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Abstract 

      The study of microarray experiments allows description of genome-wide expression 

changes in health and disease. Many different gene expression profile analysis methods 

have been applied to identify the significant genes in the microarray experiments. This 

report attempts to evaluate the reliability of p-values provided by two popular 

permutation involved analytical technics. Two main methods were designed to check 

the reliability of each profile technic individually. 

 

 

 

1. Introduction 

      The study of microarray experiments allows description of genome-wide expression 

changes in health and disease. Different mechanisms are used to monitor expression 

levels for thousands of genes simultaneously. The selection of differentially expressed 

genes is a very important stage of microarray data analysis and involves the use of 

methods that can be used when the number of features is much larger than the number 

of samples. Two analytical techniques are chosen to conduct the experiments of 

evaluating the reliability of the provided p-value.  

      One technique is Significance Analysis of Microarrays (SAM) (Tusher et al. 2001). 

It identifies genes with statistically significant changes in expression by gene-specific t 

tests. Each gene is assigned a score on the basis of its change in gene expression relative 

to the standard deviation of repeated measurements for that gene. Genes with scores 

greater than a threshold are deemed potentially significant. Permutations of the 

measurements are used to estimate the false discovery rate (FDR), which is defined as 

the expected percentage of false positives among all the claimed positives. 
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      Another technique, Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 

2005), is a computational method that determines whether a prior defined gene set 

shows statistically significant, concordant differences between two biological states. Its 

focus is gene sets, which are groups of genes that share common biological function, 

chromosomal location, or regulation. The goal of GSEA is to determine whether 

members of a gene set tend to occur toward the top (or bottom) of the list, in which case 

the gene set is correlated with the phenotypic class distinction. Phenotype label 

permutation is used by GSEA to compute statistical significance. Leading edge analysis 

of GSEA gives the subset of genes that contributes to score the maximum enrichment 

score for the high-scoring gene sets.  

      This study mainly focuses on the false positive outcomes of individual gene 

expression analytical technique and does not consider the issue of proper overlapping 

genes returned by different technics. 

 

 

2. Experimental design 

      Two control experimental methods were designed. In general, the first method was 

designed to control all the returned significant genes to be false positive, while the 

second method assessed the agreement between two resulting lists.  

      The reference data was from a study of lung cancer in Boston (Bhattacharjee et al., 

2001). The original dataset contained a total of 203 specimens, including histologically 

defined lung adenocarcinomas (n = 127), other related adenocarcinomas (n = 12), 

squamous cell lung carcinomas (n = 21), pulmonary carcinoids (n = 20), SCLC (n = 6) 

cases, and normal lung (n = 17) specimens. In order to obtain clear and reliable 
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outcomes, only squamous cell lung carcinomas (SCC) and normal lung (NL) specimens 

were selected to design the datasets for two control experimental methods.  

       

      Method 1. 

      Studies showed that the disease types were usually classified into some subtypes. 

For example, primary lung adenocarcinoma was observed with four subclasses 

(Bhattacharjee et al., 2001), and SCC consisted of high and low risk clusters. Compared 

with these disease types, control type samples were much less diverse and hence, more 

suitable to ensure that the claimed significant genes were false positives. 

      Therefore, 17 NL specimens were assumed to have no significant gene expression 

difference. They were randomly separated into two classes and artificially assigned with 

different phenotypes Normal_1 (n=8) and Normal_2 (n=9). Based on the pervious 

assumption, the expected significant genes return by two technics would be controlled 

within the number of given false positives. 

       

      Method 2. 

      SCC was discovered to have some gene markers, such as CCND1, encoding cyclin 

D1 and TP73L, encoding p63 (“Lung: Non-small cell carcinoma,” n.d.). This suggested 

that it would be easy to detect the significant genes between SCC and NL. Although 

SCC samples could contain subtypes, the differences between subtypes can be ignored 

when compared to the control samples.  

      Based on this, 21 SCC samples were first assumed to have the same gene expression 

levels. 10 out of 21 SCC and 8 out of 17 NL samples were randomly selected and 

combined together to generate the first dataset Data_2(1). Another 10 SCC and 8 NL 

were then chosen randomly from the rest samples in the similar manner to generate the 
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second dataset Data_2(2). The samples construction of these two datasets was in the 

same pattern but the samples were not overlapping across the two datasets. This helped 

to control all the factors to be the same except the expression data of individual samples. 

After running the profile method using these two datasets independently, two lists of 

significant genes would be generated. The difference between the two lists was 

expected to within set FDR. Jaccard index was computed to check the agreement degree 

of these two gene lists.  

 

 

 

3. Results and Discussions 

       

      3.1. SAM results 

      For each gene i, the relative difference d(i) is a value that incorporates the change in 

expression between conditions. And the expected relative difference dE(i) is derived 

from controls generated by permutations of data.  When the difference between d(i) and 

dE(i) is greater than a fixed threshold delta, gene i is considered to be significant. In plot 

d(i) vs dE(i), the more a gene deviates from the d(i) = dE(i) line, the more likely it is to 

be significant. The mean number of genes exceeding cutoffs defined by delta in the 

permuted data gives an estimate for FDR. Larger delta will usually give fewer 

significant genes and  lower FDR. 

      SAM analysis was carried out using unpaired (2 class) option, with number of 

permutations 1500. 12600 native features of input dataset were collapsed into 9078 

genes with gene symbols before run using R studio.  

Method 1 
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      The corresponding false positive table was shown in table 1. For a medium delta = 

0.4 (plot d(i) vs dE(i) shown in Figure 1), 64 significant genes were called with claimed 

22 false positives. However, according to the previous assumption, called genes should 

be all the false positives. Table 2 presented the significant genes list with setting FDR 5% 

and 9 genes were returned, while the real FDR should be 100% under the assumption 

Hence, the provided false positive and FDR both underestimated the true values.  

 

Method 2. 

      As shown in Table 3, the numbers of called genes of two sets of data with same 

delta value were not equal, even though the score plots (delta = 0.3, Figure 2) appeared 

to have similar patterns for two datasets. 

      There were large numbers of significant genes returned for both datasets. In order to 

focus on the most different expression genes, FDR<1% was used to call the significant 

genes. The numbers of significant genes returned for Data_2(1) and Data_2(2) were 

1445 and 1121 respectively (data not shown). 848 common genes were identified using 

python programming. Hence, the Jaccard index was computed as 848/1718 = 49.36%. 

The similarity between two were relatively high. However, with FDR < 1%, the largest 

number of total different genes between two lists should be 14.15+11.21 = 25.66, under 

the assumption that the same true positives were returned in two lists. The influence of 

false negatives should have small effect on above assumption, since the data patterns 

were similar and the same mechanism (SAM) was used to select genes. Whereas, the 

actual number of different genes were (1445-848) + (1121-848) = 870, which was much 

greater than the value derived from the provided FDR. 

 

      3.2. GSEA results 
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      Enrichment score (ES) reflects the degree to which a gene set is overrepresented at 

the extremes of the entire ranked gene list. Normalized enrichment score (NES) adjusts 

ES for multiple hypotheses testing through normalizing the ES for each gene set to 

account for the size of the set. The higher NES with smaller FDR gives more significant 

gene sets.        

      GSEA analysis was conduced using curated gene sets C2 collection with number of 

permutations 1000. C2 collection contains 4722 gene sets and collected from various 

curated sources such as online pathway databases. The results showed that in total of 

3403 gene sets were used in the analysis.  

 

Method 1 

      The numbers of significant gene sets were shown in table 4. For phenotype 

Normal_1, 946 gene sets were considered to be significantly up-regulated with 

FDR<25%, which also underestimated the expected 100% FDR. With p-value < 5%, 

there would be at most 170 false positives, and it was relatively close to the result 182. 

While for phenotype Normal_2, the returned genes were well controlled under the given 

false positive rate.  

 

Method 2 

      Set the common threshold FDR < 5%, 223 and 648 gene sets were considered to be 

significant for Data_2(1) and Data_2(2) respectively (data not shown), with 207 

common gene sets. Hence, Jaccard index for gene sets was 31.2%.  

      In order to detect the significant genes, 6 common gene sets with high NES absolute 

values (greater than 2) for both datasets were selected to conduct leading edge analysis. 

For the two datasets, there were respectively 250 and 274 gene members from these 6 
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gene sets that appeared on the ranked gene list. Among these leading edge subset genes, 

240 of them were shared, which gave Jaccard index 84.5% and were higher than that 

given by SAM.   

 

 

4. Conclusions 

      In conclusion, both SAM and GSEA tend to underestimate the real false positive 

rate. Generally, GSEA gives relatively more reliable false positive values. It is based on 

the gene sets from the same gene ontology, which is different from pure statistical 

analysis. The genes returned by GSEA would be more biologically significant. In 

addition, permuting the phenotype labels of GSEA instead of the genes maintains the 

complex correlation structure of the gene expression data and hence produces fewer 

false positives and provides a more stringent assessment of significance.  

      More studies should be done for further evaluation of false positive rate given by 

different gene expression methods. For example, MAPPFinder program involving 

permutation of gene labels, and GSA uses both gene and sample permutations and 

rotation tests to estimate p-values. In addition, different datasets with larger sample size 

need to be accessed to come to a generalizing conclusion. 
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3.Results 
 
    3.1. SAM 
 
Method 1 
 
 

Table 1. SAM false positive results for designed datasets 

delta #false pos #called FDR 

0.2 2967.076686 4600 0.6450167 

0.3 195.687528 378 0.5176919 

0.4 22.688409 64 0.3545064 

0.5 10.209784 42 0.2430901 

0.6 3.403261 22 0.1546937 

0.7 0 6 0 

0.8 0 6 0 

 

 

Table 2. SAM Significant gene list for designed datasets. 
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Figure 1. SAM plots for two designed datasets. 

 
 
 
 
 
 
 
Method 2 
 

Table 3.  SAM false positive results for designed datasets 

Data_2(1) 

delta # false pos # called FDR 

0.5 862.1871 4083 0.211165 

1.0 77.56479 2194 0.035353 

2.0 1.2820626 884 0.00145 

3.0 0 376 0 

4.0 0 191 0 

 

Data_2(2) 

delta # false pos # called FDR 

0.5 801.8171 3345 0.23971 

1.0 84.513001 1865 0.045315 

2.0 0.704275 658 0.00107 

3.0 0 239 0 

4.0 0 92 0 

 

 
Figure 2. SAM plots for two designed datasets. 
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(a) Data 2(1) 

 

(b) Data_2(2) 

 

 
 
2. GSEA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4. GSEA results for designed datasets in Method 1. 

Phenotype Normal_1 Normal_2 

# Up-regulated gene sets 2898 505 

# Significant gene sets (FDR < 25%) 946 0 

# Significant gene sets (nominal p < 5%) 182 2 
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