T),z%)

Theorem B.1 1. For any pair T > e, letting 22¥P60) © ¢ = C[AT > e€]], the equation e =p
€'[tuple(T) /2] is provable from the azioms and rules above.

2. For any function f : o — 7 in the algebra, letting ' := A[C[f]] : unit X ¢ — T, the equation
f = [ o (tery,id,) is provable from the azioms and rules in appendiz A.

3. e1 =r ey is provable from the azioms and rules above iff A[I' > e1] = A[l' > eg] is provable from
the axioms and rules in appendiz A.

4. f1 = fo:0 — T is provable from the axioms and rules in appendiz A iff e1 =0 eo is provable from
the azioms and rules above, where % > e; :=C[f;], 1 = 1,2.

The proofs of parts 1 and 2 are straightforward inductions on expressions. The “only if” sides of parts
3 and 4 are proved straightforwardly by induction on equational proof trees. Using parts 1 and 2, the
“if” sides of parts 3 and 4 then follow. The details are omitted.
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C Some additional axioms for extensions of M

We offer some equalities relating ® with emptyset, union and the conditionals whose main merit is
to be ...true. The first two axioms have been given by Wadler for his ringads [58], and they seem to
express fundamental properties. The third axiom would probably follow from the cleaner representation
of booleans as unit + unit (but we have deliberately ignored sums in this paper). The status of the last
three axioms is unclear. It is quite possible that they are derivable from the rest. Finally, we do not
have a reasonable axiomatization of equality.

1. ®2zc S1US,. T = ®xcS1.T U ®zeSy.T.

2. dze{}.T = {}.

3. ®ze (if B then S; else S3).T = if B then (®z€ S;,.T) else (Pze S,.T).
4. &z S T1UTy, = ®zeS. Ty U Oz S.Th.

5. ¢z S. {} = {}.
6. ®z€ S. (if B then T else Ty) = if B then (®z€ S.T1) else (Pz€ S.Tz) where z is not free in B.
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