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ABSTRACT 

Predicting Microbial Interactions with Modelling Approaches 

by 

Li Chenhao 

 

Computational modelling represents an attractive avenue for scalable data-driven 

analysis of  microbial community function and dynamics. The practicability of utilising 

in silico modelling to directly learn ecological models is now conceivable with the vast 

amount of publicly available microbial community profiling data. Despite the promise, 

progress has been relatively muted as existing model inference algorithms relied on 

absolute abundances rather than the relative measurements generated with high-

throughput microbial profiling. 

We introduce a new algorithm for learning generalised Lotka-Volterra models 

(gLVMs) from longitudinal microbial profiling data by coupling biomass estimation 

and model inference in an expectation-maximization-like algorithm (BEEM). We show 

that BEEM outperforms existing methods for inferring gLVMs, while simultaneously 

eliminating the need for absolute abundances as input. BEEM's application to 

previously inaccessible public datasets (due to lack of information on absolute 

abundances) allowed us for the first time to construct ecological models of microbial 

communities in the human gut on a per individual basis, revealing personalised 

dynamics and keystone species. 

For cross-sectional microbial community profiles, correlation based strategies 

have been the most widely used approach to inferring microbial interactions. However, 

our benchmarking evaluations showed that correlation based methods have varied 

performance for predicting interactions. To better infer interactions and construct 
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models from cross-sectional data, we developed an extension of BEEM (BEEM-static). 

BEEM-static improves inference accuracy by automatically identifying samples that are 

close to steady states for training. In addition to interaction predictions, BEEM-static 

also enable instantaneous growth inference for each species member of the community. 

BEEM-static outperforms correlation based methods for modelling cross-sectional data, 

substantially improving the prediction accuracy of directed interactions. 
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1 INTRODUCTION 

1.1 Background 

The origin of life began in the form of microorganisms three billion years ago on our 

planet1. These tiny microbes have then witnessed the rise and fall of life forms, and they 

have survived and expanded to occupy almost every niche on earth. Our understanding 

of these microbes, nevertheless, has a short history, dating back only to the 1670s when 

the first microbe (a species of fungi) was observed under a microscope2. In the 19th 

century, studying the growth and function of a single microbe was made possible thanks 

to the invention of agar plates and microbial culturing techniques3. However, even until 

now, an estimated 90% of bacteria are not culturable in the laboratory, greatly hindering 

our understanding of the composition and function of complex communities formed by 

diverse microbial species on our planet4.  

To circumvent this challenge, researchers turn to molecular techniques to 

investigate the microbial world. The deoxyribonucleic acid (DNA) molecules which 

code the genetic information of all life forms can be extracted from any environment 

and read out on a sequencer5. Computational analysis of the sequencing data can help us 

to identify the microbial species present in the sample, using DNA sequences as 

molecular barcodes6–8. In addition, the relative abundance of each microbe in the 
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environment can be measured by counting the frequency of such barcodes. A new field 

of research, metagenomics – the study of total environmental DNA, has thus emerged 

and was developed into an essential tool to gain insights into microbial communities 

thanks to the advance in high-throughput sequencing technology9. Metagenomic 

techniques allow researchers to investigate the composition of all microbial species 

(also known as the microbiome) in a specific environment with sequencing data 

collected across different sites (cross-sectional data) or for one site through a period of 

time (longitudinal data)10. Intriguingly, many metagenomic studies suggest that 

microbial communities, though tiny in size, play vital roles in the environments they 

reside in.  

Among different microbial communities of interest, the study of human 

associated microbiomes has drawn much attention recently. Thousands of microbial 

species that colonize human bodies have been identified and an increasing number of 

studies have shown that they are closely linked to our health status. Although 

researchers have linked various disorders or diseases with disrupted microbial 

community and identified specific disease related biomarkers, the mechanism for such 

associations is still poorly understood, thus limiting our ability to design microbiome-

targeted intervention strategies. 

One of the most critical aspects to understand the function of ecological 

communities formed by microbial species is to characterize interactions among them, 

with data-driven approaches based on metagenomic microbial abundance profiles 

becoming a widely used technique to identify candidate interactions. Analytical 

methods for this range from simply quantifying the association strength between 

microbial abundances to constructing mathematical models that describe the interplay 

between species. However, one of the critical challenges in the above analysis arises 

from the “compositional” nature of sequencing data, where the microbial abundances 
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measured are in proportions rather than absolute abundances. This compositional nature 

of the data can cause significant biases in analysis and preclude the use of ecological 

models for fitting the data11,12.  

In this thesis, we investigate the problem of predicting microbial interactions 

using computational approaches, focusing on the challenges in learning interactions 

from longitudinal and cross-sectional microbial profiling data. We start by providing a 

detailed survey of the literature on available methods for inferring microbial interactions 

(Chapter 2). We then describe a novel algorithm (BEEM) for accurately inferring 

interactions from longitudinal microbiome data and apply it to learn personalized 

microbiome models from densely sampled gut microbial profiles (Chapters 3). For 

cross-sectional data, we evaluate the performance of correlation based methods and 

establish that these methods perform poorly in terms of recapitulating ground truth 

microbial interactions (Chapter 4). Motivated by these findings, we further extend 

BEEM to work with cross-sectional microbiome data and showcase the significant 

improvements that it provides over existing methods (Chapter 5).  

1.2 List of publications 

This thesis contributes to the literature with the following publications (*: as first 

author): 

1. C. Li*, K. M. K. Lim, K. R. Chng & N. Nagarajan. Predicting Microbial 

Interactions through Computational Approaches. Methods (2016) 

2. T. V. Av-Shalom*, C. Li*, N. Nagarajan. Correlation based methods vary widely 

in their ability to correctly infer microbial interactions from microbiome survey 

data. Manuscript in preparation 
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3. C. Li*, K. R. Chng, T. V. Av-Shalom., L. Tucker-Kellogg & N. Nagarajan. An 

expectation-maximization-like algorithm enables accurate ecological modeling 

using longitudinal metagenome sequencing data. bioRxiv (2018) 

4. C. Li*, N. Nagarajan. Accurate Inference of Ecological Models from Cross-

Sectional Microbiome Sequencing Data. Manuscript in preparation 
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2 LITERATURE REVIEW – COMPUTATIONAL 

APPROACHES FOR PREDICTING MICROBIAL 

INTERACTIONS 

2.1 Background 

As an essential component in various ecosystems, microorganisms aggregate to form 

heterogeneous communities comprising of distinct proportions of diverse microbial 

entities, often referred to collectively as the Microbiome. Microorganisms in a 

microbiome do not live in isolation, but instead actively interact with other members 

within their community13. Taken as a whole, these interactions are a description of the 

overall function of the microbial community. As such, the characterization of microbial 

interactions is a key step towards the understanding of the community organization14–16 

and the engineering of microbial communities for biomedical17,18 and industrial 

applications19–21. 

The pair-wise interaction between two microbes is the fundamental unit of 

microbial interactions. Such interactions can be categorized by their effect on the 

participants, i.e. positive, negative or neutral. In combination, there exist six core 

categories of interaction: mutualism (positive-positive), competition (negative-negative), 

antagonism (positive-negative), commensalism (positive-neutral), amensalism 

(negative-neutral) and neutralism (neutral-neutral)22.  
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Traditionally, the investigation of microbial interactions required the use of 

laboratory experiments such as growth and co-culture assays23–25. However, the 

laborious nature of such methods renders them infeasible for large scale application. 

Computational approaches offer the opportunity to alleviate this issue by predicting 

interaction candidates for experimental validation26. These predictions can be based on 

various types of data such as the measured species abundances from high-throughput 

sequencing or reconstructed metabolic models for species communities. In addition, 

computational methods may also assist the collation of experimentally verified 

interactions from large compendiums of published literature. A graphical overview of 

computational approaches for predicting microbial interactions can be found in Figure 

2.1. 

Following the previous review on in silico microbial interaction inference 

methods22, a number of new methods have since been proposed to address the various 

challenges in such a task. Here, we review the available computational approaches 

(grouped by the different types of data that they use) and the challenges that they 

address, discuss their advantages and limitations, and point out directions for future 

work in this area. 
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Figure 2.1 A graphical overview of computational approaches to predict microbial 

interactions.  

(A) Microbial interactions are frequently inferred by observing correlations in species abundances in 

microbiome survey datasets as depicted here for a pair of species. (B) Interactions can also be predicted by 

reconstructing pathways from annotated genomes for each species and then jointly modeling community 

metabolism to identify metabolites that serve as interaction interfaces (show in yellow). Genes are depicted 

here as grey shapes while associated metabolites are shown as colored shapes. (C) Text mining of scientific 

literature databases (e.g. NCBI PubMed) is another approach for cataloguing microbial interactions that are 

experimentally validated and can serve as a gold-standard for the field. 
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2.2 Inferring interactions from microbiome survey data 

Advances in high throughput sequencing technologies have made it possible to quantify 

the abundances of members in a microbial community in a relatively unbiased manner 

by sequencing marker genes or whole metagenomes (i.e. total DNA from a microbial 

community). The abundance of each species (or higher taxa) is then estimated by 

mapping raw reads to a reference database with taxonomically annotated complete or 

draft genomes and counting the reads assigned to the respective taxa. The data collected 

can then be further tabulated into a data matrix where each row represents read counts 

of a species across all the samples. To account for differences in sequencing depth (i.e. 

total number of reads generated for a sample), read counts are often normalized into 

proportions (relative abundances) by dividing by the column sums. Alternatively, the 

data matrix can be simplified to record only presence (1) or absence (0) information by 

setting a minimum threshold on read counts or relative abundances. Microbiome survey 

datasets can be collected across different sites or across different time points within the 

same site, with the techniques used to infer microbial interactions from them being 

somewhat distinct. In the next section we review methods that use survey data without a 

temporal component, referred to here as “cross-sectional” microbiome survey data. 

2.2.1 Microbial interaction inference with cross-sectional microbiome 

survey data 

Cross-sectional microbiome survey data provide a static view of the composition of 

microbiota across different sites. For human-associated microbiota, several recent 

studies have generated a significant amount of data across different patients and 

different body sites27,28. While many of these studies have focused on investigating the 

composition of microbial communities or identifying species associated with certain 

phenotypes, these datasets can also be used to infer interactions between species. 
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Although this can be a coarse-grained approach, inferring microbial interactions from 

available cross-sectional microbiome survey data can serve as the basis for 

understanding community structure and to generate useful hypotheses for further 

investigation22. The underlying rationale of the inference is that the observed 

community structure is driven by the ecological interactions between species, and 

therefore the non-random pattern of species distribution can be used to infer these 

interactions (Figure 2.1A). Such patterns include simple associations such as co-

occurrence or co-exclusion and correlation, as well as more complex associations such 

as limited cycles in predator-prey systems29.  

2.2.1.1 Using co-occurrence or co-exclusion patterns 

The simplest and yet interesting pattern that serves to inform about species interactions 

is the co-occurrence or co-exclusion of two species, providing evidence that there is 

strong dependency or competition between them. The detection of such patterns can be 

formulated into a statistical test of whether the species pair co-occurs or co-excludes 

each other more than random using the Fisher’s exact test, which compares the co-

occurrence pattern with the hypergeometric distribution to assign statistical 

significance30. 

In addition to the Fisher’s exact test, it is possible to quantify the similarity 

between the distributions of two species across sites, with ecological distance (or 

similarity) scores. These scores, originally designed for comparing the overall species 

composition of two sites (e.g. the Jaccard distance31 or Bray-Curtis dissimilarity14), 

have since been applied to compare the composition of two species across sites (using 

species abundances normalized across sites). Such distance scores obtain maximum (e.g. 

1) when species are mutually exclusive and minimum (e.g. 0) when species have 

identical normalized abundances across all sites and can thus be used to assess the level 
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of co-occurrence or co-exclusion. The statistical significance of such scores can be 

assigned non-parametrically by comparing with an empirical null distribution generated 

by permuting the abundance matrix across sites for each species and re-calculating 

scores. 

2.2.1.2 Using correlated abundances 

Computing correlation between the abundance profiles of two species is another widely 

used approach to identify potential competitive or cooperative interactions in a 

microbial community32–37. Commonly used correlation coefficients for this include the 

Pearson and Spearman coefficients. The Pearson correlation coefficient between two 

variables is defined as the covariance of the two variables divided by their standard 

deviations and it captures linear dependencies. The Spearman correlation coefficient 

between two variables is the Pearson correlation coefficient between their rank orders, 

and thus detects monotonic relationships. However, the nature of microbiome survey 

data gives rise to several challenges in interaction inference using correlation 

coefficients, such as the compositionality effect, presence of indirect dependencies and 

data sparseness, and in the following sections we discuss these and the available 

approaches to account for them (See Figure 2.2 for a graphical overview of the three 

challenges; See Table 2-1 for a summary of algorithms). 
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Figure 2.2 Graphical illustration of the challenges in using correlations from microbiome 

survey data to infer microbial interactions. 

(A) Compositionality Effect: In a community with five species (top), where Species 1 and Species 2 have 

uncorrelated absolute abundances (bottom left), their abundances appear correlated after being normalized 

into relative abundances (bottom right). (B) Indirect Correlations (bottom right): The abundances of Species 

2 and Species 3 are positively correlated (bottom left) not because the two species interact with each other, 

but because they both interact with Species 1 and are negatively correlated with it (top left and top right). 

(C) The abundances of Species 1 and Species 2 are not correlated (left). However, if there are sites where 

neither of the species is present, the two species can have an observed positive correlation (right). 
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Accounting for the compositionality effect 

Intuitively, if the abundances of all species are constrained by a constant sum (e.g. one), 

an increase in the relative abundance of one species will cause a decrease in the 

abundance of all others. Therefore, even though the absolute abundances (i.e. the 

number of cells per unit volume, or the cell density) are independent, there is a tendency 

to get negative correlations using relative abundances and thus falsely predict 

interactions (Figure 2.2A). Such a negative bias, also known as the compositionality 

effect14, is especially severe when correlations are calculated from cross-sectional 

microbiome survey data, because abundances of species are usually also uneven11,38. 

Therefore, the compositionality effect has to be corrected for in order to successfully 

use correlations to infer interactions.  

CCREPE14 is an algorithm that accounts for the compositionality effect by 

testing if a bootstrapping based distribution of correlation coefficients is sufficiently 

different from a null distribution generated using uncorrelated species profiles that are 

normalized to introduce a compositionality effect. Specifically, the permuted null 

distribution in CCREPE is generated by repeatedly shuffling the abundances of one 

species of interest, re-normalizing the abundance matrix into relative abundances, and 

finally re-computing correlations. The bootstrap distribution is generated by sampling 

the columns of the abundance matrix and re-computing correlation coefficients. By 

construction, CCREPE is designed to be conservative when the signal-to-noise ratio is 

low as this induces the bootstrap distribution to be wider and closer to zero.  
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Table 2-1 A comparison of correlation based methods 

Methods Similarity 

metric 

Assumptions Corrects for Additional 

features 

Availabili

ty 

Implementation 

Compositionality 

effect  

Indirect 

correlations 

Data 

sparsity 

CCREPE Pearson/Spear

man 

correlation (or 

any similarity 

measure) 

None Yes No No  http://huttenho

wer.sph.harvar

d.edu/ccrepe  

R 

CCLasso Pearson 

correlation 

between log 

absolute 

abundances 

Edge density 

is no greater 

than 1/2-1/(p-

1) 

Yes No  No https://github.

com/huayingf

ang/CCLasso  

SparCC Average 

correlation 

between a 

species and 

others is zero 

Yes No No https://bitbuck

et.org/yonatan

f/sparcc  

Python 

REBAC

CA 

Each species 

interacts with 

less than p/4 

other species 

Yes No No http://faculty.

wcas.northwes

tern.edu/~hji4

03/REBACC

A.htm  

R 

SPIEC-

EASI 

Partial 

correlation 

between log 

transformed 

absolute 

abundances 

p is 

large.  Numb

er of 

interactions 

scales linearly 

with p.  

Yes Yes No https://github.

com/zdk123/S

piecEasi  

MInt Partial 

correlation 

between 

sequencing 

counts 

 

Data follows a 

Poisson-

multivariate 

normal 

hierarchical 

model 

 

No Yes No Corrects for 

known 

confounding 

variables 

https://cran.r-

project.org/we

b/packages/MI

nt/vignettes/M

Int.html  

*The number of species in the dataset is denoted by p. 
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https://bitbucket.org/yonatanf/sparcc
https://bitbucket.org/yonatanf/sparcc
https://bitbucket.org/yonatanf/sparcc
http://faculty.wcas.northwestern.edu/~hji403/REBACCA.htm
http://faculty.wcas.northwestern.edu/~hji403/REBACCA.htm
http://faculty.wcas.northwestern.edu/~hji403/REBACCA.htm
http://faculty.wcas.northwestern.edu/~hji403/REBACCA.htm
http://faculty.wcas.northwestern.edu/~hji403/REBACCA.htm
https://github.com/zdk123/SpiecEasi
https://github.com/zdk123/SpiecEasi
https://github.com/zdk123/SpiecEasi
https://cran.r-project.org/web/packages/MInt/vignettes/MInt.html
https://cran.r-project.org/web/packages/MInt/vignettes/MInt.html
https://cran.r-project.org/web/packages/MInt/vignettes/MInt.html
https://cran.r-project.org/web/packages/MInt/vignettes/MInt.html
https://cran.r-project.org/web/packages/MInt/vignettes/MInt.html
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Techniques in compositional data analysis proposed by Aitchison39,40 provide 

the mathematical basis for another group of algorithms based on correlation calculations. 

Such techniques are motivated by the observation that the ratio between the abundance 

of two species within a sample does not change, regardless of normalization. Therefore, 

we have the following formula: 

𝑡𝑖𝑗 = 𝑣𝑎𝑟 [log (
𝑋𝑖

𝑋𝑗
)] = 𝑣𝑎𝑟 [log (

𝑊𝑖

𝑊𝑗
)] = 𝜔𝑖𝑖 − 𝜔𝑗𝑗 − 2 ⋅ 𝜔𝑖𝑗 , 

where 𝑋𝑖  and 𝑊𝑖  are random variables representing the relative and the absolute 

abundance of species 𝑖, respectively. The matrix 𝑻 = (𝑡𝑖𝑗) is called the variance matrix 

and can be computed from the data, while the matrix 𝜴 = (𝜔𝑖𝑗), also known as the 

basis covariance matrix, is the covariance matrix of log transformed absolute 

abundances that we wish to compute. However, the linear system defined by the above 

formula has more variables than equations and thus has infinitely many solutions in 

general. In microbial interaction inference, it may typically be reasonable to assume that 

the basis covariance matrix is sparse, i.e. each species does not interact with a large 

number of other species. Using the sparseness assumption, the algorithm SparCC 

estimates the basis covariance matrix with an iterative approximation and refinement 

scheme38. Another algorithm REBACCA, adopting a similar assumption, solves the 

basis covariance matrix with sparse regression41 (i.e. LASSO). 

Besides the variance matrix based approach, Aitchison also proposed the 

centered log-ratio (clr) transformation as an alternative approach. Specifically, this 

involves computing the logarithm of the ratio between the relative abundance and the 

geometric mean of all relative abundances within site 𝑗: 

clr(𝐱(𝑗)) = [log
𝑥1

(𝑗)

g(𝐱(𝑗))
, log

𝑥2
(𝑗)

g(𝐱(𝑗))
, … , log

𝑥𝑝
(𝑗)

g(𝐱(𝑗))
]

𝑇

= 𝐆 ∙ log(𝐱(𝑗)), 
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where 𝐱(𝑗) = [𝑥1
(𝑗)

, … , 𝑥𝑝
(𝑗)

]
𝑇

 is a column vector representing the relative abundances of 

species at site 𝑗, g(𝐱(𝑗)) = (∏ 𝑥𝑖
(𝑗)

)
𝑝
𝑖=1

1

𝑝
, 𝐆 = 𝐈p −

1

p
𝐉p, 𝐈p is the 𝑝-dimentional identity 

matrix and 𝐉p is a 𝑝-dimentional matrix with all 1s. This function transforms the data 

from a constrained space with 𝑝 dimensions to a (𝑝 − 1)-dimensional Euclidian space, 

where analysis is free from the compositionality effect. The covariance matrix of the clr 

transformed variables (𝚪) can be mapped to many basis covariance matrices, but there is 

at most one with sparseness above a certain threshold42. CCLasso is a clr-transformation 

based algorithm that finds such a sparse basis covariance matrix using LASSO42. 

It is worth noting that the methods based on Aitchison’s techniques all calculate 

Pearson correlation coefficients between log transformed abundances. Given the 

unevenness of microbiome survey data, log-transformation could result in more 

meaningful Pearson correlation coefficients. On the other hand, CCREPE can be 

generalized to Spearman correlation coefficient and the other distance scores mentioned 

above. However, correlation coefficient values from CCREPE must be interpreted with 

caution as they retain their intrinsic negative bias. 

Removing the effect of indirect dependencies  

Two species can be positively correlated because both of them are negatively correlated 

with a third species (Figure 2.2B). In order to infer direct interactions, we need to 

measure the dependency between two species conditioned on all other species, which is 

formally defined as computing a partial correlation. If Pearson correlation is used, 

partial correlations can be computed directly from the inverse of the covariance matrix 

(i.e. the precision matrix; note that the estimating the precision matrix direct inversion 

of the sample covariance matrix is in fact a challenging problem especially for large 

systems44.): 
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𝜌𝑋𝑖𝑋𝑗∙𝒙\{𝑋𝑖,𝑋𝑗} = −
𝑝𝑖𝑗

√𝑝𝑖𝑖𝑝𝑗𝑗

, 

where 𝒙 = [𝑋1, … , 𝑋𝑝]
𝑇

is a random vector of species abundances, 𝐏 = (𝑝𝑖𝑗)  is the 

precision matrix and 𝜌𝑋𝑖𝑋𝑗∙𝒙\{𝑋𝑖,𝑋𝑗}  is the partial correlation between 𝑋𝑖  and 𝑋𝑗 

conditioned on other variables in 𝒙. 

There are several existing algorithms that estimate partial correlations45 or the 

precision matrix46, and have been adapted to infer microbial interactions. MInt uses 

graphical LASSO to estimate the precision matrix under the sparseness assumption47. It 

also provides a method to remove the known confounding factors, such as measured 

biological covariates, experimental replicate and so on. SPIEC-EASI also employs 

graphical LASSO, and in addition accounts for the compositionality effect using the clr 

transformation48. However, unlike CCLasso, SPIEC-EASI directly uses the clr 

covariance matrix to replace the basis covariance matrix (i.e. assuming 𝐆 = 𝐈𝐩), which 

is a reasonable approximation when the number of species is large. In addition, SPIEC-

EASI provides an alternative algorithm to estimate partial correlations, which iteratively 

builds a sparse linear model for each species using the rest of the species as covariates. 

Recently, Network Deconvolution49, a post hoc approach to remove indirect 

associations, was applied to study oral50 and plankton51 microbial interactions. With an 

inferred interaction network, the network deconvolution framework removes edges 

attributed to the transitive effect. Network deconvolution is therefore a general 

framework and can be applied to a variety of measures including Spearman correlation 

and mutual information. 

Dealing with the sparseness of microbiome survey data 

A zero in microbiome survey data could be attributed to the physical absence of a 

species (i.e. a structural zero) or to insufficient sequencing depth to capture it (i.e. a 
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sampling zero), but it is non-trivial to distinguish the two and fill gaps caused by 

sampling depth52,53. Currently, none of the existing microbial interaction inference 

algorithms directly addresses this issue. Methods based on log transformation have to 

avoid directly transforming a zero by adding pseudo count to the observed counts, and 

thus implicitly assuming the presence of all species38. For CCREPE, bootstrapping can 

generate zero vectors for species with many zero values across sites. Therefore, before 

estimating correlations with these algorithms, species that are only present in a few 

samples are often removed. Moreover, when computing correlation between two species, 

sites where the abundances for both species are zero can become outliers and result in 

an apparent positive correlation, i.e. the “double-zero” problem54 (Figure 2.2C). 

2.2.1.3 Predicting complex associations 

Complex associations are generally difficult to interpret, but they can serve as evidence 

for non-random ecological forces. Such associations can be captured by comparing the 

distributions of abundances. The Mutual Information measures the reduction in 

uncertainty of one variable when the other variable is given, and is widely used in 

inferring gene regulation networks from expression data55–57. In particular, it is of 

interest to derive a mutual information based measure, which can capture a wide range 

of different associations (i.e. general) and assign similar scores to them when noise 

levels are comparable (i.e. equitable). Reshef et al. proposed the Maximal Information 

Coefficient (MIC), which is meant to possess these two properties58. The MIC has been 

applied to detect novel non-linear associations using microbiome survey data59,60. 

However, the equitability and statistical power of MIC have been challenged in recent 

studies61,62. In addition, there is currently no mutual information based method that 

accounts for the compositionality effect. Another practical challenge is to obtain a 

sufficiently large sample size in order to estimate the marginal and joint distributions of 
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variables (the number of samples should be much larger than the number of bins used to 

as the discretize the data63) that is needed to accurately compute the MIC. 

2.2.1.4 Benchmarking and integrating different methods 

While there is a diversity of measures for capturing different patterns of microbial 

interactions, a comprehensive comparison of their performance is still lacking because 

of the lack of a gold-standard set of interactions. Nevertheless, it is possible to construct 

for validation purposes, a model for a species community with specified interactions, 

and generate species abundance data through simulations. The generalized Lokta-

Volterra models (gLVM) are often used to model the growth of each species in response 

to the dynamics of its interacting partners: 

d

d𝑡
𝑥𝑖(𝑡) = 𝑥𝑖(𝑡) (𝜇𝑖 + ∑ 𝛽𝑖𝑗𝑥𝑗(𝑡)

𝑝

𝑗=1

), 

where 𝑥𝑖(𝑡) is the absolute abundance (density) of species 𝑖 at time 𝑡, 𝜇𝑖 is the maximal 

growth rate of species 𝑖, and 𝛽𝑖𝑗  captures the influence of species 𝑗 on the growth of 

species 𝑖. The gLVM explicitly encodes these pairwise interactions in a matrix (𝛽𝑖𝑗), 

which can be treated as the gold standard measure of interactions for a simulated 

community. Berry & Widder used the gLVM to generate simulated abundances in the 

equilibrium state of the community, and assessed different measures for their ability to 

capture the specified interactions36. However, there were several caveats in their design 

and analysis. Firstly, the parameters in the system were chosen arbitrarily without 

reference to any real microbial community profiles. In addition, the assumption of 

steady state profiles is unlikely to be valid, especially for human-associated microbiome 

data64,65. Moreover, a majority of their analysis was done assuming absolute species 

abundances, which is often unavailable for microbiome survey data. Finally, their 

assessment reported specificity and sensitivity of predictions, but ignored precision – a 
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metric that is of great practical value when predictions are tested using experimental 

approaches. 

Another perspective to comparing different interaction prediction measures is to 

motivate the creation of an ensemble predictor that could potentially achieve superior 

performance. Limited attempts had been made to integrate various association measures 

so far. Both union66 and intersection50 of interaction networks inferred using different 

measures have been applied. Furthermore, Faust et al. combined the p-values for 

different measures with a multiple test correction approach to get their final 

predictions14, however none of these approaches have been systematically tested for 

their utility and value compared to individual methods for predicting microbial 

interactions. 

2.2.2 Interaction inference with temporal microbiome survey data 

Despite the current lack of temporal microbiome survey data, we foresee in the near 

future, a rapid accumulation of such datasets given the increasing interest in 

understanding the dynamics of microbial communities67–70. Such time-series abundance 

data will also likely become a valuable resource for inferring species interactions as the 

time component allows for better modeling of the microbial ecosystem. 

Compared to their cross-sectional counterpart, temporal datasets provides a 

dynamic view of species interactions, and can thus be used to infer interactions from 

shifted time series71–73. LSA (Local Similarity Analysis) is an algorithm that quantifies 

the similarity between shifted time series through dynamic programming73. Another 

approach employs the generalized Lotka Volterra equations to fit the data to a gLVM 

and directly solve for the interaction matrix through sparse regression74–76. Further 

details can be found in a recent review that provides an in-depth survey of methods 

specific to analyzing temporal microbiome survey data77. 
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2.3 Predicting interactions from genomic information 

Besides the compositional profile of microbial communities, another product of genome 

and whole metagenome sequencing is the fragmented or complete assembly of 

individual microbial genomes. The availability of genome sequences allows us to 

predict genes and then annotate them to assign function. Among these genomic 

elements, the enzyme coding genes are the essential functional carriers, and can serve as 

a proxy for the metabolic potential of the organism. The collection of enzymes together 

with the reactions they catalyze, can be linked using their shared metabolites and 

modeled as a network. The input and output compounds for the metabolic network of an 

organism represent the minimal set of units for metabolic “communication” with extra-

cellular space and other organisms, and therefore can be used to bridge the metabolic 

networks of multiple species (Figure 2.1B). Such a framework that employs genomic 

information to predict ecological interactions has been termed the Reverse Ecology 

paradigm78,79. 

2.3.1 Microbial interaction inference using metabolic network topology 

The key idea behind the reverse ecology paradigm is to identify the metabolites cycling 

between the organism and the environment in a metabolic network. A simple method is 

to ignore the stoichiometry of metabolic reactions and enzyme kinetics, and only 

consider the topology of the metabolic network15,80. Such a simplified model can be 

represented as a directed graph, in which edges are the metabolic reactions, while nodes 

are the metabolites involved. A further simplification can be made by splitting complex 

reactions into multiple substrate-product pairs (e.g. reaction A+BC is split into AC 

and BC). It is then possible to apply algorithms based on graph theory to identify a 

set of metabolites that can only be obtained from the environment. Borenstein et al. 
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termed such a set of metabolites the “seed set” and implemented a graph topology based 

algorithm, NeetSeed for its determination15,80. 

Hypothetically, two species can compete for limited resources if their seed sets 

overlap, and the level of competition against species A when species B is present can be 

quantified by the fraction of metabolites in A’s seed set that is covered by the seed set 

of B31. An alternative approach is to remove the metabolites (shared by species B) from 

species A and compute the proportion of metabolites that can be synthesized from the 

remaining metabolites. The competition level is then quantified by one minus the 

proportion. The web-based tool NetCmpt implements the latter method to quantify 

competition level using annotated genomes of two species as input81. On the flip side, 

two species can cooperate with each other where one species produces the metabolites 

in the seed set of its interacting partner. The metabolic complementarity of species B 

with species A can therefore be measured by the fraction of metabolites in A’s seed set 

that is also in the non-seed set of B31. This measure has been implemented as a web-

based tool called NetCooperate82 to assist in identifying species pairs that could 

potentially have a cooperative relationship. 

2.3.2 Predicting interactions with community constraint based models 

Another approach to study metabolic interactions between species employs an extension 

of single-organism constraint based modelling (CBM). A CBM for a single species 

consists of a stoichiometry matrix representing all the metabolic reactions, a set of 

constraints that are imposed to bound flux values, and an objective function (usually 

biomass production) that should be optimized. The flux distribution in an equilibrium 

state which satisfies the constraints and optimizes the objective function, can be solved 

with linear programming (see Orth et al. for an introduction to flux balance analysis83). 

To extend this technique to model microbial communities, each species is treated as an 
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isolated compartment, and the set of transport reactions is represented as an additional 

compartment. All compartments are then combined into a single stoichiometry matrix. 

The objective function to be optimized for the community can be the total biomass 

production function26,84,85, or a multilevel function which optimizes both individual and 

community growth86,87. In addition, enzyme kinetics88 and diffusion models89 have also 

been incorporated into community CBMs to capture temporal and cross-sectional 

dynamics in metabolism. 

With a community CBM model, species interactions can be predicted from 

growth simulations, based on the difference in biomass production of a species growing 

in isolation compared to growing with its interacting partners26. Alternatively, metabolic 

cooperation can also be quantified as the difference in the minimum nutrients required 

to support community growth, with and without metabolic cross-feeding between 

community members90. 

2.4 Mining interactions from scientific literature 

With many studies focused on generating high-throughput sequencing based profiles of 

microbial communities and inferring interactions from them, it is easy to overlook the 

existing body of literature describing microbial interactions identified through direct 

experimental approaches. Over the years, hundreds of studies have been conducted that 

have experimentally identified a large number of microbial interactions91–96. However, 

this information is currently spread across the literature and it is thus typically 

impractical to systematically use this information. The collation of experimentally 

validated interactions in the scientific literature into a reference, gold-standard database 

would create a valuable resource. However, with more than two million papers on 

bacteria alone, manual collation of this information is clearly infeasible. A potential 
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solution is the implementation of automated systems for information extraction from 

scientific literature (also referred to as Text Mining, Figure 2.1C).  

Text mining techniques have been widely used for biomedical applications 

including  the processing of patient medical records97, classification of genetic 

variations in drug response98, as well as in the identification of Protein-Protein 

Interactions (PPIs)99,100. However, for microbial interactions, a 2010 paper by Freilich et 

al. is currently the only reported study based on text mining techniques16. Freilich et al. 

used abstracts from the PubMed database to identify and quantify bacterial species co-

occurrences. Significant interactions were then identified using a hypergeometric test 

for over-representation of species pair in the scientific literature. The putative 

interactions were then organized into a network and a clustering of species on the 

network was used to identify groups of organisms that serve as representatives of 

naturally occurring communities. 

Two other categories of text mining techniques have been used in biomedical 

fields: Rule-based methods and Machine Learning (ML). Rule-based methods apply a 

set of precompiled rules to extract information from literature data. They generally 

improve on co-occurrence methods, boosting precision at the cost of recall101,102 and can 

even outperform state of the art ML methods103. ML methods however, employ 

statistical algorithms capable of learning from annotated training data to accurately 

classify new, unseen datasets. Bayesian networks, k-Nearest Neighbors, and Kernel 

methods are ML techniques that have seen a degree of success in biomedical text 

mining tasks101,103,104.  

However, the application of text mining to microbial interactions comes with a 

number of specific challenges. Unlike other fields that possess an abundance of well-

annotated corpora105–108 for training and evaluating text mining systems, no similar 

resource exists for microbial interactions. Furthermore, while databases of various 
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bacterial species exist, these names are subject to change in the case of orthographic or 

typographic errors109. However, these changes are not retroactively executed and result 

in heterogeneity of nomenclature in the existing literature. 

2.5 Concluding remarks 

The three data types and the computational approaches discussed here are 

fundamentally different and yet complement each other in predicting and compiling 

microbial interactions. Species abundance patterns are assumed to be the outcome of 

microbial interactions, and in reverse can be used to infer the corresponding cause. 

Nevertheless, while there are various scores and approaches that can be used to 

quantitatively predict interactions, a systematic benchmarking study and an integration 

scheme is still lacking. In contrast, metabolic reconstruction approaches start from the 

mechanisms and predict interacting outcomes by modelling community metabolism. 

Such methods are usually less scalable and rely on accurately annotated genomes. The 

largely uncharacterized gene-metabolite relation in microbial communities also hinders 

the application of such methods. In addition, they are specific to metabolic interactions 

and therefore will miss interactions due to other mechanisms, such as bacteriocin 

production95,96 and signaling processes110–112. A curated interaction database mined 

from the scientific literature could serve as a catalogue of gold-standard interactions. 

However, the application of text mining techniques to microorganisms is in its infancy 

and there is currently no such collection of validated interactions. 

In principle, an integration of multiple approaches could improve the accuracy 

of microbial interaction prediction and provide a deeper understanding of the 

mechanisms involved. For example, predictions generated from metabolic 

reconstruction methods or literature mining can be compared with co-occurrence pattern 

to see if an “in-principle” interaction is also reflected in a specific kind of 
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community16,31. Conversely, co-occurrence pattern can be used as an initial filtering step 

before constructing all pair-wise metabolic models90 or can be directly incorporated into 

a metabolic model84,85. It should be noted here that the nature of a microbial interaction 

between two species can be dynamic and depend on environmental context (nutritional 

sources113 or other microbes114). Addressing these issues needs careful consideration of 

the biological context in which information about microbial interactions is applied and 

will likely require the integration of diverse data types and methods for studying and 

modeling microbial interactions. 

2.6 Research objectives 

Despite not as commonly used as correlation based approaches, methods for inferring 

interactions based on ecological models (i.e. gLVMs) from temporal microbiome data 

have a key advantage to be able to infer interactions with directionality and thus able to 

distinguish different types of ecological interactions (e.g. mutualism vs. commensalism). 

Extending the models to incorporate external factors including nutrient resources (e.g. 

host diet change for gut microbiome) and perturbations (e.g. antibiotics usage) make it 

possible to infer causal relationship between the microbiome and the environment74–76. 

However, learning ecological models requires measuring the density of each 

microbe (i.e. the absolute abundances), which is not available from high-throughput 

sequencing data. An assumption that the total number of cells per unit volume (i.e. total 

biomass) is the same across all samples have been made such that relative abundances 

are comparable for inferring interactions115. Nevertheless, the effect of ignoring the 

variation in total biomass on the accuracy of inference is not well understood. Another 

way to circumvent the lack of absolute quantification is to scale relative abundances 

with experimentally measured total biomass74–76. However, the total biomass measure is 
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often unavailable for existing studies, limiting the ability to learn accurate models 

leveraging large collections of public microbiome survey data.  

In this thesis, we aim to investigate the performance of correlation based as well 

as ecological model based approaches for learning interactions. Importantly, we explore 

a novel angel – eliminating the need for biomass by learning ecological models from 

relative abundance data. 
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3 BEEM: AN EXPECTATION-MAXIMIZATION-LIKE 

ALGORITHM ENABLES ACCURATE ECOLOGICAL 

MODELING USING LONGITUDINAL MICROBIAL 

PROFILING DATA  

3.1 Background 

A growing body of literature points to the important roles that different microbial 

communities play in diverse natural environments116,117 and the human body118. This 

has particularly been aided by advances in next-generation sequencing technology, 

allowing for rapid, cost-effective taxonomic and functional profiling, combined with 

computational analysis that has helped associate the state of the microbiome with 

various environmental conditions116,119 and human diseases120–123. Microbiomes are also 

constantly evolving and there is now a growing appreciation of the fact that complex 

interactions between community members124,125 shape community dynamics126,127 as 

well as overall function128,129. A systems view of the microbiome is thus essential for 

understanding and rationally manipulating it74.  

Because of its importance, there have been many approaches proposed to study 

microbial interactions and dynamics. Experimental approaches have ranged from simple 

two species co-culture experiments130,131, all the way to complex, multi-stage reactor 

models132. Analytical approaches133 frequently use simple correlations between the 
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abundances of various taxa in cross-sectional datasets to infer microbial 

interactions48,134,135. There are several challenges that need to be addressed in such 

analysis including the compositionality of sequencing data48,134–136, low sensitivity and 

specificity of such methods75,137, and the inability to infer directionality of interactions 

or dynamics of the system133.  

The most commonly used approach for modeling microbial ecology is based on 

classical predator-prey systems, also referred to as generalized Lotka-Volterra models 

(gLVMs). gLVMs are based on ordinary differential equations (ODE) that model the 

logistic growth of species, naturally capture predator-prey, amensalistic and competitive 

interactions, and have been applied to study dynamics of microbial ecosystems ranging 

from simple communities on cheese138,139 to the human microbiome74–76,140–142. More 

importantly, from a practical perspective, gLVMs have been used for a range of 

applications including identifying potential probiotics against pathogens74,76,140, 

forecasting changes in microbial density, characterizing important community members 

(e.g. keystone species75) and to analyze community stability140,142.  

Despite this, a key limitation of gLVMs that restricts applicability and wider use 

is the requirement for microbial abundance data on an absolute scale. Microbiome 

analysis using high-throughput sequencing naturally provides relative abundance 

estimates with what is often referred to as “compositionality bias”134–136, and cannot be 

directly used to estimate gLVM parameters141. Scaling relative abundances to an 

absolute scale typically requires additional experimental data that is either not readily 

available (as is true for the vast proportion of publicly available datasets), is technically 

challenging to directly quantitate for different sample matrices and complex 

communities (e.g. using flow cytometry143,144), or can suffer from significant 

technical145–147 and biological noise148 (e.g. using 16S rRNA qPCR74,76,140). 



Predicting Microbial Interactions with Modelling Approaches 

30  Li Chenhao - May 2019 

We show that, surprisingly, scaling factors can be directly inferred from 

microbiome sequencing data, through an algorithm that also simultaneously estimates 

gLVM parameters (BEEM). This is achieved based on an expectation-maximization-

like approach149 that alternates between learning scaling factors and gLVM parameters, 

and thus obviates the need for experimental scaling factors which otherwise limit the 

use of many existing datasets. Based on synthetic data where biomass is precisely 

known, we show that BEEM estimated gLVM parameters are as accurate as those 

estimated with true biomass values, and significantly more accurate than what could be 

expected with commonly used (16S rRNA based) experimentally determined biomass 

estimates. Using data from a freshwater microbial community with flow cytometry 

based gold-standard cell counts, we show that biomass estimated using BEEM has good 

concordance with the gold-standard and improves significantly over existing techniques 

to normalize data. Leveraging BEEM’s unique ability to learn gLVMs from relative 

abundance data, we analyzed publicly available datasets that represent the longest 

human gut microbiome time-series data available to-date150–152. This analysis revealed, 

for the first time, the personalized dynamics of gut microbial biomass in different 

individuals, with communities driven by distinct interaction networks and hub species. 

Our analysis suggests an emerging model for gut microbial dynamics where relatively 

low abundance species may play key roles in maintaining gut homeostasis.  

3.2 Materials and Methods 

3.2.1 The generalized Lotka-Volterra model (gLVM) 

The gLV equations model the growth rate (
𝑑𝑥𝑖(𝑡)

𝑑𝑡
) of each microbial species 𝑖  as a 

function of absolute densities (𝑥𝑖(𝑡)) of all the 𝑝 species in a community: 

𝑑𝑥𝑖(𝑡)

𝑑𝑡
= 𝜇𝑖𝑥𝑖(𝑡) + ∑ 𝛽𝑖𝑗𝑥𝑖(𝑡)𝑥𝑗(𝑡)

𝑝

𝑗=1

 (1). 
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In the above model, the intrinsic growth rate parameter (𝜇𝑖) and self-interaction 

parameters (𝛽𝑖𝑖) define the logistic growth behavior of species 𝑖. In addition, the model 

also captures the impact of the absolute density of species 𝑗  on the growth rate of 

species 𝑖  through additional parameters (𝛽𝑖𝑗 , 𝑖 ≠ 𝑗 ), assuming a linear and additive 

effects model. As high-throughput sequencing based approaches to analyze 

microbiomes only provide relative abundance estimates, scaling factors related to the 

total biomass for each sample are then needed to accurately fit gLVMs in practice.  

3.2.2 The core algorithm of BEEM  

In order to address the challenges of noisy experimental biomass data and, in general, to 

make gLVM modeling more widely applicable where biomass estimates are not 

available, we explored the idea of learning gLVM parameters directly from relative 

abundance data. To achieve this, we first note that model equation 1 can be expressed in 

terms of relative growth rates by dividing both sides of the equation by 𝑥𝑖(𝑡): 

𝑑𝑥𝑖(𝑡)

𝑑𝑡
/𝑥𝑖(𝑡) =

𝑑 ln 𝑥𝑖(𝑡)

𝑑𝑡
= 𝜇𝑖 + ∑ 𝛽𝑖𝑗𝑥𝑗(𝑡)

𝑝

𝑗=1

. 

By explicitly introducing relative abundances (𝑥̃𝑖(𝑡)) and total biomass (𝑚(𝑡), 

where 𝑥𝑖(𝑡) = 𝑚(𝑡)𝑥̃𝑖(𝑡)), we get: 

 𝑑 ln 𝑚(𝑡)+ln 𝑥̃𝑖(𝑡)

𝑑𝑡
= 𝜇𝑖 + 𝑚(𝑡) ∑ 𝛽𝑖𝑗 𝑥̃𝑗(𝑡)

𝑝
𝑗=1  . (2) 

To eliminate the biomass related term in the left-hand-side of the equation, we 

subtract the corresponding equation for a reference species 𝑟 from both sides of the 

system, resulting in additive log ratio (ALR) transformed39 relative abundances (𝑦𝑖(𝑡) =

ln(𝑥̃𝑖(𝑡)/𝑥̃𝑟(𝑡))) on the left-hand-side and a re-parameterized right-hand-side: 

𝑑𝑦𝑖(𝑡)

𝑑𝑡
= 𝑎𝑖 + 𝑚(𝑡) ∑ 𝑏𝑖𝑗 𝑥̃𝑗(𝑡)

𝑝

𝑗=1

, 𝑖 ≠ 𝑟 , 



Predicting Microbial Interactions with Modelling Approaches 

32  Li Chenhao - May 2019 

where 𝑦𝑖(𝑡) = ln(𝑥̃𝑖(𝑡)/𝑥̃𝑟(𝑡)) and the equations are re-parameterized by 𝑎𝑖  and 𝑏𝑖𝑗 , 

which are related to the original parameters (𝑎𝑖 = 𝜇𝑖 − 𝜇𝑟  and 𝑏𝑖𝑗 = 𝛽𝑖𝑗 − 𝛽𝑟𝑗 ). This 

new system has the advantage that all unknowns are on the right-hand-side of the 

equation and the gradient term on the left-hand-side. The choice of the reference species 

is important as it could introduce noise to ALR transformed abundances for other 

species. Therefore, we select the species varying the least (with the lowest CV) in 

relative abundances as the default because such species is more likely to contain less 

experimental noise in its relative abundances. 

An estimate for 𝑑𝑦𝑖(𝑡)/𝑑𝑡, denoted as 𝑌𝑖𝑡, can be calculated as the derivative of 

a piece-wise polynomial spline fitted to the ALR transformed relative abundances 

(𝑦𝑖(𝑡) , see Section 3.2.3 for details). BEEM then estimates the model parameters 

𝒂, 𝒃 and the biomass 𝒎 using an EM-like algorithm with the following sum of squared 

error objective function: 

Θ(𝒂, 𝒃, 𝒎) = ∑ (𝑌𝑖𝑡 − (𝑎𝑖 + 𝑚𝑡 ∑ 𝑏𝑖𝑗𝑋̃𝑗𝑡

𝑝

𝑗=1

))

2

𝑖,𝑡

, 

where  𝑋̃𝑖𝑡 = 𝑥̃𝑖(𝑡)  and 𝑚𝑡 = 𝑚(𝑡)  are the variables written in their matrix 

representations.  

The EM-like algorithm in BEEM works by iterating two steps, an E-step and an 

M-step, to convergence as detailed below: 

Model parameter estimation with Bayesian lasso (E-step): In iteration 𝑇 , 

with estimated biomass from the previous iteration 𝑚̂𝑡
(𝑇−1)

, BEEM estimates 𝑎̂𝑖
(𝑇)

 and 

𝑏̂𝑖𝑗
(𝑇)

 for each 𝑖  (𝑖 ≠ 𝑟 ) based on the following regression problem (also known as 

gradient matching): 
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𝑌𝑖𝑡  ~ 𝑎𝑖
(𝑇)

+ 𝑚̂𝑡
(𝑇−1)

∑ 𝑏𝑖𝑗
(𝑇)

𝑋̃𝑗𝑡 .

𝑝

𝑗=1

 

Solving the above system is often limited by the amount of data available in 

practice. For microbial communities, it is usually assumed that the interaction vector 

(𝛽𝑖𝑗) is sparse (i.e. a species is only directly affected by a small number of other species). 

Consequently, the transformed matrix 𝑏𝑖𝑗  is also sparse and BEEM estimates it using a 

sparse regression technique based on a Bayesian approach (Bayesian lasso - 

BLASSO140; R package “monomvn” version 1.9-7; default parameters)153. 

Biomass estimation with linear regression (M-step): With 𝑎̂𝑖
(𝑇)

 and 𝑏̂𝑖𝑗
(𝑇)

 from 

the E-step, the biomass 𝑚̂𝑡
(𝑇)

 for each 𝑇  can be computed as the coefficient of the 

following linear regression: 

𝑈𝑡𝑖
(𝑇)

~ 𝑚𝑡
(𝑇)

𝑉𝑡𝑖
(𝑇)

, 𝑖 ≠ 𝑟 , 

where  𝑈𝑡𝑖
(𝑇)

= 𝑌𝑖𝑡 − 𝑎̂𝑖
(𝑇)

 and 𝑉𝑡𝑖
(𝑇)

= ∑ 𝑏̂𝑖𝑗
(𝑇)

𝑋̃𝑗𝑡
𝑝
𝑗=1 .  

Initialization: For the initialization step in its EM-like algorithm, BEEM 

assumes that scaling factors inferred from a commonly used normalization approach for 

metagenomic data (Cumulative Sum Scaling - CSS154) provides a reasonable starting 

point for the algorithm to then learn better scaling factors. Note that, as expected, 

scaling factors from CSS normalization and BEEM cannot recapitulate the absolute 

scale corresponding to experimental measurements (e.g. by qPCR or flow cytometry), 

and so their estimates were scaled to the same median value across the time series as 

experimental measurements for subsequent comparisons. In practice, the true scale of 

all samples can be recovered by measuring the biomass for a single sample accurately. 

Termination and parameter estimation: The E- and M-step in BEEM are run 

until convergence or a user specified maximal number of iterations. The search was 
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assumed to have reached convergence (to a local optimum) when the mean squared 

error (MSE) for the M-step starts to increase by more than 10% compared to the 

minimal MSE observed. In practice, on the datasets analyzed in this study, convergence 

takes a few hours using 4 CPUs. Estimates for 𝑎̂𝑖, 𝑏̂𝑖𝑗  and 𝑚̂𝑡  were calculated as the 

median of the values from all iterations whose MSE was within 10% of the minimal 

MSE.  

3.2.3 Robust parameter estimation with BEEM 

In our experiments with synthetic and real data, we noted that gLVM modelling can be 

sensitive to noise and outliers in the data, and this in turn could affect estimation of 

scaling factors with BEEM. To address this, we refined the core algorithm in BEEM 

with additional pre-processing steps that further enable robust parameter estimation. 

Outliers in relative abundance data: We observed in our numerical analysis that 

outliers in the abundance data could notably affect the spline fitting procedure and lead 

to spurious gradient estimates. To obtain more robust spline fitting, an over-smoothed 

spline was first fitted to 𝑦𝑖(𝑡) (function “smooth.Pspline” from R package “pspline”155 

with maximal degree of five and a large smoothing parameter “spar=1e10”) to calculate 

the absolute error in fitted values ( 𝑒𝑖𝑡 = |𝑦𝑖(𝑡) − 𝑦𝑖(𝑡)smoothed| ), and points with 

absolute error larger than expected ( (𝑒𝑖𝑡 − median
𝑗

(𝑒𝑖𝑗))/MAD
𝑗

(𝑒𝑖𝑗) > 𝜏 , 𝜏 = 5  by 

default) were then filtered out. The final smoothing spline was fitted (degree of five and 

smoothing parameter selected using cross validation) to the remaining data to calculate 

the estimated gradients 𝑌𝑖𝑡. In addition, outliers in biomass estimated from the previous 

iteration (𝑚̂𝑡
(𝑇−1)

) were identified in the same way and replaced with interpolated values 

from the spline. 

Outliers in estimated gradients: In practice, gradient matching based methods 

(including the various algorithms implemented in MDSINE) were found to be sensitive 
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to outliers in the estimated gradients (i.e. 𝑌𝑖𝑡). To identify outliers in a time series (𝑌𝑖𝑡, 

for all 𝑡) a local regression (LOESS) smoother was fitted to de-trend 𝑌𝑖𝑡, and the outliers 

were filtered out as described above. 

Estimating constrained biomass values: For each time point, biomass was 

estimated as the slope of a linear regression (𝑈𝑡𝑘
(𝑇)

 against 𝑉𝑡𝑘
(𝑇)

) where outliers in both 

𝑈𝑡𝑘
(𝑇)

 and 𝑉𝑡𝑘
(𝑇)

 were identified and removed following a standard boxplot approach i.e. 

as deviations from the median by more than 1.5 inter-quartile range. In addition, the 

biomass was constrained to be positive by removing points where 𝑈𝑡𝑖
(𝑇)

 and 𝑉𝑡𝑖
(𝑇)

 had 

different signs.  

3.2.4 Recovering gLVM parameters 

Based on the previously stated assumption that the interaction matrix 𝜷 is sparse, most 

entries in each column are expected to be zero and thus the median value for the 𝑗th 

column in 𝒃 would be expected to be −𝛽𝑟𝑗, allowing us to infer back all the other rows 

of 𝜷 (𝛽𝑖𝑗 =  𝑏𝑖𝑗 + 𝛽𝑟𝑗). BEEM then assigns a Z-score like confidence value (𝑠𝑖𝑗) to each 

entry of 𝜷 , by dividing the estimated interaction strength by the column standard 

deviation (𝑠𝑖𝑗 = |𝛽̂𝑖𝑗/𝜎𝑗|). The growth rate vector 𝝁 is not expected to be sparse but can 

be recovered by directly solving the original gLVM system (equation 2), using the 

already derived estimates for scaling factors and 𝜷. For robustness, BEEM estimates the 

growth rate for each species as the median of positive estimates across all time points. 

3.2.5 Datasets and evaluation metrics 

Simulated datasets: MDSINE’s Bayesian variable selection (BVS) algorithm (with 

spline smoothing option and minor bug fixes: https://bitbucket.org/chenhao_li/mdsine) 

was used to estimate parameters from the C. difficile infection dataset provided with the 

package140. Simulated datasets were then generated based on these estimated parameters 

https://bitbucket.org/chenhao_li/mdsine
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following the procedure described in Bucci et al140 (excluding perturbations). 

Specifically, the learned growth rates, interaction strengths (inter- and intra-species) 

were used to parameterize the distributions (half normal for growth rates and intra-

species interactions, zero-mean normal for inter-species interactions), from which 

ground truth gLVM parameters were sampled. The interaction structure was randomly 

generated. The gLVM was integrated numerically to generate time series microbiome 

samples based on initial abundances sampled from a normal distribution (parameterized 

by the dataset provided with MDSINE (“data_cdiff”)). Noisy abundances were obtained 

by sampling from Poisson distributions156 with means based on scaled abundances at 

each time point (sum = 5104). Simulated qPCR and flow cytometry based values for 

total biomass were generated from log normal distributions with coefficients of 

variation (CV) that matched those seen in real datasets (qPCR=51%140, flow 

cytometry=5%143,144).  

Dataset from Props et al: This dataset was generated from a freshwater 

microbiome of a cooling system. The microbiome was profiled using 16S rRNA gene 

sequencing and the total biomass was measured with flow-cytometry. The original OTU 

table was obtained from the authors144. Samples for the “operation” stage, where the 

environment had roughly constant temperature were selected for BEEM analysis. OTUs 

with low mean relative abundances (<0.1%) were excluded, resulting in 26 OTUs 

across 57 time points from two replicates.  

Dataset from Gibbons et al: This dataset included four long and dense (almost 

daily) gut microbiome time series collected by David et al150 (two individuals with 180 

and 311 samples) and Caporaso et al151 (two individuals with 131 and 332 samples). 

The original OTU tables152 were filtered to keep only top OTUs based on prevalence 

(>10 reads in most of the samples). In total, 26 and 22 OTUs were left for samples from 

David et al and Caporaso et al, respectively. In order to assess the robustness of the 
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inferred network, BEEM was run with 30 different seeds and edges with confidence 

score 𝑠𝑖𝑗 ≤ 1 in more than 50% of the networks were kept. The final biomass was 

obtained by taking the geometric mean across all 30 runs. 

Metrics for evaluation: The following metrics were used for evaluating inference 

algorithms:  

1. Median relative error (MRE) for estimates 𝜽̂  when the true values are 𝜽 : 

median
𝜃𝑖≠0

|
𝜃̂𝑖−𝜃𝑖

𝜃𝑖
|.  

2. Area under receiver operating characteristic curve (AUC-ROC) for the inferred 

microbial interactions: Absolute values of parameters was used to rank predicted 

edges for BLASSO and LIMITS (implemented in R package seqtime_0.1.1157, 

default parameters), while confidence scores were used for Bayesian Variable 

Selection (BVS) in MDSINE and for BEEM. 

3.3 Results 

3.3.1 Experimentally obtained biomass estimates can lead to inaccurate 

gLVMs 

High-throughput sequencing based approaches to analyze microbiomes only provide 

relative abundance estimates, and scaling factors related to the total biomass for each 

sample are then needed to accurately fit gLVMs in practice. The predominantly used 

approach to estimate total biomass is to quantify total copy number of the 16S rRNA 

gene using quantitative PCR (qPCR)74,76,140. However, 16S qPCR estimates have been 

reported to have high technical noise, with a coefficient of variation (CV) ranging from 

11% to 75%145–147. To reconfirm this, we reanalyzed 16S qPCR data from a recent 

microbiome modeling study on C. difficile infections140 and observed low concordance 

across technical replicates (Spearman 𝜌<0.22; Figure 3.1A and Figure 8.1A), as well 



Predicting Microbial Interactions with Modelling Approaches 

38  Li Chenhao - May 2019 

as high coefficient of variation (mean CV=51%). Another critical source of error with 

16S qPCR based biomass estimates is biological, and arises due to the fact that bacteria 

can have widely varying number of copies of the 16S rRNA gene, even within the same 

ecological niche. For example, the 16S gene copy number of the four major gut 

bacterial phyla cover a broad spectrum (Figure 3.1B), ranging from a single copy to 15 

copies148. Correspondingly, 16S qPCR estimated biomass of a community dominated by 

Firmicutes can be twice as much as that of a community dominated by Bacteriodetes, 

even if both communities have exactly the same cell density. Such large relative errors 

(~100%) can then have a significant impact on the accuracy of gLVMs estimated from 

the data, as we show below. 

To test the impact of biomass estimation errors on model inference, we 

generated synthetic datasets (10 species community) based on parameters inferred from 

real datasets, similar to the approach in Bucci et al140. This framework allows us to 

carefully evaluate the impact of different levels of noise in a setting where model 

parameters are known. We noted that, given error-free biomass data, a state-of-the-art 

method (MDSINE140) was able to infer model parameters with median relative error 

<20% and with ~90% median AUC-ROC (area under the sensitive-specificity tradeoff 

curve) for interaction terms (𝜷; Figure 3.1C, True). However, as expected141, directly 

using relative abundance estimates without scaling them increased median relative error 

for parameter estimates to >60% (Figure 3.1C, RA), with AUC-ROC for interaction 

terms being comparable to randomly generated parameters from the prior model for the 

simulation (Figure 3.1C, Random). Similar performance was obtained using another 

model fitting algorithm that works with relative abundance data and assumes small 

fluctuations in biomass values (LIMITS75,157; Figure 8.1B). Using biomass estimates 

with error profile similar to real qPCR data (CV=51%; without systematic errors due to 

varying copy number of the 16S rRNA gene), surprisingly, did not improve 
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performance substantially when one technical replicate was provided (Figure 3.1C, 

qPCR_rep1), and even with three technical replicates, growth rate parameter estimates 

(median relative error >70%) were comparable to random (Figure 3.1C, qPCR_rep3). 

These results highlight that experimental errors in biomass estimates can significantly 

impact gLVM parameter estimation even in a relatively well-controlled setting where 

model assumptions are strictly applied.  

3.3.2 Jointly estimation of biomass and model parameters with BEEM 

On the synthetic datasets used in previous section, we noted that despite not having any 

biomass data to work with, BEEM was a significant improvement over naïve analysis 

based on relative abundance data, as well as results based on scaled relative abundances 

with noisy biomass data (~3 reduction in relative error; Figure 3.1C, BEEM). In fact, 

BEEM estimated parameters were nearly as accurate as those obtained using noise-free 

biomass data (relative error for growth rate and interaction terms), except for a slight 

decrease in AUC-ROC for interaction terms (primarily due to rounding errors that 

provide non-zero estimates for zero terms). In comparison, other competing approaches 

(RA, qPCR, CSS) provided AUC-ROC performance similar to what is expected at 

random. Normalization approaches such as CSS154 (Figure 3.1C and Figure 8.1B, CSS) 

and Trimmed Mean of M-values158  (Figure 8.1B, TMM) were tested here as control 

analytical methods, but are not expected to work in general as they are designed to 

identify scaling factors that do not change across samples. We noted that BEEM’s 

significant improvement over other experimental and computational approaches, and its 

ability to closely approximate analysis using true biomass estimates is a robust feature 

that remains valid even when experimental biomass estimates are significantly better 

(CV=5%, as expected from flow-cytometry data) and while using different parameter 

estimation approaches (Figure 8.1B). 
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Figure 3.1 Noise in experimentally determined biomass severely distorts gLVM parameter 

estimation.  

(A) Scatter plot with fitted linear regression line for two 16S qPCR technical replicates from Bucci et al. (B) 

Copy number variation for 16S rRNA genes in members of four major phyla of human gut bacteria. (C) 

Relative impact of different experimental (qPCR_rep1 – 1 qPCR replicate, qPCR_rep3 – mean of 3 qPCR 

replicates) and computational (RA – relative abundance, CSS – CSS normalization) data scaling approaches 

on gLVM parameter estimation (BVS algorithm for MDSINE), in comparison to using true biomass or 

using BEEM. Boxplots represent the summary of 15 simulations (10 species, 30 replicates with 30 time 

points each) and three different metrics are shown here including median relative error for growth rate (𝝁) 

and interaction (𝜷 ) parameters, and AUC-ROC for the interaction network. Dashed horizontal lines 

represent the performance of randomly generated parameters from the simulation model. 
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3.3.3 BEEM accurately estimates gLVM parameters and biomass in 

diverse model settings 

As in any situation where parameters have to be estimated, a sufficient number of data 

points (multiple biological replicates) are needed to get accurate gLVM models and this 

in turn impacts BEEM’s biomass estimates. In order to further study BEEM’s 

performance characteristics, we generated synthetic datasets with varying number of 

species and data points, comparing BEEM’s results to those obtained with noise-free 

biomass data and the same gradient matching algorithm (BLASSO) as used internally in 

BEEM. As expected, when the number of species increases but the number of data 

points remains constant (60 replicates with 30 timepoints), gLVM parameter estimation 

becomes harder (Figure 3.2A). However, despite the quadratic increase in the number 

of parameters, performance for both BLASSO (with true biomass) and BEEM seems to 

only degrade linearly (Figure 3.2A). In addition, even when the model has 25 species 

(650 model parameters) and can thus capture over 90% of the human gut microbiome159 

(Figure 8.2), interaction parameters estimated by BEEM were nearly as accurate as 

those with true biomass (Figure 3.2A), though growth rate parameters were more 

affected. We also noted that median relative error for biomass estimates from BEEM 

was generally well controlled (<10%; Figure 3.2B). 

Increasing the number of data points available for model fitting for a fixed 

number of species (10) improved performance for both BLASSO with true biomass and 

BEEM, as expected. Performance improvements were most notable when going from 

10 to 20 replicates and plateaued out after that (30 timepoints; Figure 3.2C). In general, 

after 20 replicates, differences between BLASSO and BEEM were small, especially in 

terms of estimating interaction parameters. Similarly, biomass estimates from BEEM 

had median relative error <5% when 20 replicates were available (Figure 3.2D). In 
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general, our analysis suggests that inherent limitations in gradient matching based on 

estimated gradients from data were a greater source of error for gLVM parameter 

estimation in many of our experiments than errors in BEEM estimated biomass values. 

To assess BEEM’s performance for biomass inference in real-world datasets we 

analyzed data from a recently published study on freshwater microbial 

communities143,144, which to our knowledge is the only one to have sufficient 

longitudinal microbiome sequencing data as well as flow-cytometry based gold-

standard biomass estimation. Notably, the flow cytometry data in this study was 

reported to have high reproducibility (CV<5%)143, and therefore was suitable for use as 

the ground truth for total biomass. Surprisingly, with only 57 time points in total across 

two replicate experiments, BEEM was able to infer the total biomass for a 26-species 

community accurately solely based on 16S sequencing based relative abundances (Note 

that none of the species abundances had noticeable correlation with the true biomass, 

with a highest Spearman’s 𝜌 =0.41). BEEM estimated biomass trajectories closely 

tracked those obtained experimentally (Figure 3.3A), and showed strong correlation 

with ground truth (Spearman’s 𝜌=0.72) while control values from CSS scaling exhibited 

weak correlation (Spearman’s 𝜌=0.36; Figure 3.3B).  
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Figure 3.2 Robustness of parameter estimation with BEEM. 

(A) Results with increasing number of species but fixed number of replicates (50).  As expected, parameter 

estimation gets harder but BEEM’s performance tracks the ideal case using BLASSO with true biomass 

values, especially for interaction parameters. (B) Median relative error in biomass estimates remains less 

than 10%. (C) Results with increasing number of replicates and fixed number of species (15). BEEM’s 

performance converges to that of BLASSO with true biomass as the number of replicates increases. (D) 

Median relative error in biomass estimates reduces noticeably as the number of replicates increases. 
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Figure 3.3 Concordance of BEEM estimated biomass with gold standard experimental 

measurements. 

(A) BEEM estimated biomass values (orange) compared to gold standard measurements using flow 

cytometry (black). (B) Scatter plots with fitted linear regression line highlighting that BEEM’s biomass 

estimates are notably more concordant with flow cytometry based values compared to CSS normalization 

based estimates. 
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3.3.4 Personalized gut microbial dynamics and keystone species 

The development of BEEM allows us to analyze previously generated datasets in a 

gLVM framework, even when biomass measurements were not made in the original 

study. To showcase this capability, we applied BEEM to the longest (over one year) and 

most densely (almost daily) sampled human gut microbiome time-series datasets 

available to date (four individuals: DA, DB from David et al151 and M3, F4 from 

Caporaso et al150). BEEM estimated models exhibited a good fit to the data, with 

predicted relative abundances for a day based on numerical integration from the 

previous day being in high concordance with observed data (median Spearman’s  = 

0.83). As BEEM directly infers daily biomass values, we plotted these and observed 

distinct individual-specific patterns: while subject DA’s biomass was found to vary 

relatively smoothly, following an approximately cyclic pattern with a period of about 

three months (Figure 3.4A), subject M3’s biomass fluctuated to a greater extent on a 

day to day basis with no clear trend (Figure 3.4B). Similar patterns were observed in 

parts for subjects DB and F4, which had a greater resemblance to DA overall (Figure 

8.3A, B). The fluctuations predicted in M3’s biomass were also found to be 

accompanied by frequent blooms of rare taxa that were otherwise not detected at other 

time points152 and may be a consequence of this instability in the community. In 

contrast, the smoother progression of DA’s biomass may be a reflection of the relative 

stability of the gut community in this individual, though the source of the observed 

cyclic patterns deserves to be explored further. As an initial hint, we noted that the 

strongest association between DA’s biomass and reported metadata was a negative 

correlation with calcium intake (Figure 8.4). 

Concordant with their distinct biomass dynamics, DA and M3 also exhibited 

microbial interaction networks that were unique to them (Figure 3.4C, D). DA’s 
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network was defined by hub nodes for Feacalibacterium prausnitzii and Bacteroides 

uniformis, two species with many beneficial roles and frequent associations with a 

healthy gut160,161. The hubs were found to negatively affect the growth of 

Enterobacteriaceae species, consistent with previous reports for B. uniformis162 and F. 

prausnitzii163–165. In comparison, the major hub nodes in M3’s network were a Blautia 

and an Oscillospira species that were connected by a positive feed-forward loop. 

Additionally, we found that abundances of the Blautia and Oscillospira species were 

significantly negatively correlated with total biomass in M3’s gut microbiome (Figure 

8.5). Feed-forward loops have been implicated in destabilizing effects on ecosystems142 

and so these observations may explain the unstable behavior of M3’s biomass as well as 

the corresponding susceptibility to invasive blooms of rare taxa152. Oscillospira’s 

protective role in M3’s gut flora is further indicated by its parasitic relationship 

(negative-positive loop) with another hub species B. fragilis, an opportunistic pathogen 

that has been associated with diarrhea166. Interestingly, several of the transient species in 

M3’s gut microbiome were observed to be at the periphery of the network, with a single 

incoming edge indicating that their abundances were being influenced by a hub species. 

For example, this was observed for several Streptococcus species that are primarily oral 

commensals and could be transient colonizers of the gut167,168. 

Despite differences in the identity of species in their interaction networks, the 

various individual-specific networks shared some common features, including the 

presence of a few hub nodes that negatively influenced many other species, and were 

generally not the most abundant species in the community (Figure 3.4C, D and Figure 

8.3C, D). Overall, we also found that the ratio between out- and in- degree of species in 

the networks were negatively correlated with their median relative abundances (Figure 

8.6), suggesting that the hub species in the interaction network, that are often considered 
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as keystone species for the community75,169, are typically not the abundant species in the 

gut microbiome. We further confirmed this observation by analyzing a large collection 

(840 healthy individuals) of gut microbiome datasets159, to find that the core species in 

the gut microbiome were also frequently not the most abundant species (Figure 8.7). 

Together, these observations suggest a model for the gut microbiome where relatively 

less abundant species in the community are more stable colonizers of the host, and by 

virtue of their impact on the growth of other species in the community, play an 

important role in defining its dynamics in different individuals.  
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Figure 3.4 BEEM analysis of year long gut microbial time-series datasets. 

(A,B) BEEM estimated biomass values for two individuals (DA and M3) with daily sampled, year long gut 

microbial time-series datasets from David et al150 and Caporaso et al151. Interestingly, while M3’s biomass 

fluctuates rapidly, DA’s biomass seems to vary in a more defined fashion with a periodicity of around 3 

months. (C, D) Graphs representing non-zero interaction terms in gLVM models learnt individually for DA 

and M3 using BEEM. Dashed and solid edges represent positive and negative interactions respectively. 

Edge widths are proportional to the interaction strength and node sizes are proportional to the log-

transformed mean relative abundance of the corresponding species. Nodes are labeled with GreenGenes IDs 

and colored according to order level taxonomic annotations. 

  



Predicting Microbial Interactions with Modelling Approaches 

50  Li Chenhao - May 2019 

 

3.4 Discussion 

A major limitation of most microbiome profiling datasets available to date is the 

restriction to relative abundances and the ‘compositionality’ of this data has led to 

significant challenges even when performing common statistical tests for correlated 

abundances43. These issues are amplified when considering systems models such as 

gLVMs, and our analysis here confirms that model parameter estimates can be severely 

distorted if relative abundances are not correctly scaled. In ecological models such as 

gLVMs, interactions between species are naturally a function of the absolute density of 

species in a community rather than their relative abundances. Correspondingly, while 

autoregression based methods such as sVar152 and ARIMA170 provide an alternative for 

model fitting with relative abundance data, their models and parameters are not 

ecologically interpretable. In addition, experimental approaches to measure scaling 

factors are generally seen as a laborious and occasionally feasible way to work with 

absolute abundances, but as we show here, this may not be the case if care is not taken 

to ensure that experimental noise is minimized and sufficient number of replicates are 

analyzed. By eliminating the need for additional experimental data, BEEM greatly 

expands the applicability of gLVMs to microbiome datasets, and its robustness could 

simultaneously improve the quality of models and scaling factor estimates, as observed 

in our synthetic and real datasets. Explicitly modelling microbial interactions through 

gLVMs has proven to be a powerful framework for studying microbial community 

dynamics74–76,138–142, and the approach used in BEEM could also be extended (with 

minimal modifications) to time-series with external perturbations (e.g. antibiotics 

usage)74,76,140, as well as systems models for gene expression regulation based on RNA-

seq data171.  
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Due to limited availability of absolute abundance data, gLVMs have generally 

been constructed by aggregating information across experiments and individuals74,76,140. 

We exploited the availability of year-long time series datasets and BEEM’s facility with 

relative abundances to construct individual specific gut microbiome gLVMs for the first 

time. Intriguingly, we observed that our inferred scaling factors suggest that gut 

microbial biomass has distinct dynamics across different individuals. Consistent with a 

recent study on 20 individuals where human gut microbial biomass (measured via flow-

cytometry) was found to have high variation (CV53% within a week)43, we also noted 

high variability over time across the four individuals we analyzed (CV ranging from 49% 

to 76% over a year). Additionally, we observed cyclic behavior of biomass trajectories 

in multiple individuals, similar to the seasonal patterns reported in hunter-gatherers of 

western Tanzania172, and the conserved patterns observed in other mammals across 

evolutionary timescales173. Similar patterns have not been reported before for western 

city dwellers, perhaps due to the confounding effects of aggregate analysis across 

individuals and the impact of highly diverse diets. BEEM analysis, however, suggests 

that the underlying patterns may still be conserved in urban subjects and may be more 

general than previously believed.  

Our inference of gLVM models for each individual allows us to identify specific 

microbial species and the kinds of interactions that they have, to account for the distinct 

dynamics that were observed. For example, the positive feed forward loop observed 

between the hubs in M3’s gut microbiome provides a specific, plausible and testable 

hypothesis to explain the instability observed there, and this capability can be valuable 

in future studies where targeted interventions are feasible. Despite differences in the 

microbial interaction networks observed for different individuals, a shared feature 

seems to be the presence of relatively lowly abundant species that act as hub nodes in 
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the network. A similar pattern was seen in cross-sectional data as well where frequently 

shared “core” gut microbiome species tend to not be the most abundant species in the 

community. These observations point to a model where species at low relative 

abundances stably colonize the gut (e.g. mucosa-associated ones) compared to abundant 

but transient (lumen-associated) bacteria and play an important role in defining gut 

microbiome dynamics. In particular, hub species were frequently found to negatively 

regulate more transient species in the community, in agreement with the known role of 

mucosa-associated species in providing colonization resistance against invasive 

pathogenic species174. 

An important point that we noted in the gut microbiome datasets that were 

analyzed here is the limited number of core species (prevalent in most time points for an 

individual) that are shared across individuals. This feature makes it infeasible to learn 

gLVM models by merging short time-series datasets across different individuals. 

Similar constraints might be present in other microbial communities as well, including 

specific challenges in measuring total biomass in complex matrices43, and thus the 

development of BEEM makes it more feasible to generate the long and densely sampled 

datasets that are needed for such models. We also note that the analysis in BEEM can be 

directly extended to cross-sectional datasets if the corresponding communities are 

believed to be at equilibrium (i.e. 
𝑑𝑥𝑖(𝑡)

𝑑𝑡
= 0, for all species). This extension would 

significantly expand the amount of data that could be used and thus allow us to learn 

even more complex models in the future. As is the case for any modelling approach, no 

model is expected to be perfect, but as they capture more and more features of real 

systems, we can expect that their predictions become increasingly useful. BEEM’s 

development therefore serves as an important step in expanding the use of modelling 

approaches to study microbial community dynamics and rationally identify appropriate 

perturbations. 
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4 UTILITY OF CORRELATION BASED METHODS TO 

INFER INTERACTIONS FROM MICROBIAL PROFILING 

DATA 

4.1 Background 

As discussed in previous chapters, interactions in microbial communities are often 

represented as weighted directed graphs based on their pairwise interactions (Figure 

4.1A), where each node represents a microbial species and each weighted edge 

represents an interaction. The overall makeup of the microbiome is then determined by 

the  interactions between different members in the community and the interaction these 

members have with their surrounding environment. A widely used high-throughput 

approach to study microbial interactions is to infer them computationally from 

microbial abundance profiles collected across different sites (i.e. cross-sectional 

microbiome survey data) by computing correlations between the abundances of 

different species. As reviewed in Chapter 2, many computational algorithms have been 

proposed to address various challenges in inferring microbial interactions using 

correlation based methods. However, the relative strengths and weaknesses of these 

methods, many of which have been recently developed, still remains unclear, 

particularly in the presence of data that is not derived from the models that these 

methods are based on. In this chapter we build upon previous benchmarking175 and 
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review articles133 as well as individual benchmarking techniques employed by 

publications of the different correlation based methods. We test the largest collection of 

different methods for inferring microbial interactions from cross-sectional microbiome 

survey data on both simulated and real datasets. Our evaluation procedures aimed to 

challenge the different methods by basing our simulations on both statistically modelled 

data with defined correlation structure, as well as ecologically modelled data using 

generalized Lotka-Volterra models (gLVMs).  

Interestingly, our analysis shows that correlation-based methods predict 

microbial interaction networks reasonably well on statistically simulated data but 

perform poorly on data simulated from gLVMs. Additionally, we show that most 

correlation-based methods are not robust to variations in input features (e.g. number of 

samples, number of species etc.) and lack concordance with one another when applied 

to real datasets. These observations suggest that results from existing correlation based 

algorithms should be viewed with caution, especially when the goal is to infer 

ecological interactions from microbiome datasets. 
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Figure 4.1 Overview of microbiome survey data and benchmarking data production 

process. 

(A) Microbiome survey data is produced by sampling microbial communities and producing abundance 

tables where rows represent species and columns represent samples. These tables are analyzed using 

different algorithms to reconstruct correlation networks that represent the real underlying community make-

up. (B) Microbiome survey data is fed into different models to produce synthetic data with known 

interactions. Two main models were used to create synthetic data: a statistical model, and an ecological 

model (generalized Lotka-Volterra model). (C) Synthetic data was generated with varying features to 

analyze which correlation detection tools were most robust to these different features.  
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4.2 Methods 

4.2.1 Generation of synthetic datasets using statistical models 

In order to capture the properties seen in real data, we generate simulated microbiome 

profiles using the normal-to-anything approach implemented in the SPIEC-EASI 

package48, based on the real OTU count data (provided along with the package) and a 

defined correlation network topology as the ground truth. The simulator was run, 

varying input parameters to control for different features in the simulated dataset 

(Figure 4.1C). We set the default conditions in the simulation with the following 

features: 50 species (composite a median 69% of the real OTU data), 100 samples (an 

over-estimated number of samples for a typical microbiome study), a zero-inflated 

negative binomial distribution (shown to best fit the real OTU data48), one interaction 

per species and random (Erdős–Rényi model) graph structure. We then generated 

different simulations varying each feature one at a time (Table 8-1).  

4.2.2 Test datasets based on synthetic microbial communities 

Simulated data was generated following the same procedure as described in Chapter 2 

following the equation: 

𝑑𝑥𝑖(𝑡)

𝑑𝑡
= 𝜇𝑖𝑥𝑖(𝑡) + ∑ 𝛽𝑖𝑗𝑥𝑖(𝑡)𝑥𝑗(𝑡)

𝑝

𝑗=1

. 

To simulate samples with 𝑝  species in total, we numerically integrated the 

gLVM equations with known interaction and growth parameters until a steady state was 

reached in each sample (all abundances change less than 10-5) with initial abundances of 

species sampled from a uniform distribution (from 0.001 to the mean carrying capacity 

−𝜇𝑖/𝛽𝑖𝑖  of all species). Absence-presence patterns as observed in real microbiome 

profiling data was introduced by setting the initial abundance of each species to zero 
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with a probability  in each sample, where  was estimated from the average absence 

rate of the top 𝑝 species (ranked by the number of non-zero entries) in all healthy adult 

gut samples from the curatedMetagenomicData database (v1.7.92)159. The interaction 

matrix was forced to be “symmetric” by default ( 𝛽𝑖𝑗 = 𝛽𝑗𝑖 ) or “asymmetric” by 

randomly setting off-diagonal entries 𝛽𝑖𝑗 or  𝛽𝑗𝑖  to 0 when both of them were non-zero. 

To simulate an unevenly distributed community, instead of sampling self-interactions 

from a normal distribution (default), we sample from a log-normal distribution 

parameterized by inferred values from MDSINE using the C. difficile infection dataset 

provided with the software140.  

4.2.3 Evaluating predicted interaction networks against ground truth 

Real microbial survey data was used to parameterize the data simulators described 

above (Figure 4.1A) to generate simulated datasets. In order to test the amount of data 

needed by the benchmarked methods for accurate inference, we varied the number of 

samples and the number of interaction parameters (by changing the number of species). 

We also examined the effect of the number of edges present in the interaction network 

as many of the methods rely on the edge sparsity assumption (Figure 4.1C). Besides, as 

real microbial communities have unknown properties on the structure of interaction 

network and the distribution of species abundances, the methods were tested for their 

robustness to varied condition of these properties.  

To evaluate the performance of the algorithms on synthetic datasets, the inferred 

interactions (non-zero entries in the correlation or partial correlation matrix output by 

the algorithms) were ranked based on the absolute values of the correlation coefficients 

(partial correlation coefficients for MInt and SPIEC-EASI) or the confidence values 

(stability for SPIEC-EASI and -log(p-value) for CCREPE), and the area under the 

precision recall curve (AUPR) was calculated based on the ground truth correlation 
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(statistical model) or interaction network structure (gLVM). For gLVM simulated data 

with asymmetric interaction matrix, a predicted edge was considered correct if there is 

an interaction in either direction. To evaluate the ability of using partial correlation to 

address false positives due to transitive associations, we also calculated the AUPR using 

the partial correlation matrix directly computed from the correlation matrix using the R 

package ‘corpcor’. The AUPR reported in the following sections is based on 

correlations if not specifically stated otherwise.  

4.2.4 Evaluation of robustness of interaction networks inferred for a real 

microbial community 

For a real dataset, it is not possible to calculate the accuracy of the methods due to lack 

of known interactions. However, a method should be robust and produce consistent 

results on random subsets of the dataset (given large enough sample size for each 

subset).  Therefore, we use the consistency of inferred networks from subsampled 

datasets to evaluate the performance of the methods. 

Count data was extracted from the American Gut Microbiome project OTU 

datasets176. We selected only samples from healthy individuals and the resulting 

abundance table was then filtered to remove species that are not commonly detected 

(present in <40% of samples), resulting in a data table with 62 species and 3233 

samples. The dataset was randomly partitioned into four subsets (with 62 species and 

approximately 800 samples), on which each method was run to test for the consistency 

of its predictions. The top 300 edges (ranked as in Section 4.2.4) inferred from different 

partitions as well as the full dataset were compared to calculate the Jaccard similarity 

(the size of intersections over the size of union) as a measure of reproducibility. 
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4.2.5 Correlation based methods included 

As summarized in Table 4-1, all correlation based methods reviewed in the previous 

chapter (Section 2.2) were tested with two new recently published methods BAnOCC177 

and gCoda178. Both BAnOCC and gCoda were developed to account for false positives 

caused by compositionality bias as well as indirect associations. 

4.3 Results 

4.3.1 Correlation based methods vastly vary in performance and robustness 

on data simulated from a parametric model 

4.3.1.1 Using partial-correlation over correlation-based analysis does not improve 

performance as expected 

Correlation based methods generally output either an inferred correlation matrix or a 

partial-correlation matrix (Table 4-1). In this analysis we evaluated both matrices for all 

methods, except for CCREPE as it does not provide meaningful correlation coefficients 

(Chapter 2). Theoretically the partial-correlation matrix removes correlations due to 

transitivity, and therefore we expect higher AUPR with it. However, we typically 

obtained lower AUPR values for our synthetic datasets when using partial correlation 

values, except for the methods BAnOCC and gCoda. This is likely due to the loss of 

true edges when converting correlation matrices to partial-correlation matrices (Figure 

8.8), suggesting that partial correlation based methods can be too conservative under the 

conditions tested. For results reported in the rest of this chapter we use correlation 

matrix outputs where feasible (i.e. except for MInt and SPIEC-EASI), rather than 

partial-correlation matrix outputs as this provides better results in general. 

4.3.1.2 Identification of key factors that influence performance variability in 

interaction network reconstruction 

We examine different factors about the input data that potentially affect the performance 

of the algorithms, including number of samples, number of species, number of edges in 
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the network, network structure, and the distribution of species abundance across 

samples. 

Kurtz et al noted previously that sample number has a large effect on the 

performance of correlation based methods48. As seen in Figure 4.2, CCREPE had the 

best performance when the sample size was less than 100, potentially attributed to the 

robust non-parametric test used to remove false positives. Most of the methods based on 

log-ratio transformation and sparse regression benefitted from increasing number of 

samples (CCLasso, REBACCA, SparCC, MInt, SPIEC-EASI, BAnOCC and gCoda).  

CCLasso and BAnOCC were found to have the best performance when the number of 

samples were large (1000). Interestingly, a simple approach using Spearman correlation 

had comparable or better performance than many methods on datasets with a medium 

sample size (500). 
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Figure 4.2 Performance of correlation-based methods on data simulated by statistical 

model. 

Bars represent the mean area under precision recall of 30 replicates and the error bars represent the standard 

deviations comparing the reported correlation matrix with the ground truth precision matrix.  Simulated data 

was generated with the following features: 50 species, 100 samples, 50 edges, random network structure, 

and zero inflated negative binomial distribution. (A) Results as a function of the number of samples in the 

dataset. (B) The impact of community distribution on performance. “negbin”: negative binomial 

distribution, “pois”: Poisson distribution, “zinegbin”: zero inflated negative binomial distribution, “zipois”: 

zero inflated Poisson distribution. CCREPE.P: CCREPE using Pearson’s correlation, CCREPE.S: CCREPE 

using Spearman’s correlation, SE.mb: SPIEC-EASI using its MB algorithm, SE.glasso: SPIEC-EASI using 

its glasso algorithm. Dashed lines represents the average performance of 30 random networks based on 

permuting the edges in the ground truth network. 
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The distribution of species abundance also had notable impact on the 

performance, with most methods performing best on data modelled under a negative 

binomial distribution. Most methods decrease in performance on data generated from 

zero inflated distributions. As discussed in the previous section (Section 2.2), frequently 

appeared zero values could become outliers that confuse the correlation based methods. 

Interestingly, we see a substantial drop in performance in REBACCA, MInt, and 

BAnOCC when the data was generated from a Poisson distribution, probably due to 

overfitting to over-dispersed models (variance greater than mean). 

Factors that had a limited effect on performance were number of edges, number 

of species, and network topology (Figure 8.9). As expected, increasing the number of 

species generally decreased the performance of most methods due to the quadratic 

increase in the number of parameters (edges) to estimate, and SPIEC-EASI was the 

most robust to this effect. Increasing the number of edges increased the performance of 

most methods. However, this is likely an artefact caused by higher chance of inferring 

an edge correctly as can be seen from the increase in the performance of randomly 

permuted networks.  

4.3.2 Correlation based methods fail to capture interactions in an ecological 

model  

While some of the methods was able to estimate the correlation structure accurate as 

shown above, we are typically more interested in how well the correlation inferred can 

capture ecological interactions. To test this, we adopted the approach proposed by Berry 

& Widder36 to generate simulated datasets from gLVMs – a simple yet widely used 

model for microbial ecology, and compare the inferred correlation matrix with the 

ground truth interaction matrix.  
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Note that in a gLVM, the effect of an interaction from a source species on a 

target species is a function of the interaction coefficient as well as the densities 

(absolute abundances) of both species. As the correlation based methods do not infer 

direction of interaction, they are expected to infer the interaction more accurately when 

the interaction between two species is symmetric (i.e. interacting in both directions with 

the same sign) and the abundances of the interacting species are close. 

As we expect, all correlation based methods performed the best when the 

samples had even species abundance distribution and the interaction network was 

symmetric (Figure 4.3). However, performance dropped for all methods when the 

interactions were asymmetric and dropped further if species abundances were uneven in 

each sample. As for real microbial communities, it is expected that the species 

abundances are uneven and that the interactions are composed of different types 

including both symmetric and asymmetric. In addition, the parasitic interactions (i.e. 

positive-negative interacting pairs) could further complicate the observed species 

abundance pattern, making it difficult for correlation based methods to capture.  
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Figure 4.3 Performance of correlation-based methods on data simulated by gLV model.  

Overlaid bar-plot where bars represent the AUPR values (mean of 30 replicates) of inferred interactions with 

correlation based methods (Symmetric/Asymetric: all interactions in the network are symmetric/asymetric, 

Even: evenly distributed species abudance in each sample, Uneven: log-normally distributed species 

abundance in each sample). 
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To compare the performance of the methods on our two different simulation 

schemes, we generated two similar datasets with the statistical and ecological models 

with the same features. Despite having a large sample size, we observe that all methods 

perform much worse on data generated using the simple ecological model (Figure 8.10), 

suggesting that correlation based measure may not be a proper indicator for ecological 

interactions if the underlying mechanism is close to the gLVMs. 

4.3.3 Correlation based methods have low stability and concordance  

4.3.3.1 Correlation based methods have low concordance with one another on both 

real and simulated data.  

To investigate method concordance we ran each method on two different datasets: a real 

OTU dataset from the American Gut Microbiome project176, and a simulated dataset 

with 1000 samples. We observe that most methods generally had low concordance with 

others (Figure 4.4). Methods based on variants of log-ratio transformation (Chapter 2) 

produced more similar results to each other on both simulated and real datasets. Notably, 

the most recent developed algorithms BAnOCC and gCoda had largely overlapped 

predictions likely due to the similar underlying log-normal latent structure assumed, but 

gCoda is much more scalable in computational resources (Table 4-1). 
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Figure 4.4 Correlation based methods have low stability and low concordance with one 

another.  

Each circle on the upper corner represents the Jaccard similarity (proportional to both color and size of the 

circle) between two methods and the numbers on the bottom corner are the exact values. Methods were ran 

on a real dataset (left, 62 OTUs and 3233 samples) and a simulated dataset (right, 50 species, 1000 samples, 

50 edges, random network and zero-inflated negative binomial distribution). REBECCA failed to run on the 

real dataset with 100GB of memory and was not included. 
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4.3.3.2 Correlation based methods have low concordance within themselves on 

subsampled data.  

We evaluate the stability of inferred interactions by all the methods using randomly 

partitioned American Gut dataset (Figure 8.11). Surprisingly, most of the methods had 

low concordance between partitions (Jaccard similarity around 0.5), with the exception 

of SPIEC-EASI, which particularly emphasize on the robustness to subsampling and 

reports edge confidence based on the stability of predictions across subsampled datasets. 

We also note that CCREPE had the worst stability (Jaccard similarity around 0.12) in 

general despite it is the most accurate method on small datasets.  

4.4 Discussion 

Currently, correlation based methods are the most widely used tool to infer microbial 

interaction networks from cross-sectional microbiome survey data. Confidence in these 

inferences is important considering the fact that studying these interactions in the lab is 

practically impossible given the work intensity and current culturing techniques. While 

newer and more sophisticated methods are being developed for this task, the baseline 

goal of uncovering microbial interaction networks through correlations is only valid if 

these methods actually have adequate performance. However, with the results from the 

systematic investigation on a large set of correlation based algorithms for detecting 

microbial interactions, we are greatly concerned about the varied performance of these 

methods on the different features present in the input data.  

On datasets generated from statistical models, the most critical factor affecting 

the performance of correlation based methods was the sample size. Considering the 

large number of variables to infer, we found that hundreds of samples were needed for 

accurate inference of the correlation structure used to generate the data even though 

many of the methods employ sparse constraints (i.e. lasso regression). Nevertheless, the 
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sample size is usually limited by the resources, and caution must be taken when 

choosing and applying correlation based methods for analysis. Assuming microbial 

interactions resulted in correlated abundances, we have come up with recommendations 

on the usage of these methods as can be seen in Table 4-1.  

Table 4-1 Summary of different correlation-based methods with recommendations on use 

 

*all methods were run using 1 core apart from BAnOCC which was run using 10 cores. 

Intriguingly, we observe low concordance when running each method on 

subsampled datasets from the American Gut Microbiome project176. As previous 

analysis has suggested, the interactions are not likely to change across samples for 

human gut microbiome179. A plausible explanation is that the interactions among 

microbial members result in more complex association between species abundances 

than what correlation based methods can measure. On simulated data generated using 

simple ecological models (gLVMs), we confirmed that correlation based methods 

suffered from substantial drop in their accuracy in capturing the true interactions 

compared to the data simulated with a statistical model. Despite its conceptual 

simplicity, gLVM is known to be able to result in complex abundance patterns 

including the cyclic behaviour, where the correlation between abundances can be either 

Method Similarity Metric Recommendations Performance Metrics* Availability (version)

Average CPU 

runtime (s)

Average maximum 

memory usage

CCREPE
Pearson/Spearman 

correlation (or any 

similarity measure)

Use if you have a small sample size (less than 

100). Keep in mind that this method has low 
concordance with itself and other methods. 

28.6±4.3 496.6 MB http://huttenhower.sph.harvard.edu/ccr

epe (v1.2.0)

SparCC
Linear Pearson 

correlations between 

the log-transformed 

components

Only use with large sample size (at least 500). 

Underperforms compared to CCLasso which uses 
similar methodology. 

45.2±16.1 202.2 MB https://bitbucket.org/yonatanf/sparcc  

REBACCA
Correlations between 

the log-transformed 

elements

Only use with large sample size (at least 500). 

Underperforms compared to CCLasso which uses 
similar methodology. 

54.7±11.7 355.9±7.5 MB http://faculty.wcas.northwestern.edu/~h

ji403/REBACCA.htm 

CCLasso
Pearson correlation 

between log absolute 

abundances

Only use with large sample size (at least 500). 

Outperforms SparCC and REBACCA which use 
similar methodology. Performs considerably well 

on gLV data. 

60.3±11.3 242.3 MB https://github.com/huayingfang/CCLas

so (v1.0)

MInt
Partial correlation 

between sequencing 

counts

Only use with larger sample size (close to 500). 

Performs badly on ecologically modelled data. 

653.0±100.5 189.2 MB https://cran.r-

project.org/web/packages/MInt/vignett

es/MInt.html (v1.0.1)

SPIEC-

EASI

Partial correlation 

between log 

transformed absolute 

abundance

Only use with larger sample size (greater than 

100). Neighbor selection (mb) model performs 
best. Has greatest concordance. 

106.3±20.3 343.1±4.3 MB https://github.com/zdk123/SpiecEasi

(v0.1.4)

BAnOCC
Log-basis correlation 

matrix and precision 

matrix

Requires most computational resources, not 

recommended if sample size is small (less than 
500). Has relatively high concordance with itself 

and relatively good performance on gLV data. 

.2792.4±131.5 3.6±0.1 GB http://huttenhower.sph.harvard.edu/ban

occ (v1.0.1)

gCoda
Inverse covariance 

matrix
Requires large sample size (at least 500). 

Performs reasonably well on gLV data. 

4.9±2.3 348.4±29.2 MB https://github.com/huayingfang/gCoda 

(commit ID 584bd07) 
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positive or negative depending on their abundances180. Assuming an ecological model 

like the gLVM closely captures the dynamics of the microbial community of interest, 

one potential way of inferring interactions was to learn the model directly from the data 

although theoretical and technical challenges still remain to be addressed115. 
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5 BEEM-STATIC: EXTENDING THE BEEM FRAMEWORK 

TO LEARN ECOLOGICAL MODELS FROM CROSS-

SECTIONAL MICROBIAL PROFILING DATA 

5.1 Background 

The interactions among members of a microbial community are important components 

of the behaviour and function of the microbial ecosystem. Such interactions are 

characterized by three basic factors: the direction (A affects B or B affects A or both 

ways), the sign (negative, positive or neutral) as well as the strength. Characterizing the 

microbial interactions is a key step towards understanding the ecology of a microbial 

community137,181, forecasting microbial dynamics and designing potential 

interventions182. In a laboratory setup, microbial interactions are usually investigated 

using co-growth experiments, but such experiments suffer from its low throughput and 

the limitation that a large number of microbes cannot readily be grown in a lab4.  

As a high-throughput approach, computationally inferring microbial interactions 

has now become a popular way to provide a set of candidate interactions for further 

study. The generalized Lotka-Volterra models (gLVM) consist of sets of mathematical 

equations that capture the response of the growth of a species to the change in densities 

(absolute abundances) of other species, and are the most extensively used to study 

different types of pairwise microbial interactions75,140,157. The parameters of the gLVMs 
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(growth rates and interaction matrix) are often learned from long and dense longitudinal 

microbiome profiling data. In Chapter 3, we describe a novel expectation-

maximization (EM) like approach named BEEM that overcomes the major challenge in 

gLVM inference due to the lack of accurate total biomass data. BEEM alternates 

between estimating gLVM parameters and biomass values to eliminate the needs for 

experimentally measured biomass scaling factors.  

While longitudinal microbiome data is ideal for studying the dynamics of 

microbial abundances, it is much more scalable to generate cross-sectional microbiome 

data across different sites, especially different human subjects and a large amount of 

such data have been made available publicly159. Leveraging the easy availability of 

cross-sectional data, many computational methods had been developed to infer 

microbial interactions by calculating correlations between the abundances of microbial 

members, and such methods have become the most widely used approach for inferring 

microbial interactions (Chapter 2)133. However, one major limitation of correlation 

based approaches is that they are not able to reveal the directionality of the interactions, 

obscuring the relationship between the interacting microbes. In addition, correlation-

based approaches have variable accuracy and reproducibility in inferring ecological 

interactions as was shown in our benchmarking experiments in Chapter 4.  

On cross-sectional data, there is no information on the change rates of 

abundances comparing to the longitudinal data, so it is not possible to learn the gLVM 

parameters with the methods we described in Chapter 3 directly. However, the 

abundance of one species is still expected to vary due to the presence-absence pattern of 

another species interacting with it and such variation contains the information to 

estimate the gLVM parameters if we assume that all the samples are at the steady states 

(i.e. the abundances of species will not change without external perturbation). The 
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theoretical feasibility of such idea has recently be demonstrated in a recent work115. 

Nevertheless, the proposed algorithm still requires absolute abundances, and has to 

make the additional assumption that the total biomass is constant across all the samples. 

Such assumption is very likely to contradict the presence-absence pattern required for 

the model inference. Furthermore, it is not clear if it is adequate to assume that all the 

species are at the steady state for every sample and if the inference accuracy will be 

affected if such assumption is violated. 

In this chapter, we derive a new optimization problem from the gLVM assuming 

all the samples are at their steady states. We solve such problem with a novel algorithm 

for estimating both biomass and gLVM parameters from cross-sectional relative 

abundance data, named BEEM-static, inspired by the expectation maximization like 

framework adapted by BEEM. With extensive simulated data, we show that BEEM-

static accurately infers biomass values as well as gLVM parameters and provides 

significant improvement over a family of methods (Chapter 3) for inferring interactions 

based on correlations. In addition, BEEM-static is robust to the presence of samples up 

to 50% that are perturbed from the steady states by automatically detecting and 

removing such samples. On a large human gut metagenomics dataset, BEEM-static 

successfully filtered out samples with perturbed microbiome by antibiotics. Meanwhile, 

the inferred biomass values for different age groups have consistent trend with 

experimental results. Furthermore, we highlight that gLVMs learned with BEEM-static 

from snapshot data have the potential to reveal dynamic information of the microbiome. 

We propose a novel analysis to predict species in situ growth with BEEM-static fitted 

model and showcase that the predicted growth trends are consistent with the change in 

DNA replication rates measured independently and offer a way to forecast the species 

abundances. 
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5.2 Methods 

5.2.1 BEEM-static derivation 

Generalized Lotka-Volterra models are typically written in the form of the following 

system of equations: 

𝑑𝑥𝑖(𝑡)

𝑑𝑡
= 𝜇𝑖 𝑥𝑖(𝑡) + ∑ 𝛽𝑖𝑗𝑥𝑖(𝑡)𝑥𝑗(𝑡)

𝑝

𝑗=1

 , 

where 𝑥𝑖(𝑡) is the absolute density of species 𝑖 at time point 𝑡, 𝜇𝑖 is the growth rate of 

species 𝑖 and 𝛽𝑖𝑗  is the interaction term that defines the strength of the influence of 

species 𝑗’s abundance on species 𝑖’s growth. 

At the non-trivial equilibrium (
𝑑𝑥𝑖(𝑡)

𝑑𝑡
= 0 and 𝑥𝑖 > 0): 

𝜇𝑖 + ∑ 𝛽𝑖𝑗𝑥𝑗

𝑝

𝑗=1

= 0,            (1) 

where the time parameter 𝑡 now becomes implicit in the equation. We divide by -𝛽𝑖𝑖 and 

the biomass 𝑚 on both sides, move the 𝑥𝑖 term to the other side, and re-parameterize the 

equation to get: 

𝑥̃𝑖 =
𝑎𝑖

𝑚
+ ∑ 𝑏𝑖𝑗 𝑥̃𝑗

𝑝

𝑗=1,𝑗≠𝑖

 ,    (2) 

where 𝑎𝑖 = −
𝜇𝑖

 𝛽𝑖𝑖
, 𝑏𝑖𝑗 = −

𝛽𝑖𝑗

 𝛽𝑖𝑖
,  𝑥̃𝑖 is the relative abundance of species 𝑖 at equilibrium 

and the biomass 𝑚 = ∑ 𝑥𝑖
𝑝
𝑖=1  (thus 𝑚  is fixed at the equilibrium). We then 

simultaneously estimate biomass and model parameters using an EM-like framework as 

detailed below: 
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Estimating model parameters (E-step): We estimate the model parameters for 

each species 𝑖 with sparse regression (implemented with the ‘glmnet’ package in R) in 

iteration 𝑇: 

𝑥̃𝑖~𝑎𝑖
(𝑇)

∙
1

𝑚(𝑇−1)
+ ∑ 𝑏𝑖𝑗

(𝑇)
𝑥̃𝑗

𝑝

𝑗=1,𝑗≠𝑖

. 

Estimating biomass (M-step): for a sample, the equation for each species 𝑖 

provides an estimate for the biomass, and we take the median of these estimates as a 

robust estimator for the biomass of the sample: 

𝑚(𝑇) = median (−
𝑎𝑖

(𝑇)

∑ 𝑏𝑖𝑗
(𝑇)

𝑥̃𝑗
𝑝
𝑗=1

) . 

Initialization and termination: the biomass values are initialized with 

normalized abundances using cumulative sum scaling (CSS154), with a user defined 

scaling constant used as the median of biomass values (kept constant through the EM 

iterations). The EM process is run until convergence when the median of relative 

changes in biomass values is smaller than 10-3. 

5.2.2 Detecting samples violating the equilibrium assumption 

Samples that are not at equilibrium do not satisfy equation 1 and are therefore likely to 

result in inaccurate estimates for the biomass and model parameters. In each iteration, 

we calculate the median of squared error for each sample (including all the samples 

removed by the previous iteration) 𝑘 in the E-step: 

𝑒𝑘 = median
𝑥̃𝑖≠0

((𝑥̃𝑖 − 𝑎̂𝑖
(𝑇)

∙
1

𝑚(𝑇−1)
+ ∑ 𝑏̂𝑖𝑗

(𝑇)
𝑥̃𝑗

𝑝

𝑗=1,𝑗≠𝑖

)

2

) . 
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We then remove samples for the next iteration’s E-step to fit the regression if the 

median squared error is large (
𝑒𝑘−median(𝑒𝑘)

IQR(𝑒𝑘)
> 𝜖, where IQR is the inter-quartile range 

and 𝜖 is a user defined parameter with 3 as its default value).  

5.2.3 Selecting shrinkage parameters for sparse regression 

The shrinkage parameter  in the sparse regression penalizes the number of parameters 

to avoid overfitting and was selected based on 5-fold cross-validation in each iteration 

(selecting the value one standard error away from the best 183). In the E-step of the first 

iteration (𝑇 = 1), a crude selection of 𝜆𝑐
(1)

 is made from a sparse sequence with large 

range (10-10 to 10-1), then refined from a fine grain sequence from 
𝜆𝑐

(1)

10
 to 10𝜆𝑐

(1)
. In latter 

iterations (𝑇 > 1), the 𝜆(𝑇) is adjusted from previous iterations with a sequence from 

𝜆(𝑇−1)

2
 to 𝜆(𝑇−1) (the upper bound 𝜆(𝑇) is not updated to avoid progressively penalizing 

the parameters to reach an extremely sparse model). 

5.2.4 Generating simulated data 

Simulated data was generated following the procedure described in Chapter 2 and 

Chapter 3 by numerically integrating the model with known parameters. The off-

diagonal interaction parameters were generated randomly without enforcing symmetry 

or asymmetry and the diagonal entries were generated following a normal distribution. 

To generate a sample which is not at steady state, a random time point along the 

numerical integration (excluding the first five time points) where more than 50% of 

species differ by >20% from steady state abundances was selected. 

5.2.5 Analysis of gut microbiome data 

Healthy gut microbiome profiles from the curatedMetagenomicData database were 

preprocessed and used as the standard dataset for learning gLVMs by removing (1) 
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replicate samples, (2) timepoints other than the first timepoint in longitudinal studies, 

(3) samples from antibiotic treatment timepoints and (4) samples from infants. In 

addition, we included three validation datasets to evaluate different aspects of the model 

learned by BEEM-static: (1) all samples from Raymond et al184 to validate the ability of 

BEEM-static to filter out samples violating the model and growth estimation, (2) 

samples from healthy infants (only the first timepoint for each subject) with ages below 

12 months to validate the biomass estimation and (3) all samples after fecal microbiome 

transplantation from Li et al185 to evaluate the in situ growth estimation. To make the 

number of parameters tractable with the number of data points, we only kept core 

species that were present (>0.1%) in more than 30% of the samples and subsequently 

removed samples with the core species composite less than 30% of the total abundance 

in the standard dataset, resulting in 45 core species and 2962 samples. 

5.2.6 Estimating in situ growth using BEEM-static and GRiD 

With BEEM-static, the in situ growth rates are defined by the deviation from the 

equilibrium: 

𝑎̂𝑖 + 𝑚̂ ∑ 𝑏̂𝑖𝑗 𝑥̃𝑗

𝑝

𝑗=1

 , 

where 𝑎̂𝑖, 𝑚̂ and 𝑏̂𝑖𝑗  are estimated parameters. In addition, species replication rates for 

each sample in Raymon et al were estimated with the high-throughput mode of GRiD 

(v1.2.0; default parameters)185. GRiD values estimate the DNA replication rate as a 

proxy for the growth rate by computing the peak-to-trough ratio of the short read 

coverage of a genome. The genomes for stool samples provided with the software were 

used as the references and read reassignment using pathoscope2186 was enabled 

(parameter “-p”) to resolve ambiguous mappings. 
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5.2.7 Evaluation metrics 

We compute median relative error to assess the accuracy of predicted parameters 

numerically as: 

median (
|𝜃 − 𝜃|

max(|𝜃|, |𝜃|)
) , 

where 𝜃 and 𝜃  are the estimated and true parameters (𝒂, 𝒃 and 𝒎) respectively. The 

area under the receiver operating characteristic curve (AUC-ROC) was computed for 

the interaction matrix. The absolute values of 𝒃̂ was used to rank the interactions (off-

diagonal entries only) predicted for BEEM-static and the correlations was ranked the 

same as in Chapter 4. The accuracy of interaction signs was calculated as the fraction 

of interactions with correctly predicted signs in the true interaction matrix 𝒃 (non-zero 

off-diagonal entries only). 

5.3 BEEM-static accurately and robustly estimates biomass and 

model parameters on simulated datasets 

We generated simulated datasets from gLVMs with different model parameters to 

evaluate the performance of BEEM-static. In general, BEEM-static estimated 

parameters have low relative error compared to the ground truth, with <5% in the 

biomass, <10% in the carrying capacity (𝑎𝑖) and <20% in the interaction matrix (Figure 

5.1). The amount of error for BEEM-static estimated parameters decreases and finally 

reach plateau with increasing number of samples as we expect (Figure 5.1), and we 

observe that the number of samples required for saturated performance (no significant 

decrease in relative errors) increases linearly with the number of species (Figure 8.12 

and Table 5-1). The increase in number of samples is mainly required for accurate 

inference of the interaction parameters, whose number increases quadratically with the 

number of species. On the other hand, inference of biomass values was found to benefit 
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from the increase in number of species, which is equivalent to increasing the number of 

data points for biomass estimation. 

 

Table 5-1 Approximated number of samples for saturated performance 

Number of species 30 40 50 60 

Number of samples required 500 1000 1500 >2000 

 

Furthermore, we compared the performance of BEEM-static with the correlation 

based methods benchmarked in Chapter 4 (Figure 5.2). BEEM-static was found to 

have a median AUC-ROC about 87%, over 25% higher than the correlation based 

methods in general. Besides, BEEM-static predicted the signs of interactions much 

more accurately than the correlation based methods. 
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Figure 5.1 Median relative error of BEEM-static with varied number of samples and 

species with simulated data 

Each boxplot represents 30 simulated datasets with different gLVM parameters. 
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Figure 5.2 Accuracy of inferred interaction network by BEEM-static and correlation 

based methods 

(A) Example receiver operating characteristic (ROC) curves. (B) Boxplots summarizing the area under ROC 

curve (AUC-ROC) values and the accuracy of inferred interactions signs (30 simulated datasets with 30 

species and 500 samples for each boxplot). CCREPE.P: CCREPE corrected Pearson correlation, 

CCREPE.S: CCREPE corrected Spearman correlation, SE: SPIEC-EASI. 
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In a real microbiome dataset, the assumption that all samples are at the steady 

states is not likely valid due to short-term external perturbations (diet change, antibiotics 

usage etc). On simulated data, we observe that relative errors in all parameter types 

estimated by BEEM-static increases with larger percent of samples away from the 

steady states (Figure 5.3A). Despite the violation of the “steady state” assumption, 

BEEM-static notably outperforms correlation based methods (represented by spearman 

correlation corrected with CCREPE) in terms of predicting the presence of an 

interaction (higher AUC-ROC in Figure 5.3B). However, the presence of samples away 

from steady states has a much more profound impact on the accuracy of interaction 

signs predicted (Figure 5.3B). To overcome such challenge, we implemented a filter in 

BEEM-static to automatically remove samples that are detected to have poor fit to 

equation 1. The filter was found to greatly reduce the error rates and improve the AUC-

ROC and sign accuracy of interaction parameters. Strikingly, the AUC-ROC of the 

interaction matrix predicted was about 80% even when 50% of samples were away from 

the equilibrium. 
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Figure 5.3 Effect of samples not at steady states 

(A) The relative errors of BEEM-static with increasing percentage of samples not at steady states. Boxplots 

show the performance of BEEM-static with and without the filter to remove samples detected as not at 

steady states. (B) AUC-ROC and the accuracy of signs for the interactions inferred by BEEM-static and 

Spearman correlation corrected with CCREPE. Each boxplot represents 30 simulated datasets with 30 

species and 500 samples at steady states. 
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5.4 Model learnt by BEEM-static recapitulates known biology of 

human gut microbiome 

To validate the ability of BEEM-static to bring biological insights on real microbiome 

data, we ran BEEM-static on a large collection of gut microbiome profile of healthy 

adults as well as selected samples with special biological properties159. To assess the 

ability of BEEM-static for filtering out samples violating the “steady state” assumption, 

we included the samples from Raymond et al184, where healthy volunteers were under 

antibiotics treatment. Such treatment is expected to kill most of the bacteria of the 

normal gut flora, thus greatly perturbing the microbial system away from the steady 

states. BEEM-static was able to successfully filter the antibiotics treated samples out 

with a sensitivity of 88% (Figure 5.4A).  

An important advance of BEEM-static is to computationally infer comparable 

biomass values across all the samples (off by a single global scaling factor). Previous 

findings have shown that the total gut bacterial load of newborns younger than 12 

months are significantly lower than that of adults187,188. Consistently, BEEM-static 

estimated biomass values for adults were also found to be significantly higher than the 

newborns (Figure 5.4B). 

By fitting a dynamic model to the snapshot data, BEEM-static allows us to 

characterize the in situ growth of each species in each sample as the deviation from the 

steady state (0 in equation 1). The growth rate for a species is a net effect of cell 

replication rate and cell death rate. With genomic sequencing data, the DNA replication 

rate for bacteria can be estimated by the coverage of short reads across the genome, also 

known as the peak-to-trough ratio (PTR) and it is usually used as a proxy for the cell 

replication rate189. We estimated the PTR values for each species in the subjects not 
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currently taking antibiotics from Raymond et al using software GRiD185, as orthogonal 

information for in situ growth. Species predicted to increase in absolute abundances by 

BEEM-static were found to have significantly higher PTR values than species predicted 

to decrease in absolute abundances (Figure 5.4C). To showcase the ability to forecast 

abundance changes, we trained BEEM-static including two time course datasets from 

Raymond et al (control samples not taking antibiotics) and Li et al185 (samples after 

faecal microbiome transplantation), and compared the abundances change directions 

predicted by BEEM-static from earlier time points with the absolute abundance 

differences between adjacent timepoint pairs. Even though no prior information about 

the temporal links between samples were given to BEEM-static, we found that BEEM-

static on average have an accuracy of 62% (Wilcoxon test for > 50% p-value = 5.7×10-6) 

and some samples with over 80% prediction accuracy (Figure 5.4D). Ideally, daily 

sampled gut microbiome data from Fukuyama et al190 would be a better choice for 

validating the forecasting accuracy of BEEM-static and is planned to be analysed as our 

future work. 
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Figure 5.4 Analysis of a large gut microbiome dataset using BEEM-static 

(A) Multidimensional scaling (MDS) plot using Bray-Curtis distance. The samples under antibiotics 

treatment were highlighted and colored by whether BEEM-static detected them as violating the model 

assumption (blue) or not (red). (B) Biomass scales (scaled to have a median of 100) estimated by BEEM-

static for samples from adults and new-born infants. (C) Species in situ growth predicted by BEEM-static 

(increase or decrease) and GRiD (DNA replication rate). (D) Examples of predicting abudance changes in 

future time points using BEEM-static (samples with prediction accurary > 80% were shown). 
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6 DISCUSSION 

As an important component of microbial community ecology and function, the 

interactions among microbial members is one of the most fundamental property yet 

remain poorly understood. The advances in high-throughput sequencing technologies 

have created new opportunities for the characterization of microbial interactions by 

generating large amount of microbiome profiling data.  

In this thesis, we investigate how to utilise such rich source of data to infer 

microbial interactions. We leverage the generalized Lotka-Voterra model (gLVM) and 

propose a novel expectation maximization like framework, BEEM for learning accurate 

model parameters from “compositional” microbial profiling data by coupling the 

biomass estimation with the model inference. On longitudinal microbial profiling data, 

we demonstrated that BEEM significantly outperformed the existing approaches that 

relied on data scaled using experimentally measured biomass. We applied BEEM to 

infer biomass and interactions from four densely sampled longitudinal datasets and 

discovered personalized ecological interaction networks structures driving the distinct 

dynamics of microbial compositions in different individuals.  

Comparing to longitudinal microbiome profiling data, there are currently much 

larger number of cross-sectional datasets available, which serve as great resource for 

studying microbial interactions at a population scale. However, the widely used 
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correlation based approaches for inferring interactions from such data could fail to 

capture ecological interactions, as we demonstrated with both synthetic and real 

microbiome data. Motivated by BEEM, we extended its core algorithm and developed 

BEEM-static to work with cross-sectional data and implemented an R package 

dedicating to the inference, exploration and visualisation of ecological models. 

Comparing to the theoretical approach based on ecological models proposed recently115, 

BEEM-static provides greatly extended applicability by addressing two major 

challenges. BEEM-static is able to handle relative abundance data with the EM-like 

framework, and more importantly does not rely on the assumption that all samples are at 

the steady states. In addition, BEEM-static also allow us to infer instantaneous growth 

of each bacterium in a sample based on the deviation of abundance from its steady state. 

Moving forward, we plan to develop BEEM-static into a toolbox for learning reusable 

ecological models from a large collection of cross-sectional data, which can be used to 

predict the dynamics of newly collected samples as well as their biomass values. In 

addition, the interactions learned with our two methods, especially BEEM-static 

provides important species candidates that carry interactions with major community 

members, and it will be interesting to see if BEEM-static can be used to guide the 

design of new probiotics manipulate the microbial community structure. 

As presented, BEEM and BEEM-static utilize similar EM-like frameworks to 

solve the parameters although they have different derivations. In fact, we expect that our 

EM-like framework for handling relative abundance data to work on differential 

equation models beyond the gLVM. For example, the gLVM can be extended to include 

parameters for external perturbations (e.g. diet and antibiotics) by adding a set of 

constants to solve similar to the growth rate term in the model. In addition, it also worth 

to explore other complex ecological models involving high-order interactions or non-

linear terms, although it should be demonstrated that they capture relevant dynamics of 
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microbial communities beyond the gLVM. In summary, we believe that our novel work 

makes significant contribution to both biological and computational sides of the field 

studying microbial function and ecology. 

While this thesis mainly focuses on computational approaches for inferring 

microbial interactions, we appreciate the continuing efforts in investigating microbial 

interactions using experimental approaches in combination with computational or 

theoretical methods. For example, exhaustive co-growth experiments at medium scale 

(~10 species) have been conducted by different groups, systematically investigating 

different combinations of  microbes to characterize their pairwise as well as higher-

order interactions131,191. These studies not only provided insights into the interactions 

and assembly of simple microbial communities, but also generated well-controlled 

datasets for testing and benchmarking existing and newly developed algorithms. In the 

meantime, the development of artificial gut communities with bioreactors is expected to 

serve as platforms for generating high-quality datasets and testing interesting 

hypothesis192. 
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APPENDIX 1 SUPPLEMENTARY TABLES & FIGURES FOR 

CHAPTER 2 

 

Figure 8.1. Noise in experimentally determined biomass severely distorts gLVM 

parameter estimation.  

(A) Scatter plots with fitted linear regression lines for three 16S qPCR technical replicates from Bucci et al. 

(B) Relative impact of different gLVM parameter estimation algorithms (BAL, BVS, BAL_spline and 

BVS_spline as implemented in MDSINE) and data scaling approaches. Boxplots represent the summary of 

15 simulations (10 species, 30 replicates with 30 time points each). Note that, in general, different data 

scaling approaches were found to impact performance more than the different estimation algorithms. Dashed 

horizontal lines represent the performance of randomly generated parameters from the simulation model. In 

general, scaling with true factors and using BEEM provided notably good results, and among competing 

experimental (FC_rep1, FC_rep3, qPCR_rep1, qPCR_rep3) and computational approaches (RA – relative 

abundance, CSS – CSS normalization, TMM – TMM normalization, LIMITS), having three replicates from 

flow cytometry was the closest (FC_rep3). Note that LIMITS does not compute growth rate parameters. 

 

 

Figure 8.2. Relative abundance distribution of gut microbiome 

Relative abundances observed for the most abundant species in 840 normal stool metagenomic samples 
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from Pasolli et al. Filled boxplots show cumulative values. 

 

Figure 8.3 BEEM estimated biomass and interaction networks. 

BEEM estimated biomass (A and B; scaled to median of 104) and interaction networks (C and D) from the 

two shorter gut microbial longitudinal profiles from David et al and Caporaso et al. Dashed and solid edges 

represent positive and negative interactions, respectively, in the networks. Edge widths are proportional to 

the interaction strength and node sizes are proportional to log-transformed mean relative abundance of the 

corresponding species (OTU). Nodes are labeled with GreenGenes IDs and colored according to order level 

of taxonomic annotation. 

 

Figure 8.4 Association between biomass and dietary data 
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Changes in calcium intake (z-score normalized) for the preceding day (orange) in relation to BEEM-

estimated biomass (z-score normalized) for subject DA’s gut microbiome (purple; only time points with 

calcium intake data are shown). Lines represent loess smoothers and shaded regions depict 95% confidence 

intervals. Overall, the two variables were found to be significantly correlated (Spearman’s 𝜌=-0.40, p-

value=1.7×10-6) 

 

Figure 8.5 Biomass associated OTUs 

Scatter plots with fitted linear regression lines between the two hub OTUs and the estimated biomass of 

M3’s gut microbiome. All correlations are significant (p-value<2.2x10-16). 

 

Figure 8.6 Association between hubness and relative abundance 
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Scatter plot with fitted linear regression line between the out- and in- degree of the OTU versus its mean 

relative abundance on log scale (based on networks for all 4 subjects). 

 

Figure 8.7 Core vs. abundant species 

(A) Venn diagram for core species (present in >50% of samples) and abundant species (top 15 with median 

relative abundance > 1%) in healthy human gut microbiomes from Pasolli et al (N=840). (B) Examples of 

core gut species with low relative abundances. R. torques and O. splanchnicus were present in 95% and 69% 

of samples but both of them rarely have relative abundance >1%. (C) Examples of more abundant species 

that are only found in a fraction of individuals. P. copri and B. crossotus are frequently present at 

abundances >5%, but are only present in 34% and 15% of all samples, respectively. 
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APPENDIX 2 SUPPLEMENTARY TABLES & FIGURES FOR 

CHAPTER 3 

Table 8-1 Summary of different variables in parametric modelling (n – number of species).  

 

 

Figure 8.8 Performance of correlation-based methods on data simulated by a parametric 

model comparing outputted correlation and partial correlation matrices. 

Feature Control Condition Test Conditions

Number of Species 50 10, 25, 50, 100

Number of Samples 100 50, 75, 100, 500, 1000

Number of Edges 1×n 0.5×n, 1×n, 2×n, 5×n, 10×n

Network Structure Random (Erdős–Rényi) Band, clock, cluster, Erdős–Rényi, hub, scale-free

Underlying Parametric 

Distribution Zero-inflated negative binomial 

negative binomial, poisson, zero-inflated negative 

binomial, zero-inflated poisson
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Split-violin plots for the AUPR of 30 replicates, comparing outputted correlation (left) or partial correlation 

(right) matrices with the known partial correlation matrix. Data simulated by the parametric model was 

modeled after American Gut Microbiome 16s data with the following control variables: 50 species, 100 

samples, 1×number of species of edges, random (Erdős–Rényi) network structure, and zero inflated negative 

binomial distribution. 

 

Figure 8.9 Performance of correlation-based methods on data simulated by statistical 

models. 

Bars represent the mean AUPR of 30 replicates and the error bars represent the standard deviation 

comparing the outputted correlation matrix where available with the known partial correlation matrix.  

Simulated data was generated by vary one parameter (A – number of species, B – number of edges, C – 

network type) while keep other parameters the same as the control parameters described above in Figure 8.8.  

 

Figure 8.10 Performance of correlation-based methods on data simulated by gLVMs 

compared to data simulated by parametric models. 
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Split-violin plots representing the AUPR of 30 replicates, comparing outputted correlation matrix where 

available with the ground truth using simulated data generated from gLVMs (left) and parametric models 

(right). Simulated data was modeled after metagenomics sequencing data from stool samples of the curated 

metagenomics dataset data with the following parameters: 20 species, 500 samples, at equilibrium, 

asymmetric interaction network and species abundance in each sample following a log-normally 

distribution.   

 

Figure 8.11 Jaccard similarity within individual methods on partitioned datasets. 

Each circle on the upper corner represents the Jaccard similarity (proportional to both color and size of the 

circle) between two methods and the numbers on the bottom corner are the exact values.  
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APPENDIX 3 SUPPLEMENTARY TABLES & FIGURES FOR 

CHAPTER 4 

 

Figure 8.12 Median relative error of BEEM-static with varied number of samples and 

species (in rows) with simulated data 

Each boxplot represents 30 simulated datasets with different gLVM parameters. The difference between adjacent “number of species” 

was tested with one-sided Wilcoxon rank sum test (ns: not significant, ****: p-value<10-3, ***: p-value<10-2, **: p-value<10-1, *: p-

value<0.05). 
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