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Protein complexes are a cornerstone of many biological processes and, together, they form

various types of molecular machinery that perform a vast array of biological functions. Di®erent

complexes perform di®erent functions and, the same complex can perform very di®erent func-
tions that depend on a variety of factors. Thus disruption of protein complexes can be lethal to

an organism. It is interesting to identify a minimal set of proteins whose removal would lead to a

massive disruption of protein complexes and, to understand the biological properties of these

proteins. A method is presented for identifying a minimum number of proteins from a given set
of complexes so that a maximum number of these complexes are disrupted when these proteins

are removed. The method is based on spectral bipartitioning. This method is applied to yeast

protein complexes. The identi¯ed proteins participate in a large number of biological processes

and functional modules. A large proportion of them are essential proteins. Moreover, removing
these identi¯ed proteins causes a large number of the yeast protein complexes to break into two

fragments of nearly equal size, which minimizes the chance of either fragment being functional.

The method is also superior in these aspects to alternative methods based on proteins with high
connection degree, proteins whose neighbors have high average degree, and proteins that con-

nect to lots of proteins of high connection degree. Our spectral bipartitioning method is able to

e±ciently identify a biologically meaningful minimal set of proteins whose removal causes a

massive disruption of protein complexes in an organism.
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1. Introduction

An essential protein is a protein whose removal from an organism is lethal to the

organism. The identi¯cation of essential proteins typically requires experimental

approaches that are time consuming and laborious. However, with advances in high-

throughput technologies, a large number of protein�protein interactions are avail-

able. This presents new opportunities for detecting a protein's essentiality from the

protein interaction network.1 Nevertheless, the identi¯cation of essential proteins

remains a challenging task. In this work, we consider a related problem of identifying

a minimal set of proteins whose collective removal is lethal to the organism.

Our starting point is protein complexes. Recent studies have highlighted the

importance of inter-connectivity in a large range of complexes and human disease-

related systems. Network medicine has emerged as a new paradigm to deal with

complex diseases. Connections between protein complexes and key diseases have

been suggested for decades.2 For example, Vanunu et al.3 recently show the rela-

tionship between disease-causing genes and protein complex associations with the

diseases of interest.

A protein complex is a group of two or more associated polypeptide chains.

Protein complex formation sometimes serves to activate or inhibit one or more of the

complex members. Individual proteins can participate in the formation of a variety of

di®erent protein complexes. Di®erent complexes perform di®erent functions and, the

same complex can perform very di®erent functions depending on a variety of factors.

In short, protein complexes are central to many biological processes and, together,

they form various types of molecular machinery that perform a vast array of bio-

logical functions. Clearly, a massive disruption to protein complexes in an organism

would e®ectively disrupt the survival of the organism.

Hence, it interesting to identify a minimal set of proteins whose removal disrupts

many complexes in an organism. We expect such a set of proteins to contain many

essential proteins and to be involved in many biological processes and functional

modules. In this work, we approach this problem by ¯rst constructing a network of

an organism, where each node represents a protein in a complex and, two proteins are

connected whenever they are in the same complex. We then present an algorithm

based on spectral bipartitioning to ¯nd a minimum set of proteins whose removal

disrupts the maximum number of complexes in the network. We consider the es-

sentiality and other biological properties of the identi¯ed proteins. We also compare

our proposed method to simple methods based on proteins with high connection

degree, proteins whose neighbors have high average degree, and proteins that con-

nect to lots of proteins of high connection degree. We show that the results of our

algorithm have meaningful biological properties.

2. Problem Statement

The formation of a protein complex often serves to activate or inhibit one or more of

the associated proteins. There are some proteins that participate in many protein

G. Taheri et al.

1341008-2



complexes; by removing them, their associated complexes and cell functions are likely

to be disrupted. In this work, we are interested in identifying a minimum number of

proteins whose removal potentially disrupts a maximum number of complexes in an

organism.

Given a set of reference protein complexes C ¼ fC1;C2; . . . ;Cng. These protein

complexes are collectively viewed as a weighted graph G ¼ hV ;E; !i, where

V ¼ [Ci2C Ci, E ¼ fuv j 9Ci 2 C : fu; vg � Cig and, the edge weight function ! :

E ! Z is de¯ned as !ðuvÞ ¼ jfCi 2 C j fu; vg � Cigj for each edge uv 2 E. We as-

sume that G is a connected graph. If it is not, we treat each connected component of

the graph separately.

We de¯ne a subset S of V as a cut set of G. Let EðS; �SÞ denote the subset of edges
with one vertex in S and another vertex in �S , where �S ¼ V � S. The weight of a cut

set S is de¯ned as the sum of the weight of the edges in EðS; �SÞ. The weighted max-

cut problem in a weighted graph G ¼ hV ;E; !i is to ¯nd a cut set S with maximum

weight. It is well known that the weighted max-cut decision problem is a NP-com-

plete problem.4�10

Let the integer k be a given threshold and !ðuvÞ > k. We refer to u and v as the

source and sink of uv. The main goal of our work is to ¯nd a subset T of vertices of

G ¼ hV ;E; !i whose removal splitsG into two partitions, such that sources and sinks

are in di®erent partitions. We aim to remove the minimum number of vertices

subject to the following two conditions. Firstly, we are interested in disrupting as

many cell functions of the organism as possible. So we need to simultaneously

maximize the number of protein complexes having at least one protein in the cut set.

Secondly, if the di®erence between the sizes of the two partitions is high, the prob-

ability of a whole undisrupted protein complex existing in one partition is increased.

Therefore, we also aim to partition the graph into two balanced partitions.

The problem to be addressed in this work is thus to pick a subset of nodes T from a

weighted connected graph G ¼ hV ;E; !i such that (i) T is as small as possible;

(ii) the removal of T partitions G into two disjoint subgraphs G1 and G2; (iii) the

weight of the cut is maximized; (iv) the ratio jG1j=jG2j is as close to 1 as possible,

where the size of a graph is measured by the number of vertices it has.

3. Method

3.1. Algorithm

Our proposed problem is a version of the balanced graph partitioning problem,

which is known to be NP-complete.5 Therefore, we approximate the balanced

bipartitioning with spectral bipartitioning. This spectral method recursively bisects

a graph by considering the eigenvectors of the Laplacian matrix of the graph.

Spectral partitioning is a very successful heuristic approach for graph partitioning.11

We have also earlier applied it to solve the problem of ¯nding a minimal set of

proteins whose removal potentially disrupts the maximum number of pathways in

an organism.12
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We proceed as follows. Given a weighted graph G ¼ hV ;E; !i, where V ¼
fv1; v2; . . . ; vng is the set of vertices in G; eij 2 E is the edge between vertices vi and

vj in V ; and !ij is the weight of edge eij. Let A ¼ ½aij� be the adjacency matrix of G

where

aij ¼
!ij if ðvi; vjÞ 2 E

0 otherwise

�
: ð1Þ

We de¯ne the diagonal matrix of G as DI ¼ diagðdiÞ, where di ¼
P

eij2E !ij. Now,

the Laplacian matrix of the graph G is de¯ned13 by LðGÞ ¼ DI �A.

The Laplacian matrix of a connected graph has the following desirable property.

Let u1;u2; . . . ;un be the normalized eigenvectors of the Laplacian matrix LðGÞ of the
graph G. Suppose u1;u2; . . . ;un are sorted according to the value of their respective

second coordinate. Let û be the median of u1;u2; . . . ;un; that is, û is the middle point

in this sort order. Let S be the set of vertices of G corresponding to those ui coming

before û. Let �S be the set of vertices of G coming after û. Then, according to

Spielman,11 this partition is a good approximation of the best max cut.

The procedure above splits the vertices of the graphG into two partitions S and �S

of roughly equal size. This induces a set EðS; �SÞ of cut edges that cross the two

partitions. Next, using EðS; �SÞ, we ¯nd the set T of cut vertices such that (i) T is as

small as possible, (ii) the removal of T partitions G into two disjoint subgraphs G1

andG2, (iii) the weight of the cut is maximized, and (iv) the ratio jG1j=jG2j is as close
to 1 as possible. To do this, we form a bipartite graph H with V ðHÞ ¼ V ðGÞ and

EðHÞ ¼ EðS; �SÞ.
Now, we sort the vertices in S and �S according to weighted degree (di) of these

vertices in the graphG. Then we select the vertex with the highest degree in S, say si,

and remove si and all edges connected to it. We choose another vertex with the

highest degree in S , say si , and remove it and all edges connected to it. This pro-

cedure is iterated until all edges in EðS; �SÞ are removed.

By this algorithm we try to ¯nd a minimum vertex cut set T with maximum

weight of edges between G1 and G2 where G� T splits into two balanced partitions

G1 andG2. It holds because this Laplacian procedure is an approximation to separate

vertices, with highest edge weight, into two partitions.11 In this way, we try to

disrupt maximum number of complexes with removing minimum number of genes.

3.2. Data

Many protein complexes and protein�protein interactions have been collected, es-

pecially for the model organism Saccharomyces cerevisiae (bakers yeast). So we test

our ideas on yeast data.

Our yeast protein complex data set was obtained from the Munich Information

Center for Protein Sequences (MIPS)14 in September 2009. This data set contains

1,142 complexes. There are 2,752 proteins in these complexes. The number of com-

plexes of size 1 is 79 (these are complexes containing multiple instances of the same
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protein); the number of complexes of size 2 is 229; the number of complexes of size 3 is

177; the number of complexes of size 4 is 139; and the remaining 518 complexes are

size greater than 4. In this work, we only consider complexes of size greater than 2.

We also use the collection of protein�protein interaction obtained from Bio-

GRID.15 This data collection includes interactions obtained by several techniques.

We only consider interactions derived from mass spectrometry and two-hybrid

experiments as these represent physical interactions and co-complexed proteins.

4. Results

4.1. Performance evaluation measures

To validate our algorithm, we de¯ne two measures. The ¯rst measure is the number

of complexes which have an intersection with the cut vertices. We say that a com-

plex, x, is disrupted if it has a vertex in the cut set. Another measure is cx, de¯ned as

follows:

cx ¼ maxfjx \G1j; jx \G2jg
jxj : ð2Þ

Here, G1 and G2 are the two partitions resulting from our proposed algorithm, and

jxj is the size of a complex x. cx is a number between 0 and 1. If the di®erence between

the sizes of the complex partitions is high, the probability of the existence of an

undistrupted or functioning complex in one partition is increased. Therefore, we try

to partition each complex into two halves of roughly equal size, such that each half

resides in one of the two partitions G1 and G2. For each complex x, the best situation

occurs when

0 < cx � djxj2 e
jxj :

We should notice that, for complexes of small size, if we were to remove just one

vertex and put this node in the other partition or in the cut set, the complex would be

disrupted. So we consider complexes of small size separately. For a complex x; cx �
0:5 is the ideal value. Now, for a complex of size 3, if we separate just one vertex from

two other vertices, we already achieve cx ¼ 0:6, which is the ideal value. For com-

plexes of size 4, 0.25, 0.5, 0.75, and 1 are possible values for cx. For a complex of size

4, the next value after the ideal value is 0.75, and this number occurs when just one

vertices is separated from the other 3 vertices. In this case, we consider the complex

to be disrupted. For a complex of size greater than 4, we de¯ne a con¯dence interval:

I� ¼ 0;
djxj2 e
jxj þ �

" #
: ð3Þ

We say that a complex x, is disrupted if cx 2 I�. By increasing �, our con¯dence of

disrupting the function of x is decreased. So we call this complex is �-departed.
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4.2. Evaluation with respect to disruption of complexes

Let T de¯ne the cut set which is obtained from the algorithm for complexes in MIPS.

As described earlier, spectral bipartitioning splits the graph G into two partitions S

and �S of roughly equal size, inducing a set of cut edges EðS; �SÞ. We need to pick a

minimum number of vertices T to remove so that all the cut edges in EðS; �SÞ are

destroyed. This is equivalent to the set cover problem, which is NP complete.16 Our

algorithm does this by removing a minimum number of vertices in descending order of

their degree, alternating between S and �S . This greedy heuristic is used in our algo-

rithm because such a greedy heuristic has been shown17 to be essentially the best

possible polynomial time approximation algorithm for the set cover problem. The sum

of weight of the edges of the corresponding graph G is 33,636. The size of the vertex

cut is 50 with jEðS;SÞj ¼ 2;689 and
P

e2EðS;S Þ wðeÞ ¼ 9;496. By removing the cut set

from the graph, we obtain two parts G1 and G2, each containing 1,278 vertices.

We ¯rst evaluate our cut set with respect to its ability to disrupt the complexes.

Note that we do not consider complexes of size 1 and 2. The number of complexes in

MIPS of size at least 3 is 834. The number of such complexes having at least one

vertex in the cut set is 343. We have 177 complexes of size 3 and, only 25 of these

complexes have some intersection with the cut set. We ¯nd that 8 of these complexes

have no intersection with other complexes and 73 of them have only one intersection

with other complexes. It is not surprising that these 81 complexes have no inter-

section with the cut set. If we want disrupt these 81 complexes we must select at least

one of their vertices and, this increases the size of the cut set. In this work, we disrupt

only 25 complexes of size 3. Therefore, the number of complexes of size 3 which have

no intersection with the cut set is 152. We also ¯nd that 318 complexes of size at least

4 have some intersection with the cut set.

There are many complexes of size 3 which are not disrupted yet. So we construct a

new graph on complexes of size 3 which are not visited by any element of T . We run

our algorithm on this new graph, H. This gives us a new cut, T �, of size 30. H � T �

has two parts A1 and B1, and each of them has 185 vertices.

Now we de¯ne a new cut set, ~T , as the union of T and T �. We ¯nd that by

removing ~T from the graphG, the graph is separated into two nearly equal partitions

A2 and B2 with 1,381 and 1,384 proteins respectively. The number of complexes

disrupted by ~T is 461. Only 65 of them is of size 3, 49 of size 4, 24 of them of size 5, 24

of them size 6 and 299 of them of size greater than 6.

The cut set ~T has size 80. How good is this cut set in terms of maximizing the

number of disrupted complexes? Let us ¯rst compare it to the obvious alternative of

choosing 80 vertices with the highest connection degree in the graph. We denote the

list of the 80 vertices with the highest connection degrees by T . The degree distri-

bution of these vertices are shown in Fig. 1. The maximum degree in this list is 584

and the minimum degree is 175. The number of complexes visited by T is 311, which

is much fewer than the number (461) of complexes visited by ~T . We also ¯nd that

only 21 proteins from T are in ~T . Figure 2 shows the distribution degree of vertices
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in ~T . These ¯gures show that choosing vertices with the highest connection degrees

is not a good approach for disturbing the maximum number of complexes. Our

algorithm makes a better selection.

We also consider three other scenarios to further evaluate our algorithm. In the

¯rst scenario, we try to select proteins with high connection degree (hub) in G as a

Fig. 1. Degree distribution of ¯rst 80 vertices with maximum degree.

Fig. 2. Degree distribution of vertices in ~T .
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cut set (T ). So we select hubs as a cut vertex. In this way, we sort hubs decreasingly,

then we start to delete these vertices until our network separate into two parts. In

this way, we ¯nd T with 13 proteins and two partitions with 11 and 2,582 proteins.

We ¯nd that T is smaller than our cut set T , but the new partitions have a high

di®erence in size. In this work, we try to separate our network into two balanced

partitions to disrupt the maximum number of complexes. So we continue removing

hub proteins until we have a cut set with size 50. In this case, the number of com-

ponents of the resulting graph is 12. One of size 2,549, six of size 6, two of size 4, and

the sizes of the remaining components are 2, 5, 11, respectively. Therefore, removing

hub proteins is not a good approach.

In the second scenario, we select proteins whose neighbors have high average

connection degree as a cut set CUT2. In this way, we ¯nd a cut set of size 49 and, two

partitions with 2 and 2,555 proteins respectively. CUT2 has approximately the same

size as T , but the partitions have a high di®erence in size.

In the third scenario, we select proteins that connect to lots of proteins of high

connection degrees as a cut set CUT3. In this way, we ¯nd a cut set having 409

proteins and two partitions with 1 and 2,196 proteins. This cut set is much bigger

than T and, the partitions have a great di®erence in size.

It is obvious that our cut set T is better than other cut sets.

We also compute a p-value test for the number of essential proteins of our cut set

T . Let m be the cardinality of the union of the set of proteins in all complexes in our

graph and the set of essential proteins (3,728), let a be the cardinality of our cut set

(80), let b be the cardinality of the set of essential proteins (1,168) and h0 be the

cardinality of set of proteins in T that are essential (46). Now the exact probablity of

getting an intersection of size greater than h0 between cut set and the set of essential

proteins due to chance;

X
h�h0

m

h

� �
m� h

a� h

� �
m� a

b� h

� �
m
a

� �
m

b

� � :

This p-value for essential genes in our cut set is 9:06 � 10�7, which shows that our

cut set cannot be explained by chance alone.

4.3. Evaluation with respect to biological properties

To obtain the biological properties of the cut set proteins, ¯rst we consider essen-

tiality. Essential genes are indispensable for the survival of an organism. Therefore,

the essential genes are potentially corelated with massive disruption of protein

complexes. Table 1 shows that 30 out of 50 proteins of the set T are essential. The

essentiality information of each gene was retrieved from these two sites:

. www-sequence.stanford.edu/group/yeast deletion project/Essential ORFs.txt

. http://bioinfo.mbb.yale.edu/genome/yeast
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Table 2 shows that 16 out of the 30 proteins of the set T � are essential gens. Thus,
46 out of the 80 proteins in the cut set ~T are essential. Thus the algorithm selected

biologically meaningful proteins.

Next, we consider biological processes and molecular functions of these 50 and 80

cut set proteins and the associated complexes. We see that the 50 proteins partici-

pate in 117 di®erent biological process and 75 di®erent functional modules. The

numbers for the cut set with size 80 are 195 and 121 respectively.

In contrast, the corresponding numbers for the 50 vertices with the highest

connection degree are 69 biological processes and 53 di®erent functional modules.

Similarly, for the 80 vertices with the highest connection degree, these numbers are

90 and 55 respectively. This is another advantage of our cut set.

Now we pick 50 random proteins. Let x be the number of di®erent biological

processes that they participate it. We repeat this 10,000 times and calculate the

number of x's that are greater than or equal to 117. The p-value is 0.07. We do this

for functional modules and this p-value for functional modules is 0.062.

We also do this for cut set of size 80 and the p-value for biological process and

functional modules are 0.061 and 0.058 respectively.

Table 1. Cut genes and their essentiality in network.

Gene Name E. Gene Name E. Gene Name E. Gene Name E. Gene Name E.

YGL120c E YKR081c E YKR026c N YGL049c E YGR159c N

YGR090w E YBR154c E YCR002c N YGL195w N YLR357w N

YKL104c E YPL204w E YOR116c E YLR438w N YDR188w E
YOL094c E YNR035c E YNL330c N YNL250w N YKL014c E

YJL138c N YGR240c N YGR155w N YGL011c E YPR175w E

YHR027c N YOL038w E YGR135w N YMR229c E YNL139c N

YPL043w E YIL033c N YER025w E YDL014w E YPR110c E
YOL041c N YMR146c E YLR216c E YNL189w E YDR429c E

YPL004c N YOR341w E YOR151c E YHR099w N YPL237w E

YJL074c E YHL030w N YBL004w E YOL139c E YKL085w N

In this table, the essentiality is denoted by E and non-essentiality is denoted by N.

Table 2. Cut genes and their essentiality in constructed graph on complexes of size 3 (H).

Gene Name E. Gene Name E. Gene Name E. Gene Name E. Gene Name E.

YBR009c N YDR473c E YJR093c E YMR049c E YOR310c E

YBR084w N YEL060c N YKL139w N YMR246w N YOR370c E

YBR247c E YER133w E YLL039c E YNL085w N YPL129w N
YDL192w N YGR103w E YLR347c E YNL103w E YPL235w E

YDR224c E YGR186w E YML057w N YOL004w N YPR010c E

YDR343c N YHR052w N YMR012w N YOL086c N YPR178w E

In this table, the essentiality is denoted by E and non-essentiality is denoted by N.
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4.4. Evaluation with respect to protein interactions

Now we validate our algorithm using the BioGrid dataset. The average degree of

vertices in BioGrid is 10.93, but the average of degree of vertices in ~T is 45.76 and the

average of degree of vertices in T is 44.42. BioGrid has 5,040 vertices and 27,557

edges. If the degree distribution of vertices in BioGrid is a normal distribution, we

can expect that two random sets of 50 and 80 vertices in BioGrid to visit nearly 275

and 440 edges respectively. But the number of edges visited by the vertices in our cut

set of size 80 is 3,499 and in our cut set of size 50 is 2,091 respectively. This is much

higher than the two simple averages above. To test whether this is signi¯cant, we

select 10,000 random subsets of size 80 (and 50) from the BioGrid protein interaction

network and check the number of edges visited. None of these randomly chosen

subsets visit 3,499 (and 2,091) edges or more. Also, the average number of edges in

visited by the subsets of size 80 and 50 are 861 and 540 respectively, which are also

signi¯cantly lower than the number of edges visited by our two cut sets.

4.5. Evaluation with respect to tolerence I²

In Table 3, the number of the departed complexes with di®erent � is shown. It is

obvious that by increasing � the number of departed complexes increased. With a cut

set of size 80 the number of complexes of size 3 and 4 which departed are 65 and 124,

respectively. With size at least 5 for � ¼ 0:05, the percentage of complexes disrupted

is 36%. In fact, for � ¼ 0:05, only 347 complexes from 518 complexes are undisrputed.

But we know by increasing �, the number of undisrupted complexes decreases. For

� ¼ 0:25, we have only 97 from 518 complexes of size at least 5 not departed.

5. Discussion

The identi¯cation of a minimal set of proteins whose removal would likely cause a

wide-spread disruption of protein complexes in an organism, leading to lethality of

the organism, is studied here. This is a NP-complete problem, which we approximate

using an approach based on spectral bipartitioning. We have applied the proposed

approach on yeast protein complexes. This has resulted in a set ~T of 80 proteins.

These 80 proteins are found in 461 out of the 834 protein complexes considered. Thus

55% (¼ 461=834) of the protein complexes are potentially disrupted when these 80

proteins are removed or silenced. This compares extremely well with several alter-

native approaches for choosing proteins to remove, such as removing proteins with

high connection degree, proteins whose neighbors have high average connection

Table 3. Percentage of complexes with size of at least 5 which

departed with respect to the given �.

� 0.05 0.1 0.15 0.2 0.25

Presence of complexes in I� 36% 46% 63% 73% 81%
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degree, and proteins having many neighbors of high connection degree. Removing 80

proteins using these alternative strategies hits no more than 37% (¼ 311=834) of the

protein complexes.

However, a deeper analysis is needed than this simple counting of how many

complexes are hit by the removal of some proteins. Protein complexes actually come

in families of isoforms.18 Each family contains protein complexes (the isoforms)

having a common set of core proteins (which are unique to the family) but with

di®erent attachment proteins (which may appear in multiple families). While the

removal of some attachment proteins may disrupt a subset of the isoforms, other

undisturbed isoforms having similar functions may still be formed. This may permit

the organism to continue surviving in some situations. In order to ensure the dis-

ruption of an entire family of protein complexes, it is necessary to break the com-

plexes up at the level of their core proteins. It is easy to see that this is more likely to

happen when a protein complex is broken into two parts of roughly equal size than

when only a small bit is broken o® a protein complex.

As shown in Table 3, 36% (and up to 81%) of large protein complexes are frag-

mented by the removal of the 80 proteins identi¯ed by our approach into two halves,

where each half is no larger than half (and up to three quarters) of the original

protein complex it comes from. Moreover, the network is partitioned by the removal

of these 80 proteins into two halves of nearly equal size (1,381 and 1,384 proteins). In

contrast, all three alternative approaches split the network into highly unbalanced

partitions, with fewer than a dozen proteins in one partition and more than two

thousand ¯ve hundred proteins in the other partition. Clearly, they are breaking a

protein complex by splitting o® only a small number of high-connectivity proteins.

High-connectivity proteins are more likely to be attachment proteins than core

proteins.19,20 This suggests removal of proteins identi¯ed using the alternative

approaches are less likely to break the protein complexes at the core level and, thus,

less likely to disrupt entire families of complexes. It is interesting that selecting high-

connectivity proteins to remove does not seem to fragment protein complexes in a

signi¯cant way.

We have also analyzed the biological properties of the 80 proteins identi¯ed by

our spectral bipartitioning approach. These 80 proteins are involved in 195 di®erent

biological processes and 121 functional modules. This is more than two times higher

than those proteins identi¯ed by the alternative approaches (90 biological processes

and 55 functional modules). So, the removal of our 80 proteins are likely to cause

much more wide-ranging disruption. This is also supported by that fact that 58%

(¼ 46=80) of our 80 proteins are essential proteins. However, only 13 of these es-

sential proteins are among the 49 essential proteins in the 80 proteins of the highest

connection degree. So 33 (¼ 46� 13) essential proteins in our cut set are not in 80

proteins with highest connection degree.

Overall, it seems our spectral bipartitioning approach has selected biologically

meaningful proteins for removal, to massively disrupt protein complexes in an

organism.
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