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SUMMARY

Childhood acute lymphoblastic leukemia (ALL) is the most common type of cancer in children.
Contemporary management of patients with childhood ALL is based on the concept of tailoring
the intensity of therapy to a patient’s risk of relapse, thereby maximizing the opportunity of cure
and minimizing toxic side effects. However, practical protocols of relapse prediction remain
imperfect. A significant number of patients with good prognostic characteristics relapse, while

some with poor prognostic features survive. There is a demand to improve relapse prediction.

High-throughput gene expression profiling (GEP) has been proved valuable in the diagnosis of
childhood ALL. However, its application in relapse prediction falls short on 3 issues: 1) the lack
of biological fundamental, 2) the improper selection of computational methodology, and 3) the

limited clinical value.

The treatment of childhood ALL is a process to gradually remove the leukemic cells in a
patient. GEPs are capable of capturing leukemic genetic signatures in patients. Thus, we
hypothesize that a leukemic sample consists of a mixture of leukemic cells and normal cells,
where the intensity of the leukemic genetic signature measured by GEP could be used to infer the
proportion of leukemic cells in the sample. In addition, as early response is known to have a great
prognostic value in childhood ALL, we further expect to perform relapse prediction by the rate of

the reduction of leukemic cells during treatment.

To validate our hypothesis, for the first time, we generate time-series GEPs in a leukemia
study. We demonstrate that the time-series GEPs are capable of mimicking the removal of
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leukemic cells in patients during disease treatment. By modeling our data, we propose to predict
the relapses based on the change of GEPs between different time points, which is called genetic

status shifting (GSS).

Our relapse prediction results suggest the prognostic strength of GSS is superior to that of any
other prognostic factors of childhood ALL, including minimal residual disease (MRD), which is
considered as the most powerful relapse predictor among all biological and clinical features tested

to date. In our study, GSS outperforms MRD for over 20% in the accuracy of relapse prediction.

In addition, we prove the validity of GSS and its prognostic strength in acute myeloid
leukemia (AML), a disease with only 40% of patients survived in 5 years. Our results suggest a

new method to improve the prognosis of AML, and thus, probably, to increase the cure rate.
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CHAPTER 1

INTRODUCTION

The emergence of high-throughput gene expression profiling (GEP) allows the measurement of
the activity of tens of thousands of genes at once. In the past decade, gene expression analysis is
one of the most activated research area in bioinformatics. According to the record of the Gene
Expression Omnibus (GEO) repository at the National Center for Biotechnology Information
(NCBI), the number of annually published GEP datasets has dramatically increased from 47 in

2001 to 7,079 in 2010 (Figure 1.1) (Edgar, Domrachev and Lash 2002).

The focus of gene expression analysis is cancer, including leukemia (Golub et al. 1999),
lymphoma (Alizadeh et al. 2000), melanoma (Bittner et al. 2000), breast cancer (van 't Veer et al.
2002), and others. By exploring the whole genome, a researcher is able to select relevant genes to

diagnose a disease (diagnosis) and to predict a disease outcome (prognosis).
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Figure 1.1: The number of annually published GEP datasets in GEO depository at NCBI from
2001 to 2010.

The application of gene expression analysis in the diagnosis of childhood acute lymphoblastic
leukemia (ALL) is a successful story. In 2002, Yeoh and colleagues first demonstrate that GEPs
can be used to accurately classify patients into 6 subtypes of childhood ALL (Yeoh et al. 2002).
Their work is valuable, because the optimal treatment requires the accurate diagnostic subgroup
to be upfront assigned to a patient to promise the correct intensity of therapy to be delivered to the

patient to maximize the opportunity of cure and to minimize toxic side effects.

In this thesis, we present a recent study of time-series GEPs in childhood ALL. The purpose of
the study is: 1) to understand cellular response to the treatment of childhood ALL, and 2) to

improve the outcome prediction of the disease.
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1.1 Motivation

1.1.1 Clinical Significance

ALL is diagnosed in around 4,000 persons in the United States every year, and two-thirds of them
are children and adolescents, making ALL the most common cancer in these age groups (Pui and
Evans 2006). ALL is a heterogeneous disease with many subtypes defined by chromosomal
translocation. Common subtypes are T-ALL, TEL-AML1, BCR-ABL. E2A-PBX, MLL, and

Hyperdiploid>50.

The disease outcome of ALL refers to the long-term event-free survival rate. The overall cure
rate of ALL in children is nearly 80%, and about 45%-60% of adult patients have a favorable
outcome (Pui and Evans 2006). The major reverse events of ALL are relapse, second malignancy,

and death in remission, where relapse is the most common and concerned event (Pui et al. 2005).

Contemporary management of patients with childhood ALL is based on the concept of
tailoring the intensity of therapy to a patient’s risk of relapse, thereby maximizing the opportunity
of cure and minimizing toxic side effects (Pui and Evans 2006, Pui et al. 2005, Pui, Robison and
Look 2008). Typically, under treatment causes relapse and eventual death, while over treatment
causes long-term damage in intelligence. Thus, to optimize disease outcome, it is important to

accurately predict the risk of relapse in childhood ALL patients.

Practical risk classification protocols are based on a number of biological and clinical features,
such as, age, blast count, DNA Index, chromosomal abnormality, early morphologic response,

and minimal residual disease (MRD) (Pui et al. 2008, Smith et al. 1996, Schultz et al. 2007,
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Borowitz et al. 2008). However, these protocols remain imperfect. A significant number of
patients with good prognostic characteristics relapse, while some with poor prognostic features
survive (Schultz et al. 2007, Sorich et al. 2008, Den Boer et al. 2003). There is a demand to

improve relapse prediction.

1.1.2 Research Challenge

GEP is an emerging tool in leukemia diagnosis. The diagnosis of leukemia refers to 1) the
confirmation of a leukemia case, and 2) the identification of the subtype of a leukemia case. A
recent study, consisting of over 3,000 cases from 11 different laboratories, shows an
approximately 95% accuracy in leukemia diagnosis, which has outperformed routine diagnostic
methods (Haferlach et al. 2010). The cases of this study cover 6 subtypes of ALL, 6 subtypes of
acute myeloid leukemia (AML), chronic lymphocytic leukemia, and chronic myelogenous

leukemia, proving the general value of GEPs in leukemia diagnosis.

Nevertheless, the application of GEPs in the relapse prediction of childhood ALL is not very
successful. Existing works identify discriminate genetic signatures between relapses and
remissions from historical data, and subsequently use the identified signatures to predict new
cases (Yeoh et al. 2002, Holleman et al. 2004, Bhojwani et al. 2008, Kang et al. 2010). However,

these works fall short on 3 issues:

e Biological fundamental. The subtypes of ALL are defined by chromosomal
translocation. Each kind of chromosomal translocation may cause a particular type of

genetic duplication or deletion, leading to a distinct gene expression pattern from the
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normal. Diagnosis by GEP is based on these abnormal gene expression patterns.
However, the relationship between gene expression and relapse is still poorly
understood. Published works try to explain the mechanisms of relapse by applying
function or pathway enrichment analysis over the selected genes in their studies.
However, very few of them are convincing and conclusive.

o Computational methodology. As illustrated in Figure 1.2, although from the view of
clinical science, diagnosis and prognosis are distinctive, the computational toolset to
be used are the same. The most commonly used method is supervised learning.
Supervised learning makes predictions in new cases by optimizing the parameters of a
computational model with historical training data. The predictions are only reliable
when the sample size of the training data is large enough. Unfortunately, this is
impractical in most GEP datasets. An improper application of supervised learning
would cause the acquired parameters to be significantly biased to the batch effects of
the training data, and result in prediction failures. In contrast, unsupervised learning
targets on classifying cases in a dataset into several subgroups by evaluating the major
variance of the data. This process is considered more resistant to the batch effects. It is
worthwhile to mention that subtype-related leukemic genetic signatures can be
identified by unsupervised learning. However, up to date, there is no reported genetic
signature of relapse by unsupervised learning.

o Clinical value. MRD has the most prognostic strength among all biological and
clinical features tested to date (Pui, Campana and Evans 2001). However, existing
GEP studies do not show advantages in relapse prediction when compared to MRD as

well as to other prognostic factors.
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Figure 1.2: A comprehensive overview of childhood ALL diagnosis and prognosis.

1.2 Thesis Contribution

The treatment of childhood ALL is a process to gradually remove the leukemic cells in a patient.

GEPs are capable of capturing leukemic genetic signatures in patients. Thus, we hypothesize that

a leukemic sample consists of a mixture of leukemic cells and normal cells, where the intensity of

the leukemic genetic signature measured by GEP could be used to infer the proportion of

leukemic cells in the sample. In addition, as early response is known to have a great prognostic
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value, we further expect to perform relapse prediction by the rate of the reduction of leukemic

cells during treatment.

Specifically, we conclude our contributions as the following:

e  We propose a new testable hypothesis for disease modeling and relapse prediction in
childhood ALL.

o  We generate the first time-series GEPs in leukemia. The data are collected at the time
of diagnosis, and 8 days, 15 days and 33 days after the initial treatment, respectively.

o  We confirm the validity of leukemic genetic signatures in our diagnostic GEPs, and
demonstrate the dissolution of these signatures during disease treatment.

o  We construct the global genetic status shifting (GSS) model based on our time-series
GEPs to quantitatively describe the removal of leukemic cells.

e  We construct the local GSS models for each of the 6 subtypes to quantitatively
describe the removal of leukemic cells in each subtype.

e  We design 3 metrics of GSS distance to calculate the rate of the reduction of leukemic
cells during treatment, and we predict the relapses by GSS distance.

e  We compare GSS-based relapse prediction to other practical prognostic protocols, and
illustrate our method performs the best.

e We generate time-series GEPs of 8 AML patients. We validate the concept of GSS

and its prognostic strength in this dataset.
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1.3

Significance of the Work

We conclude the significances of our work as the following:

1.4

To the best of our knowledge, we are the first to use time-series GEPs in a leukemia
study. We have demonstrated that time-series GEPs are capable of mimicking the
reduction of leukemic cells during disease treatment.

To the best of our knowledge, we are the first to predict relapses by unsupervised
learning, and the first to make predictions by time-series GEPs. Our relapse prediction
results suggest the prognostic strength of GSS is superior to that of any other prognostic
factors of childhood ALL, including MRD, which is considered as the most powerful
relapse predictor among all biological and clinical features tested to date (Pui et al. 2001).
In our study, GSS outperforms MRD for over 20% in the accuracy of relapse prediction.
We have demonstrated that GSS and its prognostic strength are applicable to AML, a
disease with only 40% of patients survived in 5 years (Colvin and Elfenbein 2003). Our
results suggest a new method to improve the outcome prediction of AML, and thus,

probably, to increase the cure rate.

Thesis Organization

Chapter 2 provides technical background for gene expression analysis and introduces related

works to our study. Chapter 3 gives the details of our patients and the preprocessing of the time-

series GEPs. Chapter 4 introduces the computational models constructed for mimicking the
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leukemic cell removal. Chapter 5 predicts relapses and compares our method to other prognostic
protocols. Chapter 6 validates GSS and its prognostic strength in AML. Chapter 7 summarizes

our work and proposes some future works.



CHAPTER 2

RELATED WORK

2.1 Accomplishment of the Past

A successful application of gene expression analysis in childhood ALL is demonstrated by Yeoh
and colleagues in 2002 (Yeoh et al. 2002). Childhood ALL has 6 known different subtypes with
differing disease outcome. To avoid under treatment, which causes relapse and eventual death, or
over treatment, which causes severe long-term side effects, accurate diagnostic subgroup must be
assigned upfront so that the correct intensity of therapy can be delivered to ensure that a patient is
accorded the highest chance for cure. Contemporary approaches to the diagnosis of childhood
ALL use an extensive range of procedures that require multi-specialist expertise, generally
unavailable in developing countries. Thus, although childhood ALL is a great success story of
modern cancer therapy with survival rates of 75-80% in major advanced hospitals, it is still a

fatal disease in developing countries with dismal survival rates of 5-20%.

10
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Table 2.1: Comparing cost and outcome of different treatment strategies.

Treatment Clost—new cases Cost—relapses Tatal cost

Low-intensity treatment for everyone F36EF 2000 150K F 1000 $222M

Intermediate-intensity treatment for 60K * 2000 $150K * 200 $150M and 50% of patients

everyone have side effects

High-intensity treatment for everyone FT2K * 2000 30 $144M and 90% of patients
have side effects

Risk-stratified treatment; viz., low in- $36K * 1000 + $0 $O8M

tensity to 50%, intermediate intensity F60K * 800 + 72K

to A0%, high intensity to 10% * 200

As shown in Table 2.1, about 2,000 new cases of childhood ALL are diagnosed in ASEAN
countries each year. About 50% of these cases need low-intensity therapy; 40% need
intermediate-intensity; and 10% need high-intensity. Treatment for childhood ALL over 2 years
for an intermediate-risk patient costs USD 60k; low-risk costs USD 36k; and high-risk costs USD
72k. Treatment for a relapse case costs USD 150k. As the less developed ASEAN countries
generally lack the ability to diagnose the subtypes of their childhood ALL patients, the treatment
for an intermediate-risk patient is conventionally applied for everyone, since it maximizes the

expected benefit in such a situation.

The single-test platform based on gene expression analysis developed by Yeoh and colleagues
has an over 96% accuracy in the subtype classification of childhood ALL patients (Yeoh et al.
2002). This can result in savings of USD 52M a year yet with better cure rates and much reduced

side effects, as the correct intensity of therapy can be applied upfront.

In addition, Yeoh and colleagues demonstrate that gene expression analysis can be used in
discovering new disease subtypes (Yeoh et al. 2002). In their study, they sample 327 childhood

ALL patients, where over 60 of them cannot be categorized to any known subtypes. By
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Diagnostic ALL BM samples (n=327)

Genes for class distinction (n=271)
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Figure 2.1: The subtype-related leukemic genetic signatures of childhood ALL. Each row is a
probe set. Each column is a patient sample. The group of patients, labeled as “Novel”, is the
newly found subtype. The figure is reproduced from Yeoh et al. 2002.

biclustering analysis, they identify a subgroup, consisting of 14 samples with unknown subtype,
shares a novel common distinguishing genetic signature (Figure 2.1). This novel subtype may be

linked to lipoma-associated chromosomal translocation.
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2.2  Gene Expression Profiling

Gene expression profiling (GEP) refers to the microarray technology, invented in the mid 1990s,
that allows monitoring the activity of tens of thousands of genes simultaneously (Schena et al.
1995, Lockhart et al. 1996, Brown and Botstein 1999). Relative quantification of gene expression
involves many steps including sample handling, messenger RNA (mRNA) extraction, in-vitro
reverse transcription, labeling of complementary RNA (cRNA) with fluorescent sequences
(probes) which are immobilized on solid surfaces, and the measurement of the intensity of the
fluorescent signal which is emitted by the labeled target. The measured signal intensity per target
is a measure of relative abundance of the particular mRNA species in the original biological

sample (Scherer 2009).

Prevailing microarray platforms are Affymetrix (Santa Clara, CA, USA), Agilent
Technologies (Santa Clara, CA, USA), Illumina (San Diego, CA, USA), and Roche Nimblegen
(Madison, WI, USA). Even though each platform is designed by a slightly different method, the

underlying mechanisms are the same.

To further elucidate the principle of microarray, Figure 2.2 illustrates the design of an
Affymetrix GeneChip. The most comprehensive unit in a microarray is called a probe set.
Typically, a gene consists of one or several probe sets, with each targeting a different
transcriptional region. Each probe set contains about 20 different groups of probe pairs. In each
probe pair, there are two typically synthesized 25-mer oligonucleotide probes. The one designed
as an exact complement to its target sequence is called a perfect match. The other, designed as the

same as the perfect match except for a mutation in the middle position, is called a mismatch.
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Figure 2.2: Affymetrix GeneChip, reproduced from Affymetrix (Santa Clara, CA, USA).

It is thus expected the perfect match to have a stronger binding affinity to the target sequence,
rather than the paired mismatch. In practice, a perfect match is used to estimate the signal

intensity, and a mismatch is used to estimate the background noise.

In experiments, long mRNA sequences are degraded into short segments, dyed with
fluorescent molecules, and hybridized to a microarray. During the hybridization, once there is
enough binding affinity between an mRNA segment and a probe, the mRNA segment will attach

to the probe, and the fluorescent molecules on the mRNA segment will lighten its substrate.
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Figure 2.3: GeneChip hybridization, reproduced from Affymetrix (Santa Clara, CA, USA).

When a probe set has many lightened probes, it is considered as an expressed probe set. Figure
2.3 shows such an example. In general, the brighter the overall probe set is, the higher the

expression level is.

To quantitatively assess gene expression values, a laser detector is used to scan the
fluorescence intensity of each probe in a microarray and the result is saved into a .CEL file. An

aggregative algorithm is then applied to each probe set to summarize the signal values of its

15
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corresponding probes. The most popular aggregative algorithms are Affymetrix Microarray Suite

5.0 (MASS5.0) and Robust Multiple-Array Average (RMA) (Irizarry et al. 2003b).

MASS.0 assumes that every microarray in a batch is independent. In addition to signal values,
MASS.0 also returns detection calls to indicate whether a probe set is present, marginally
expressed, or absent. One disadvantage of MASS5.0 is its less sensitive to lowly expressed probe
sets. According to the technical report supplied by Affymetrix, MAS5.0 randomly assigns small
values to probe sets with “Absent” detection calls (Affymetrix). Recent studies indicate this
random assignment strategy is a major source of systematic noise and batch effects (Pepper et al.

2007, Irizarry et al. 2003b, Scherer 2009).

In contrast, RMA makes up the weakness of MASS5.0 by estimating the background from the
whole batch of microarrays. This improvement makes RMA much more sensitive to lowly
expressed probe sets than MASS5.0 (Irizarry et al. 2003a, Irizarry, Wu and Jaffee 2006). However,
the background correction of RMA is not applicable to microarrays hybridized in different
machines or at different time. Theoretically, RMA amplifies the difference between different
batches of experiments, and therefore refuses the possibility of combining datasets from different

studies.

2.3  Subtype Classification

The main approach of leukemia diagnosis is supervised learning, as firstly illustrated by the
classic paper of Golub and colleagues (Golub et al. 1999). To apply a supervised learning, GEPs

of patients are collected and labeled according to the disease subtypes of the patients. The
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analysis then proceeds in a framework of two main steps. In the first step, those genes that are
most differentially expressed or most related to a specific subtype are identified. In the second
step, a supervised learning algorithm is applied to the genes shortlisted in the first step to induce a

classifier. The classifier is then used to predict the subtypes of new cases.

A wide variety of test statistics have been proposed for the first step to select relevant genes,
which appears to be the more challenging of the two steps. Initially, classical test statistics such as
the t-test, y° test, and Wilcoxon rank sum test are used. As the number of genes far exceeds the
number of samples in GEP datasets, more elaborate gene selection test statistics are also
developed, such as rank products (Breitling and Herzyk 2005) and sparse logistic regression
(Cawley and Talbot 2006), as well as techniques for assessing false discovery rates (Qiu and
Yakovlev 2006). Integrated methods (Goh and Kasabov 2005, Liu, Li and Wong 2004), typically
involving grouping genes with correlated expressions into bins and then selecting representatives
from each bin, have also been used. One of the more interesting recent developments in gene
selection techniques is to look for gene pairs with expression values that are highly correlated,
instead of considering a single gene at a time (Olman et al. 2006). This is a reasonable technique
because genes and their products generally function as a group in a specific pathway, and thus

their expression values should be correlated.

In 1999, Golub and colleagues firstly propose the two-step framework and demonstrate its
feasibility to classify AML and ALL by GEPs (Golub et al. 1999). Briefly, they first do
neighborhood analysis to select genes that are uniformly high in one class and uniformly low in
the other, and in the second step, they construct their class predictor by the weighted voting of the

set of genes selected in the first step. Based on this framework, Golub and colleagues select 50
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informative genes most closely correlated with AML-ALL distinction in 38 known samples (27
ALL and 11 AML) during the training stage. The built predictor is then tested in 34 new samples,

where 29 of them get strong prediction with 100% accuracy.

This framework is then recruited to make predictions in 6 subtypes of childhood ALL by Yeoh
and colleagues (Yeoh et al. 2002). Childhood ALL is a heterogeneous disease caused by
chromosomal translocation. Each kind of chromosomal translocation is defined as a disease
subtype. Specifically, there are 6 major subtypes, T-ALL, TEL-AML1, E2A-PBX1, BCR-ABL,
MLL, and Hyperdiploid>50 (Pui and Evans 2006). Yeoh and colleagues first use the y” statistics
to select genes that are most associated with each of the 6 subtypes. They then use a support
vector machine (SVM) to learn a classifier for the ALL subtypes from the selected genes. Their
classifier achieves an exceedingly overall diagnostic accuracy of 96%. Later, their work is
repeated by Ross and colleagues in the same patients but with a different microarray platform

(Ross et al. 2003).

Another similar work is performed by Willenbrock and colleagues (Willenbrock et al. 2004).
They classify childhood ALL into T-ALL and precursor B-ALL, where precursor B-ALL
includes TEL-AMLI, E2A-PBX1, BCR-ABL, Hyperdiploid>50 and MLL. Using the same
framework, they select 50 most distinguishing genes to train a classifier by several different
algorithms, including K nearest neighbor, nearest centroid and maximum likelihood. As a result,
all of these methods reach 100% accuracy in both training (23 samples) and validation datasets

(11 samples).

A recent study, consisting of over 3,000 leukemia cases from 11 different laboratories, shows

an approximately 95% accuracy in the diagnosis of leukemia, which has outperformed routine
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diagnostic methods (Haferlach et al. 2010). This work includes 6 subtypes of ALL, 6 subtypes of
AML, chronic lymphocytic leukemia, and chronic myelogenous leukemia. Haferlach and

colleagues follow the same framework as described previously. Specifically, they use the t-test to
select top 100 differentially expressed probe sets and train an SVM for every pair of the subtypes.

Finally, they combine all predictions by maximal voting.

2.4  Outcome Prediction

The two-step framework proposed by Golub and colleagues can be directly applied to predict
disease outcome in childhood ALL. This mission is performed by changing the class label from
subtype to outcome. There are two types of disease outcome, short-term response and long-term
outcome. Short-term response refers to the level of the clearance of leukemic cells in a patient

shortly after the initial treatment. Long-term outcome refers to long-time relapse-free survival.

Yeoh and colleagues are the first to predict relapses (Yeoh et al. 2002). They restrict their
relapse prediction to only two subtypes, T-ALL and Hyperdiploid>50. For each subtype, they
select differentially expressed probe sets between remissions and relapses by the t-test, and
construct an SVM based on the selected probe sets to make predictions. As a result, they report

100% and 97% accuracy in the relapse prediction of T-ALL and Hyperdiploid>50, respectively.

The same strategy is later repeated by Willenbrock and colleagues in a study consisting of 10
relapses and 18 remissions (Willenbrock et al. 2004). To avoid methodological bias, they apply a
panel of gene selection approaches and classifiers to predict the relapses. As a result, Willenbrock

and colleagues report an overall accuracy over 75%.
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However, both of these two works suffer from strong batch effects, as they use the whole
dataset for gene selection, which causes the constructed classifiers to be over fitted to the

datasets.

Bhojwani and colleagues identify a 47-probe-set classifier for relapse prediction (Bhojwani et
al. 2008). However, the sensitivity of their classifier is only around 64% in the training data. It

becomes even lower when the classifier is applied to independent validation datasets.

In a very recent work, Kang and colleagues propose a 38-gene-expression classifier to predict
relapses (Kang et al. 2010). They validate their classifier in an independent cohort of 84 patients,

where, however, about 50% of the relapses are wrongly predicted.

A second group of works select predictive genes of short-term response, and make use of
these genes to predict long-term disease outcome. In practice, this strategy has been realized with

different implementations in several different studies.

Holleman and colleagues first identify distinguishing genes between sensitive and resistant to
each of the four tested drugs, prednisolone, vincristine, asparaginase, and daunorubicin, by
applying the t-test to a cohort of 173 childhood ALL patients (Holleman et al. 2004). Then, they
construct probabilistic classifiers to predict treatment response based on the genes selected in the
first step for each of the four drugs. When a new patient comes, the patient’s GEP will be
evaluated by these classifiers to estimate the probability of being resistant to each of the four
drugs. Finally, these probabilities are combined into a single indicator to predict the risk of

relapse of the patient. To show the clinical significance of their method, Holleman and colleagues
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validate their work in an independent cohort of 98 patients treated with the same drugs but in a

different institute.

This work is later extended by Lugthart and colleagues, where they define cross-resistant and
cross-sensitive to be globally resistant and sensitive to the same four drugs (Lugthart et al. 2005).
Thereafter, differentially expressed genes are identified to discriminate cross-resistant and cross-
sensitive patients. For each patient, the expression values of the selected differentially expressed

genes are finally summed up as the indicator of the risk of relapse.

A similar work is carried out by Sorich and colleagues, where only one drug, methotrexate, is

used in their study (Sorich et al. 2008).

2.5 Treatment Response Understanding

Some works investigate cellular response to disease treatment by comparing pre- and post-
treatment GEPs. A typical process of treatment response understanding consists of two steps. In
the first step, differentially expressed genes between pre- and post-treatment GEPs are selected.
In the second step, the genes selected in the first step are performed hypergeometric test against
the Gene Ontology (Ashburner et al. 2000) or pathway databases to identify the enriched

biological processes and molecular functions.

Cheok and colleagues compare diagnostic GEPs and GEPs measured 1 day after treatment.
They find drug responsive genes related to apoptosis, mismatch repair, cell cycle control and

stress response (Cheok et al. 2003).
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Tissing and colleagues compare GEPs of leukemic cells after an 8-hour exposure to
glucocorticoids to that of unexposed cells. They identify MAPK pathways, NF-«xB signaling and

carbohydrate metabolism to be the most affected biological processes (Tissing et al. 2007).

Rhein and colleagues collect paired GEPs on diagnosis and 1 week after treatment. They find
drug responsive mechanisms related to the inhibition of cell cycling, and increased expression of

adhesion and cytokine receptors (Rhein et al. 2007).

Similar comparisons are conducted between diagnostic and relapsed GEPs to understand the
mechanisms of relapse. Staal and colleagues use paired diagnosis-relapse GEPs to find that
signaling molecules and transcription factors involved in cell proliferation and cell survival are

highly up-regulated at relapse (Staal et al. 2003).

Beesley and colleagues generate GEPs from 11 pairs of diagnostic and relapsed samples,
where they find genes of cell growth and proliferation are over expressed in the relapsed samples

(Beesley et al. 2005).

Bhojwani and colleagues analyze GEPs in 35 matched diagnosis-relapse pairs and find
significant difference in the expression of genes involved in cell-cycle regulation, DNA repair,

and apoptosis between the diagnostic and relapsed samples (Bhojwani et al. 20006).

Staal and colleagues analyze 41 matched diagnosis-relapse pairs of ALL patients by GEP.
They identify four major gene clusters corresponding to several pathways related to cell cycle
regulation, DNA replication, recombination and repair, as well as B-cell development (Staal et al.

2010).
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PATIENT AND DATA PREPERATION

3.1 Patient Information

From July 2002 onwards, patients diagnosed as de novo childhood ALL are enrolled into the
Malaysia-Singapore ALL 2003 trial (MASPORE) at 3 participating centers — National University
Hospital (Singapore), University of Malaya Medical Center (Malaysia) and Subang Jaya Medical
Center (Malaysia). We study 96 patients from MASPORE. Informed consent is obtained from all
patients or their legal guardians in accordance with the Declaration of Helsinki. Both clinical and
biological investigations are approved by the responsible review boards at all participating

institutes.

Morphological assay and immunophenotyping are performed in the respective laboratories to
diagnose subtypes of the patients. Hyperdiploid>50 is determined by either karyotyping or flow

cytometry for DNA index (=1.16). Molecular screening for TEL-AML1, BCR-ABL,

23
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Table 3.1: Patient characteristics in different demographic, prognostic and genotypic groups.

Category | Frequency | Percentage, %
RACE
Chinese 42 43.7
Malay 38 39.6
Indian & Other 16 16.7
SEX
Male 46 47.9
Female 50 52.1
AGE
1-9 70 72.9
<l or>9 26 27.1
LINEAGE
B-lineage 84 87.5
T-lineage 12 12.5
WHITE BLOOD CELL
<50,000 67 69.8
>50,000 29 30.2
SUBTYPE
TEL-AML1 26 26.8
BCR-ABL 5 52
E2A-PBX1 4 4.2
Hyperdiploid>50 12 12.5
Others 50 51.5
Day-8 RESPONSE
Good 79 82.3
Poor 16 16.7
Missing 1 1
Day-33 MINIMAL RESIDUAL DISEASE
<0.01% 49 51.0
0.01-0.1% 24 25.0
0.1-1% 16 16.7
>1% 5 52
Missing 2 2.1
OUTCOME
Remission 81 84.4
Relapse 13 13.4
Death 2 2.1
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E2A-PBX1, and MLL fusions is performed by quantitative real-time PCR. Patient characteristics

are summarized in Table 3.1.

3.2 Treatment Response

All patients are treated based on a modified ALL-BFM 2000 backbone and CCG augmented
BFM regimen, which includes prednisolone as the major chemotherapeutic agent. High-risk
patients (either age <1 or >9, or having leukocyte count >50x10° per little at diagnosis) receive

additional anthracyclines during the treatment.

The in vivo prednisolone response is defined on the day 8 of the treatment by the number of
peripheral blood leukemic blasts persisting after a 7-day course of prednisolone treatment plus
one intrathecal dose of methotrexate on the first day. The measurement of > 1,000 blasts/pL is
considered as slow response. The measurement of > 10,000 blasts/uL is considered as extremely

slow response. MRD is assessed on the day 33 by PCR.

3.3 Gene Expression Profiling and Data Preprocessing

Mononuclear cells are separated and harvested from bone marrow aspirates using Ficoll-Paque
density gradient centrifugation. Total RNA is isolated using TRIzol reagent and hybridized to
Affymetrix HG-U133A (day 0 (D0), n=22; day 8 (D8), n=22; day 15 (D15), n=0; day 33 (D33),
n=0) and HG-U133 Plus2.0 (D0, n=74; D8, n=74; D15, n=52; D33, n=60) microarrays

(Affymetrix, Santa Clara, CA).



CHAPTER 3 PATIENT AND DATA PREPARATION

Time Span of GEP Measurements
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Figure 3.1: The time span of the GEP measurements. GEPs are assigned into four batches,
marked with different colors, based on the time of measurement.
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Considering two different microarray platforms are used in our study, we only interrogate
signal values of the probe sets shared in both platforms by MASS5.0. Detection values (‘“Present”,
“Marginal” or “Absent”) are determined by default parameters and signal values are scaled to a

median of 500 in each microarray.

Although RMA is known to be more sensitive to low expressions, there are two reasons we
use MASS.0. First, HG-U133A contains a subset of probe sets of HG-U133 Plus 2.0. In order to
make expressions of the two platforms compatible, we have to ignore the probe sets only in HG-
U133 Plus 2.0. MASS5.0 allows us to mask the unusable probe sets, so we can achieve our
purpose without any post-interrogation processing. However, RMA does not allow users to select
a subset of probe sets during signal interrogation. If we use RMA, we have to remove the extra
probe sets in HG-U133 Plus 2.0 after the interrogation and unify signal distributions of the two
platforms. This is undesired, as any extra data manipulation could introduce extra systematic

biases.

Second, RMA assumes the interrogated GEPs belonging to the same batch. However, as
shown in Figure 3.1, the measurements of our GEPs span nearly 6 years. These GEPs should be
considered as in different batches. In Figure 3.1, we assign our GEPs (D0 and D8) into 4 batches
based on the time of the measurements. We then plot them into a 3-dimensional space calculated
by principal component analysis (PCA). From Figure 3.2, we find that the 4 batches of samples
actually form 4 distinct clusters, with each cluster following the same pattern of the separation
between DO and D8 samples. This result suggests that our data have significant batch effects, and

thus RMA 1is not suitable to our data.
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We design a three-step protocol to remove the batch effects. First, microarrays, whose scaling
factor is larger than 20, are excluded, due to the over degradation of mRNA. As a result, 290
samples (D0, n=92; D8, n=90; D15, n=49; D33, n=59) are eligible for the next stage of data

processing.

Second, MASS5.0 randomly assigns small signal values to “Absent” probe sets, which
composes a major source of batch effects (Pepper et al. 2007, Affymetrix , Irizarry et al. 2003b,
Scherer 2009). We thus remove lowly expressed probe sets. A probe set is retained only if it has a
“Present” call in more than 30% of our samples at any of the 4 time points. As a result, 14,736

probe sets pass the filtration.

Finally, signal values of the remaining probe sets are transformed into 2-based logarithm scale
and normalized by quantile normalization (Bolstad et al. 2003). Quantile normalization assumes
each microarray to have the same signal distribution. It is a reasonable assumption, because the
microarray technology is based on the assumption that the whole gene expressions of a sample
follow a normal distribution (Slonim 2002). By performing quantile normalization, GEPs from

different batches will be adjusted to follow the same distribution (Figure 3.3).

To perform quantile normalization, we first combine all probe sets in all microarrays as a
reference distribution. For each microarray, we compute for each value, the quantile of that value
in the distribution of the microarray. These quantiles are then transformed into the corresponding
signal values according to the reference distribution. The whole process is shown in Figure 3.4,

which can be described as:

x' = Fg ' (Fi(x));
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Figure 3.3: An example of quantile normalization, reproduced from Bolstad et al. 2003.
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where x is the original value and x' is the normalized value; F; and Fg are the cumulative

distribution function of the i-th microarray and the reference distribution, respectively.

Figure 3.5 shows the resulted distributions of our samples after quantile normalization. The
curves are consistent with each other, and the curve of the reference distribution is close to a

normal distribution.

Again, we plot our DO and D8 samples by PCA in Figure 3.6. The result indicates that the

batch effects we observe previously have been successfully removed.

3.4 Validation Dataset

Several published datasets are used to validate our study. They are the St. Jude Children’s
Research Hospital’s dataset (SJICRH, n=132) (Ross et al. 2003), the Dutch Childhood Oncology
Group’s dataset (DCOG, n=107) (Den Boer et al. 2009), another Dutch Childhood Oncology
Group’s dataset (DCOG2, n=41) (Staal et al. 2010), the German Cooperative ALL’s dataset
(COALL, n=190) (Den Boer et al. 2009), and the Collaborative Microarray Innovations in
Leukemia’s dataset (MILE-Diagnose, n=750; MILE-NBM (normal bone marrow), n=73; MILE-
AML, n=74) (Haferlach et al. 2010). All datasets are consistently processed by our GEP

preprocessing protocol.
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Figure 3.6: GEPs after the batch effects removing.



CHAPTER 4

GENETIC STATUS SHIFTING MODEL

4.1 Overview

The treatment of childhood ALL can be typically divided into two phases: 1) remission induction,
and 2) consolidation therapy. The goal of remission induction is to eradicate more than 99% of
the initial burden of leukemia cells in a patient and to restore normal hematopoiesis. Recent
research indicates that 98% of patients can achieve a complete remission after the first stage of
treatment (Pui and Evans 2006). When normal hematopoiesis is restored, patients in remission
become candidates for consolidation therapy, which usually lasts for about four weeks. The
purpose of consolidation therapy is to remove the remained leukemic cells in a patient and to

prevent the patient from rapid relapse.

The treatment of childhood ALL is a process to gradually remove the leukemic cells in a

patient. GEPs are capable of capturing leukemic genetic signatures in patients. Thus, we

32



CHAPTER 4 GENETIC STATUS SHIFTING MODEL 33

hypothesize that a leukemic sample consists of a mixture of leukemic cells and normal cells,
where the intensity of the leukemic genetic signature measured by GEP could be used to infer the
proportion of leukemic cells in the sample. To validate this hypothesis, we generate time-series

GEPs to investigate the relationship between GEPs and the removal of leukemic cells.

4.2 Unsupervised Hierarchical Clustering

Unsupervised hierarchical clustering creates a hierarchy of clusters, represented in a tree
structure, called a dendrogram. The root of the tree is a single cluster containing all samples, and

the leaves correspond to individual samples.

There are two important parameters in unsupervised hierarchical clustering, similarity and
linkage. Similarity refers to the distance metric between two clusters. Euclid distance and
Pearson’s correlation are the common selections in gene expression analysis. Linkage specifies
the way that similarity is calculated between two clusters. Candidates include single linkage,
complete linkage, average linkage, and centroid linkage. Single linkage takes the similarity of the
nearest samples between two clusters as the similarity of the two clusters. Complete linkage takes
the similarity of the farthest samples between two clusters as the similarity of the two clusters.
Average linkage averages the similarities of all possible pairs of samples between two clusters as
the similarity of the two clusters. Centroid linkage calculates the centroid of each cluster first, and

then calculates the distance between the two centroids as the similarity of the two clusters.

We apply unsupervised hierarchical clustering to our time-series GEPs. The algorithm is

performed by Eisen’s software, Cluster 3.0, with Pearson’s correlation as the similarity and
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Figure 4.1: Unsupervised hierarchical clustering. The inner-loop units indicate the time points.
The outer-loop units indicate the subtypes. Extremely slow responders (D8 blast count > 10,000
per pL) are marked in green. Relapses are marked in red. S1, S2 and S3 are the identified optimal
boundaries to separate the samples of DO and D8, D8 and D15, and D15 and D33, respectively.

complete linkage as the linkage (Eisen et al. 1998). To minimize the impact of systematic biases,
which are mainly contained in low expressions, we only use top 10% of probe sets with the

largest variance across the whole dataset (n = 1,474).
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Figure 4.1 shows the result of unsupervised hierarchical clustering. In the figure, each sample
corresponds to an inner-loop unit, indicating the time point, and an outer-loop unit, indicating the
subtype. We emphasize two important observations. First, the samples collected on the same time
point tend to be clustered together. We find our samples are organized in the order of DO - D8
- D15 > D33 by unsupervised hierarchical clustering. To quantitatively describe the
significance of the observation and to find out the optimal boundaries between the adjacent time
points, we evaluate all possible positions by Fisher’s exact test. As highlighted in Figure 4.1, our
results suggest the separation between the time points is statistically significant (DO to DS, p =

1.5x10™""; D8 to D15, p=1.1x107"%; D15 to D33, p=2.2x10").

Second, the diagnostic GEPs are clustered by subtype. Actually, this discovery has been
reported before (Yeoh et al. 2002, Ross et al. 2003). Specifically, in the region of the DO samples,
there is a T-ALL cluster, a TEL-AMLI1 cluster, a Hyperdiploid>50 cluster and a BCR-ABL
cluster. Moreover, we find that D8 GEPs are clustered by subtype as well. There are 2 TEL-
AMLI clusters, a Hyperdiploid>50 cluster and a BCR-ABL cluster. However, when compared to
DO clusters, D8 clusters are smaller and sparser. This is probably due to the dilution of leukemic
genetic signatures resulted from treatment. In contrast, we fail to identify any nontrivial subtype

clusters in the region of D15 or D33 samples.

4.3 Genetic Signature Dissolution Analysis

The result of unsupervised hierarchical clustering suggests that leukemic genetic signatures are

gradually removed during treatment. We thus design experiments to validate this hypothesis.
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Figure 4.2: Leukemic genetic signatures are dissolved into the background during treatment. Red
represents high expression. Green represents low expression. Yellow frames highlight the patients
of the targeted subtype. The arrows indicate a relapse case.

We select leukemic genetic signature genes from the diagnostic GEPs of the 3 largest subtypes
in our data (T-ALL, n=12; TEL-AMLI, n = 26; and Hyperdiploid>50, n = 12). For each
subtype, we categorize the samples into two groups, belonging (Group 1) and not belonging
(Group 2) to the subtype. We only consider a probe set if its expression in Group 1 is higher than
in Group 2 (compared by the averaged expression of the two groups). We then calculate the t-
statistics between the two groups, and select top 20 differentially expressed probe sets, ranked by
the p value, as the leukemic genetic signature genes. The selected probe sets are listed in Table

4.1 to Table 4.3.

To examine the correctness of the leukemic genetic signature genes, we use them to predict
the subtypes of samples of MILE-diagnosis. The sensitivity and specificity for T-ALL are
94.83% and 99.82%. The sensitivity and specificity for TEL-AMLI1 are 91.38% and 98.53%. The
sensitivity and specificity for Hyperdiploid>50 are 85% and 97.13%. Thus, we show the

identified leukemic genetic signature genes are reliable.
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The result of genetic signature dissolution analysis is shown in Figure 4.2. From the figure, the
signatures gradually dissolve into the background. A patient of TEL-AML1 subtype, who suffers

from a relapse, shows a resistant signature during the course.
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Table 4.1: Genetic signature genes of T-ALL.

T-ALL
Probe Set Gene Symbol Gene Title Fold Change | p Value
213060_s_at CHI3L2 chitinase 3-like 2 49.56 1.06E-22
210116_at SH2D1A SH2 domain protein 1A 53.47 1.16E-17
205674 _x_at FXYD2 FXYD domain containing ion transport regulator 2 11.07 4.98E-16
216705_s_at ADA adenosine deaminase 3.59 6.88E-14
202760 _s_at | PALM2-AKAP2 PALM2-AKAP2 readthrough transcript 5.14 1.37E-13
217147 s_at TRAT1 T cell receptor associated transmembrane adaptor 1 22.34 4.90E-13
202747 _s_at ITM2A integral membrane protein 2A 18.60 9.24E-12
203238_s_at NOTCH3 Notch homolog 3 (Drosophila) 7.98 1.13E-11
202746_at ITM2A integral membrane protein 2A 15.67 1.23E-10
211071 _s_at MLLT11 myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, 2.94 1.00E-09
Drosophila); translocated to, 11
205484 _at SIT1 signaling threshold regulating transmembrane adaptor 1 11.25 1.42E-09
215030 _at GRSF1 G-rich RNA sequence binding factor 1 2.42 1.44E-09
209604 _s_at GATA3 GATA binding protein 3 12.04 2.10E-08
206533 _at CHRNAS5 cholinergic receptor, nicotinic, alpha 5 3.27 3.04E-08
204529 s_at TOX thymocyte selection-associated high mobility group box 491 3.15E-08
219408 _at PRMT7 protein arginine methyltransferase 7 2.67 1.44E-07
204639 _at ADA adenosine deaminase 2.63 4.94E-07
204530_s_at TOX thymocyte selection-associated high mobility group box 3.64 1.41E-06
206460 _at AJAP1 adherens junctions associated protein 1 8.07 3.15E-06
219660_s_at ATP8A2 ATPase, aminophospholipid transporter-like, class I, type 8A, 3.92 9.56E-06

member 2
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Table 4.2: Genetic signature genes of TEL-AML1.

TEL-AML1
Probe Set Gene Symbol Gene Title Fold Change p Value
213317 _at CLIC5 chloride intracellular channel 5 176.36 6.53E-38
213558 at PCLO piccolo (presynaptic cytomatrix protein) 74.41 2.07E-23
218804 _at ANO1 anoctamin 1, calcium activated chloride channel 22.53 9.83E-20
205952 _at KCNK3 potassium channel, subfamily K, member 3 28.77 8.64E-18
203611 _at TERF2 telomeric repeat binding factor 2 7.41 1.92E-16

204914 s_at SOX11 SRY (sex determining region Y)-box 11 65.05 2.88E-16
203038_at PTPRK protein tyrosine phosphatase, receptor type, K 48.06 5.37E-16

204915_s_at SOX11 SRY (sex determining region Y)-box 11 30.62 1.59E-15

201911 s _at FARP1 FERM, RhoGEF (ARHGEF) and pleckstrin domain protein 1 7.75 4.02E-15

(chondrocyte-derived)

204913 s at SOX11 SRY (sex determining region Y)-box 11 50.85 1.23E-14
206591 _at RAG1 recombination activating gene 1 8.34 5.39E-11
218820 _at Cl4orf132 chromosome 14 open reading frame 132 7.86 1.68E-08
209101 _at CTGF connective tissue growth factor 14.76 8.10E-08
205267_at POU2AF1 POU class 2 associating factor 1 2.96 9.92E-08

210432 _s_at SCN3A sodium channel, voltage-gated, type I, alpha subunit 14.13 2.24€E-07
32625 at NPR1 natriuretic peptide receptor A/guanylate cyclase A 4.70 8.45E-07

(atrionatriuretic peptide receptor A)

211126_s_at CSRP2 cysteine and glycine-rich protein 2 3.52 3.24E-06
214761 _at ZNF423 zinc finger protein 423 4.48 5.02E-06

203435_s_at MME membrane metallo-endopeptidase 5.20 2.31E-05
219686 _at STK32B serine/threonine kinase 32B 4.60 2.45E-05




CHAPTER 4 GENETIC STATUS SHIFTING MODEL 40

Table 4.3: Genetic signature genes of Hyperdiploid>50.

Hyperdiploid>50

Probe Set Gene Symbol Gene Title Fold Change p Value
201508 at IGFBP4 insulin-like growth factor binding protein 4 5.21 2.49E-05
203063 _at PPM1F protein phosphatase 1F (PP2C domain containing) 2.45 7.46E-05
206674 _at FLT3 fms-related tyrosine kinase 3 4.43 8.91E-05
214745 at PLCH1 phospholipase C, eta 1 3.46 2.32E-04
218694 _at ARMCX1 armadillo repeat containing, X-linked 1 3.68 2.50E-04
208370 _s_at RCAN1 regulator of calcineurin 1 2.79 5.82E-04
201005_at Cb9 CD9 molecule 5.87 6.64E-04
202598 at S100A13 $100 calcium binding protein A13 2.17 8.41E-04
207267 _s_at DSCR6 Down syndrome critical region gene 6 2.60 8.47E-04
41660_at CELSR1 cadherin, EGF LAG seven-pass G-type receptor 1 2.91 1.05E-03
(flamingo homolog, Drosophila)
215263 at ZXDA /// ZXDB zinc finger, X-linked, duplicated A /// zinc finger, X-linked, 1.72 1.05E-03
duplicated B
204462 _s_at SLC16A2 solute carrier family 16, member 2 (monocarboxylic acid 4.20 1.47E-03
transporter 8)
206852 _at EPHA7 EPH receptor A7 4.56 1.51E-03
204454 at LDOC1 leucine zipper, down-regulated in cancer 1 4.05 2.23E-03
214961 _at KIAAO0774 KIAAQ774 5.24 2.43E-03
209183 s at C100rf10 chromosome 10 open reading frame 10 3.60 2.71E-03
214156_at MYRIP myosin VIIA and Rab interacting protein 5.31 3.20E-03
211626 _x_at ERG v-ets erythroblastosis virus E26 oncogene homolog (avian) 2.13 3.38E-03
213316_at KIAA1462 KIAA1462 422 3.44E-03
212385_at TCF4 transcription factor 4 2.81 3.60E-03
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4.4  Genetic Status Shifting Model

We present computational models to quantitatively describe the reduction of leukemic cells in
patients during treatment, which are called genetic status shifting (GSS) models. In our results,
we construct the global GSS model to include all our samples, and the local GSS models for each

of the subtypes.

The construction of a GSS model consists of two steps. First, drug responsive genes are

selected. Second, principal component analysis (PCA) is applied to the selected genes.

In gene expression analysis, PCA is a mathematical procedure that uses an orthogonal
transformation to convert a set of expressions of possibly correlated genes into a set of values of
uncorrelated variables called principal components (PCs). A PC is a linear combination of the
original genes. In PCA, the resulted PCs are ranked by the contained data variance. Typically,
although the number of PCs can be as many as the number of the original genes, the first several

PCs include the most variance of a dataset.

4.4.1 Drug Responsive Gene

We identify drug responsive genes for the global GSS model by selecting differentially expressed
probe sets between the DO and D8 samples. The selection is taken with two actions. First, the t-
test implemented in the Significance Analysis of Microarrays (SAM) is applied with the threshold

of false discovery rate (FDR), q < 0.0001 (Tusher, Tibshirani and Chu 2001, Storey and
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Tibshirani 2003). Second, any probe set to be considered as a differentially expressed probe set
should show at least a 2-fold change (either up regulation or down regulation) in the averaged

expression of the D8 samples when compared to that of the DO samples.

A total number of 562 and 123 probe sets, representing 461 and 99 genes, are considered as
up- and down-regulated differentially expressed probe sets by our criteria. Table 4.4 and 4.5 list

the 20 most up- and down-regulated probe sets, ranked by the fold change, respectively.

To biologically understand drug responsive mechanisms, we evaluate the drug responsive
genes by Gene Ontology Enrichment Analysis (GOEAST) (Zheng and Wang 2008), and
Ingenuity Pathway Analysis (IPA, Ingenuity” Systems, ). For GOEAST, we
use p < 0.01 as the threshold of selecting significant Gene Ontology (GO) terms. For IPA, we use
p <0.01 as the threshold of selecting significant pathways, biological functions and biological

networks.

The 20 most significant GO terms, ranked by the p value, are listed in Table 4.6 and 4.7 for
the up- and down-regulated probe sets, respectively. The up-regulated terms include biological
functions related to the reconstruction of immune system and the restoration of normal
hematogenesis, such, immune system process (p = 1.99x10™*"), leukocyte activation (p = 8.39x10"
1y, hemoglobin complex (p = 7.96x10™"®), and blood circulation (p = 3.40x10™"%). The down-
regulated terms include two categories. The first category involves the cell development and
DNA synthesis, such as, cellular developmental process (p = 2.40x10), cell differentiation (p =
4.53x10”), DNA packaging (p = 7.69x10™), DNA binding (p = 1.23x107), and chromatin
assembly (p = 2.36x107). The second category involves the negative regulation of apoptosis,

such as, negative regulation of thymocyte apoptosis (p = 2.55x107), negative regulation of T cell
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apoptosis (p = 4.51x107), negative regulation of lymphocyte apoptosis (p = 7.19x10), and

negative regulation of mature B cell apoptosis (p = 1.53x107).

As to IPA, the up- and down-regulated probe sets are combined for the analysis. Table 4.8 lists
the significant canonical signaling pathways. The significant biological functions are listed in
Table 4.9. Both results are consistent with that of GOEAST. For example, communication
between innate and adaptive immune cells (p = 4.17x10"®), primary immunodeficiency signaling
(p =2.04x107), B cell development (p = 2.34x107), inflammatory response (p = 3.51x10™7),
hematological system development and function (p = 2.73x10"), and hematopoiesis (p =
5.93x107%), are related to the reconstruction of immune system and the restoration of normal
hematogenesis. Another set of pathways and functions, such as cell-to-cell signaling and
interaction (p = 1.82x107°), cellular growth and proliferation (p = 1.66x10'*), cellular
development (p = 7.38x10™"), cellular assembly and organization (p = 7.98x10°), DNA
replication, recombination, and repair (p = 1.41x107), and gene expression (p = 4.91x10*), are
related to the cell development and DNA synthesis. Results, such as, cytotoxic T lymphocyte-
mediated apoptosis of target cells (p =9.77x10), and cell death (p = 2.36x107"?) are related to

the regulation of apoptosis.

In addition, the top 5 biological networks identified by IPA are shown in Figure 4.3 to 4.7.
These networks are mainly related to cancer, inflammatory response, cell-to-cell signaling and
interaction, cell death, cellular development, and cell cycle, which are consistent with the

previous results of GOEAST and IPA.
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Table 4.4: Top 20 up-regulated probe sets.

Probe Set ID Gene Symbol Gene Title Fold Change
205950 _s_at CAl carbonic anhydrase | 7.395791184

205403 _at IL1IR2 interleukin 1 receptor, type Il 6.852324058

205997 _at ADAM?28 ADAM metallopeptidase domain 28 6.708182719
214146 _s_at PPBP pro-platelet basic protein (chemokine (C-X-C motif) ligand 7) 6.658931873
211372 s_at IL1IR2 interleukin 1 receptor, type Il 6.466121916
203645_s_at CD163 CD163 molecule 6.117093533
215049 x_at CD163 CD163 molecule 6.087834242
205837_s_at | GYPA/// GYPB glycophorin A (MNS blood group) /// glycophorin B (MNS blood group) 5.822822642
201110_s_at THBS1 thrombospondin 1 5.745576019
211821 x_at GYPA glycophorin A (MNS blood group) 5.209992602
212768 s_at OLFM4 olfactomedin 4 5.182515342
209555 s_at CD36 CD36 molecule (thrombospondin receptor) 5.064436979
217388 _s_at KYNU kynureninase (L-kynurenine hydrolase) 5.046071877
211560 s_at ALAS2 aminolevulinate, delta-, synthase 2 5.008170532
206488 s_at CD36 CD36 molecule (thrombospondin receptor) 4.920133289
215646_s_at VCAN Versican 4917441199
210746_s_at EPB42 erythrocyte membrane protein band 4.2 4.903890326
221731 x_at VCAN Versican 4.832463599
217418 x_at MS4A1 membrane-spanning 4-domains, subfamily A, member 1 4.811721663
206390_x_at PF4 platelet factor 4 4.801380171
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Table 4.5: Top 20 down-regulated probe sets.

Probe Set ID Gene Symbol Gene Title Fold Change
210487_at DNTT deoxynucleotidyltransferase, terminal 0.222299534
209035 _at MDK midkine (neurite growth-promoting factor 2) 0.224017113
211341 at POU4F1 POU class 4 homeobox 1 0.235935714

203434 _s_at MME membrane metallo-endopeptidase 0.256940866
206660_at IGLL1 immunoglobulin lambda-like polypeptide 1 0.258262938
215117 _at RAG2 recombination activating gene 2 0.259848868

207030 _s_at CSRP2 cysteine and glycine-rich protein 2 0.283315663

206067_s_at WT1 Wilms tumor 1 0.304693921

214243 s at SERHL /// SERHL2 serine hydrolase-like /// serine hydrolase-like 2 0.315189369
219740 _at VASH2 vasohibin 2 0.316965896

203435_s_at MME membrane metallo-endopeptidase 0.321395315
205755 _at ITIH3 inter-alpha (globulin) inhibitor H3 0.327868482
206591 _at RAG1 recombination activating gene 1 0.337911256
204165 _at WASF1 WAS protein family, member 1 0.339940607
219218 at BAHCC1 BAH domain and coiled-coil containing 1 0.340474114
205795 _at NRXN3 neurexin 3 0.360422562

208950 s_at ALDH7A1 aldehyde dehydrogenase 7 family, member Al 0.36198217

209983 _s_at NRXN2 neurexin 2 0.36527127

207426 _s_at TNFSF4 tumor necrosis factor (ligand) superfamily, member 4 0.365433513

213668_s_at SOX4 SRY (sex determining region Y)-box 4 0.36606881
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Table 4.6: Top 20 GO terms for the up-regulated probe sets.

46

GOID Ontology Term p-value
G0:0002376 biological_process immune system process 1.99E-90
G0:0006955 biological process immune response 4.58E-77
G0:0050896 biological_process response to stimulus 3.70E-75
G0:0006952 biological process defense response 4.14E-67
G0:0005886 cellular_component plasma membrane 1.23E-63
G0:0005488 molecular_function Binding 9.26E-55
G0:0005576 cellular_component extracellular region 1.05E-52
G0:0006950 biological_process response to stress 4.48E-51
G0:0016020 cellular_component Membrane 2.34E-45
G0:0044459 cellular_component plasma membrane part 2.18E-42
G0:0005623 cellular_component Cell 4.52E-41
G0:0044464 cellular_component cell part 4.52E-41
G0:0004871 molecular_function signal transducer activity 4.59E-40
G0:0060089 molecular_function molecular transducer activity 4.59E-40
G0:0004872 molecular_function receptor activity 8.74E-40
G0:0009611 biological _process response to wounding 9.33E-37
G0:0005887 cellular_component integral to plasma membrane 3.06E-35
G0:0005515 molecular_function protein binding 4.29E-35
G0:0031226 cellular_component intrinsic to plasma membrane 4.37E-35
G0:0002682 biological_process regulation of immune system process 3.76E-34
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Table 4.7: Top 20 GO terms for the down-regulated probe sets.

GOID Ontology Term p-value
G0:0032502 biological_process developmental process 2.89E-16
G0:0007275 biological process multicellular organismal development 1.03E-13
G0:0048731 biological_process system development 8.56E-13
G0:0032501 biological process multicellular organismal process 1.67E-12
G0:0048856 biological_process anatomical structure development 2.94E-12
G0:0005623 cellular_component Cell 9.80E-11
G0:0044464 cellular_component cell part 9.80E-11
G0:0048869 biological_process cellular developmental process 2.40E-09
G0:0030154 biological process cell differentiation 4.53E-09
G0:0009987 biological_process cellular process 5.46E-09
G0:0006323 biological process DNA packaging 7.69E-09
G0:0005488 molecular_function binding 2.29E-08
G0:0071103 biological_process DNA conformation change 3.17E-08
G0:0045112 biological process integrin biosynthetic process 4.29E-08
G0:0065007 biological_process biological regulation 1.17E-07
G0:0050821 biological process protein stabilization 1.19E-07
G0:0003677 molecular_function DNA binding 1.23E-07
G0:0016043 biological_process cellular component organization 1.38E-07
G0:0031497 biological process chromatin assembly 2.36E-07
G0:0070244 biological_process negative regulation of thymocyte apoptosis 2.55E-07
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Table 4.8: Significant pathways for the differentially expressed probe sets between D8 and DO.
Ingenuity Canonical Pathways p value

Communication between Innate and Adaptive Immune Cells 4.17E-08
Primary Immunodeficiency Signaling 2.04E-07
B Cell Development 2.34E-07
Dendritic Cell Maturation 1.38E-06
Atherosclerosis Signaling 1.95E-06
IL-10 Signaling 1.17E-05
Hepatic Fibrosis / Hepatic Stellate Cell Activation 1.66E-05
Crosstalk between Dendritic Cells and Natural Killer Cells 1.95E-05
Systemic Lupus Erythematosus Signaling 4.47E-05
Graft-versus-Host Disease Signaling 6.61E-05
Cytotoxic T Lymphocyte-mediated Apoptosis of Target Cells 9.77E-05
TREM1 Signaling 0.000158
LXR/RXR Activation 0.000178
Autoimmune Thyroid Disease Signaling 0.000219
Allograft Rejection Signaling 0.000316
Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis 0.000372
Altered T Cell and B Cell Signaling in Rheumatoid Arthritis 0.000457
T Helper Cell Differentiation 0.000457
Complement System 0.001047
Ascorbate and Aldarate Metabolism 0.001122
IL-6 Signaling 0.001479
Glycolysis/Gluconeogenesis 0.001479
Lipid Antigen Presentation by CD1 0.002455
Airway Pathology in Chronic Obstructive Pulmonary Disease 0.002512
Histidine Metabolism 0.002754
Granzyme A Signaling 0.00309
Type | Diabetes Mellitus Signaling 0.004169
Caveolar-mediated Endocytosis Signaling 0.004467
0X40 Signaling Pathway 0.00631
LPS/IL-1 Mediated Inhibition of RXR Function 0.008128
Nur?77 Signaling in T Lymphocytes 0.008511
IL-8 Signaling 0.00912
CCR5 Signaling in Macrophages 0.009772
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Table 4.9: Significant biological functions for the differentially expressed probe sets between D8

and DO.

Category

p value

Inflammatory Response

3.51E-37-1.4E-03

Infectious Disease

1.12E-31-2.19E-04

Respiratory Disease

1.12E-31-1.4E-03

Cell-To-Cell Signaling and Interaction

1.82E-26-1.4E-03

Hematological System Development and Function

2.73E-21-1.4E-03

Immune Cell Trafficking

7.56E-21-1.4E-03

Tissue Development

5.56E-19-1.4E-03

Cellular Growth and Proliferation

1.66E-18-1.13E-03

Cancer

3.54E-16-1.4E-03

Inflammatory Disease

6.95E-16-1.4E-03

Connective Tissue Disorders

9.75E-16-3.05E-04

Immunological Disease

9.75E-16-1.4E-03

Skeletal and Muscular Disorders

9.75E-16-3.05E-04

Cellular Development

7.38E-15-1.4E-03

Cellular Movement

5.77E-14-1.4E-03

Cell Death

2.36E-13-1.4E-03

Cell Signaling

4.21E-12-1.06E-03

Molecular Transport

4.21E-12-7.43E-04

Vitamin and Mineral Metabolism

4.21E-12-1.06E-03

Hematopoiesis

5.93E-12-9.7E-04

Cardiovascular System Development and Function

7.64E-12-8.95E-04

Dermatological Diseases and Conditions

8.62E-12-1.1E-05

Genetic Disorder

8.62E-12-1.4E-03

Cellular Function and Maintenance

1.03E-11-1.4E-03

Hematological Disease

1.96E-11-1.4E-03

Reproductive System Disease

5.13E-11-1.24E-03

Antigen Presentation

7.7E-09-4.1E-04

Cell-mediated Immune Response

1.39E-08-1.3E-03

Cellular Compromise

3.31E-08-2.22E-04

Cell Morphology

7.13E-08-1.4E-03

Gastrointestinal Disease

2.45E-07-8.49E-05

Lymphoid Tissue Structure and Development

2.47E-07-4.91E-04

Neurological Disease

1.12E-06-1.17E-03
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Cardiovascular Disease

2.83E-06-1.09E-03

Cellular Assembly and Organization

7.98E-06-1.4E-03

Lipid Metabolism

8.5E-06-7.33E-04

Small Molecule Biochemistry

8.5E-06-7.33E-04

Post-Translational Modification

1.38E-05-1.09E-03

DNA Replication, Recombination, and Repair

1.41E-05-1.95E-05

Renal and Urological Disease

1.9E-05-1.9E-05

Infection Mechanism

2.2E-05-2.2E-05

Tumor Morphology

2.62E-05-9.56E-04
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Carbohydrate Metabolism
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Free Radical Scavenging
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Hypersensitivity Response
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Skeletal and Muscular System Development and Function
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Ophthalmic Disease
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Antimicrobial Response
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Humoral Immune Response
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Renal and Urological System Development and Function

4.02E-04-4.02E-04

Connective Tissue Development and Function

4.91E-04-9.82E-04

Gene Expression

4.91E-04-1.4E-03

Drug Metabolism

6.26E-04-6.26E-04

Embryonic Development

7.53E-04-1.4E-03

Metabolic Disease

8.95E-04-8.95E-04

Nervous System Development and Function

9.56E-04-9.56E-04

Hair and Skin Development and Function

1.24E-03-1.24E-03

Protein Trafficking

1.4E-03-1.4E-03
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Figure 4.3: The top biological network, cancer, inflammatory response, and cell-to-cell signaling
and interaction.



CHAPTER 4 GENETIC STATUS SHIFTING MODEL 52

Figure 4.4: The second top biological network, inflammatory response, cell death, and cell-to-cell
signaling and interaction.
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Figure 4.5: The third top biological network, cancer, respiratory disease, and cellular
development.
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Figure 4.6: The fourth top biological network, cell-to-cell signaling and interaction, tissue
development, and cellular movement,

54



CHAPTER 4 GENETIC STATUS SHIFTING MODEL

OXA1

Figure 4.7: The fifth top biological network, cancer, gastrointestinal disease, and cell cycle.
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4.4.2 Global Genetic Status Shifting Model

The global GSS model is constructed by applying PCA to the selected drug responsive genes.
Figure 4.8 shows the global GSS model, determined by the first 3 PCs. In Figure 4.8, from left to
right, samples are aligned in the order of DO = D8 - D15 - D33. This observation is not
unexpected, as we have learned it from the result of unsupervised hierarchical clustering. The first
PC contains nearly 50% of the variance, probably reflecting the different loads of leukemic cells

during the course.

We recruit a set of normal samples, MILE-NBM, to further evaluate the locations of our
samples in the model. As shown in Figure 4.8, MILE-NBM samples collocate with the D33
samples, extending the transition pattern to DO > D8 - D15 - D33 - Normal. This is an
exciting discovery, because it suggests that the transition pattern we have observed in the global
GSS model is meaningful, as it actually indicates the process of the removal of leukemic cells, by

which patients eventually achieve remissions.

In addition, several diagnostic GEP datasets are compared to our model. The result of SJCRH
is shown in Figure 4.9. The result of DCOG is shown in Figure 4.10. The result of DCOG2 is
shown in Figure 4.11. The result of COALL is shown in Figure 4.12. The result of MILE-
Diagnose is shown in Figure 4.13. In conclusion, samples of these datasets collocate well with

our DO samples.
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Global Genetic Status Shifting Model
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PC 1 2 3 4 5 6 7 8 Total

Variance | 49.08% | 7.56% | 5.19% | 3.64% | 2.10% | 1.81% | 1.61% | 1.35% | 72.34%

(b)

Figure 4.8: The global GSS model and its variance distribution. (a) The global GSS model. (b)
The variance contained in top PCs.
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Figure 4.10: DCOG samples in the global GSS model.
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Figure 4.12: COALL samples in the global GSS model.
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Figure 4.13: MILE-Diagnose samples in the global GSS model.
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4.4.3 Local Genetic Status Shifting Model

ALL is a heterogeneous disease with many subtypes. We construct the local GSS models for each
of the 6 subtypes of our data. However, since the number of samples of some subtypes is
insufficient for drug responsive gene selection, we decide to construct the local models based on
the MILE dataset, and then evaluate our samples in the constructed models. Specifically, we
select top 50 differentially expressed probe sets between MILE-Diagnosis and MILE-NBM,
ranked by the p value of the t-test, for each of the 6 subtypes and a group of other subtypes, as the

drug responsive genes.

The identified drug responsive genes for each subtype are listed in Appendix A. The
constructed local GSS models are shown in Figure 4.14 to 4.20. The same transition pattern from
DO to normal samples can be observed in these local models. For each local model, we calculate
the variance contained in top PCs of our dataset as well as the MILE dataset. Interestingly, the
variance contained in the first PC of the local models is much higher than that of the global model
(Local: 69.60% + 16.08%, Global: 49.08%). A possible explanation is that the subtype-based
data stratification largely decreases the heterogeneity of our data, so most variance can be
captured by the first PC already. Nevertheless, in the local model of other subtypes, the variance
of the first PC is only 36.41%. It is probably because this group itself is a mixture of many rare
subtypes, and the samples of this group could be very heterogeneous. Therefore, we use 3 PCs to

show the local model of this group, where in other cases, 2 PCs are enough.
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Subtype:T-ALL
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T-ALL PC1 | P2 | PG3 | PCA | PC5 | PC6 | PC7 | Total

Variance (MILE) 80.06% | 2.34% | 2.14% | 1.56% | 1.52% | 1.37% | 1.01% | 90.00%
Variance (MASPORE) | 70.83% | 1.46% | 2.69% | 1.84% | 2.28% [ 1.35% | 2.12% | 82.57%

(c)

Figure 4.14: The local GSS model of T-ALL subtype. (a) PC1 to PC2. (b) PC1 to PC3. (c) The
variance contained in top PCs.
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Subtype:TEL-AML1
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Variance (MASPORE) | 86.03% | 0.81% | 0.96% | 0.73% | 0.85% [ 0.72% | 0.41% | 90.51%

Figure 4.15: The local GSS model of TEL-AMLI subtype. (a) PC1 to PC2. (b) PC1 to PC3. (¢)
The variance contained in top PCs.
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Figure 4.16: The local GSS model of Hyperdiploid>50 subtype. (a) PC1 to PC2. (b) The variance

contained in top PCs.
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Figure 4.17: The local GSS model of E2A-PBX1 subtype. (a) PC1 to PC2. (b) The variance

contained in top PCs.
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Figure 4.18: The local GSS model of BCR-ABL subtype. (a) PC1 to PC2. (b) The variance
contained in top PCs.
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Figure 4.19: The local GSS model of MLL subtype. (a) PC1 to PC2. (b) The variance contained
in top PCs.
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Figure 4.20: The local GSS model of other subtypes. (a) PC1 to PC2. (b) PC1 to PC2 to PC3. (¢)
PC1 to PC2 to PC4. (d) The variance contained in top PCs.
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4.5 Discussion

We hypothesize that a leukemic sample consists of a mixture of leukemic cells and normal cells,
where the intensity of the leukemic genetic signature measured by GEP could be used to infer the
proportion of leukemic cells in the sample. To validate this hypothesis, we generate time-series
GEPs to investigate the relationship between GEPs and the removal of leukemic cells. We
perform unsupervised hierarchical clustering and design genetic signature dissolution analysis.
The results indicate that our samples are clustered by the time points. The samples of the same
subtype are initially clustered together, but become scattered after treatment, which is later
confirmed due to the removal of leukemic genetic signatures. In order to quantitatively describe
the reduction of leukemic cells in patients during treatment, we construct the GSS models, and
validate our models with several public available datasets. Our results suggest: 1) the patients
achieve remissions eventually, and 2) the published diagnostic GEPs collocate well with our DO

samples in the constructed models.

We investigate cellular response to the treatment of childhood ALL by evaluating the drug
responsive genes. As a result, we propose two mechanisms: 1) to induce the reconstruction of
immune system and the restoration of normal hematogenesis, and 2) to suppress the negative
regulation of apoptosis. The first mechanism is consistent with the philosophy of the treatment of
childhood ALL, which supposes to replace the leukemic cells by newly generated normal cells in
a patient. The second mechanism may explain how the leukemic cells are killed. Leukemic cells

are propagated in a patient due to the lack of the proper regulation of apoptosis. The suppression
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of the negative regulation of apoptosis can help to induce the apoptosis mechanisms and thus to

suppress the propagation of leukemic cells.
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CHAPTER 5

RELAPSE PREDICTION

51 Overview

In the previous chapter, we propose GSS model to mimic the removal of leukemic cells during
treatment. Our models reveal that GEPs are sensitive to the load of leukemic cells in a patient.
Nevertheless, we ask the question whether the constructed global GSS model can assist in the

relapse prediction of childhood ALL.

Relapse prediction is important for the treatment of childhood ALL, since contemporary
management of patients with childhood ALL requires patients to be upfront correctly assigned the
risk of relapse. The risk-based approach allows children who historically remain in long-term
remission to be treated with modest therapy and to be spared more intensive and toxic treatment,
allowing children with a historically high chance of relapse to receive more intensive therapy that

may increase their chance of cure.
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A number of biological and clinical features have demonstrated prognostic value in childhood
ALL. The National Cancer Institute classifies patients between 1 and 9 years of age and having a
leukocyte count of less than 50x10° per liter at diagnosis as standard risk and the rest of patients
as high risk (Smith et al. 1996, Pui et al. 2001). Cytogenesis-based risk assignment considers
patients with BCR-ABL fusion, MLL rearrangement, and Hypodiploid<45 as high risk, patients
with TEL-AML1 fusion and Hyperdiploid>50 as low risk, and the rest of patients as intermediate

risk (Pui et al. 2008, Pui et al. 2009).

Early response to treatment, also known as minimal residual disease (MRD), which indicates
the percentage of leukemic cells remained in a patient, has greater prognostic strength than does
any other biologic or clinical features tested to date (Pui et al. 2001). An MRD level of less than
0.01% could reliably identify patients with an exceptionally good treatment outcome (Pui et al.
2001, Pui and Evans 2006). By contrast, patients with a level of 1% or more at the end of
induction therapy or those with a level of 0.1% or more at late times have a very high risk of

relapse (Pui et al. 2001, Pui and Evans 2006).

GEPs have been investigated for the value of prognosis as well. Holleman and colleagues
identify 124 genes to predict relapses (Holleman et al. 2004). Bhojwani and colleagues identify a
24-probe-set genetic signature to predict Day-7 response, and a 47-probe-set genetic signature to

predict relapses (Bhojwani et al. 2008).

In this chapter, we propose GSS distance to quantitatively describe the shifting between pre-
and post-treatment samples in a GSS model. We predict relapses based on GSS distance, and

compare its prognostic value with that of other clinical- and GEP-based methods.
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Figure 5.1: Genetic status shifting distance.

5.2  Genetic Status Shifting Distance

We think of a 3-dimensional GSS model as a 3-dimensional space defined by the 3 principal
components of the model. A sample, a, can potentially be located anywhere in the space. The
exact position of a is called a genetic status, denoted as a(x, y, z). Given a pre-treatment genetic

status s(x, y, z) and a post-treatment genetic status s’ (x’,y’, z"), a genetic status shifting (GSS) is

defined as the vector from s(x,y, z) to s’ (x', y’, z'), denoted as ss’.
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As shown in Figure 5.1, there are 3 metrics of GSS distance, absolute shifting distance (ASD),

effective shifting distance (ESD), and effective shifting ratio (ESR).

ASD is defined as the Euclidean distance between the two genetic statuses of a GSS, formally,

4sp(ss’) = ||ss'|

ESD concerns not only the amount of a GSS, but the direction as well. It is defined as the
projection of a GSS onto the direction from the centroid of pre-treatment samples to the centroid
of normal samples. Formally, assuming the two centroids of pre-treatment and normal samples

are d(xq,¥q,24) and n(x,, , Yy , Zn), respectively,

. ss'-dn
ESD(ss’) = Tl

ESR further concerns the position of the pre-treatment sample of a GSS. It is defined as the
ESD of a GSS divided by the Euclidean distance between the projection of the pre-treatment
sample and the normal-sample centroid, formally,

—; _— -
ss'+dn sn-dn

e
lan]| ~ [lan]|

ESR(ss") =

We calculate ASD, ESD and ESR of our samples based on the global GSS model. ASD
between the DO and D8, DO and D15, and DO and D33 samples are shown in Table 5.1 - 5.3,
respectively. ESD between the D0 and D8, DO and D15, and DO and D33 samples are shown in
Table 5.4 - 5.6, respectively. ESR between the DO and D8, D0 and D15, and DO and D33 samples

are shown in Table 5.7 — 5.9, respectively.
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Table 5.1: ASD between the DO and D8 samples. Relapses are highlighted with Underline.
Extremely slow responders (D8 blast count > 10,000) are highlighted in ltalic.

RANK | SAMPLE | ASD-D8 | RANK | SAMPLE | AsD-D8 | RANK | SAMPLE | ASD-D8
1 67 _KL287 | 4.64 30 | 86_KL509 | 35.11 59 | 92.R332 | 55.25
2 97 R208 | 4.78 31 | 96 R202 | 36.65 60 | 93 _R337 | 55.70
3 59 R281 | 6.30 32 | 51.KLael | 37.44 61 | 26_KL369 | 57.13
4 11 R280 | 7.06 33 | 24 K328 | 37.82 62 | 80 _KL423 | 58.19
5 19 KL205 | 7.76 34 | 40 KL4a30 | 37.85 63 | 69 KL313 | 58.85
6 | 70 KL320 | 8.35 35 | 38 KL218 | 3851 64 | 14 KKH19 | 59.57
7 | B6. K464 | 862 36 | 47 R334 | 40.16 65 | 62_KKH22 | 60.80
8 | 20 KL274 | 9.99 37 | 74 KL383 | 40.85 66 | 01 _KKH18 | 62.21
9 13 R410 | 11.94 38 | 57_KL535 | 40.99 67 | 75_KL385 | 62.85
10 | 41_KL441 | 12.25 39 | 10 _R257 | 41.47 68 | 21 KL300 | 63.15
11 | 27.KL374 | 13.74 40 | 30 _KL444 | 4217 69 | 64_KKH29 | 64.44
12 | 35 R313 | 14.00 41 | 84 _KL458 | 43.49 70 | 28 KL375 | 68.24
13 | 82_KL454 | 16.84 42 | 16_KKH21 | 43.55 71 | 32_R233 | 6838
14 | 772 Kki401 | 1685 | 43 | 60 KkkH30 | 43.62 72 | 34_R256 | 71.98
15 | 33 R247 | 19.22 44 | 83_KL457 | 43.88 73 | 08_KL456 | 73.10
16 | 55_KL419 | 19.37 45 | 66_KL247 | 44.46 74 | 68 _KL304 | 73.27
17 | 39 KL395 | 19.79 46 | 50_KL360 | 45.17 75 | 18 _KKH28 | 73.89
18 | 45 R194 | 23.01 47 | 37_R355 | 46.57 76 | 58 KL543 | 74.46
19 | 07 KL417 | 24.00 48 | 15_KKH20 | 46.78 77 | 36_R343 | 75.9
20 | 17 _KKH27 | 24.58 49 | 94 R354 | 47.17 78 | 88 KL544 | 78.00
21 | 23_KL321 | 24.89 50 | 61 _KKH13 | 48.70 79 | 12_R297 | 78.10
22 | 65 KL224 | 25.57 51 | 52_R252 | 48.97 80 | 72_KL377 | 80.71
23 | 29 KL439 | 26.93 52 | 73_KL381 | 49.52 81 | 87 KL522 | 81.06
24 | 43_KL536 | 28.38 53 | 48 R339 | 49.58 82 | 89 R245 | 85.64
25 | 90 R253 | 28.72 54 | 25 KL357 | 49.66 83 | 44 KL541 | 89.50
26 | 49 R432 | 29.27 55 | 85 _KL485 | 51.39 84 | 63_KKH25 | 90.18
27 | 42_KL507 | 30.29 56 | 98 KL387 | 53.21 85 | 78 _KL412 | 98.62
28 | 04_KL322 | 30.64 57 | 79 KLa21 | 54.57 86 | 95 _R431 | 105.60
29 | 99 KL416 | 31.70 58 | 05 _KL354 | 54.59
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Table 5.2: ASD between the DO and D15 samples. Relapses are highlighted with Underline.
Extremely slow responders are highlighted in [talic.

RANK | SAMPLE | ASD-D15 | RANK | SAMPLE | ASD-D15 | RANK | SAMPLE | ASD-D15
1 | 72Ki401 | 247 17 | 27.KL374 | 64.24 33 | 48 R339 | 79.94
2 97 R208 | 15.11 18 | 85 KL485 | 64.72 34 | 64_KKH29 | 80.13
3 | 56_KL464 | 25.51 19 | 80_KL423 | 66.69 35 | 28 KL375 | 82.79
4 | 76_KL398 | 27.47 20 | 99 _KL416 | 66.79 36 | 87_KL522 | 84.89
5 96 R202 | 29.09 21 | 06_KL378 | 66.80 37 | 93.R337 | 87.84
6 59 R281 | 32.64 22 | 61_KKH13 | 68.18 38 | 63_KKH25 | 92.24
7 | 67.KL287 | 41.60 23 | 74 KL383 | 69.77 39 | 14 _KKH19 | 92.65
8 | 71.KL371 | 42.05 24 | 98 KL387 | 71.15 40 | 49 R432 | 93.43
9 | 50 KL360 | 47.50 25 | 84 _KL458 | 71.19 41 | 94 R354 | 94.20
10 | 16_KKH21 | 51.87 26 | 18_KKH28 | 73.27 42 | 78_KL412 | 101.49
11 | 05_KL354 | 55.11 27 | 01_KKH18 | 74.20 43 | 37_R355 | 102.25
12 | 73_KL381 | 55.42 28 | 92.R332 | 74.38 44 | 36_R343 | 104.16
13 | 13 R410 | 58.63 29 | 52_R252 | 76.67 45 | 29 KL439 | 104.52
14 | 41_KL441 | 58.80 30 | 62_KKH22 | 78.08 46 | 20 KL274 | 107.18
15 | 10_R257 | 62.54 31 | 86_KL509 | 79.17 47 | 95 R431 | 110.76
16 | 15_KKH20 | 63.69 32 | 88_KL544 | 79.66
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Table 5.3: ASD between the DO and D33 samples. Relapses are highlighted with Underline.

Extremely slow responders are highlighted in [talic.

RANK | SAMPLE | ASD-D33 | RANK | SAMPLE | ASD-D33 | RANK | SAMPLE | ASD-D33
1 97 R208 9.73 20 66_KL247 72.91 39 83_KL457 87.30
2 96 R202 9.78 21 01_KKH18 73.20 40 82_KL454 87.42
3 76_KL398 22.02 22 18 KKH28 73.75 41 28_KL375 92.46
4 59 R281 30.86 23 84_KL458 74.46 42 63_KKH25 93.00
5 71 _KL371 34.22 24 72_KL377 75.73 43 38_KL218 95.79
6 77 _KL401 44.26 25 25_KL357 79.29 44 89_R245 95.80
7 50_KL360 47.48 26 88 KL544 79.96 45 49 R432 96.60
8 40_KL430 50.50 27 75_KL385 81.02 46 86_KL509 97.59
9 51_KL461 51.72 28 07 KL417 81.33 47 37_R355 98.98
10 67_KL287 52.87 29 87_KL522 81.46 48 55 _KL419 100.11
11 42_KL507 56.30 30 90 R253 81.50 49 44 KL541 100.20
12 27_KL374 57.15 31 47 R334 81.52 50 20 KL274 101.95
13 60_KKH30 58.28 32 64_KKH29 81.77 51 29_KL439 102.15
14 85_KL485 60.39 33 62_KKH22 82.52 52 78 _KL412 103.99
15 10_R257 62.15 34 19 KL205 82.81 53 14 _KKH19 | 104.77
16 80_KL423 62.25 35 06_KL378 83.04 54 17_KKH27 | 106.20
17 11 _R280 64.21 36 39 KL395 83.29 55 43 _KL536 106.28
18 65_KL224 68.79 37 52_R252 86.10 56 30_KL444 110.44
19 69_KL313 72.80 38 08_KL456 86.44 57 95_R431 112.59
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Table 5.4: ESD between the DO and D8 samples. Relapses are highlighted with Underline.

Extremely slow responders are highlighted in [talic.

RANK SAMPLE ESD-D8 | RANK SAMPLE ESD-D8 | RANK SAMPLE ESD-D8
1 56_KL464 -2.21 30 29_KL439 26.20 59 05_KL354 52.56
2 77 KL401 -1.51 31 49 R432 26.77 60 80_KL423 53.33
3 33 _R247 -0.46 32 83_KL457 29.13 61 75_KL385 54.31
4 19 KL205 -0.21 33 04_KL322 30.64 62 69_KL313 54.40
5 45 _R194 2.13 34 74_KL383 31.52 63 64_KKH29 55.12
6 59 R281 2.50 35 60_KKH30 32.88 64 93_R337 55.35
7 97 R208 2.94 36 38_KL218 33.00 65 26_KL369 56.83
8 67_KL287 4.63 37 10_R257 33.39 66 14 _KKH19 57.79
9 96 R202 5.14 38 40_KL430 33.55 67 28_KL375 58.21
10 11 R280 5.90 39 86_KL509 34.48 68 62_KKH22 60.55
11 27_KL374 6.31 40 51_KL461 34.83 69 21_KL300 60.80
12 70_KL320 6.64 41 79_KL421 35.43 70 01_KKH18 62.07
13 41 _KL441 7.86 42 94 _R354 35.66 71 32_R233 67.35
14 20 KL274 8.91 43 24 _KL328 35.78 72 34_R256 67.95
15 82_KL454 9.53 44 47 R334 37.35 73 68 _KL304 70.06
16 13_R410 11.45 45 30_KL444 38.26 74 18 _KKH28 70.41
17 39 KL395 11.49 46 57_KL535 39.40 75 36_R343 71.95
18 17_KKH27 12.64 47 73_KL381 39.51 76 58 KL543 71.96
19 35 R313 13.76 48 66_KL247 39.69 77 08_KL456 72.39
20 55 _KL419 18.60 49 16_KKH21 40.05 78 12_R297 74.21
21 99 KL416 19.83 50 84_KL458 40.12 79 88_KL544 75.25
22 23_KL321 20.37 51 37_R355 41.68 80 72_KL377 76.58
23 50_KL360 20.80 52 25_KL357 42.14 81 44 _KL541 79.45
24 90 R253 21.40 53 15_KKH20 43.35 82 87_KL522 79.91
25 61 KKH13 21.67 54 52_R252 45.31 83 89 _R245 85.37
26 43_KL536 23.00 55 85_KL485 45.82 84 63_KKH25 85.67
27 65_KL224 23.30 56 92_R332 49.15 85 78 _KL412 92.38
28 07 KL417 24.00 57 98_KL387 49.17 86 95_R431 104.57
29 42 _KL507 24.00 58 48 R339 49.26
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Table 5.5: ESD between the DO and D15 samples. Relapses are highlighted with Underline.
Extremely slow responders are highlighted in [talic.

RANK | SAMPLE | ESD-D15 | RANK | SAMPLE | ESD-D15 | RANK | SAMPLE | ESD-D15
1 97 R208 | -12.33 | 17 | 13_R410 | 56.01 33 | 88 KL544 | 78.10
2 | 77.K1401 | 1.54 18 | 15_KKH20 | 58.17 34 | 48 R339 | 78.48
3 96 R202 | 5.90 19 | 10_R257 | 58.40 35 | 93 R337 | 81.68
4 | B6 KL464 | 13.45 20 | 84 _KL458 | 60.75 36 | 28 KL375 | 81.79
5 59 R281 | 17.13 21 | 80_KL423 | 60.92 37 | 87_KL522 | 83.85
6 | 76_KL398 | 21.30 22 | 99 KLa16 | 61.21 38 | 63_KKH25 | 86.06
7 | 71.k371 | 2356 23 | 06_KL378 | 61.58 39 | 49 R432 | 88.27
8 | 50_KL360 | 26.07 24 | 85 KL485 | 63.61 40 | 94 R354 | 88.83
9 | 67 KL287 | 29.96 25 | 64_KKH29 | 64.65 41 | 14 _KKH19 | 92.64
10 | 27_KL374 | 43.64 26 | 18_KKH28 | 66.23 42 | 37_R355 | 92.94
11 | 61_KKH13 | 46.06 27 | 92.R332 | 67.53 43 | 29 KL439 | 95.71
12 | 16_KKH21 | 46.50 28 | 52_R252 | 68.87 44 | 78 KL412 | 96.95
13 | 73_KL381 | 53.48 29 | 98 KL387 | 69.83 45 | 36_R343 | 100.91
14 | 74 KL383 | 53.86 30 | 01_KKH18 | 74.10 46 | 20 KL274 | 104.35
15 | 05_KL354 | 54.14 31 | 62_KKH22 | 74.64 47 | 95 R431 | 110.53
16 | 41_KL441 | 54.81 32 | 86_KL509 | 76.20
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Table 5.6: ESD between the DO and D33 samples. Relapses are highlighted with Underline.

Extremely slow responders are highlighted in [talic.

RANK | SAMPLE | ESD-D33 | RANK | SAMPLE | ESD-D33 | RANK | SAMPLE | ESD-D33
1 97 R208 -0.56 20 69_KL313 70.87 39 39 KL395 81.71
2 96 R202 0.34 21 18_KKH28 71.84 40 82_KL454 87.15
3 76_KL398 4.54 22 66_KL247 72.90 41 28_KL375 87.29
4 59 R281 16.15 23 84_KL458 72.93 42 63_KKH25 92.22
5 71 _KL371 31.51 24 08_KL456 73.05 43 38_KL218 93.89
6 51_KL461 39.41 25 72_KL377 74.77 44 89_R245 94.81
7 77 KL401 43.44 26 07 KL417 76.35 45 86_KL509 95.31
8 40_KL430 46.33 27 83_KL457 76.72 46 17_KKH27 95.47
9 50_KL360 47.43 28 19 KL205 76.86 47 55_KL419 95.92
10 67_KL287 52.37 29 47 R334 78.70 48 49 R432 96.41
11 42_KL507 53.87 30 87_KL522 78.76 49 29_KL439 97.66
12 60_KKH30 56.61 31 90 R253 78.83 50 37_R355 98.84
13 27_KL374 57.11 32 88_KL544 79.25 51 44_KL541 99.89
14 85_KL485 59.75 33 75_KL385 79.26 52 78 _KL412 99.97
15 80_KL423 61.74 34 25 _KL357 79.27 53 20 KL274 100.55
16 10_R257 61.81 35 64_KKH29 80.39 54 14_KKH19 | 100.74
17 11 _R280 63.24 36 62_KKH22 80.65 55 43_KL536 104.58
18 65_KL224 65.66 37 52_R252 81.43 56 30_KL444 106.99
19 01_KKH18 69.80 38 06_KL378 81.69 57 95 _R431 111.91
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Table 5.7: ESR between the DO and D8 samples. Relapses are highlighted with Underline.

Extremely slow responders are highlighted in [talic.

RANK SAMPLE ESR-D8 | RANK SAMPLE ESR-D8 | RANK SAMPLE ESR-D8
1 56_KL464 -0.04 30 07 KL417 0.36 59 36_R343 0.69
2 77 KL401 -0.02 31 30_KL444 0.37 60 69_KL313 0.72
3 33_R247 -0.01 32 86_KL509 0.38 61 21_KL300 0.75
4 19 KL205 0.00 33 74_KL383 0.38 62 04_KL322 0.75
5 97 R208 0.03 34 42_KL507 0.40 63 64_KKH29 0.75
6 45_R194 0.04 35 65_KL224 0.42 64 62_KKH22 0.76
7 59 R281 0.04 36 94_R354 0.42 65 57_KL535 0.77
8 96 R202 0.07 37 37_R355 0.42 66 15_KKH20 0.77
9 20 KL274 0.09 38 50_KL360 0.44 67 85_KL485 0.79
10 70_KL320 0.09 39 47_R334 0.46 68 73_KL381 0.81
11 11 R280 0.09 40 79_KL421 0.49 69 34_R256 0.83
12 67_KL287 0.10 41 51_KL461 0.52 70 68_KL304 0.83
13 27_KL374 0.10 42 25_KL357 0.53 71 32_R233 0.85
14 82_KL454 0.11 43 98 KL387 0.55 72 44 KL541 0.87
15 41 KL441 0.12 44 66_KL247 0.56 73 80_KL423 0.88
16 17_KKH27 0.13 45 10_R257 0.57 74 12_R297 0.89
17 39 KL395 0.14 46 84 _KL458 0.58 75 08_KL456 0.89
18 13_R410 0.14 47 26_KL369 0.58 76 72_KL377 0.92
19 35 R313 0.18 48 52_R252 0.59 77 01_KKH18 0.93
20 55_KL419 0.19 49 48_R339 0.60 78 58_KL543 0.94
21 23_KL321 0.22 50 14_KKH19 0.61 79 89_R245 0.95
22 43_KL536 0.23 51 60_KKH30 0.62 80 05_KL354 0.95
23 90 R253 0.26 52 40_KL430 0.64 81 87_KL522 0.96
24 29 KL439 0.27 53 75_KL385 0.64 82 88 _KL544 0.96
25 49_R432 0.29 54 28_KL375 0.67 83 95_R431 0.96
26 61_KKH13 0.31 55 16_KKH21 0.67 84 78 _KL412 0.98
27 | 99 KLa16 | 0.33 56 93_R337 0.68 85 | 18 KKH28 | 0.99
28 83_KL457 0.34 57 92_R332 0.68 86 63_KKH25 1.01
29 38_KL218 0.35 58 24 _KL328 0.68
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Table 5.8: ESR between the DO and D15 samples. Relapses are highlighted with Underline.
Extremely slow responders are highlighted in [talic.
RANK | SAMPLE ESR-D15 | RANK | SAMPLE ESR-D15 | RANK | SAMPLE ESR-D15
1 97 R208 -0.13 17 41_KL441 0.85 33 88_KL544 0.99
2 77 KL401 0.02 18 84_KLA458 0.88 34 93_R337 1.00
3 96 _R202 0.08 19 | 64 _KKH29 | 0.88 35 | 80 KL423 | 1.00
4 56_KL464 0.25 20 99 KL416 0.89 36 10_R257 1.00
5 59 R281 | 0.27 21 | 52_R252 0.90 37 | 87 KL522 | 1.00
6 50_KL360 0.55 22 18 _KKH28 0.93 38 63_KKH25 1.01
7 67_KL287 0.62 23 92_R332 0.93 39 95 _R431 1.01
8 74_KL383 0.65 24 49 R432 0.94 40 78_KL412 1.03
9 61_KKH13 0.66 25 62_KKH22 0.94 41 20 KL274 1.03
10 | 13 R410 | 0.69 26 | 28 KL375 | 0.94 42 | 94 R354 1.04
11 27_KL374 0.71 27 37_R355 0.95 43 15_KKH20 1.04
12 06_KL378 0.71 28 48 R339 0.96 44 85_KL485 1.10
13 71_KL371 0.72 29 36_R343 0.96 45 73_KL381 1.10
14 98 KL387 0.78 30 05_KL354 0.98 46 01_KKH18 1.11
15 16_KKH21 0.78 31 14_KKH19 0.98 47 76_KL398 1.55
16 86_KL509 0.84 32 29_KL439 0.99
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Table 5.9: ESR between the DO and D33 samples. Relapses are highlighted with Underline.

Extremely slow responders are highlighted in [talic.

RANK | SAMPLE | ESR-D33 | RANK SAMPLE | ESR-D33 | RANK SAMPLE | ESR-D33
1 97 R208 -0.01 20 82_KL454 0.99 39 66_KL247 1.03
2 96 R202 0.00 21 55_KL419 0.99 40 30_KL444 1.03
3 59 R281 | 0.25 22 |20 K274 | 0.99 41 | 85 KL485 | 1.03
4 76_KL398 0.33 23 39 KL395 0.99 42 43_KL536 1.04
5 51 KL461 0.59 24 25 _KL357 0.99 43 01_KKH18 1.05
6 77 KL401 0.61 25 38_KL218 1.00 44 89_R245 1.05
7 40_KL430 0.88 26 11 R280 1.00 45 86_KL509 1.05
8 83_KL457 0.88 27 50_KL360 1.01 46 84_KL458 1.06
9 72_KL377 0.90 28 37_R355 1.01 47 78_KL412 1.06
10 08_KL456 0.90 29 18_KKH28 1.01 48 52_R252 1.06
11 42_KL507 0.90 30 17_KKH27 1.01 49 10_R257 1.06
12 27_KL374 0.93 31 29 KL439 1.01 50 14 KKH19 1.07
13 06_KL378 0.94 32 28_KL375 1.01 51 60_KKH30 1.07
14 75_KL385 0.94 33 88 KL544 1.01 52 63_KKH25 1.08
15 69 KL313 0.94 34 80_KL423 1.02 53 44 KL541 1.09
16 87_KL522 0.94 35 62_KKH22 1.02 54 67_KL287 1.09
17 90 R253 0.96 36 19 KL205 1.02 55 64_KKH29 1.10
18 71_KL371 0.97 37 49_R432 1.03 56 07 KL417 1.14
19 47 R334 0.97 38 95_R431 1.03 57 65_KL224 1.17
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5.3 Relapse Prediction

We predict relapses by GSS distance. The prediction is based on the assumption of the
importance of early response (we consider GSS as early genetic response). Hypothetically, if a
patient has a large GSS, the patient is supposed to respond well to treatment, and the patient’s risk
of relapse is low; on the contrary, if a patient has a very small or even a negative (only applicable
to ESD and ESR) GSS, the patient is supposed to poorly respond to treatment, and the patient’s

risk of relapse is high.

Figure 5.2 shows the receiver operating characteristics (ROC) of the various measurements of

GSS distance in relapse prediction, where,

True Positive

sensitivity =
y True Positive + False Negative

True Negative

Specificity =
pecificity True Negative + False Positive

The p values refer to the areas under the curves, calculated by MedCacl software, version 9.6.2.0
(MedCalc Software, Mariakerke, Belgium). Our results indicate GSS distance is very predictive

of the relapses.

Among the 3 time points, D8 GSS distance performs the best (all three metrics with p value <
0.0001). We next ask whether D8 GSS distance can be used to predict D8 response. As
introduced in Chapter 2, D8 response is defined based on the peripheral blood leukemic blasts. A
measurement of > 1,000 blasts/uL is considered as a slow response, and a measurement of >

10,000 blasts/uL is considered as an extremely slow response.
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Figure 5.2: Receiver operating characteristics of GSS distance in relapse prediction. (a) D8 GSS
distance. (b) D15 GSS distance. (¢) D33 GSS distance.



CHAPTER 5 RELAPSE PREDICTION

100 4

80

60

Sensitivity

40 4

20 4

ASD

L AUC=0.944

p<0.0001

100 +

80

60 |

Sensitivity

40 -

20 4

T T T T T
20 40 60 80 100

100-Specificity

ASD

AUC=0.791
© p<0.0001

™
20 40 60 80 100

100-Specificity

Sensitivity

Sensitivity

100 ~

80 |

60

40 4

20

ESD

.~ AUC=0,990

" p<0.0001

100 4

80

60

40

20 4

T T T T T
20 40 60 80 100
100-Specificity

(a)

ESD

. AUC=0.805
p<0.0001

20 40 60 80
100-Specificity

T
100

(b)

Sensitivity

Sensitivity

87
ESR

100 A

80 4

60

40 A

20 4

- AUC=0.985
p<0.0001
0 T T T T T
0 20 40 60 80 100
100-Specificity
ESR

100 A

80 4

60

40

20 +

- 'AUC=0.768
< p<0.0001
0 T T T T T
0 20 40 60 80 100

100-Specificity

Figure 5.3: Receiver operating characteristics of D8 GSS distance in D8 response prediction. (a)
Extremely slow response. (b) Slow response.

Figure 5.3 shows the ROCs of D8 GSS distance in D8 response prediction. Our results

indicate D8 GSS distance is very predictive of D8 response. Especially, the prediction of

extremely slow response is almost perfect (the area under the curve of ESD = 0.99).
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Figure 5.4: Relapse prediction results of various methods by Kaplan-Meier method.
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Table 5.10: Comparison of relapse prediction performance among various methods. The
performance is evaluated based on Figure 5.4, where high-risk patients are predicted as the
relapses, and the rest of patients are predicted as the remissions. The best performer of each

column is highlighted.

Method Prognostic Feature Sensitivity Specificity Accuracy
Holleman-DT DO GEP 60.00% 69.51% 64.76%
Holleman-NB DO GEP 60.00% 69.51% 64.76%

Holleman-SVM DO GEP 60.00% 69.51% 64.76%
Bhojwani DO GEP 20.00% 79.27% 49.63%
NCI DO GEP 80.00% 58.14% 69.07%
Cytogenetics Diagnostic Cytogenetics 30.00% 94.19% 62.09%
MRD-D33 D33 MRD 77.78% 54.12% 65.95%
D8 Response D8 Blast Count 30.00% 85.53% 57.76%

ASD-D8 DO and D8 GEP 90.00% 73.68% 81.84%

ESD-D8 DO and D8 GEP 100.00% 75.00% 87.50%

ESR-D8 DO and D8 GEP 90.00% 73.68% 81.84%

We next compare D8-GSS-based relapse prediction with several other clinical- and GEP-

based methods in our dataset. These protocols are described as the following:

e Holleman-DT: Proposed by Holleman and colleagues, 124 genes are used (Holleman

et al. 2004). Decision tree is used as the classification model (not specified in the

original paper). Patients are equally assigned into 3 risk groups based on the predicted

combined drug resistance scores.

e Holleman-NB: Proposed by Holleman and colleagues, 124 genes are used (Holleman

et al. 2004). Naive Bayes is used as the classification model. Patients are equally

assigned into 3 risk groups based on the predicted combined drug resistance scores.

e Holleman-SVM: Proposed by Holleman and colleagues, 124 genes are used

(Holleman et al. 2004). Support vector machine is used as the classification model.
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Patients are equally assigned into 3 risk groups based on the predicted combined drug
resistance scores.

e Bhojwani: Proposed by Bhojwani and colleagues, 47 probe sets are used (Bhojwani et
al. 2008).

e NCI: Proposed by the National Cancer Institute, patients between 1 and 9 years of age
and having a leukocyte count of less than 50x10° per liter at diagnosis are assigned as
standard risk. The rest of patients are assigned as high risk (Smith et al. 1996, Pui et
al. 2001).

e Cytogenetics: Proposed by Pui and colleagues, patients with BCR-ABL fusion, MLL
rearrangement, and Hypodiploid<45 are classified as high risk. Patients with TEL-
AMLI1 fusion and Hyperdiploid>50 are classified as low risk. The rest of patients are
classified as intermediate risk (Pui et al. 2008, Pui et al. 2009).

e MRD-D33: Proposed by Pui and colleagues, patients with D33 MRD < 0.01% are
classified as low risk. Patients with D33 MRD > 1% are classified as high risk. The
rest of patients are classified as intermediate risk (Pui et al. 2001, Pui and Evans
2006).

o D8 Response: Patients with D8 blast count > 1,000 are predicted as high risk. The rest
of patients are predicted as low risk.

o ASD-D8: Patients are equally assigned into 3 risk groups based on D8 ASD.

e ESD-DS: Patients are equally assigned into 3 risk groups based on D8 ESD.

e ESR-D8: Patients are equally assigned into 3 risk groups based on D8 ESR.
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Figure 5.4 compares the results of relapse prediction by Kaplan-Meier method, and Table 5.10
shows the corresponding performance evaluations. From Table 5.10, we see that ESD-DS§ has 100%
sensitivity at 75% specificity. This means it has both much better sensitivity and specificity than

Hollerman-DT/NB/SVM, Bhojwani, NCI, and MRD-D33 at very large margin.

For example, MRD-D33 has 77.78% sensitivity at 54.12% specificity. Given that there are 10
relapses and 76 remissions, this means MRD-D33 can identify 10 X 77.78% = 8 of them, while
giving false alarm on 76 x (1 — 54.12%) = 35 of the good patients. In contrast, ESD-DS8 has 100%
sensitivity at 75% specificity. This means ESD-DS can identify all 10 poor patients, while giving
false alarm on only 76 x (1 — 75%) = 19 of them. Clearly, ESD-D8 is far better than MRD-D33.
In fact, looking at Table 5.4, we can easily compute that, when the score threshold of ESD-DS is
set at ~78% sensitivity, the corresponding specificity is (76 — 13) / 76 = 83%, which is far higher

than MRD-D33’s 54.12% specificity at the same sensitivity level'.

To compare with D8 Response (based on D8 blast count), we note that D8 Response has
sensitivity = 30% and specificity = 85.53%. Looking at Table 5.4, when the score threshold of
ESD-D8 is set at 30% sensitivity, the corresponding specificity is (76 — 4) /76 = 94.74%, which

is far better than D8 Response’s 85.53%.

To compare with Diagnostic Cytogenetics, we note that cytogenetics has sensitivity = 30%
and specificity = 94.19%. Looking at Table 5.4, when the score threshold of ESD-DS is set at 30%
sensitivity, the corresponding specificity is 94.74%, which is also better than cytogenetics’s

94.19%.

! A widely accepted methodology for comparing two prediction systems is to first calibrate them to the
same level of sensitivity and then compare their specificity.
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Thus, we conclude ESD-DS is superior to any other methods in comparison.

5.4 Discussion

The prognostic strength of GSS is not unexpected. As shown in Figure 4.1, unsupervised
hierarchical clustering reveals that the post-treatment samples of a relapse (marked in red) or an
extremely slow responder (marked in green) tend to be clustered together with the pre-treatment
sample of the same patient (p = 0.016). This result suggests that a patient with poor outcome may
have more resistant genetic characteristics to treatment, when compared to a patient with good
outcome. In Figure 4.8, the global GSS model, we find the remissions shift generally further
towards the normal samples than the relapses, especially in the D8 samples. In our results of
relapse prediction, D8 GSS distance performs much better than D15 and D33 GSS distance. This
observation suggests that early response may be more important than the result of remission
induction in disease prognosis, which may explain why 98% of patients can achieve a complete

remission after remission induction, while still nearly 20% of them relapse.

Both MRD and GSS value treatment response in relapse prediction. However, they are
different. MRD only concerns the absolute number of leukemic cells after treatment, and it
ignores the initial load of leukemic blasts in a patient. It allows a clinician to assess the risk of a
patient without any diagnostic information. In contrast, GSS concerns the difference between pre-
and post-treatment GEPs. It emphasizes the change, rather than the result, of treatment. We argue
that, in philosophy, GSS is more close to the definition of the term, response, than MRD, and we

have demonstrated GSS-based methods perform better than MRD-based method in our data.
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Nevertheless, it is probably yet too early to declare that GSS is generally better than MRD in
relapse prediction, as the prognostic value of MRD has been evaluated in tens of thousands of

patients in the last twenty years.

In our results, ESD performs better than ASD and ESR. The explanation to that ESD is
superior to ASD is straightforward, as ESD concerns the direction of a GSS, while ASD does not.
However, it may be confusing that ESD performs better than ESR. A possible explanation is that
the position of a pre-treatment sample in the global GSS model is not only decided by the initial
load of leukemic blasts but the subtype of the patient as well. For example, in Figure 4.8, the pre-
treatment samples of T-ALL are located closer to the normal samples than that of the rest
subtypes. This difference is not attributed to the different level of the initial blast count, but to the
difference between B and T lineage of the disease. We propose to solve this problem by
constructing the local GSS models for each subtype. However, due to the limitation of the
number of patients in our data, we are not able to make any conclusive comparison between ESD

and ESR of the local models.



CHAPTER 6

PROOF OF CONCEPT — ACUTE MYELOID LEUKEMIA

6.1 Overview

Acute myeloid leukemia (AML) is characterized by a rapid growth of abnormal white blood cells
in bone marrow, which thereafter inferences the growth and functioning of normal white blood
cells (Lowenberg, Downing and Burnett 1999, Estey and Dohner 2006). Similar to ALL, the
treatment of AML is generally composed of an induction phase and a consolidation phase. The
first phase attempts to produce a complete remission, which is defined as a marrow with less than
5% of blast, a neutrophil count greater than 1,000, and a platelet count greater than 100,000
(Cheson et al. 2003). The second phase aims to prolong the remission achieved in the first phase
(Estey and Dohner 2006). However, different from ALL, the overall 5-year survival rate of AML
is only 40%, where relapse is the major reverse event (Colvin and Elfenbein 2003). Therefore,

relapse prediction is critical to the treatment of AML.

94
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Table 6.1: Patient characteristics of our AML dataset.

Sample Stage Age Sex Clinical Status TP1 TP2 TP3 TP4
D318 M4 15.2 M Relapse, Death DO D5 D33

D474 M1 10.3 M CCR DO -- D33 D60
KKHO014 M2 3.9 F CCR DO -- D36

KL336 M2 11.3 F CCR DO -- D31

KL343 M3 2.9 M Relapse, Death DO -- D36

KL448 M3 2.6 F CCR DO D17 - D51
KL473 M7 2.7 M Relapse, Death DO -- D32

KL505 M3 7.4 F CCR DO D14 -- D45

Since the treatment philosophy of AML is similar to that of ALL, we examine GSS and its
prognostic value in an AML dataset as a proof of concept. The dataset consists of 20 samples
from 8 AML patients at different time points. Table 6.1 shows the clinical characteristics of these

patients.

6.2 Unsupervised Hierarchical Clustering

Aftfymetrix HG-U133 Plus2.0 microarrays (Affymetrix, Santa Clara, CA) are hybridized with the
prepared specimens of our samples to generate time-series GEPs. Signal values are interrogated
by MASS.0. To reduce systematic batch effects, probe sets with “Present” calls in less than 50%
of samples are removed. As a result, 25,408 probe sets are eligible for the next stage of analysis.

Quantile normalization is applied to the whole dataset thereafter.

Unsupervised hierarchical clustering is performed by Eisen’s software, Cluster 3.0, with
Pearson’s correlation and complete linkage as the parameters (Eisen et al. 1998). Figure 6.1

shows the resulted dendrogram.
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Figure 6.1: Unsupervised hierarchical clustering.

Genetic Status Shifting Model of AML
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on the samples of MILE-AML and MILE-NBM, respectively. The GSS of relapses are shown in

the figure.
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In Figure 6.1, the samples are organized with two major clusters separated by the time points.
The cluster on the right is mainly composed of samples collected at early time points (Day < 25),
and the cluster on the left consists of samples collected at later time points (Day > 25).
Exceptions are R318 D33, KLL473 D32, which are the relapses, and R474 D33, which is a slow
responder to treatment, since a later sample of the same patient, R474 D60, is found to migrate to

the left cluster.

6.3 Disease Status Shifting Model

We thereafter construct the GSS model of AML, denoted as GSS-AML, to validate the concept of
GSS in AML. Considering our AML dataset is in a small scale, we use MILE-AML and MILE-

NBM to construct GSS-AML, and then put our samples into the model.

Specifically, we analyze the two datasets by MASS5.0 and only retain probe sets with “Present”
calls in all samples of either dataset. This results 7,760 probe sets eligible for the next stage of
analysis. The two datasets are then combined and quantile normalization is applied to the
combined dataset. We identify drug responsive genes by selecting top 100 differentially
expressed probe sets between MILE-AML and MILE-NBM samples, ranked by the p value of the

t-test, and GSS-AML is constructed based on the selected probe sets.

GSS-AML is shown in Figure 6.2. In the figure, most of the diagnostic samples are located
nearby the disease centroid calculated from MILE-AML, while samples collected at later time
points (Day > D25) are mostly located nearby the normal centroid calculated from MILE-NMB,

and the rest samples are located between the two classes. Although the time points of the GEPs



CHAPTER 6 PROOF OF CONCEPT - ACUTE MYELOID LEUKEMIA 98

Table 6.2: ASD and ESD of GSS-AML. Relapses are highlighted in the table.

Rank SAMPLE ASD Outcome Rank Sample ESD Outcome
1 R318-D5 0.28 R 1 R318-D33 -11.03 R
2 KL473-D32 3.04 R 2 R318-D5 0.04 R
3 KL343-D36 4.33 R 3 KL473-D32 2.83 R
4 KL448-D17 8.11 4 KL343-D36 3.34 R
5 KL505-D14 10.61 5 KL448-D17 6.99
6 R474-D33 11.52 6 KL505-D14 10.33
7 R318-D33 20.10 R 7 R474-D33 11.31
8 R474-D60 25.67 8 R474-D60 25.62
9 KL336-D31 27.14 9 KL336-D31 26.65
10 KL505-D45 31.07 10 KL505-D45 31.04
11 KKH14-D36 35.61 11 KKH14-D36 35.61
12 KL448-D51 39.71 12 KL448-D51 39.67

are not synchronized in our dataset, the transition of genetic status from disease to normal is

obvious. Thus, we claim the concept of GSS is valid in AML.

6.4 Relapse Prediction

We calculate ASD and ESD to predict the relapses. The results are shown in Table 6.2. Both
metrics show a very promising value in the prediction. ESD outperforms ASD by capturing the

negative GSS of R318-D33.




CHAPTER 7

CONCLUSION

7.1 Conclusion

GEP-based subtype classification of childhood ALL is a successful story of bioinformatics
application in modern cancer research (Yeoh et al. 2002). By selecting genes exclusively
expressing in each of the 6 disease subtypes, one can train a computational model to accurately
classify the disease subtypes of new cases. This idea is later generalized to adult ALL and AML,
and in both cases, GEP proves its value in disease diagnosis (Haferlach et al. 2010). A possible
explanation to the success of the method is that chromosomal translocations caused abnormal
gene expression patterns are reserved in disease subtypes, and they are catchable by high-

throughput GEP technology.

Although GEP is valuable in disease diagnosis, its application in the relapse prediction of

childhood ALL remains limited. Since contemporary management of patients with childhood
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ALL tailors the intensity of therapy corresponding to a patient’s risk of relapse, thereby
maximizes cure and minimizes toxic side effects, it is crucial to accurately assign the risk of
relapse upfront to optimize the treatment. Current risk assignment is based on a number of
clinical and biological factors, such as, age, white blood cell count, DNA index, karyotype,
recurrent translocations, early morphologic response and MRD, in which MRD is considered as
the most predictive factor (Pui et al. 2001). Nevertheless, there are still about 20% of patients
suffering from unpredicted relapses. For this reason, scientists are trying to discover new
prognostic factors to improve the prediction of relapse by gene expression analysis. Several
studies have been done to predict relapses based on diagnostic GEPs (Bhojwani et al. 2008, Kang
et al. 2010, Holleman et al. 2004, Lugthart et al. 2005). However, there is little evidence to
support their discoveries to be generalized to other studies, and the biological fundamental

between the identified gene expression patterns and the relapses is still poorly understood.

We generate time-series GEPs to explore genetic response to disease treatment. This is the
first time that time-series GEPs are used in a leukemia study. Through unsupervised hierarchical
clustering and genetic signature dissolution analysis, we gain several interesting observations: 1)
the samples collected at the same time point tend to be clustered together; 2) the samples of the
early time points (D0 and D8) form several large subtype-related clusters, and this kind of
clusters cannot be observed in the samples of late time points (D15 and D33); 3) the post-
treatment samples of the relapses tend to be clustered with the pre-treatment samples of the same
patients; 4) leukemic genetic signatures are gradually dissolved into the background during the

process of treatment. These observations suggest that leukemic cells are gradually removed



CHAPTER 7 CONCLUSION 101

during treatment, and the patients of different subtypes are eventually mixed up due to the

removal of subtype-associated leukemic genetic signatures in GEPs.

We construct the global GSS model to quantitatively mimic the reduction of leukemic cells
during the treatment of childhood ALL. As a result, the high-dimensional gene expression data
are compressed into a 3-dimensional space, where each position in the space indicates a possible
genetic status. In the global GSS model, diagnostic samples are observed to shift towards normal
samples in the order of DO = D8 = D15 - D33 = Normal. This observation is consistent with
the result of unsupervised hierarchical clustering. In addition, the drug responsive genes we have
identified for the construction of the global GSS model explain the fundamental of the genetic
shift with two mechanisms: 1) the reconstruction of immune system and the restoration of normal

hematogenesis, and 2) the suppression of the negative regulation of apoptosis.

We carry out our prediction of relapse by assuming the importance of early response to
treatment. This is based on the hypothesis that if a patient is in low risk of relapse, the patient
should be sensitive to disease treatment, and thus the post-treatment GEP should be different
enough from the pre-treatment GEP. Practically, we introduce three GSS distance metrics, ASD,
ESD, and ESR to calculate the difference between pre- and post-treatment genetic status. Our
results suggest ESD-DS has the best performance in relapse prediction, with an overall accuracy
of 87.5%, when compared to the accuracy of several prevailing clinical and GEP-based protocols

ranging from 62.1%-69.1%.

We evaluate our theory in an independent AML dataset consisting of 8 patients. Although
AML and ALL are two different diseases, the treatment procedures of them are the same, both

composed of an induction phase and a consolidation phase. However, the overall five-year
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survival rate of AML is only 40%, which is much lower than that of ALL. Relapse is the major
reverse event of AML. We construct GSS-AML to model our data. In the model, although the
time points of the post-treatment samples are not synchronized, the pattern of GSS along
treatment course can still be observed. Furthermore, both ASD and ESD show a very promising
value in the relapse prediction of AML, where ESD outperforms ASD by capturing the negative

shifting of R318-D33.

7.2 Future Work

We have demonstrated in this study that GSS-based method outperforms MRD-based method in
the relapse prediction of childhood ALL. The essential of GSS-based relapse prediction is to
consider the sensitivity of leukemic cells in a patient by calculating the difference between pre-
and post-treatment GEPs of the patient. From the view of system, as we do not use the class
labels (relapse vs. remission) in drug responsive gene selection and GSS model construction, the
process of our prediction can be considered as an unsupervised process. Nevertheless, although
GSS shows its advantage over MRD in relapse prediction in our study, it is probably yet too early
to conclude GSS has a stronger prognostic strength than does MRD in general. This is because
that MRD-based method has been evaluated in practice for over 20 years, while our method has
only been tested in our own dataset. Thus, a very important future work is to test the validity of
GSS-based relapse prediction in more cases. A new clinical trial, Malaysia-Singapore ALL 2010

trial, has been initiated for this purpose.
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GSS distance is used only in univariate analysis of relapse prediction. The quantitative
relationship between GSS distance and other clinical factors is still unknown. In addition to its
independent prognostic strength, we are interested in knowing whether GSS distance could help
to improve the current risk stratification system. A possible solution would exist in bivariate
analysis with MRD, or in multivariate analysis with more clinical factors, such as age and white
blood cell count. Generally, GEP is a very different information source from conventional clinical
information, and we thus expect GSS distance to have complementary value in relapse prediction

to sophisticated methods.

The ultimate purpose of our research is to look for new clinical solutions and to build
applicable software to improve the treatment of childhood ALL. Since 2002, we have made
several important breakthroughs in gene expression analysis of the disease. We are considering
integrating these research discoveries into a practical software package. This software will be
capable of disease diagnosis, subtype classification, subtype discovery, risk stratification and
MRD detection. We hope our software would assist more clinicians in daily decision making and

benefit more leukemia patients.



APPENDIX A

DRUG RESPONSIVE GENE

Table A.1: Drug responsive genes of T-ALL subtype.

Probe Set ID | Gene Symbol Gene Title p Value Fold Change
(T-ALL/Normal)
201416_at SOX4 SRY (sex determining region Y)-box 4 1.06E-98 18.63
201417 _at SOX4 SRY (sex determining region Y)-box 4 6.55E-94 9.97
201029 _s_at CD99 CD99 molecule 2.29E-89 5.63
211071 _s_at MLLT11 myeloid/lymphoid or mixed-lineage leukemia; translocated to, 11 | 1.02E-85 12.52
204529 s at TOX thymocyte selection-associated high mobility group box 6.36E-77 14.40

104




APPENDIX A DRUG RESPONSIVE GENE 105

204636_at COoL17A1 collagen, type XVII, alpha 1 1.18E-74 0.04
204639 at ADA adenosine deaminase 1.16E-73 9.60
201418 s_at SOX4 SRY (sex determining region Y)-box 4 2.25E-73 18.69
216705 s_at ADA adenosine deaminase 4.80E-73 12.62
213668 _s_at SOX4 SRY (sex determining region Y)-box 4 5.38E-73 35.16
202760_s_at | PALM2-AKAP2 PALM2-AKAP2 readthrough transcript 1.66E-70 10.26
213539 at CD3D CD3d molecule, delta (CD3-TCR complex) 1.60E-67 10.64
206390 x_at PF4 platelet factor 4 2.53E-65 0.03
202242 at TSPAN7 tetraspanin 7 2.57E-65 21.94
201028 s_at CD99 CD99 molecule 1.64E-63 6.24
202759 s_at AKAP2 A kinase (PRKA) anchor protein 2 2.59E-63 6.68
214997 at SCAI suppressor of cancer cell invasion 3.21E-63 8.51
213437 _at RUFY3 RUN and FYVE domain containing 3 4.41E-63 10.12
204173 _at MYL6B myosin, light chain 6B, alkali, smooth muscle and non-muscle 5.87E-62 3.95
210116_at SH2D1A SH2 domain protein 1A 1.34E-61 15.79
203787_at SSBP2 single-stranded DNA binding protein 2 1.40E-60 5.46
218641 at LOC65998 hypothetical protein LOC65998 2.08E-60 4.18
209473 _at ENTPD1 ectonucleoside triphosphate diphosphohydrolase 1 4.14E-60 0.14
200983 x_at CD59 CD59 molecule, complement regulatory protein 4.18E-60 0.13
214298 x_at SEPT6 septin 6 4.23E-60 5.48
34726 _at CACNB3 calcium channel, voltage-dependent, beta 3 subunit 4.64E-60 8.38
55872_at ZNF512B zinc finger protein 512B 7.10E-60 4.49
218865_at MOSC1 MOCO sulphurase C-terminal domain containing 1 8.48E-59 0.06
213666_at SEPT6 septin 6 1.24E-58 6.65
221203 _s_at YEATS2 YEATS domain containing 2 1.33E-58 2.63
204530 s_at TOX thymocyte selection-associated high mobility group box 1.72E-58 9.50
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220359 s_at ARPP-21 cyclic AMP-regulated phosphoprotein, 21 kD 1.89E-58 33.33

210638 s_at FBXO09 F-box protein 9 1.03E-57 0.36
202804 _at ABCC1 ATP-binding cassette, sub-family C (CFTR/MRP), member 1 2.95E-57 3.00
215307 _at ZNF529 zinc finger protein 529 4.16E-57 3.85
219036_at CEP70 centrosomal protein 70kDa 6.23E-57 6.33
221810 _at RAB15 RAB15, member RAS onocogene family 6.38E-57 10.57

206656 _s_at C200rf3 chromosome 20 open reading frame 3 1.08E-56 0.28

208792_s_at CLU Clusterin 3.06E-56 0.18
202789 at PLCG1 phospholipase C, gamma 1 9.60E-56 5.58
208791 _at CLU Clusterin 9.71E-56 0.06

202671_s_at PDXK pyridoxal (pyridoxine, vitamin B6) kinase 1.38E-55 0.23

213048 s_at --- --- 1.53E-55 2.00
222344 at 1.70E-55 15.07

201321 s_at SMARCC2 SWI/SNF related, matrix associated, actin dependent regulator of | 2.66E-55 2.16

chromatin, subfamily c, member 2

200631 _s_at SET SET nuclear oncogene 2.89E-55 2.21
213430_at RUFY3 RUN and FYVE domain containing 3 6.75E-55 6.05
210140_at CST7 cystatin F (leukocystatin) 7.91E-55 0.09
218081 at C200rf27 chromosome 20 open reading frame 27 1.30E-54 0.25
218005_at ZNF22 zinc finger protein 22 (KOX 15) 2.20E-54 2.99
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Table A.2: Drug responsive genes of TEL-AMLI subtype.

Probe Set ID | Gene Symbol Gene Title p Value Fold Change

(TEL-AML1/Normal)

203373 _at SOCS2 suppressor of cytokine signaling 2 4.60E-91 21.67

222146_s_at TCF4 transcription factor 4 2.45E-74 17.04
212012 _at PXDN peroxidasin homolog (Drosophila) 3.07E-73 39.64
32625 _at NPR1 natriuretic peptide receptor A/guanylate cyclase A 4.74E-73 46.04

(atrionatriuretic peptide receptor A)

212387_at TCF4 transcription factor 4 6.45E-72 17.30

203372 _s_at SOCS2 suppressor of cytokine signaling 2 6.01E-71 27.21
212386_at TCF4 transcription factor 4 3.26E-70 14.14

203355_s_at PSD3 pleckstrin and Sec7 domain containing 3 9.44E-70 100.22
203787 _at SSBP2 single-stranded DNA binding protein 2 7.72E-69 12.72
219686_at STK32B serine/threonine kinase 32B 1.06E-67 78.02
212013 _at PXDN peroxidasin homolog (Drosophila) 2.09E-67 47.59
202806_at DBN1 drebrin 1 1.88E-66 15.05
214761_at ZNF423 zinc finger protein 423 2.54E-66 128.71

213891 s_at TCF4 transcription factor 4 9.26E-66 19.04
54037_at HPS4 Hermansky-Pudlak syndrome 4 2.48E-64 10.65
203611 at TERF2 telomeric repeat binding factor 2 3.50E-64 26.92

207030_s_at CSRP2 cysteine and glycine-rich protein 2 8.63E-64 104.54
204257 _at FADS3 fatty acid desaturase 3 1.01E-63 8.75
203753 _at TCF4 transcription factor 4 1.38E-63 12.47

208794 _s_at SMARCAA4 SWI/SNF related, matrix associated, actin dependent 2.42E-63 5.07

regulator of chromatin, subfamily a, member 4

218966_at MYOS5C myosin VC 1.54E-62 11.96




APPENDIX A DRUG RESPONSIVE GENE
212385_at TCF4 transcription factor 4 1.72E-62 18.51
214728 x_at SMARCA4 SWI/SNF related, matrix associated, actin dependent 1.03E-61 4.14
regulator of chromatin, subfamily a, member 4
219938 s _at PSTPIP2 proline-serine-threonine phosphatase interacting protein 2 2.11E-61 0.10
208056_s_at CBFA2T3 core-binding factor, runt domain, alpha subunit 2; 2.94E-61 12.31
translocated to, 3
218613 _at PSD3 pleckstrin and Sec7 domain containing 3 3.01E-61 42.49
213720 _s_at SMARCA4 SWI/SNF related, matrix associated, actin dependent 1.74E-60 5.06
regulator of chromatin, subfamily a, member 4
218217 at SCPEP1 serine carboxypeptidase 1 2.84E-60 0.20
211071 _s_at MLLT11 myeloid/lymphoid or mixed-lineage leukemia (trithorax 6.64E-60 7.73
homolog, Drosophila); translocated to, 11
201015_s_at JUP junction plakoglobin 1.20E-59 31.23
206591 _at RAG1 recombination activating gene 1 2.03E-59 149.73
209153 s _at TCF3 transcription factor 3 (E2A immunoglobulin enhancer 2.96E-59 6.60
binding factors E12/E47)

219753 _at STAG3 stromal antigen 3 7.25E-59 28.24
209514 _s_at RAB27A RAB27A, member RAS oncogene family 1.32E-58 0.13
212812 at 1.59E-58 6.74
210829 s _at SSBP2 single-stranded DNA binding protein 2 2.30E-58 11.00
203910 _at ARHGAP29 Rho GTPase activating protein 29 3.32E-58 40.35
212382 _at TCF4 transcription factor 4 3.36E-58 18.39
210094 _s_at PARD3 par-3 partitioning defective 3 homolog (C. elegans) 6.05E-58 18.34
209035 _at MDK midkine (neurite growth-promoting factor 2) 1.09E-57 35.46
202519 _at MLXIP MLX interacting protein 2.04E-57 5.61
206398 s at CD19 CD19 molecule 2.52E-57 19.93
218988 at SLC35E3 solute carrier family 35, member E3 4.02E-57 17.91
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202039 _at MYO18A myosin XVIIIA 4.54E-57 7.10
211026_s_at MGLL monoglyceride lipase 5.82E-57 0.16
209199 s_at MEF2C myocyte enhancer factor 2C 7.34E-57 15.57
204849 at TCFL5 transcription factor-like 5 (basic helix-loop-helix) 9.59E-57 20.16
213702 _x_at ASAH1 N-acylsphingosine amidohydrolase (acid ceramidase) 1 2.56E-56 0.24
209583_s_at CD200 CD200 molecule 3.98E-56 18.12
210980 _s_at ASAH1 N-acylsphingosine amidohydrolase (acid ceramidase) 1 5.70E-56 0.20
Table A.3: Drug responsive genes of Hyperdiploid>50 subtype.
UNIQID Gene Symbol Gene Title p Value Fold Change
(Hyperdiploid>50/Normal)
203373 _at SOCS2 suppressor of cytokine signaling 2 5.26E-73 17.77
222146 _s_at TCF4 transcription factor 4 3.19E-67 18.77
203372_s_at SOCS2 suppressor of cytokine signaling 2 6.53E-63 23.96
32625 at NPR1 natriuretic peptide receptor A/guanylate 2.15E-62 44.13
cyclase A (atrionatriuretic peptide receptor A)
201005_at CD9 CD9 molecule 2.19E-62 14.83
212387_at TCF4 transcription factor 4 1.14E-59 18.22
212386 _at TCF4 transcription factor 4 1.95E-59 15.31
212012 at PXDN peroxidasin homolog (Drosophila) 2.05E-59 38.04
218694 at ARMCX1 armadillo repeat containing, X-linked 1 8.95E-59 9.25
202039 at TIAF1 TGFB1-induced anti-apoptotic factor 1 6.25E-56 9.36
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212385 _at TCF4 transcription factor 4 8.54E-56 20.70
213891 _s_at TCF4 transcription factor 4 2.15E-55 22.00
208370_s_at RCAN1 regulator of calcineurin 1 8.77E-55 12.26
201540_at FHL1 four and a half LIM domains 1 1.24E-54 10.48
212013 at PXDN peroxidasin homolog (Drosophila) 1.28E-54 48.40
211026_s_at MGLL monoglyceride lipase 2.36E-54 0.17
204122 at TYROBP TYRO protein tyrosine kinase binding 7.91E-54 0.07
protein
209365 s_at ECM1 extracellular matrix protein 1 2.83E-53 31.43
203753_at TCF4 transcription factor 4 1.10E-52 12.77
202806_at DBN1 drebrin 1 3.48E-52 9.26
211275 s_at GYG1 glycogenin 1 4.98E-52 0.14
206001 _at NPY neuropeptide Y 5.06E-52 86.18
221766 _s_at FAMA46A family with sequence similarity 46, member A 8.25E-52 0.04
202908 _at WFS1 Wolfram syndrome 1 (wolframin) 9.64E-52 16.41
205786 _s_at ITGAM integrin, alpha M (complement component 2.31E-51 0.07
3 receptor 3 subunit)
207030_s_at CSRP2 cysteine and glycine-rich protein 2 2.54E-51 74.97
204232 at FCER1G Fc fragment of IgE, high affinity |, 3.48E-51 0.05
receptor for; gamma polypeptide
205237 at FCN1 ficolin (collagen/fibrinogen domain containing) 1 8.98E-51 0.02
202598 at S100A13 $100 calcium binding protein A13 1.84E-50 7.66
219694 at FAM105A family with sequence similarity 105, 2.37E-50 0.09
member A
217728 at S100A6 $100 calcium binding protein A6 3.85E-50 0.12
204620_s_at VCAN Versican 4.57E-50 0.03
219686 _at STK32B serine/threonine kinase 32B 5.47E-50 52.11
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203355_s_at PSD3 pleckstrin and Sec7 domain containing 3 6.14E-50 68.88
206674 _at FLT3 fms-related tyrosine kinase 3 1.01E-49 19.17
201012_at ANXA1 annexin Al 1.33E-49 0.04
221773 _at ELK3 ELK3, ETS-domain protein (SRF accessory protein 2) 1.38E-49 10.06
218865 _at MOSC1 MOCO sulphurase C-terminal domain containing 1 1.41E-49 0.03
220088 _at C5AR1 complement component 5a receptor 1 1.64E-49 0.03
218988 at SLC35E3 solute carrier family 35, member E3 3.05E-49 14.48
208438 s_at FGR Gardner-Rasheed feline sarcoma viral 3.60E-49 0.06
(v-fgr) oncogene homolog
202788 at MAPKAPK3 mitogen-activated protein 4.41E-49 0.23
kinase-activated protein kinase 3
209696_at FBP1 fructose-1,6-bisphosphatase 1 4.97E-49 0.10
218872_at TESC Tescalcin 7.53E-49 0.13
201360_at CST3 cystatin C 8.21E-49 0.08
218005_at ZNF22 zinc finger protein 22 (KOX 15) 8.97E-49 4.17
215543 s at LARGE like-glycosyltransferase 1.93E-48 26.19
211429 s_at SERPINA1 serpin peptidase inhibitor, clade A (alpha-1 2.32E-48 0.05
antiproteinase, antitrypsin), member 1
201425 _at ALDH?2 aldehyde dehydrogenase 2 family (mitochondrial) 2.72E-48 0.14
214761 _at ZNF423 zinc finger protein 423 3.32E-48 49.50
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Table A.4: Drug responsive genes of E2A-PBX1 subtype.
Probe SetID | Gene Symbol Gene Title p Value Fold Change
(E2A-PBX1/Normal)
212012 _at PXDN peroxidasin homolog (Drosophila) 1.89E-58 48.98
211404 _s_at APLP2 amyloid beta (A4) precursor-like protein 2 4.77E-55 0.15
212013 at PXDN peroxidasin homolog (Drosophila) 3.29E-53 62.97
222146 _s_at TCF4 transcription factor 4 2.50E-52 17.16
208690_s_at PDLIM1 PDZ and LIM domain 1 3.08E-51 6.65
201425 at ALDH?2 aldehyde dehydrogenase 2 family (mitochondrial) 1.22E-49 0.10
208702_x_at APLP2 amyloid beta (A4) precursor-like protein 2 2.63E-49 0.16
204674 _at LRMP lymphoid-restricted membrane protein 2.98E-49 11.48
35974 at LRMP lymphoid-restricted membrane protein 1.21E-48 12.78
203787_at SSBP2 single-stranded DNA binding protein 2 1.57E-48 10.32
218641 at LOC65998 hypothetical protein LOC65998 2.37E-48 5.18
201005 _at CD9 CD9 molecule 2.43E-47 10.87
211071 _s_at MLLT11 myeloid/lymphoid or mixed-lineage leukemia 2.96E-47 9.07
(trithorax homolog, Drosophila); translocated to, 11
204214 s at RAB32 RAB32, member RAS oncogene family 3.46E-47 0.08
204257 _at FADS3 fatty acid desaturase 3 4.25E-47 7.59
201719 s_at EPB41L2 erythrocyte membrane protein band 4.1-like 2 1.06E-46 9.69
206398 s at CD19 CD19 molecule 1.12E-46 25.77
211178 s_at PSTPIP1 proline-serine-threonine phosphatase interacting protein 1 | 1.30E-46 0.13
219938 s at PSTPIP2 proline-serine-threonine phosphatase interacting protein 2 | 3.86E-46 0.08
201417 _at SOX4 SRY (sex determining region Y)-box 4 5.94E-46 9.01
213358 at KIAA0802 KIAA0802 9.06E-46 64.66
208949 s_at LGALS3 lectin, galactoside-binding, soluble, 3 1.13E-45 0.07
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202806_at DBN1 drebrin 1 2.00E-45 13.74
219694 at FAM105A family with sequence similarity 105, member A 2.76E-45 0.07
212387_at TCF4 transcription factor 4 4.20E-45 15.81
203922 s at CYBB cytochrome b-245, beta polypeptide 6.17E-45 0.08
201792 _at AEBP1 AE binding protein 1 6.73E-45 28.37
201061_s_at STOM stomatin 8.16E-45 0.10
201060 _x_at STOM stomatin 1.13E-44 0.09
214761 _at ZNF423 zinc finger protein 423 1.45E-44 66.70
204173 _at MYL6B myosin, light chain 6B, alkali, smooth muscle and non-muscle | 1.62E-44 3.73
202788 at MAPKAPK3 mitogen-activated protein kinase-activated protein kinase 3 | 4.10E-44 0.19
210829 _s_at SSBP2 single-stranded DNA binding protein 2 5.15E-44 9.81
212386_at TCF4 transcription factor 4 5.86E-44 12.84
213891 s_at TCF4 transcription factor 4 8.12E-44 17.33
212385 at TCF4 transcription factor 4 4.90E-43 17.45
201416 _at SOX4 SRY (sex determining region Y)-box 4 5.79E-43 17.80
208370_s_at RCAN1 regulator of calcineurin 1 8.54E-43 8.11
201506_at TGFBI transforming growth factor, beta-induced, 68kDa 1.29E-42 0.04
215806_x_at | TARP /// TRGC2 TCR gamma alternate reading frame protein /// 1.71E-42 0.12
T cell receptor gamma constant 2
211987 _at TOP2B topoisomerase (DNA) Il beta 180kDa 1.77E-42 4.27
216920 _s_at | TARP /// TRGC2 TCR gamma alternate reading frame protein /// 3.18E-42 0.11
T cell receptor gamma constant 2
212599 at AUTS2 autism susceptibility candidate 2 5.12E-42 16.11
212197 x_at MPRIP myosin phosphatase Rho interacting protein 6.12E-42 3.72
204949 at ICAM3 intercellular adhesion molecule 3 8.04E-42 0.14
217763 _s_at RAB31 RAB31, member RAS oncogene family 8.30E-42 0.04
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205237_at FCN1 ficolin (collagen/fibrinogen domain containing) 1 8.72E-42 0.04
36499_at CELSR2 cadherin, EGF LAG seven-pass G-type receptor 2 1.46E-41 7.91
(flamingo homolog, Drosophila)
209574 _s_at C18orfl chromosome 18 open reading frame 1 2.16E-41 9.48
209813 x_at TARP TCR gamma alternate reading frame protein 3.00E-41 0.11
Table A.5: Drug responsive genes of BCR-ABL subtype.
Probe Set ID | Gene Symbol Gene Title p Value Fold Change
(BCR-ABL/Normal)
203373 _at SOCS2 suppressor of cytokine signaling 2 1.98E-130 22.03
203372_s_at SOCS2 suppressor of cytokine signaling 2 2.59E-107 37.15
212012 _at PXDN peroxidasin homolog (Drosophila) 1.06E-92 31.34
203355 _s_at PSD3 pleckstrin and Sec7 domain containing 3 1.22E-91 63.31
212013 _at PXDN peroxidasin homolog (Drosophila) 2.73E-91 43.46
218966_at MYOS5C myosin VC 4.12E-89 12.88
219686_at STK32B serine/threonine kinase 32B 8.71E-89 43.78
207030_s_at CSRP2 cysteine and glycine-rich protein 2 1.14E-87 63.60
201540 _at FHL1 four and a half LIM domains 1 1.13E-84 9.77
201029_s_at CD99 CD99 molecule 6.67E-83 5.56
209365_s_at ECM1 extracellular matrix protein 1 1.16E-78 41.47
32625 at NPR1 natriuretic peptide receptor A/guanylate cyclase A 5.30E-78 34.93
(atrionatriuretic peptide receptor A)
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206398 _s_at CD19 CD19 molecule 1.78E-77 19.73
218613 at PSD3 pleckstrin and Sec7 domain containing 3 7.17€-77 28.97
214761 _at ZNF423 zinc finger protein 423 1.67E-74 58.41
222146_s_at TCF4 transcription factor 4 9.23E-74 8.28
201015_s_at JUP junction plakoglobin 3.41E-73 16.80
210487_at DNTT deoxynucleotidyltransferase, terminal 7.36E-73 46.00
211126 _s_at CSRP2 cysteine and glycine-rich protein 2 1.07E-71 22.32
203787 _at SSBP2 single-stranded DNA binding protein 2 1.52E-71 7.26
212387 _at TCF4 transcription factor 4 3.26E-70 8.71
209576_at GNAI1 guanine nucleotide binding protein (G protein), 4.30E-69 11.56
alpha inhibiting activity polypeptide 1
213891 s_at TCF4 transcription factor 4 5.75E-69 9.79
212386_at TCF4 transcription factor 4 9.79E-69 7.49
204030_s_at SCHIP1 schwannomin interacting protein 1 6.41E-68 18.37
212385_at TCF4 transcription factor 4 1.38E-67 9.09
201028_s_at CD99 CD99 molecule 3.05E-67 6.48
210829 s _at SSBP2 single-stranded DNA binding protein 2 9.89E-67 7.43
202123 s _at ABL1 c-abl oncogene 1, receptor tyrosine kinase 4.08E-66 3.82
204636_at COL17A1 collagen, type XVII, alpha 1 4.95E-65 0.04
202945 _at FPGS folylpolyglutamate synthase 5.12E-65 4.97
209679 s_at SMAGP small trans-membrane and glycosylated protein 8.96E-65 11.37
207655_s_at BLNK B-cell linker 2.78E-64 14.78
203753_at TCF4 transcription factor 4 2.03E-63 6.79
205983 at DPEP1 dipeptidase 1 (renal) 6.02E-63 51.95
212675_s_at CEP68 centrosomal protein 68kDa 1.65E-62 5.97
209199 s at MEF2C myocyte enhancer factor 2C 3.43E-62 8.59
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201416 _at SOX4 SRY (sex determining region Y)-box 4 4.45E-62 9.83
212488 at COL5A1 collagen, type V, alpha 1 1.15E-61 25.48
34726 _at CACNB3 calcium channel, voltage-dependent, beta 3 subunit 1.62E-61 8.00
1007_s_at DDR1 discoidin domain receptor tyrosine kinase 1 4.15E-61 9.09
211031 _s_at CLIP2 CAP-GLY domain containing linker protein 2 7.14E-61 14.07
200983 _x_at CD59 CD59 molecule, complement regulatory protein 1.61E-60 0.18
205795_at NRXN3 neurexin 3 2.69E-60 85.26
203354 s _at PSD3 pleckstrin and Sec7 domain containing 3 2.96E-60 30.43
210638_s_at FBX09 F-box protein 9 3.86E-60 0.33
208690 _s_at PDLIM1 PDZ and LIM domain 1 9.12E-60 5.63
202242 _at TSPAN7 tetraspanin 7 1.28E-59 16.01
202598 at S100A13 $100 calcium binding protein A13 4.21E-59 9.53
221286_s_at | MGC29506 hypothetical protein MGC29506 8.80E-59 7.97
Table A.6: Drug responsive genes of MLL subtype.
Probe Set ID Gene Gene Title p Value | Fold Change (MLL/Normal)
Symbol
203373 _at SOCS2 suppressor of cytokine signaling 2 4.33E-79 21.74
207030_s_at CSRP2 cysteine and glycine-rich protein 2 1.19E-78 160.22
211066 _x_at | PCDHGA1 protocadherin gamma subfamily A, 1 5.33E-68 20.08
203372_s_at SOCS2 suppressor of cytokine signaling 2 6.82E-68 30.70
211126 _s_at CSRP2 cysteine and glycine-rich protein 2 7.61E-66 51.71
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217963 s_at | NGFRAP1 nerve growth factor receptor (TNFRSF16) 1.39E-64 0.05
associated protein 1
206398 _s_at CD19 CD19 molecule 9.28E-62 18.07
218865 _at MOSC1 MOCO sulphurase C-terminal domain containing 1 2.00E-61 0.04
206674 _at FLT3 fms-related tyrosine kinase 3 3.44E-61 22.89
209170_s_at | GPM6B glycoprotein M6B 6.41E-61 33.73
201874 _at MPZL1 myelin protein zero-like 1 9.04E-61 4.66
36553_at ASMTL acetylserotonin O-methyltransferase-like 1.85E-60 4.63
209079 _x_at | PCDHGA1 protocadherin gamma subfamily A, 1 3.90E-60 15.70
205717 _x_at | PCDHGA1 protocadherin gamma subfamily A, 1 4.86E-60 19.07
210638 s_at FBXO9 F-box protein 9 7.15E-60 0.32
201416 _at SOX4 SRY (sex determining region Y)-box 4 1.36E-59 14.92
208949 s _at | LGALS3 lectin, galactoside-binding, soluble, 3 2.09E-59 0.06
209167 at | GPMG6B glycoprotein M6B 3.00E-59 27.85
204636_at | COL17A1 collagen, type XVII, alpha 1 3.87E-59 0.04
204214 s_at RAB32 RAB32, member RAS oncogene family 4.45E-59 0.08
201060_x_at STOM stomatin 1.08E-58 0.09
211178 s_at | PSTPIP1 proline-serine-threonine phosphatase 1.23E-58 0.15
interacting protein 1
204069 _at MEIS1 Meis homeobox 1 1.57E-58 20.82
200983 _x_at CD59 CD59 molecule, complement regulatory protein 1.85E-58 0.09
221485 _at BAGALTS5 UDP-Gal:betaGIcNAc beta 1,4- 3.69E-58 0.10
galactosyltransferase, polypeptide 5
209168_at GPM6B glycoprotein M6B 4.72E-58 12.15
215925 s_at CD72 CD72 molecule 7.21E-58 30.98
204173_at MYL6B myosin, light chain 6B, alkali, smooth muscle 8.64E-58 3.84

and non-muscle




APPENDIX A DRUG RESPONSIVE GENE 118
209514_s_at | RAB27A RAB27A, member RAS oncogene family 2.62E-57 0.13
202945 at FPGS folylpolyglutamate synthase 3.41E-57 4.78
215836_s_at | PCDHGA1 protocadherin gamma subfamily A, 1 1.27E-56 26.89
201417_at SOXx4 SRY (sex determining region Y)-box 4 1.92E-56 7.02
210951 x at | RAB27A RAB27A, member RAS oncogene family 2.57E-56 0.12
202332 _at CSNK1E casein kinase 1, epsilon 3.80E-56 3.84
209199 s at MEF2C myocyte enhancer factor 2C 4.29E-56 10.96
203355 _s_at PSD3 pleckstrin and Sec7 domain containing 3 9.39E-56 24.44
209949 at NCF2 neutrophil cytosolic factor 2 9.55E-56 0.07
208302_at HMHB1 histocompatibility (minor) HB-1 1.84E-55 26.02
218641 _at | LOC65998 hypothetical protein LOC65998 2.05E-55 5.13
203795_s_at BCL7A B-cell CLL/lymphoma 7A 6.00E-55 9.49
208791 _at CLU Clusterin 6.46E-55 0.04
201540_at FHL1 four and a half LIM domains 1 1.02E-54 7.27
210987 _x_at TPM1 tropomyosin 1 (alpha) 1.13E-54 0.16
201875_s_at MPZL1 myelin protein zero-like 1 2.27E-54 4.66
204639 _at ADA adenosine deaminase 3.17E-54 6.79
206390 x_at PF4 platelet factor 4 4.25E-54 0.02
205237 _at FCN1 ficolin (collagen/fibrinogen domain containing) 1 4.44E-54 0.03
205786_s_at ITGAM integrin, alpha M (complement component 3 4.54E-54 0.08
receptor 3 subunit)
203922 s at CYBB cytochrome b-245, beta polypeptide 5.23E-54 0.10
218332_at BEX1 brain expressed, X-linked 1 1.76E-53 0.04
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Table A.7: Drug responsive genes of other subtypes.
Probe Set ID Gene Symbol Gene Title p Value Fold Change
(Other/Normal)

202837_at TRAFD1 TRAF-type zinc finger domain containing 1 4.97E-170 0.05

202829 s_at VAMP7 vesicle-associated membrane protein 7 1.06E-153 17.66

202830_s_at SLC37A4 solute carrier family 37 (glucose-6-phosphate 1.30E-152 0.09

transporter), member 4
202804 _at ABCC1 ATP-binding cassette, sub-family C (CFTR/MRP), 2.56E-150 0.16
member 1
202825 at SLC25A4 solute carrier family 25 (mitochondrial carrier; 1.85E-144 0.06
adenine nucleotide translocator), member 4

202843 at DNAJB9 Dnal (Hsp40) homolog, subfamily B, member 9 4.02E-143 0.13

2028 s_at E2F1 E2F transcription factor 1 2.23E-131 0.06

202866_at DNAJB12 Dnal (Hsp40) homolog, subfamily B, member 12 2.46E-131 5.42

202824 s at TCEB1 transcription elongation factor B (Slll), 4.61E-129 9.89

polypeptide 1 (15kDa, elongin C)

202836_s_at TXNL4A thioredoxin-like 4A 2.36E-122 76.16

202899 s _at SFRS3 splicing factor, arginine/serine-rich 3 1.22E-121 6.69

202882 x_at NOL7 nucleolar protein 7, 27kDa 7.88E-120 3.18

202822 _at LPP LIM domain containing preferred translocation 7.67E-119 10.75

partnerin lipoma

202865_at DNAJB12 Dnal (Hsp40) homolog, subfamily B, member 12 1.09E-113 0.08

320 _at PEX6 peroxisomal biogenesis factor 6 1.56E-111 0.15

212013 at PXDN peroxidasin homolog (Drosophila) 7.77E-105 37.44

202874 s_at ATP6V1C1 ATPase, H+ transporting, lysosomal 42kDa, 1.37E-104 6.83

V1 subunit C1
202887 _s_at DDIT4 DNA-damage-inducible transcript 4 2.41E-104 31.66
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204636_at COL17A1 collagen, type XVII, alpha 1 6.44E-102 0.04
201416_at SOX4 SRY (sex determining region Y)-box 4 9.11E-102 14.56
32091 _at SLC25A44 solute carrier family 25, member 44 3.35E-100 7.09
203355 s _at PSD3 pleckstrin and Sec7 domain containing 3 2.23E-99 38.67
201417 _at SOX4 SRY (sex determining region Y)-box 4 3.44E-98 7.59
32029 _at PDPK1 3-phosphoinositide dependent protein kinase-1 1.78E-96 4.95
202854 at HPRT1 hypoxanthine phosphoribosyltransferase 1 3.89E-96 4.06
202834 _at AGT angiotensinogen (serpin peptidase inhibitor, 3.03E-95 0.02
clade A, member 8)
212012 _at PXDN peroxidasin homolog (Drosophila) 8.22E-95 28.12
202810 _at DRG1 developmentally regulated GTP binding protein 1 1.24E-94 5.64
206398 s at CD19 CD19 molecule 5.20E-94 16.38
218865_at MOSC1 MOCO sulphurase C-terminal domain containing 1 2.11E-91 0.04
202883 s at PPP2R1B protein phosphatase 2 (formerly 2A), 4.12E-91 0.16
regulatory subunit A, beta isoform
214761 at ZNF423 zinc finger protein 423 2.99E-90 49.35
201015_s_at JUP junction plakoglobin 3.24E-90 16.86
32088 _at BLZF1 basic leucine zipper nuclear factor 1 3.71E-88 0.07
206656_s_at C200rf3 chromosome 20 open reading frame 3 1.01E-87 0.22
34726 _at CACNB3 calcium channel, voltage-dependent, beta 3 subunit 4.20E-87 7.82
213668 _s_at SOX4 SRY (sex determining region Y)-box 4 4.64E-82 24.25
202332 _at CSNK1E casein kinase 1, epsilon 6.16E-82 4.03
202844 s at RALBP1 ralA binding protein 1 3.58E-80 5.09
215543 s at LARGE like-glycosyltransferase 7.03E-80 15.06
203787_at SSBP2 single-stranded DNA binding protein 2 1.05E-79 7.61
202880 _s_at CYTH1 cytohesin 1 1.07E-79 24.58
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211031_s_at CLIP2 CAP-GLY domain containing linker protein 2 1.62E-79 14.21
202855 s_at SLC16A3 solute carrier family 16, member 3 3.68E-79 0.01
(monocarboxylic acid transporter 4)

202879 _s_at CYTH1 cytohesin 1 5.44E-79 0.06
202945 _at FPGS folylpolyglutamate synthase 1.14E-78 4.68
201425_at ALDH2 aldehyde dehydrogenase 2 family (mitochondrial) 1.51E-78 0.11
218613 at PSD3 pleckstrin and Sec7 domain containing 3 2.20E-78 16.58

201418 s_at SOX4 SRY (sex determining region Y)-box 4 4.56E-78 12.66

216041 x_at GRN Granulin 8.07E-77 0.15
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