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Abstract i

Abstract

The challenge with todays microarray experiments is to infer biological conclusions

from them. There are two crucial difficulties to be surmounted in this challenge:(1)

A lack of suitable biological repository that can be easily integrated into computational

algorithms. (2) Contemporary algorithms used to analyze microarray data are unable to

draw consistent biological results from diverse datasets of the same disease.

To deal with the first difficulty, we believe a core database that unifies available

biological repositories is important. Towards this end, we create a unified biological

database from three popular biological repositories (KEGG, Ingenuity and Wikipath-

ways). This database provides computer scientists the flexibility of easily integrating

biological information using simple API calls or SQL queries.

To deal with the second difficulty of deriving consistent biological results from the

experiments, we first conceptualize the notion of “subnetworks”, which refers to a

connected portion in a biological pathway. Then we propose a method that identifies

subnetworks that are consistently expressed by patients of he same disease phenotype.

We test our technique on independent datasets of several diseases, including ALL,

DMD and lung cancer. For each of these diseases, we obtain two independent microarray

datasets produced by distinct labs on distinct platforms. In each case, our technique

consistently produces overlapping lists of significant nontrivial subnetworks from two

independent sets of microarray data. The gene-level agreement of these significant

subnetworks is between 66.67% to 91.87%. In contrast, when the same pairs of
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microarray datasets were analysed using GSEA and t-test, this percentage fell between

37% to 55.75% (GSEA) and between 2.55% to 19.23% (t-test). Furthermore, the genes

selected using GSEA and t-test do not form subnetworks of substantial size. Thus

it is more probable that the subnetworks selected by our technique can provide the

researcher with more descriptive information on the portions of the pathway which

actually associates with the disease.

Keywords: pathway analysis, microarray
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CHAPTER 1

Introduction

This dissertation is concerned with making consistent biological inferences from mi-

croarray experiments and prior biological information. Although technological limita-

tions in such experiments have been considerably reduced over the past decade, there

still exists challenges in providing proper diagnosis and understanding, part of the

challenges arising from our incomplete knowledge of the functions of biological systems

(Berger and Iyengar, 2009). This dissertation first argues that contemporary biolog-

ical repositories seriously limit the availability of such information to computational

methods. Such limitations will be all the more evident as microarray experiments

evolve in size and complexity. This dissertation next advocates incorporating biological

information into algorithms to support microarray analysis, and demonstrates this

concept with a working algorithm.

1.1 Motivation

The challenge with todays microarray experiments is to be able to infer biological conclu-

sions from them. This challenge has traditionally been tackled as a pure computational

problem. Hence solutions (Choe et al., 2005; Tusher et al., 2001) generally entail running

experimental data through algorithms and selecting statistically significant genes. This

approach, albeit mathematically sound, ignores the biological motivations behind the

microarray experiment. Such an analysis usually leaves the investigator with a large

list of genes and information correlated mathematically but unwieldy for biological
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inferences. In addition, most of these techniques strongly rely on an arbitrary p-value

cutoff used to select differentially expressed genes (Sivachenko et al., 2005).

To obtain results both of high accuracy as well as biological relevance, there is

therefore a need to incorporate insights (Pavlidis et al., 2002; Subramanian et al.,

2005) from additional biological repositories into our investigations. This allows us

to complement the mathematical results with biological background, providing the

clinician with relevant biological results.

However even these contemporary techniques (which integrate biological information)

share a number of limitations. First, many of these techniques rely only gene sets

present within biological processes and pathways, ignoring the different intricate

connections and topology within pathways. For example (Tarca et al., 2008) showed

that such topological details can be extremely crucial. In particular, the authors stated

that within the insulin pathway, if the insulin receptor (INSR) is not present, the entire

pathway will be shut off. Hence in the scenario where some of the genes appear to be

differentially expressed within the insulin pathway but INSR is not present, this might

mean that the genes differentially expressed are not connected to one another and might

not affect the pathway significantly.

Some algorithms (Liu et al., 2007) utilize global protein connections which ignore the

fact that majority of proteins participate in multi-domain processes (Liu et al., 2009) and

such global process may not translate similarly locally to smaller pathways (Sivachenko

et al., 2007).

Lastly, these algorithms only consider individual pathways or gene sets as a whole.

This ignores the fact that many times, only a portion of a gene network might be

significantly perturbed (Sohler et al., 2000) and this portion might be ignored if its

proportion within the network is not large enough. This happens especially when the

gene set is extremely large.
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1.2 Goal of Thesis

The goal of this thesis is to make consistent biological inferences from microarray

experiments and prior biological information. Intuitively, the thesis appears viable for

the following reasons:

• The biological repository created is currently being used in a research environment

for tasks such as extracting genes or gene relationships from pathways.

• The designed algorithm has been tested with four different diseases (eight unique

datasets, two datasets for each disease) and we are able to find consistent biological

information independently derived from the dataset pair from each disease.

These observations lead directly to the thesis statement:

Incorporating accurate and detailed biological information can

improve the consistency and reproducibility of biological inferences

for similar diseases across datasets.

1.3 Contributions

Our thesis has the following two main contributions:

1. Creation of an aggregated biological pathway database, providing the database

with a unified access method (through API calls) and standardizing data formats.

This aggregation of data reduces the scenario of conflicting or missing data from

solitary pathway databases. The unification of access methods and data formats

allows easy access to researchers who wish to access data from diverse databases.

2. Conception and development of a technique for microarray analysis which provides

descriptive biological analysis to microarray data. Results from our microarray

technique provides the researcher not only with the genes or pathways that are

differentially expressed, it directly gives a clear representation of the intricate



Chapter 1. Introduction 4

relationship between such differentially expressed genes within their biological

pathways. In addition, results from our techniques have been verified empirically,

showing consistent results across different databases of the same disease. This

gives us additional confidence that our technique is able to identify relevant

pathways because they are consistently significant across diverse datasets.

1.4 Publications

We had the honor of working with diverse research groups during the course of this

dissertation. These collaborative efforts have been significant contributions to this

thesis and are listed as publications below. Publication I has been heavily expounded in

Chapters 2 and 3. Much of the work in Chapters 3, 4 and 5 revolves around Publication

III while Publication IV contains work from Chapters 6 and 7. Publication II involves

a real life clinical example where we employed some microarray analysis on patients

suffering from NPC (Nasopharyngeal Cancer) (we mention this briefly in Chapter 2).

Finally Publication V stands out independently as a theoretical framework that could be

employed in the future for subnetwork analysis.

I Donny Soh, Difeng Dong, Yike Guo, Limsoon Wong. Enabling More Sophisticated

Gene Expression Analysis for Understanding Diseases and Optimizing Treat-

ments. ACM SIGKDD Explorations, 9(1):3-14, June 2007.

II Wen-Son Hsieh, Ross Soo, Bee-Keow Peh, Thomas Loh, Difeng Dong, Donny

Soh, Limsoon Wong, Simon Green, Judy Chiao, Chun-Ying Cui, Yoke-Fong Lai,

Soo-Chin Lee, Benjamin Mow, Richie Soong, Manuel Salto-Tellez, Boon-Cher

Goh. Pharmacodynamic Effects of Seliciclib, an Orally Administered Cell Cycle

Modulator, in Undifferentiated Nasopharyngeal Cancer. Clinical Cancer Research,

15(4):1435–1442, February 2009.

III Donny Soh, Difeng Dong, Yike Guo, Limsoon Wong. Consistency, Comprehensive-

ness, and Compatibility of Pathway Databases, 23 September 2009 (2nd revision).
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IV Donny Soh, Difeng Dong, Yike Guo, Limsoon Wong. Finding Consistent Disease

Subnetwork Across Datasets. Manuscript.

V Jinyan Li, Haiquan Li, Donny Soh, Limsoon Wong: A Correspondence Between

Maximal Complete Bipartite Subgraphs and Closed Patterns. PKDD 2005: 146-

156.

1.5 Organization of the Thesis

This thesis focuses on developing techniques whereby consistent biological analysis can

be made. To achieve this, we subdivide the task into two smaller portions. (1) the

modeling, implementation and realization of a unified biological database and (2) a

technique that uses this unified database to draw consistent biological conclusions from

independent datasets. This thesis is organized as:

• Background: Algorithm

Microarrays have made it technologically feasible for researchers to measure

the expression levels of thousands of genes simultaneously. Through microarray

analysis techniques, researchers are able to understand the behavior of individual

genes. This chapter concerns itself with scrutinizing some popular analysis

techniques often employed to analyze microarrays and review their ability of

providing consistent and descriptive biological results to microarray experiments.

We conclude the chapter by suggesting that contemporary methods are unable

to generate consistent and descriptive biological results because (1) they place

a greater emphasis on computational models rather than descriptive biological

analysis and (2) whatever biological information used is either too fine (individual

genes) or too coarse (entire gene sets) for use in biological descriptive reasonings.

• Background: Pathway API

One of the critical assumptions underlying microarray techniques which inte-

grates biological information (biological pathways) as a priori data into their
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computational analysis is the availability of a collection of well-curated biological

repositories (for example, Kyoto Encyclopedia of Genes and Genomes (KEGG)

(Kanehisa and Goto, 2000), Ingenuity (Ingenuity, 1998)). We review several

representative biological databases and analyze their suitability to be used as a

priori biological information for computational microarray analysis. Our survey

findings conclude that contemporary biological databases are very diverse, lacking

in complete data and not suitable for integration into computational algorithms.

These reasons lead us to create our own unified database cache and its API for

easy integration into computational algorithms.

• Pathway API — Methods

Because of the lack of consistency, comprehensivity and compatibility of current

databases (shown in the previous chapter), we decided to create our own unified

database cache and its API. This chapter explains the technical challenges and

techniques we employed in designing and creating our own biological repository.

We pay special attention to achieving data comprehensiveness by integrating

biological data from three representative biological repositories, achieving data

consistency through the standardization of nomenclature, data formats and lastly

compatibility through the easy data accessibility of a web http API.

• Pathway API — Evaluation

This chapter evaluates our database (both quantitatively and qualitatively) to

ensure that it is consistent, comprehensive and compatible for integration into com-

putational microarray algorithms. Quantitatively we show that, as we expected,

there is a low level of gene and gene pairwise consistency among the three different

biological databases (KEGG, Ingenuity, Wikipatways). Qualitatively, because we

(1) unified pathway data from three independent biological sources, (2) created

consistent data access methods and formats, and (3) standardized nomenclature

such as gene references and pathway key features, researchers will be able to
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access complete information (from different databases) easier by using a single

access method (PathwayAPI) and standardized nomenclature.

• Disease and Drug-Response Pathway Identification — Algorithm

Here we demonstrate the different decision making steps taken to ensure that

the results obtained from our technique will provide proper biological analysis

to microarray experiments. We first explain how we create the foundation to

allow biologically descriptive results by deciding on a proper level of granularity

required within the biological pathways of the unified database. Following which

we explain how we arrange genes into their respective pathway components to

take advantage of the gene-gene relationships within pathways. This is further

substantiated with an explanation of statistical testing (which is required to test

for significant pathway components). Finally, these are strung together with a

detailed explanation and example of our algorithm.

• Disease and Drug-Response Pathway Identification — Results

We compare our technique with several popular methods of microarray analysis

such as SAM (Tusher et al., 2001), t-test (Cui et al., 2005) and GSEA (Subramanian

et al., 2005) in this chapter. This comparison is made on four different disease

types and eight different datasets (Leukemia (Armstrong et al., 2002; Golub et al.,

1999), Leukemia Subtypes (Ross et al., 2004; Yeoh et al., 2002), DMD (Haslett

et al., 2002; Pescatori et al., 2007), Lung Cancer (Bhattacharjee et al., 2001; Garber

et al., 2001)).

We show that our technique generates significant subnetworks and genes that

are more consistent across datasets as compared to the other methods (GSEA, t-

test and SAM). The large size of subnetworks which we generate indicates that

these subnetworks are more biologically significant (less likely to be spurious).

To validate our results, we show that most of our genes from the generated

subnetworks have also been considered significant by the t-test. In addition, we
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have chosen two sample subnetworks and validated them with references from

biological literature. This shows that our algorithm is capable of generating

descriptive biologically conclusions.
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CHAPTER 2

Background Study on
Microarray Analysis

Chapter Synopsis

Summary

Microarrays have made it technologically feasible for researchers to measure the ex-

pression levels of thousands of genes simultaneously. Through microarray analysis

techniques, researchers are able to understand the behaviour of individual genes and

widely adopted in many areas to detect changes in gene activity. Traditionally,

microarray data is analysed via individual genes, identifying changes in specific genes

against certain conditions. While this approach works well in identifying genes which

react the most significantly, it neglects the underlying biological mechanisms causing

such gene activity changes. Such biological mechanisms are the result of interactions

between multiple genes within a biological pathway. Hence the challenge with todays

microarray analysis is being able to infer such biological conclusions consistently. Here

we scrutinise some popular analysis techniques often employed to analyse microarrays

and review their ability of providing consistent and descriptive biological results to

microarray experiments.
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Conclusions

Our literature review seems to suggest that contemporary methods are unable to generate

consistent and descriptive biological results because (1) they place a greater emphasis

on computational models rather than descriptive biological analysis and (2) biological

information used is either too fine (individual genes) or too coarse (entire gene sets)

for use in biological descriptive reasonings. For ease of discussion, we have segregated

contemporary techniques into three different categories (based on their methodology): (1)

individual gene testing, (2) gene pathway testing and (3) gene class testing.

Techniques (Tusher et al., 2001) which belong to our first category of algorithms

(individual genes testing) often ignore biological motivations behind the microarray

experiment, usually leaving the investigator with unwieldy gene lists which makes it

difficult to draw biological conclusions. Gene pathway testing techniques attempt to

organise and infer genetic networks from microarray data. This process is challenging

because of the large number of samples as compared to patients making such inferences

suffer from a high incidence of false positives, creating biological pathways with limited

biological foundations.

The last category of techniques, gene class testing techniques have attempted to

alleviate these issues by integrating biological information within the analysis. Yet most

of these techniques merely integrate biological information on a level of granularity which

is too coarse for descriptive biological inferences (Sivachenko et al., 2007; Subramanian

et al., 2005). For example, the output of these algorithms is normally a set of gene groups

(pre-divided based on their functions) and selected based on the overexpression of its

individual genes. This manner of selecting overexpressed pathways ignores the presence

of intricate connections and topology. Such rigidity also causes these algorithms to be

unable to detect overexpressed gene groups if they occur only within a portion of the gene

group.
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2.1 Introduction

Humans have tens of thousands of genes, and the development of DNA microarrays by

Patrick O. Brown, Joseph DeRisi, David Botstein, and colleagues in the mid-1990s made

it possible to examine the expression of thousands of genes at once (Hoopes, 2008). Since

then, microarray technology has evolved and we are now able to embed the entire human

genome unto a single microarray.

In a similar fashion, many techniques for making microarray analysis have emerged.

From this wealth of techniques for identifying significant differential gene expression,

we categorise them into three approaches; viz., individual genes, gene pathways and

gene classes approaches. In this chapter we present the approaches below:

1. Individual Gene Testing

These techniques highlighted in (Baldi and Long, 2001; Cheng and Church,

2000; Golub et al., 1999; Tusher et al., 2001) search for individual genes that

are differentially expressed. Traditionally, this approach consists of running

the experimental values either through statistical clustering or probabilistic

techniques, such as the fold change, t-test and Significance Analysis of Microarrays

(SAM) (Tusher et al., 2001). The SAM test is currently the most prevalent test

for testing of differential expressed genes within microarrays. The output of such

algorithms is a list of genes that are deemed differentially expressed.

2. Gene Pathway Testing

Methods of this genre attempt to infer biological information from data without

using pre-existing biological information. Bayesian learning (Friedman et al.,

2000) and Boolean network learning (Lähdesmäki et al., 2006) are representatives

of this approach. In this approach, the researcher obtains a set of connected

gene networks inferred solely from the gene expression data. While possible

pathway relationships can be obtained from such algorithms, it is more probable

that false positives – relationships which correlates statistically but have zero
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biological relevance – might be present. This refers to Type I (false positive)

errors. It happens when the expression level of totally unrelated genes display

high correlation with each other. Such spurious correlations occur mainly due to

the large number of genes (relative to the number of patient samples available for

analysis) that are being tested.

3. Gene Class Testing

These techniques test how gene classes behave as a whole. These techniques either

pre-process or post-process their information with existing biological background

knowledge to guide their analysis of the microarray data. Examples include

over-representation analysis (ORA) (Khatri and Draghici, 2005), Functional Class

Scoring (FCS) (Goeman et al., 2004), GSEA (Subramanian et al., 2005), GNEA

(Liu et al., 2007) and ErmineJ (Pavlidis et al., 2004b). Results from such methods

are normally a list of pathways or gene groups that are differentially expressed

according to the algorithms.

The commonly acknowledged challenge of these techniques is obtaining replicable

results. For instance, in differentially expressed gene discovery, there should be a

substantial overlap in the gene lists from different datasets of the same disease. This is

inferred from the premise that similar underlying conditions cause the onset of certain

diseases. However it has been shown that there is little concurrence among such gene

lists (Ein-Dor et al., 2005; Michiels et al., 2005; Zhang et al., 2009).

For example, (Zhang et al., 2009) demonstrated this inconsistency using SAM. For a

pair of datasets involving prostate cancer (Lapointe et al., 2004; Singh et al., 2002), he

calculated the percentage overlap of differentially expressed genes between them. The

top 10 genes had a percentage overlap of 30% while the top 100 genes had a percentage

overlap of 15%. The same calculations were repeated for lung cancer (Bhattacharjee

et al., 2001; Garber et al., 2001) and DMD (Haslett et al., 2002; Pescatori et al., 2007)

datasets, yielding similar low percentages.
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In addition, the functional gene lists, pathways or classes determined by such methods

do not provide sufficient descriptive information about the interplay and relationship

of genes (Soh et al., 2007). Hence the generated hypotheses are usually too general,

rendering them ineffective in guiding further research and treatment (Dong et al., 2009).

The remainder of this section explores the individual algorithms from the three

classes in greater detail.

2.2 Individual Gene Testing

Many methods exist for the identification of differentially expressed genes between

conditions. The interested reader can refer to (Allison et al., 2006; Madeira and Oliveira,

2004) for a large range of different techniques. Yet despite such a large plethora of

methods, biologists show a particular affinity for the two earliest approaches: fold

change (FC) and t-statistics. Their pervasiveness can be largely attributed to their

simplicity. Here we provide details of how the FC, modified FC, t-test, modified t-

test algorithms function. We will also provide details on SAM, one of the popular

contemporary algorithms for finding differentially expressed genes from microarray

results. The algorithms reviewed in detail here are:

1. Fold Change

2. t-test

3. SAM

4. LIMMA

2.2.1 Fold Change

There are two definitions of fold change in literature. The standard formula for

fold change is simply the number of times the expression level of a gene has in-

creased/decreased by (Tusher et al., 2001). It is given as follow:
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FCratioi =
xi

yi
(2.1)

where FCratioi is the fold change for gene i, xi and yi are the raw expression values

of the gene i in the control and treatment samples respectively. The second definition

defines fold change from a difference in expression values point of view (Choe et al.,

2005). The formula is:

FCdiffi = xi − yi (2.2)

It is noted that these two forms of fold change analyse slightly different forms

of changes. The FCratioi emphasises more on percentage changes whereas FCdiffi

emphasises absolute changes. The usage of either metrics will depend largely on the

data. In general, if the data has extremely low values, the latter formula might be more

useful because a small increase in the absolute raw value might indicate too large a

percentage increase. Conversely, if the data has a good range of values, using the former

one would seem relevant because it would be able to show us the significance of the

change in value.

2.2.2 t-test

There are three popular variants of the statistical t-test generally used in microarray

experiments. The basic two-sample t-test is given by the formula:

Ti =
x̂i − ŷi

si
(2.3)

where Ti refers to the t-statistic, x̂i and ŷi refers to the mean log2 expression of genes

i in the control and treatment respectively. si thus refers to the standard error of these

replicates for gene i.
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However we find that such a calculation will yield a large variance for the values

for Ti. This is especially so if the values of the expression values are very small. This

is exacerbated due to the large number of genes compared to the small sample size.

Hence to ensure that the variance of Ti is independent of the gene expression, a small

positive constant is usually added to si. This is the technique used in the SAM algorithm

calculation and in SAM, the value so is chosen to minimize the variance value.

Ti =
x̂i − ŷi

si + so
(2.4)

The last variant of the t-test involved tweaking the value of si, a technique known as

variance shrinkage (Baldi and Long, 2001; Cui et al., 2005). It yields the formula below:

Ti =
x̂i − ŷi√

Bs2 + (1−B)s2
i

(2.5)

where s is the predicted variance of Ti based on all genes in the array and si is the

estimated variance of Ti based only on that single gene. Thus when B is equal to 0, it

will be the standard t-test statistic. Using this weighted combination of variance allows

information to be borrowed across genes.

2.2.3 Significance Analysis of Microarrays (SAM)

The different variants of the t-tests above provide a t-score to test the probability of that

gene being significant by coincidence. For instance, if we assign a p-value threshold of

0.05, all genes with a p-value of less than 0.05 will have their null hypothesis rejected.

This means that these genes will be declared as significant. The value of 0.05 means

that these genes have a 5% chance of being a false positive, known also as a Type I error.

Seen in this light, the t-test basically argues that because the probability of a Type I

error happening by chance is so low, the experiment has confidence that the event did

not occur by coincidence. Indeed, a p-value of 0.01 or even 0.05 is very suitable for such

usage in normal circumstances. However, in the context of microarray experiments,
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because we are doing multiple hypothesis testing of each gene within the microarray

experiment, we would probably be doing the hypothesis test 10,000 times (once for each

gene). Using a p-value cutoff of 0.01, it would mean that we are expected to get 100 Type

I errors / false positives, which would probably be too large a number to ignore.

This issue with the t-test leads to the development of Significance Analysis of

Microarrays, or SAM (Tusher et al., 2001), where genes are tested based on the change

in gene expression relative to the standard deviation of repeated measurements for that

gene and genes greater than a certain threshold are deemed to be significant. We will

describe how the number of Type I errors can be controlled using a technique known as

False Discovery Rate (FDR) (Benjamini and Yekutieli, 2001).

1. Firstly, the calculation of the relative difference d(i) of the gene i is given by the

expression:

d(i) =
x̄I(i)− x̄II(i)

s(i) + so
(2.6)

where x̄I(i) and x̄II(i) are the average levels of the expression values in Phenotypes

I and II respectively for gene i. The term s(i) in the denominator is known as the

gene-specific scatter and the term so is a positive constant to prevent genes whose

expression is near zero (and hence unreliable) from having large scores d(i). The

gene specific scatter is given by the formula:

s(i) =

√√√√a{
M∑
m

[xm(i)− x̄I(i)]2 +
N∑
n

[xn(i)− x̄II(i)]2} (2.7)

where M refers to the total number of patients in phenotype I, N refers to the total

number of patients in phenotype II and a = (1/m + 1/n)/(m + n− 2).
∑M

m and
∑N

n

are thus the summation of the calculations in phenotypes I and II respectively.

2. We calculate the value of the relative difference d(i) for all genes p in the microarray

experiment and order these statistics according to the magnitude of the d(i) values

such that d̂(1) was the largest relative difference, d̂(2) was the second largest
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relative difference, and d̂(i) was the ith largest relative difference. This is shown

by the equation below in Equation 2.8

d̂(1) < d̂(2) < ... < d̂(p) (2.8)

3. Next, we generated a large number of controls by first making B number of

permutations of the phenotype labels within the microarray experiment, and

computing the relative differences from these permutations by repeating the steps

above. The corresponding order statistics is therefore computed for each single

permutation. This means that we will permute the M and N labels between all the

patients from phenotypes I and II. (Hence during the each permutation sequence,

some of the patients from phenotype I will be labeled as from phenotype II and vice

versa. However we maintain the portion of labels for each phenotype, M labels for

phenotype I and N labels for phenotype II).

4. From each permutation b, we compute the order statistics d̂b(i) such that d̂b(1) <

d̂b(2) < ... < d̂b(p). From this set of permutations, we estimate the expected order

statistics of each single gene by calculating the expected mean of the gene rank by

the formula in Equation 2.9

d̂B(1) = (1/B)
B∑
1

d̂b(i) (2.9)

5. We plot the values of d̂(i) against d̂B(i) and a threshold ∆ which will be used to

detect genes above or below a certain threshold. An example of this plot is seen in

Figure 2.1 (image reproduced from (Tusher et al., 2001)). Specifically, we will begin

from the origin of the graph, move up to the right to find the first gene j1 where

d̂(i)− d̂B(i) > ∆. All genes past j1 will then be considered as significantly positive.

We call this list of genes Gp (p for positively significant genes).
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Figure 2.1: Sample plot of the observed relative difference. The solid line represents the
expected mean of the gene rank while the dotted lines refer to upper and lower thresholds.
The circles refer to the corresponding genes which fall above/below the threshold. Image
reproduced from (Tusher et al., 2001).

6. To find the significantly negative genes we will start from the origin, move down to

the left and find the first gene k1 such that d̂B(i)− d̂(i) > ∆. All genes past k1 will

then be considered as significantly negative. This list of genes will be considered

as Gn (n for negatively significant genes).

7. Therefore the combined lists, Gp and Gn from this technique gives us the list of

genes which are deemed significant as compared to the rest of the genes.

8. Finally, we can calculate the false discovery rate (FDR) by first finding the

number of average genes which are deemed significant from each of the single

B permutations using ∆. This value will be considered as the average number of

false positives.

9. The FDR will then be computed as this average number of false positives divided

by the number of genes called significant. For instance, if the average number of

false positives is calculated to be 8.4 from the B permutations, and the number of

genes deemed as significant is found to be 46, then FDR in this case will be 18%
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2.2.4 LIMMA

The LIMMA (Linear Models for Microarray Data) package (Smyth and Smyth, 2004) is

a popular tool written in R that is often used for gene expression analysis. It consists of

algorithms ranging from preprocessing to finding differentially expressed genes. One of

the useful methods in LIMMA for locating differentially expressed genes is the Empirical

Bayes analysis (Efron et al., 2001) which is described below.

We assume that there are two classes of genes — viz., differentially expressed and

non-differentially expressed genes. Suppose Z is the distribution of the (normalized)

expression level of the gene, we let:

p1 = probability that a gene is affected (2.10)

p0 = 1− p1 = probability that a gene is unaffected (2.11)

and

f1(Z) = probability density of Z for affected genes (2.12)

f0(Z) = probability density of Z for unaffected genes (2.13)

The mixture density for the two populations is then given as:

f(Z) = p0f0(Z) + p1f1(Z) (2.14)

We next estimate the value of f(Z) directly from the expression scores of the genes.

Applying Bayes rule, we obtain:

p0(Z) = Prob (gene not affected | z) (2.15)

p0(Z) = Prob (gene not affected) * Prob (z | gene not affected)/Prob (z) (2.16)

p0(Z) = p0f0(z)/f(z) (2.17)

Similarly, we obtain by Bayes rule:

p1(Z) = 1− p0f0(Z)/f(Z) (2.18)
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Given that p1 must always be positive, it must satisfy the rules that

p0 <= minf(Z)/f0(Z) (2.19)

and

p1 >= 1−minf(Z)/f0(Z) (2.20)

f0 is in fact the null density and can be obtained by carrying out a random

permutation of the phenotype labels. This allows us to estimate the value of ratio

f0(Z)/f(Z) directly from the empirical Z and null density distributions. With this ratio

we are able to calculate p1(Z), the probability that genei is differentially expressed given

the Z score.

2.2.5 Misc Techniques in Individual Gene Testing

There had also been other algorithms such as Conditional Independence (Akutsu

et al., 1999), (D’Haeseleer, 2000), (Dhaeseleer et al., 2000), (Liang et al., 1998), (Yoo

et al., 2002), Spearman Rank Correlation (D’Haeseleer, 2000), (Murphy, 2001), mutual

information (D’haeseleer et al., 1998), (Butte and Kohane, 2000), Lasso (Ghosh and

Chinnaiyan, 2004), silhouette (Rousseeuw, 1987), statistical P-values (Sohler et al.,

2000), (Rogers and Girolami, 2005) and Pearson Correlation (D’haeseleer et al., 1998).

They are basically similar in strengths and weaknesses and hence will not be elaborated

further in this section.

In addition to these miscellaneous statistical techniques, a clinical microarray project

(Wen-Son et al., 2009), which we were involved in, demonstrated that even basic

analysis (we used the basic concept of counting highly expressed genes to determine

their significance) are also capable of providing interesting results.

Because these algorithms give researchers lists of genes that are differentially

expressed, often they will have to do further processing techniques to such gene list

to obtain the biological conclusions that they seek. Thus these algorithms are very

much lacking in providing descriptive biological inferences. The next two sections deal
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with algorithms attempting to provide the researcher with biological inferences from

experimental data.

2.3 Gene Pathway Testing

This class of algorithms attempts to provide descriptive biological inferences from the

microarray experiments. These algorithms (Auliac et al., 2008; Cooper and Herskovits,

1992; Dilip and Pankaj, 2005; Djebbari and Quackenbush, 2008; Friedman et al., 2000;

Henegar et al., 2006; Ideker et al., 2002; Kauffman, 1993; Segal et al., 2003) usually

work by recreating possible pathways from the experimental data and thereby finding

out possible new associations between genes.

We provide these examples of such algorithms in this section:

1. K2 algorithm

2. Sparse Candidate

3. REVEAL Algorithm

2.3.1 K2 algorithm

The most basic algorithm available is that of the K2 algorithm (Cooper and Herskovits,

1992). This algorithm is essentially an algorithm to learn a DAG from data. The K2

algorithm assumes that the variables are first ordered according to the parentage. The

pseudocode for the K2 algorithm is as follows:

function K2_ALGORITHM(dataSet D)

For each node

Pa(node) = null;

old_accuracy = score(Pa(node), node, D);

findMore = true

while (findMore)

Z = node where score(Pa(node) U Z, node, D) is MAX
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new_accuracy = score(Pa(node), node, D);

if (new_accuracy > old_accuracy)

old_accuracy = new_accuracy

Pa(node) = Pa(node) U Z

else

findMore = false;

end if

end while

end for

end function K2_ALGORITHM

In this algorithm, Pa(node) denotes the parent of the node. Score(Pa(node), node,D)

denotes the score, of how well the network with node having Pa(node) as its parents

would work out as applied to dataset D. Therefore, what this algorithm does is that for

every node x, it searches through the other nodes looking for a possible candidate y as

its parent. If the addition of node y causes the score to improve, the algorithm includes

y into the parents of x. This continues until no new parents for node x can be found.

This node ordering is provided by an expert with extensive domain knowledge. Such

information can be readily obtained as a DAG from Gene Ontology and Reactome.

However as this technique builds upon knowledge that is pre-existing, the amount of

new discoveries made will be limited.

2.3.2 Sparse Candidate

An improvement to the K2 algorithm is the sparse candidate algorithm. This algorithm

omits the usage of a node ordering and caters to databases that are very sparse in nature,

making it very suitable for biological databases. This algorithm was first proposed in

(Friedman et al., 2000). Instead of carrying out exhaustive searches, heuristics are used

to determine the topology of the network. One of the crucial points of this algorithm
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is that edge scores are calculated via a Bayesian framework. It was used in (Friedman

et al., 2000) to analyze expression data. There are two stages in this algorithm, called the

RESTRICT stage and the MAXIMIZE stage. The pseudo-code is shown below followed

by its explanation.

function SPARSE_CANDIDATE(dataSet D, initial network B0)

while non-convergence

For each node

select parents(node) based on D and Bi

//Restrict Stage

Find network Bn that maximizes the Score(Bn|D).

//Maximize Stage

end while

end function SPARSE_CANDIDATE

In the restrict stage, the algorithm will assign a score to variable pairs and forming a

child-parent relationship. This score assigned can be a metric like correlation or mutual

information.

In the maximize stage, certain heuristics are used to prune the variable orderings

and pairs obtained earlier. The paper first restricted the in-degrees of each node followed

by a simple greedy hill climbing search.

There were three criterion proposed for the convergence of the algorithm. The

algorithm can converge either when the score does not increase, the candidates for the

parents do not change, or if the algorithm goes into a non-terminating cycle, when a

number of iterations with no improvement in the score is breached.

However the sparse candidate algorithm is very much limited to small datasets

because the calculation of the score in the maximize stage will be too expensive. To

simplify this calculation, the assumption of uniform data sparseness is usually made

(which might not be the case).
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2.3.3 REVEAL Algorithm

Boolean networks was first studied by (Kauffman, 1969) and (Kauffman, 1993) as a tool

for studying dynamics of complex natural systems. One of its main algorithms is that of

the REVEAL algorithm, which we will review here.

function REVEAL(networkNodes)

tempNodes = networkNodes;

for i = 1 to k

for all node in tempNodes

for all permutations of networkNodes pNodes, where

|pNodes| == i

if pNodes directly affect Node

node.output = pNodes;

tempNode.remove (node)

end if

end for

end for

end for

end function REVEAL

Where networkNodes is the full set of nodes in the network, k is the maximum of input

edges in the graph for a node. The algorithm is based on concepts from information

theory (Shannon and Weaver, 1963) to calculate a metric to determine if will pNode

directly affect Node. However the algorithm becomes impractical when k becomes large

(> 4).

2.4 Gene Class Testing

The final class of algorithms (Hanisch et al., 2002; Khatri and Draghici, 2005; Liu

et al., 2009; Subramanian et al., 2005) involves analysing microarray data together with
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existing biological information to obtain biological inferences. The algorithms reviewed

in detail here are:

1. OverRepresentation Analysis (ORA)

2. Functional Class Scoring (FCS)

3. Gene Set Enrichment Analysis (GSEA)

4. Gene Network Enrichment Analysis (GNEA)

5. Signaling Pathway Impact Analysis (SPIA)

2.4.1 OverRepresentation Analysis (ORA)

ORA (Khatri and Draghici, 2005) was one of the earlier and more established algorithms

which made good usages of gene classes in finding out the decisions on genes. This

technique allows us to locate exactly specific biological mechanisms which change within

a biological pathway. There are three main steps for this method:

1. All genes are grouped according to their respective Gene Ontology (GO) classes. To

obtain a good classification, the algorithm removes classes with less than 8 genes

within the class. At the same time, it removes classes with more than 150 genes.

The reason for doing so is because too small classes would imply a class that is too

specific, and too large a class would be too general.

2. Based on the raw expression values, the ORA algorithm then segregates the genes

into two groups, "selected" and "non-selected". The selected group refers to the

genes which are seen to be overexpressed. We decide if a gene is placed in the

expressed group simply via a fold or t-test as explained in the earlier sections.

3. Hence for each group, we actually have a number of genes that are present within

the group. We need to test if the number of genes present within the group is

statistically significant. This score implies the probability of observing at least a
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particular number of genes in a class among the selected groups. This score is

much easier to explain using the following statistical example.

Suppose that we are given a set of n genes of which k belong to a category C and

a reference set of m genes of which l belong to C. Since l elements of the reference

set belong to C, by proportion, we expect to find k′ = ln/m elements in the test set.

If k is larger than k′, C is said to be enriched, if k is smaller than k′, C is said to

be depleted. To estimate the statistical significance, P-values are computed. The

P-values can be calculated in two ways: either through applying a hypergeometric

test to compute a one tailed P-value or through permutation analysis. These two

methods are described below.

a Hypergeometric test: The hypergeometric test is based on the sampling a fixed

population. Assume that 20 balls out of 100 balls in a basket are white and

we wish to calculate the probability of drawing 7 or more white balls of out 10

balls given the distribution of balls in the basket. Hence in this case, the 100

balls is the total m genes of reference set, 20 balls l genes which belong to C,

10 balls the sample set of n genes and finally the 7 balls would refer to the

k genes in the sample set which belong to C. The hypergeometric probability

can be calculated by the formula as in Equation 2.21.

p− value = 1−
k∑

i=0

(
l
i

)(
m−l
n−i

)
(
m
n

) (2.21)

b Permutation analysis: However, calculating Equation 2.21 might be in-

tractable for large values of l, m or n. Hence the other alternative would to

calculate the P-value via empirical means. For each permutation, we would

pick up n genes from the gene list m, with ri being the number of genes from

ni which is in C. This permutation procedure is repeated for I = 10, 000

iterations. The P-value can be calculated by the formula in Equation 2.22.
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p− value =
Num permutations where ri > k

I
(2.22)

Thus we will be able to calculate a score for each GO set and this score implies the

probability of the class being overrepresented.

There are several limitations associated with this method. Mainly, it firstly pre-

divides the genes into two groups, selected and non selected. The method of division

is usually based on an arbitrary threshold. The choice of this threshold thus will

have an effect on the final classes of genes analyzed as "overrepresented". Another

important limitation is that after the genes are deemed as selected or unselected, they

are considered as equal regardless of their raw expression values. However, it would

make more sense to treat them differently depending on the strength of the individual

raw values.

2.4.2 Functional Class Scoring (FCS)

FCS (Pavlidis et al., 2002) was created to address some of the limitations of ORA as it

is able to obtain overrepresented groups within the GO ontology without having to pre-

divide the genes into "selected" or "unselected". Moreover, the raw microarray values

of the genes within the experiment is also taken into consideration. The details of the

algorithm are as follows:

1. The p-values of the individual genes is simply the negative log of the raw

microarray value, given by −log(Pk).

2. All genes are next grouped according to their GO classes (similarly to the FCS

algorithm).

3. The arithmetic mean – considered as a raw value for each of the individual GO

class – is calculated as
∑n

k=1−log(Pk).
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4. Permutation testing is lastly carried out to obtain a final p-value to each GO class.

We illustrate the technique for permutation testing for each GO group with this

example. For instance, the size of a particular class is k, and its raw score is r. The

algorithm will next draw out random samples of size k from the entire list of genes,

and calculate the raw score of this randomly generated group. This is repeated q

times, and the resulting distribution is next stored. The p value for the GO group

would then be the fraction of these random trials greater than the raw score r.

Hence at the end of the FCS algorithm, we get those gene classes which contain genes

are overexpressed on average. Two years later, the group at Broad Institute introduced

GSEA. Although GSEA addresses many of the limitations introduced by ORA, it is

slightly different to FCS. FCS ranks the gene groups according to the expression values

of the individual genes, while GSEA does it via the differential expression between the

gene as compared to that of a fixed phenotype. How this is done is explained in the next

portion.

2.4.3 Gene Set Enrichment Analysis (GSEA)

Of all algorithms reviewed so far, GSEA (Subramanian et al., 2005) seems to be the

most complete and rigorous in its analysis. It is one of the first algorithms that is

able to provide insights by focusing on particular gene sets, unifying genes statistically

related with an unifying theme. For GSEA, we first have to rank the genes according

to its differential correlation with a phenotype or profile. This ranking is based on the

correlation r(gj) = rj of their expression profiles with a phenotype of profile C. This list

will be known as L = g1, ..., gN . For every gene set, we will also have predefined a set of

genes, which we call S. The purpose of GSEA is to determine how this set of genes S is

distributed across the main set L. There are basically three steps to GSEA.

1. It goes through the ranked lists of genes L. With each gene it calculates an

enrichment score. We increase a running-sum statistic, Enrichment Score (ES)
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when we encounter a gene in a set S and decrease it when we encounter genes not

in S. The formula is as follows:

Phit(S, i) =
∑

gj∈Sj≤i

rj

NR
, whereNR =

∑

gj∈S

rj (2.23)

Pmiss(S, i) =
∑

gj /∈S,j≤i

1
N −NH

(2.24)

The enrichment score will be the maximum deviation from zero of Phit − Pmiss.

2. The p-values are next calculated using a technique known as permutation testing.

This technique estimates the significance via the set of scores of ESNULL. This

method corrects the often incorrect method of using statistical tables, which

assumes the data follows the normal distribution. The P value is estimated via

the following steps:

(a) Randomly assign the original phenotype genes to the samples in the microar-

ray experiment, thus getting a reordered gene list L. Recompute ES(S).

(b) Repeat step 1 for 1,000 permutations π to obtain a distribution of enrichment

scores, ESNULL.

(c) Estimate the P value for S, known as ES(S, π) from the distribution ESNULL.

3. The enrichment scores, ES(S, π) and ES(S) are next normalised by dividing by the

mean of ES(S, π). This yields the normalised scores NES(S, π) and NES(S).

4. The FDR is lastly computed. This will place a cut off to the genes which reject the

null hypothesis. This cut off is determined by the estimated probability that a set

with a given NES value contains a false positive.

The FDR is defined as the probability that a given gene identified as differentially

expressed is a false positive. Here we describe the following procedure for calculating
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FDR as introduced in (Benjamini and Yekutieli, 2001) and implemented in GSEA in

(Subramanian et al., 2005). We first define a null hypothesis for each single gene gi

known as Hi. For each Hi we first obtain their t-values Ti followed by their corresponding

p values pi. Let P(1) ≤ P(2) ≤ P(3) ≤ P(m) be the ordered p-values with the hypothesis

H(i) corresponding to P(i). For FDR, let k be the largest i for which P(i) ≤ i
mq. We would

reject all H(i) where i = 1, 2, ..., k. For FWER, let k be the largest i for which P(i) ≤ q
m . q

here refers to the threshold for the level of significance. We would reject all H(i) where

i = 1, 2, ..., k. The value of q is often given the value of 0.05.

2.4.4 Gene Network Enrichment Analysis (GNEA)

The next technique we describe (which is very similar to GSEA) is known as Gene

Network Enrichment Analysis (GNEA) (Liu et al., 2007). The GNEA consists of the

following steps:

1. Aggregate a list of gene sets associated with the biological process of interest.

These gene sets were taken from the Human Protein Reference Database, HPRD

(Prasad et al., 2009) as well as Gene Ontology (Pavlidis et al., 2004b). (HPRD is a

result of an international collaborative effort between the Institute of Bioinformat-

ics in Bangalore, India and the Pandey lab at Johns Hopkins University in Balti-

more, USA. HPRD contains manually curated scientific information pertaining to

the biology of most human proteins.)

2. Importing a global protein-protein network from biological literature, we create

a subnetwork within this global protein-protein network based on the individual

gene perturbation for each patient. This global protein-protein network is obtained

from HPRD.

3. For each gene set, we evaluate if this subnetwork is significantly expressed within

the gene set. We repeat Steps (2) and (3) for every patient.

4. Order the gene sets by the number of subnetworks where they appear enriched.
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5. Evaluate the p-value of each of these gene sets by this ranking. Gene sets with a

significant p-value are taken as transcriptionally affected across the phenotypes of

that disease.

GNEA is very similar to the GSEA (described in the preceding section). The difference

being GNEA scores only segments of pathways instead of GSEA which scores entire

pathways.

2.4.5 Network Expression Analysis (NEA)

The goal of NEA is to find a set of transcription regulators (TR) which are responsible for

driving the differential expression of other genes. Here, they define a TR as significant

if the downstream genes of its regulatory network exhibits a pattern of differential

expression significantly deviating from the distribution expected by random chance

(Sivachenko et al., 2005).

The actual distribution is measured in this manner: the absolute log-ratio value of the

gene is replicated according to the number of TR-s (in-degrees) regulating this gene. This

technique allows us to observe the absolute change in log-ratio as well as its adherence

to the biological regulatory relationship. Hence if the relationship is one of activation

(suppression) and the gene is activated (suppressed), this log ratio will be given a positive

score. If conversely the relationship is one of activation (suppression) and the gene is

suppressed (activated), the log ratio is given a negative score. This creates a signed edge

distribution.

To approximate the null distribution expected from random chance, we allow the TR

to randomly pick edges bearing effect signs. A signed significant test (for example t-test)

can be applied to find the TRs that are significant.

2.4.6 Identifying regulatory modules

The method of (Segal et al., 2003) relies on inferring regulatory modules from gene

expression data. This method takes in a gene expression data set and a large
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precompiled set of candidate regulatory genes. Next, the method partitions all the genes

into modules and searches for a regulation program for each module. The regulation

program of a module specifies the set of regulatory genes that control the module and

a set of rules that determine the gene expression profile of the genes in the module in

terms of the expression of the module’s regulators.

A brief description of the method is as follows:

1. A set of candidate regulators are first compiled from the microarray experiment

and clustered into three categories—viz., downregulated, no change and upregu-

lated.

2. The aim is to assign a regulation program to as many of these candidate regulators

as possible. By a regulation program, it means a set of rules determining the

behaviour of candidate regulated genes (downregulated, no change and upregu-

lated) based on the behavior of these candidate regulators. This set of rules is

derived using a regression tree (analogous to a decision tree). Hence, the nodes of

the regression tree are thresholds on relevant candidate regulator genes and the

leaves are the behavior of the relevant candidate regulated genes. The candidate

regulated genes are next clustered into candidate modules. Then an iterative

expectation-maximization (EM) algorithm is applied to refine the modules and

find regression trees that encode the corresponding regulation programs of these

modules. Basically, in the M step, a regression tree is learned for each module. In

the E step, genes whose behaviours are best explained by the regulation program

of a module are re-assigned to the module. Care is taken such that a gene which

is part of the regulatory input to a module is not assigned to that module as a

regulated gene of the module.
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2.4.7 Signaling Pathway Impact Analysis (SPIA)

The final technique we describe is known as Signaling Pathway Impact Analysis (SPIA)

(Tarca et al., 2008). SPIA attempts to provide better biological results by calculating

significance based on the over-representation of genes within a pathway as well as the

amount of perturbation measured in each pathway. SPIA thus comprises of two separate

probabilities: PNDE and PPERT . PNDE captures probability that a given pathway is

significant based on the over-representation analysis of the number of differentially

expressed genes within the pathway. PPERT captures the probability that the pathway

will be significant based on the connections that exhibit a differential behaviour within

the pathway. PNDE can be calculated using one of the previous mentioned techniques

such as ORA and FCS.

The second probability PPERT is calculated based on the amount of perturbation

experienced within each pathway. We define the perturbation factor for each gene gi

as:

PF (gi) = δE(gi) +
n∑

j=1

PFgj

Nds(gj)
(2.25)

where PFgj refers to the perturbation factors of the upstream genes, and it is

normalised by Nds, the number of downstream genes. We next calculate the net

accumulated perturbation by subtracting δE(gi) from PF (gi). This subtraction is

required so that genes that are solitary will not affect the probability PPERT (since they

have already been considered in PNDE). This accumulated perturbation is hence given

by:

Acc(gi) = PF (gi)− δE(gi) (2.26)

The total net accumulated perturbation for a pathway is simply the sum of the

accumulated perturbation of the genes within a pathway A, t(A) =
∑

i Acc(gi) and the

probability PPERT is given by:
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PPERT = P (TA ≥ tA|H0) (2.27)

TA is a null distribution of tA values, obtained empirically through a bootstrapping

approach of randomising the relationship of genes within a pathway. H0 stands for

the null hypothesis, that the genes that appear as differentially expressed on a given

pathway are completely random. Finally, we calculate the probability of a pathway with

the formula:

PG(i) = ci − ci ∗ In(ci) (2.28)

where ci = PNDE(i) ∗ PPERT (i). From the list of PG(i) values calculated, the FDR

algorithm as proposed in (Benjamini and Yekutieli, 2001) was used to control the false

discovery rate at 5%.

2.5 Discussions

This literature survey of the different classes of analysis techniques suggests that

contemporary algorithms are unable to provide the researcher with sufficient biological

descriptions. For instance, techniques such as the fold change (Choe et al., 2005), t-test

(Cui et al., 2005) and SAM (Tusher et al., 2001) generate gene lists containing large

number of genes, requiring the researcher to carry out additional processing to draw

biological information from them. Furthermore since the number of samples available

for analysis is usually very small relative to the number of genes to be considered,

such techniques always suffer from the having too much false positives (due to multiple

hypothesis testing). In addition, they require specific thresholds to be set in order to

determine genes which are significantly expressed.

Techniques such as GSEA (Subramanian et al., 2005) and NEA (Sivachenko et al.,

2007) have attempted to solve these issues, for instance, incorporating prior biological in-
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formation by finding differentially expressed functional gene sets (hence providing more

biological descriptive information), introducing false discovery rate (FDR) (Benjamini

and Yekutieli, 2001) (hence alleviating the issue of multiple hypothesis testing).

However, these methods share some limitations. For instance, most of these

techniques (Subramanian et al., 2005) ignores the intricate protein connections and

protein topology within pathways. Although techniques such as (Liu et al., 2007;

Sivachenko et al., 2007) take into account protein interactions, they are considered in

a general sense, not sufficiently detailed for biological interpretation. Finally, most of

these algorithms locate entire pathways or gene sets which are differentially expressed,

ignoring the situation when only a portion of a pathway is significantly expressed (which

might be prevalent when the gene set is extremely large).

One major group of algorithms which centres on time series clustering/analysis of

microarray analysis have not been reviewed here as they are not the focus of this thesis.

However we recognise that such algorithms can be very interesting when our concept is

extended to time series data. The interested reader can refer to various key algorithms

ranging from traditional algorithms like hierarchical clustering (Eisen et al., 1998), K-

means algorithm (Tavazoie et al., 1999) to specialised clustering methods involving time

series microarray data using expression profiles, slopes (Wen et al., 1998), linear splines

(de Hoon et al., 2002) and just recently, a gene rank based approach (Yi et al., 2009).
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CHAPTER 3

Background Study on
Biological Databases

Chapter Synopsis

Summary

One of the critical assumptions underlying microarray techniques which integrates

biological information (biological pathways) as a priori data into their computational

analysis is the availability of a collection of well-curated biological repositories (for

example, Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000),

Ingenuity (Ingenuity, 1998)). Specifically, we focus on three criteria: compatibility of

database (if the database is capable of merging seamlessly into the analysis technique),

comprehensivity of database (if the database contains sufficient information) and consis-

tency of database (if the database provides information consistent with other biological

databases). We review several representative biological databases and analyse their

suitability to be used as a priori biological information based on the three criteria listed

above.

Conclusions

Based on our criterion, our survey findings conclude that contemporary biological

databases are very diverse. In terms of compatibility, most repositories still relies heavily

on human intervention when manipulating biological pathways (which is impractical
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when analysing thousands of genes across hundreds of pathways for each microarray

experiment). With such little support for programming interfaces, integration of their

biological pathways into computational algorithms becomes difficult. In addition, a

popular biological pathway (the apoptosis pathway) was chosen from three representative

biological databases to investigate the level of comprehensiveness and consistency of each

database. Alarmingly, results show an extremely low level of similarity in the genes

quoted by the three databases (32% to 46%) for the apoptosis pathway. This shows that

none of the three databases are comprehensive (because other databases have information

which they do not have) and neither are they consistent (because the level of similarity

between them is consistently low). These reasons lead us to create our own unified

database cache and its API for easy integration into computational algorithms.

3.1 Introduction

As described, the current trend of microarray analysis is for prior biological information

to be integrated/used as part of the input to the analysis method. As such, it is important

that we look at the typical sources of biological information used/needed by these

modern analysis methods. In our study and search for databases (which are suitable for

integration into microarray analysis), we will be concentrating on the following criteria:

+ Are they sufficiently comprehensive individually?

Because the output analysis from algorithms depend significantly on the pre-

existing biological data, care must be taken to ensure that the data within the

biological repository is comprehensive. Otherwise the results may be highly

inconsistent as they depend largely on the biological database being used. Hence

we check if there is any single database sufficiently comprehensive to represent

most of the pathway data that is available.

+ Are the databases easily accessible to researchers who wish to use the data for

their analysis?
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In order to integrate data from these databases into algorithms, databases must

have proper software interfaces for computer scientists to connect to. Without such

an interface, integration will be highly impossible.

+ Are various biological pathway data sources consistent with each other?

In the event where we require data from different biological sources to com-

municate with one another, we require that they follow consistent molecular

representations, pathway naming conventions and exchange formats. This allows

for the inter-communication of biological databases.

3.2 Review of Contemporary Databases

In this section, we review if current biological databases are suitable for use in

computational algorithms which incorporate biological information. This review of

databases will be conducted based on the criteria listed in the previous section.

3.2.1 KEGG, Reactome

Data

KEGG (Kanehisa and Goto, 2000) and Reactome (Joshi-Tope et al., 2003) are well

established pathway databases. Their pathway data is first obtained from literature

and accurately curated and approved by experts. The focus of these two databases is to

provide pathway data as easily and seamlessly to their users as possible, they also boast

the most flexible methods of data access. For instance, both databases allow their users

to search for individual pathways and visualise them in pictorial formats. For KEGG,

they have an API (Kawashima et al., 2003) which allows computational scientists to

connect to their databases and extract pathway information from them. Hence to access

all the data from KEGG, one just executes the following API commands:

1. Execute an API call to obtain all the available pathways (for the homo sapiens

species) in KEGG.



Chapter 3. Background Study on Biological Databases 39

2. For each individual pathway, execute another API to obtain all the genes and gene

relationships for that particular pathway from KEGG.

In contrast, Reactome provides a sql data dump and also access through a SOAP api.

These data access methods allow information to be easily downloaded from their website,

allowing easier integration to computational algorithms.

Data Format

Pathways from KEGG are represented either in SOAP (returned when using API calls)

or BioPax (downloaded individually) (Kotecha et al., 2008). However we realized that

the API is not well updated and is no longer supported by the latest versions of python.

In addition the data stored in BioPax does not seem to be well maintained. Information

from KEGG remains stored in a BioPax level 1 format when the latest BioPax stands at

level 3. For Reactome, because they allow the download of the entire database in sql, it

is the most flexible and easily integrated into computational algorithms.

3.2.2 Ingenuity

Ingenuity (Ingenuity, 1998) is a commercial company which provides biological pathway

information to their subscribers. The company obtains such information using manual

curation by experts from published literature. Ingenuty provides data only in image

pictorial format. This is probably to control the rapid duplication of its proprietary

information to the different sources. Hence to obtain information from Ingenuity, one

must painfully extract the pathways details by extracting individual gene and gene

relationship manually.

3.2.3 NCBI

One of the main sources of biological information available online is NCBI (NCBI, 2009).

Founded more than twenty years ago, it now houses one of the largest set of free online

resources for biological information. As NCBI caters more for the users who wish to

search for online information, they focus mainly on UI design and visualisation tools
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which allow one to easily search for the genes / pathways required and to drill down

to various details of genes or relationships within pathways. Yet these databases are

inconvenient when it comes to programmatically obtaining information from them. To

illustrate this point, NCBI allows one to easily search for genes / pathways of various

species for numerous parameters within many different datasets. Executing such a

search provides one with details like which pathways the gene appears in, the list of

literature the gene is mentioned and even related pathways to the gene. However such

information is not suitable for use and integration within computational algorithms.

Indeed, NCBI has in fact even implemented steps to prevent such misuses of its data.

Specifically, it limits each IP address to 2,000 Internet connections on any single day,

hence preventing such scenarios from occurring.

3.2.4 Cytoscape

Cytoscape (Shannon et al., 2003) allows for the complex visualisation and editing of

biological pathways. The purpose of these tools is to help display the experimental data

on detailed diagrams of the relationships between genes/proteins in known pathways.

Thus, Cytoscape serves more as a visualisation tool and the biological information fed

into the tool depends on data generated by the user. Being an established software tool,

it has the capability of reading multiple types of input files including Graph Markup

Language, SBML and BioPAX.

3.2.5 BioCyc

BioCyc is a collection of databases where each database in BioCyc describes the genome

and metabolic pathways of a single organism. Other than the provision of data, one of

its unique propositions is the many tools within Biocyc that allow the user to navigate,

visualise and analyse the different databases. Relevant to this thesis, BioCyc allows for

the download of its data in various formats to be analysed using its tools. In addition to
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comprehensive tools and visualisers (like NCBI), BioCyc boasts its own Pathway Tools

API which allows a user to query the database in Lisp, Java and Perl.

3.2.6 SBML

We review one of the commonly used data formats in this subsection, the Systems Biol-

ogy Markup Language (SBML). This initiative was started in 2000 to work on developing

better software infrastructure for computational modelling in systems biology. It has

garnered popular usage and is supported by at least 200 biological packages. As SBML

was designed for a different use in mind (for simulation of systems biology reactions)

most of the features within SBML might be redundant in our experiments. However,

when the current scope is expanded to include systems biology simulations, such a

markup language will prove to be very relevant.

3.2.7 Wikipathways

Data

Wikipathways (Wikipathways, 2004) is a community effort which invites professionals

to aid in providing pathway data to its repository voluntarily. In addition to curating

the data from academic professionals, Wikipathway also obtains data from the other

repositories and incorporates it into its database. This has allowed it to store a

substantial number of pathways.

Data Format

Pathway information from Wikipathways is usually in the pictorial format. However

even though Wikipathways does not provide any API or software interface, Wikipath-

ways supports a markup format known as the GPML format. This format allows a

person to plot out the exact details of the pathways because it contains the spatial

location of the genes and relationships on the pictorial format. It also allows a

direct download of all its pathways in the GPML format (Dahlquist et al., 2002).

Understanding the pathway GPML format from Wikipathways is possible, although
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non-trivial and difficult. To do so, we are required to parse through the format and

carry out numerous image processing techniques to properly extract the genes and their

relationships.

3.3 Review Findings

3.3.1 Incomprehensive Data

Although many commonly used pathway databases (eg NCBI (NCBI, 2009), GO (Pavlidis

et al., 2004b), Reactome (Joshi-Tope et al., 2003), HumanCyc (Romero et al., 2005), HPD

(Chowbina et al., 2009), Panther Pathways (Thomas et al., 2003), etc) were reviewed, we

have selected three representative data sources (KEGG, Ingenuity and Wikipathways)

for our analysis on data comprehensiveness among different databases. These sources

are chosen because they are representatives of three very different kinds of curation

effort. For instance, Wikipathways is maintained by a community of professional users

via the free and open wiki platform. KEGG database is curated independently by a

single lab from published literature. Ingenuity is a commercial product.

We demonstrate the lack of comprehensiveness (incomprehensiveness) of current

databases with a manual comparison on the agreement of the apoptosis pathway across

these three databases. By the term incomprehensiveness, we mean that each single

biological database is not a comprehensive representation of biological knowledge that

are acknowledged by experts to be accurate.

We define the following metrics to illustrate the diversity across databases. The first

metric, the “Gene Agreement Count” of a pathway, counts the number of genes that

are common to that pathway in all the databases. The second metric, the “Gene Pair

Agreement Count” of a pathway counts the number of “interacting gene pairs” that are

common to that pathway in all the databases. An interacting gene pair is a pair of

genes (or their products) that are directly interacting in a pathway. When calculating

the “Gene Agreement Percentage” of a pathway, we first find the total number of genes
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within that pathway for each individual database. We next select the gene count from

the database that has the least number of genes for that pathway. Finally we divide

the Gene Agreement Count by this minimum gene count to obtain the Gene Agreement

Percentage. The same technique is employed to calculate the Gene Pair Agreement

Percentage.

Results indicate an overlap range of 11%-16% for gene pairs and an overlap percent-

age of 32%-46% for genes. This is an extremely low level of agreement given a pathway

as pervasive as the apoptosis pathway. This highlights the fact that using any single

database alone is not sufficiently comprehensive. Full results are seen below in Table

3.1.

Table 3.1: Table showing data overlap for Apoptosis Pathway. This table shows the
manual calculation of the gene/gene pair differences between the different repositories for
the apoptosis pathway.

Apoptosis Pathway
KEGG x Ingenuity KEGG x Wiki Ingenuity x Wiki

Gene Pair Count: 151 vs 3374 151 vs 133 3374 vs 133
Gene Count: 89 vs 169 89 vs 82 169 vs 82
Gene Overlap: 33 38 26
Gene % Overlap: 37% 46% 32%
Gene Pair Overlap: 21 21 15
Gene Pair % Overlap: 14% 16% 11%

It should be highlighted that Ingenuity has a disproportionate high number of gene

pairs/genes. This is because in Ingenuity, entire pathways are being annotated as nodes,

which are expanded by us into its many genes/gene pairs. However, our test remains fair

as the overlap percentage count between databases is obtained by dividing the number

of genes/ gene pairs overlap by the minimum number of genes or gene pairs from either

database. Hence the large number of gene / gene pairs from Ingenuity does not affect

the fairness of the test.
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3.3.2 Incompatible Methods for Data Acquisition / Data Formats

3.3.2.1 Incompatible methods for data acquisition

All databases release their pathway information via some non-standard graphical

format. Such a graphical representation is useful for visual manual analysis. However,

it is inconvenient for large-scale computational analysis.

The primary preferred method of data analysis for pathway information for clinicians

is still the pictorial form. However, having pathway information in pictorial formats

would mean that the clinician first has to download the data in the pictorial format from

the repository. Next the clinician will have to refer to the visual representation of the

pathway individually while making his analysis manually.

While such visual representation is useful on a small scale analysis, this visual

representation is virtually useless if one is required to incorporate such information

within large scale computational analysis.

Different databases use different methods of data access. Some databases only allow

data to be downloaded via web access. Others provide flexible access to their databases

through their API.

This means that a lot of human effort and intervention is required to download

the required information for databases. For databases with no API (take for example

Ingenuity), this creates tedious challenges for software to obtain information from such

databases.

For databases whose API is public, there is no guarantee that all such API would

use the same programming languages. This causes developers to incorporate clumsy

wrappers within their applications to adhere to the API of the databases.

Fortunately most databases offer a secondary form of data acquisition which allows

one to download such pathway data in a format more friendly to algorithms than

humans.
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Yet this secondary form of data acquisition differs largely from database to database.

For instance, if one wishes to draw data from KEGG, he/she would use the KEGG API

to download the required data. On the other hand, if Wikipathways is used, a spider

must be written to scan and download data from its website. This means that if a

computational scientist wishes to incorporate pathway information within his algorithm,

he will have to customise an entirely new method for pathway extraction for each of

individual data repository!

3.3.2.2 Incompatible Data Formats

Some repositories do release their data in formats such as their proprietary markup

languages or API data structures. These are more convenient for large-scale analysis.

However such formats are always unique to their originating database.

This lack of a consistent data format means that different databases use different

formats to represent their data. Hence dedicated codes have to be written to parse,

understand and integrate data from each individual database.

For instance, KEGG allows download of the information via their proprietary SOAP

data structures while Wikipathways allow for the download of data via their format

known as the GPML format. The two formats are very different from each other and

would require the computer scientist to write dedicated parsers for each database.

We would like to point out that there have been efforts to make data exchange

formats consistent with one another. An example of such an effort is BioPax (Kotecha

et al., 2008). However, the BioPax format was first designed in 2002. A cursory

look would show that it is cumbersome for computational manipulation. An updated

API which allows fast and simple manipulation of pathways is wanting. In addition,

BioPax updates its data in a very manual fashion. For instance, the links to pathway

information in BioCyc is as old as 2005 and links to KEGG data in BioPax are dead.

Thus such an exchange format might no longer be technologically suitable.
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3.3.3 Inconsistent Data / Molecular Representations / Pathway Naming

3.3.3.1 Inconsistent Data

We define inconsistent data to mean data which differs as compared from one data

repository to another. These inconsistencies occur in gene-gene relationships where

different repositories provide different or even contradictory relationship information

between genes for the same pathway ie, Pathway I of Database 1 states that Gene

A activates Gene B but Pathway I of Database 2 states otherwise (Gene A inhibits

Gene B, Gene B activates Gene A or Gene B inhibits gene A). An example of such an

instance occurs within the KEGG’s Cell Cycle Pathway, gene RB1 activates gene TFDP1.

Ingenuity’s Cell Cycle Pathway however states that gene RB1 inhibits gene TFDP1.

Because of the inconsistency and incomprehensiveness of data (demonstrated above),

cross database queries are the intuitive solution to harness the required information

across these databases. Doing so is crucial else the microarray analysis results would be

too dependent on the databases. Meaning the researcher running his experimental data

on Database 1 will end up with a totally different set of results if he runs it on Database

2 due to the fact that the data within the pathways are already inherently different. The

latter portion of this report will demonstrate quantitatively how different the figures are

across the different databases. However incompatibilities between different databases

makes cross database accesses extremely challenging to execute. We investigate these

incompatibilities across different databases and present them here.

3.3.3.2 Inconsistent Molecular Representations

Different repositories assign different naming conventions to their pathway nodes.

These nodes can be described as proteins, genes or symbols depicting protein families.

For example, KEGG describes most of their elements as genes, Ingenuity describes them

as proteins, while Wikipathways uses a combination of both.
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We have gene names / IDs described inconsistently across different data repositories.

The problem here is heavily compounded because different databases have a different

way of referring to genes. One of such instance where this inconsistency was particularly

compounded was when the Ingenuity database used a single protein symbol "PAKC"to

represent 50 different genes on a single relationship within a pathway. This will greatly

increase the difficulty of both the computer scientist as well as the researcher in grabbing

information which will result in incomplete pathways and incomplete analysis.

Hence it is possible to miss crucial genetic relationships because of such inconsistent

representation. To obtain all relationships represented within pathways, algorithms are

required to convert all nodes to a common representation.

3.3.3.3 Inconsistent Referrals to Pathway Names

Common biological pathways in different databases are often given names with no

indication of how pathways are related to one another. For instance, KEGG may refer

to a pathway as “Wnt signaling and pluripotency” and the Wikipathways might refer to

it simply as “Wnt signaling”. Other than the fact that both pathways have the common

terms “Wnt signaling”, there is no way of knowing if the “Wnt signaling” pathway is

a subset of the “Wnt signaling and pluripotency” pathway other than through human

intervention.

This makes it difficult to determine pathways that refer to similar biological processes

(albeit sporting different pathway names). It is difficult to match and compare similar

pathways across different repositories.

3.4 Motivation for Pathway Aggregation

The prior section discussed the incomprehensiveness, incompatability and inconsistency

of current databases. This illustrates that current databases are not ready for allowing

seamless integration of their data into biological algorithms, and certainly not equipped
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to cater to the needs of newer generation of computational algorithms which relies

heavily on prior biological information.

Thus if we require that our algorithm works seamlessly with currently available

databases, we have the following options:

1. To utilize only the biological information from a single database which supports a

software interface

2. To create a separate software wrapper for each individual database that we use,

and integrate this wrapper into the algorithm

3. To create an integrated database cache and API which connects to the other

databases, allowing the researcher and algorithm to access to up-to-date from the

diverse data sources at all times.

The first option is not advisable because it only provides incorporates data from a

single data source. Hence the analysis obtained might not be totally accurate and may

well be skewed.

The second option provides us with access to multiple databases within the algorithm.

However because it depends heavily on wrapper classes within the algorithm itself, the

entire algorithm will probably go offline when one day the parent databases decide to

change part of their protocols or formats.

Hence we are left with the third and best option of providing an integrated database

with a common API. This common API will always maintain a version of the data stored

in the parent databases. At the same time it allows one to obtain the information

from the other databases from a single point of access. Because all data stored will

be stored using a standard nomenclature, accessed with a standard protocol, accessed
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in a standard format, it solves the problems of incompatabilities and inconsistencies. In

addition, several databases will be supported, to ensure that the information stored is

comprehensive.

This common API works in this manner: A local database serves as a cache, storing

data from the other repositories. Requests for information from the different repositories

are directed to this cache to obtain the required information. This is achieved also

via software wrapper classes. To ensure that our interface is always kept up to date,

automatic incremental updates are run periodically to extract the latest information

from the different repositories. This process creates a unified interface for the different

databases, as well as a unified database where graphs of the same pathway are merged.

3.5 Discussions

In spite of the advancements in microarray analysis explained in the previous chapter, it

is still challenging to draw biological conclusions from today’s microarray experiments.

The main source of the difficulty is that the number of samples available for analysis

is usually very small relative to the number of genes to be considered. It is often

the case that many genes are statistically significant according to the wide variety

of computational and statistical analysis algorithms. Yet there is little concurrence

between the genes selected by different algorithms. Furthermore, the genes selected

by these algorithms do not always provide an insight that is biologically consistent or

biologically interpretable.

In order to obtain results that are more biologically meaningful, it is important to

incorporate information from biological repositories into the analysis of microarray data

(Soh et al., 2007). Indeed, most of the new generation of algorithms (under the category

of “Gene Class Testing” in the previous chapter) incorporate information from biological

pathways into microarray data analysis (Goeman et al., 2004; Khatri and Draghici, 2005;

Subramanian et al., 2005).
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Examples of the new generation of microarray data analysis algorithms that in-

corporate biological pathway information into the analysis process include ORA (Over

Representation Analysis) (Goeman et al., 2004; Pavlidis et al., 2004a), FCS (Functional

Class Scoring) (Goeman et al., 2004; Pavlidis et al., 2004a), GSEA (Gene Set Enrichment

Analysis) (Subramanian et al., 2005), ErmineJ (Lee et al., 2005) and Pathway Express

(PathwayExpress, 2009).

Examples of databases which these algorithms reference are: NCBI (NCBI, 2009),

KEGG (Kanehisa and Goto, 2000; Kanehisa et al., 2006; Ogata et al., 1999), Ingenuity

(Ingenuity, 1998), GO (Gene Ontology) (Pavlidis et al., 2004b) and Wikipathway

(Wikipathways, 2004). In terms of source authority, both KEGG and Ingenuity derive

their data from published work while Wikipathways first derive their’s from several

established databases (eg KEGG, Netpath) and are subsequently curated by the research

community.

However these biological databases are very diverse, making it extremely laborious to

carry out even simple queries across databases. To make matters worse, inconsistencies

and incompatibilities between different repositories render the individual databases less

effective for collaborative purposes.

This inconsistency is worsened because the boundaries of signaling pathways are not

that clearly defined scientifically. For example, the pathway "MAPK Cascade" probably

has no clear consistent definitions in the literature hence making the question of exactly

which genes to include quite subjective (Green ML, 2006).

ORA (Khatri and Draghici, 2005), FCS (Pavlidis et al., 2002) and GSEA (Subramanian

et al., 2005) are all examples of algorithms that incorporate information from biological

databases. Both ORA and FCS use the GO database to select relevant genes according to

their GO classes. GSEA uses their proprietary database (curated from various sources)

for gene selection.
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The importance of the accuracy and comprehensiveness of the biological pathway

information used should be clear from the review above of modern microarray data

analysis algorithms. For instance, clinicians may potentially end up with different

results and conclusions depending on the database they group their genes by! Hence it

is crucial that we did a review of some of the popular biological databases to determine

their suitability to algorithms.

This shows that current databases are not suitable for seamless integration into

microarray analysis because of incompatible, inconsistency and incomprehensive issues.

Hence it was determined that the best option was to create an aggregated database

cache with its own API, henceforth allowing different algorithms to utilize biological

information from different databases from a location. Doing so solves both the problems

of incompatabilities and inconsistencies. Because a few databases will be supported, we

will ensure that the information stored within the databases be as comprehensive as

possible. The implementation details of this database cache will be outlined in the next

chapter.
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CHAPTER 4

Pathway API — Methods

Chapter Synopsis

Summary

The previous chapter (Chapter 3) argued for the need to create our own biological repos-

itory (for integration within computational analysis) because of the lack of consistency

and comprehensivity and compatibility of current databases. This chapter explains

the technical challenges and techniques we employed in designing and creating our

own biological repository. We focus on three main aspects of the design: (1) How we

formalise key biological features within pathways to computational database entities. (2)

How we extract, store and update these key features from publicly available pathway

databases (in particular, we focus on three representative databases, KEGG, Ingenuity

and Wikipathways) (Soh et al., 2009). (3) Finally we describe and provide a short

specification of the application programmable interface (API) to the database such that

others will be granted easy access protocols for integration into their computational

algorithms.

Conclusions

The techniques presented in this chapter aim to create our unified database which

is comprehensive, consistent with other databases and compatible for integration into

computational microarray algorithms. We attempt to achieve data comprehensiveness
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by integrating biological data from three representative biological repositories. Data

consistency is achieved through the standardisation of nomenclature and data formats.

We ensure that data from this unified biological resource is both compatible and easily

accessible through simple web based http API calls.

4.1 Introduction

The previous chapter showed how current databases are ineptly equipped to be easily

integrated into computational algorithms which require biological information. Faced

with this situation, the solution proposed was to create our own database. This chapter

shows the methods adopted in creating such a database cache supported with an API.

To create such an API, we first have to define the type of information which is crucial

for use for the database, followed by obtaining such biological data from respective data

sources. The key components behind such an API are:

+ Pathway Formalisation: Key features within pathways

+ Database Cache: How we store, extract and update the data

+ API Implementation: Short specification of the API

4.2 Pathway Formalisation

Pathway databases supply many informative features that are useful for the purposes

that these databases were originally intended for. However, for use in gene expression

analysis algorithms such as ORA, FCS and GSEA it is sufficient to capture only two key

features in these pathway databases.

One feature defines all the genes within the pathway while the other defines gene-

gene relationship within the pathway. Here we only consider two relationships between

genes: activation and inhibition. (Gene relationships in metabolic pathways are

formalised in the same manner based on how they catalyse adjacent steps within the

pathway. For metabolic pathways, relationships between adjacent proteins are indicated
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as neutral, meaning neither activating or inhibiting. This approach for metabolic

pathways is similar to the approach adopted by KEGG.) This formalisation helps to

organise and streamline information within pathways.

For illustration, we redraw a KEGG pathway in Figure 4.1. The original pathway is

in Figure 4.2. The component depicting genes within a pathway refers to the individual

genes MDM2, TP53, etc. The other component depicting gene-gene relationships refer

to relationships (eg MDM2 inhibits P53, ATM activates CHK1) in the pathway diagram.

Figure 4.1: A selected portion extracted from the Cell Cycle KEGG Pathway (from Figure
4.2) and redrawn here.
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Figure 4.2: The original Cell Cycle KEGG Pathway (Kanehisa and Goto, 2000), extracted
from the KEGG database and reproduced here.

4.2.1 Representation of Genes

As mentioned earlier, one of the inconsistencies across different databases is the

inconsistent usage of proteins, genes or protein lists within pathway data. To address

this issue, all gene or protein representations are converted to their corresponding NCBI

Gene ID. The NCBI Gene ID is obtained by issuing and parsing the results of the query:

http://www.ncbi.nlm.nih.gov/entrez/

query.fcgi?db=gene&cmd=search&term=Y+homo+sapiens
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Where the symbol Y refers to the gene name. Executing this query iteratively across

all the genes/proteins within the pathway provides us with the Gene IDs within the

pathway. This common terminology reconciles gene naming inconsistencies across the

different repositories.

4.2.2 Representation of Genes-Gene Relationships

There are only two types of relationships present between genes: inhibition and

activation. These two relationships are illustrated in Figure 4.3 where we see ATM

activating CHK1, CHK2 and MDM2 inhibiting p53. Figure 4.4 shows the explicit

relationship between MDM2 (as the inhibitor) and p53 (as the inhibitee).

By constructing such inhibitor-inhibitee/activator-activatee relationships, investiga-

tors explicitly know the exact relationship of genes within pathways. This allows them

to analyse the adherence of these relationships in their experimental data.

Figure 4.3: Images depicting the two types of gene relationships considered. Left: Type
1 relationship where gene ATM activates both genes Chk 1 and Chk2. Right: Type 2
relationship where gene MDM2 inhibits gene p53. (Image reproduced from (Soh et al., 2007))

Inhibitor Inhibitee
MDM2 p53

Figure 4.4: Figure showing distinctly the relationship between genes p53 and MDM2.
MDM2 is explicitly referred to as the inhibitor and p53 referred to as the inhibitee.

4.3 Database Cache

In the following sections, we will be discussing on the storage, extraction and updating

the data for our unified database.
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4.3.1 Data Storage

We maintain a database cache to store information from the other pathway repositories.

To ensure fast response to users, all queries submitted are directed to this database

cache. Our database cache is kept up to date with a set of automated scripts written to

do periodic incremental updates from the other databases.

The 3NF database schema used to store the captured data is shown in the Figure 4.5.

Note that the fields in bold are the names of the table. The underlined fields are the

primary keys of the table.
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4.3.2 Data Extraction

4.3.2.1 Wikipathways

Data from Wikipathways are publicly available via their proprietary file format known

as the GPML format (Dahlquist et al., 2002). Hence we first obtain the pathway IDs

of all the pathways present within the Wikipathways database. The next step involves

iterating through these ids to obtain the GPML file associated to each pathway ID. The

final step parses the GPML format to obtain the pathway genes and associations.

All pathways within Wikipathways are obtained by issuing and parsing the query:

http://www.wikipathways.org/index.php/Special:BrowsePathwaysPage

A simple parsing of this page gives one the list of all the pathway names present

within the Wikipathway database. The following webquery is issued to obtain the

pathway information in a text format. Here, Wikipathways term it as a GPML file.

The corresponding GPML file for each pathway is obtained with this query:

http://www.wikipathways.org//wpi/wpi.php?action=downloadFile

&type=gpml&pwTitle=Pathway:Homo%20sapiens:X

Where X refers to the name of the pathway.

The GPML format is designed towards the visual display of pathway information.

Hence it contains detailed coordinate information about the spatial location of genes and

arrows/t-bars (which depict activating/inhibiting relationships). Yet how these genes are

related is not described in the GPML specifications. A parser is therefore needed to

understand these spatial descriptions and extract the relevant genes and associations.

The different components of the parser are:

+ Gene Extraction: Extraction of genes from the GPML file requires the identifica-

tion all occurrences of the GPML DOM attribute name: “DataNode”. This enables

the parser to obtain the Gene Name, Gene NCBI ID and the spatial coordinate

locations associated to this datanode.
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+ Spatial Clustering: Activating/inhibiting relationships are described across gene

clusters spatially. Therefore the genes have to be spatially clustered to determine

spatially the activator/activatee or inhibitor/inhibitee relationships.

An example is reproduced in Figure 4.6. Here the genes CDK2, CYCE inhibits the

entire cluster of ORC genes. Hence we group the genes CDK2, CYCE together as

one cluster, and the ORC genes as another.

Using the coordinates from the genes obtained above, a nearest neighbour tech-

nique is employed to organise the genes into their respective clusters. Basically

this nearest neighbour algorithm groups genes together if their distance apart is

below a threshold (empirically determined as 100 pixels). A short pseudo-code of

this algorithm is as follows:
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function nearest_neightbour(nodelist n)

set nodecluster = n

while (change)

change = false

For each cluster1 in nodecluster

For each cluster2 in nodecluster

if dist(cluster1, cluster2) < threshold

cluster1 = combine(cluster1, cluster2)

change = true

endif

end for

end for

loop

return nodecluster

end function nearest_neightbour

We basically treat each individual gene node as a node cluster. All the node clusters

are cycled with two nested for loops. If we find within the nested loop that there are

two gene clusters whose distance are below a certain threshold (100 pixels here),

we combine these two clusters. The algorithm continues to run until the clustering

of the genes remains constant.

The potential running time for this algorithm is O(n4) but the average running

time is O(mn2) where m refers to the number of clusters present.

This gives us the exact spatial coordinate information of each gene cluster. This

allows us to form relationships between gene clusters (explained in the next

section).
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+ Relationship Extraction: Relationships within the GPML files are represented

by the attribute keywords: “Arrow” for activating and “T-Bar” for inhibiting. These

attributes provide their spatial coordinate information of activating and inhibiting

relationships. The challenge here is associating the correct gene clusters to each

relationship.

We can thus easily locate all activating and inhibiting relationships within a

pathway. The challenge then becomes associating the correct inhibitee / inhibitor

or activatee / activator gene clusters to each relationship. This we carry out via

image processing means.

By representing relationships as a straight line, this relationship line in the spatial

space is extended until it intersects with the nearest gene clusters on both sides of

it. This technique assigns the activator/activatee or the inhibitor/inhibitee gene

clusters to both sides of the relationship.

We refer to an earlier diagram in Figure 4.6. Extending the relationship line, the

relationship spatially intersects gene clusters CDK2 and CYCE and the ORC gene

clusters. This assigns gene cluster CDK2 and CYCE as inhibitors and the ORC

gene cluster as the inhibitee.

The equation of the relationship line, can be calculated using the geometry

equation

y = mx + c (4.1)

We next test each gene cluster (found in the previous section) to assign it to its

proper relationship. The pseudocode is as follows:
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function finding_relationships(relationships rs, nodecluster n)

For each relation in rs

For each cluster1 in nodecluster

if intersection(cluster1, relation)

[dist, tag] = distance(cluster1, relation)

relation.insert(dist, tag)

end if

end for

end for

return rs

end function finding_relationships

The innermost loop takes note that we assign the most suitable gene cluster to the

relationship (By most suitable, here we refer to the cluster spatially nearest to the

relationship).

For metabolic pathways (because the gene relationship is neither activating or

inhibiting), the GPML attribute keyword is simply a “Solid” line attribute. In such

instances, the relationship type attribute to the gene pair would be “neutral”.

4.3.2.2 KEGG

Data is obtained from KEGG via a series of API calls and processing the data (SOAP

format) returned. An API call is issued to obtain all the pathways first. This returns

all the relevant pathway IDs stored within KEGG. Separate API calls are made for each

pathway IDs to obtain the genes and gene pairs present for each specific pathway.

The API call to obtain all the pathways for homo sapiens is: serv.list_pathways(“hsa”)

where “serv” refers to the created wdsl object to communicate with KEGG and hsa refers

to the “homo sapiens species”.

The API call for gene and gene pair extraction from a KEGG pathway are:
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+ Gene Extraction: serv.get_genes_by_pathway(X)

+ Gene Pair Extraction: serv.get_element_relations_by_pathway(X)

where X refers to the pathway ID within KEGG.

The data returned from the API calls is parsed, extracting the critical components

and populating them into the database.

4.3.2.3 Ingenuity

All pathway repositories allows users to download pathway data in pictorial formats.

However, such pictorial formats are usually useless to automated computational analy-

sis. Hence most repositories would support downloading of their data in a text format

too. Ingenuity though supports downloading of pathway data in a pictorial format. This

forces our pathway data extraction from Ingenuity to be done manually, an extremely

painful and time consuming process.

In fact, as Ingenuity is a commercial company and earns its revenue stream from

charging the download of data, it is not surprising that Ingenuity legally disallows

batch download of data from Ingenuity (hence only releasing information in the pictorial

format). We have taken this legal issue into consideration and disallow the download of

Ingenutiy’s information from our servers.

4.3.3 Data Updates

An expiry date is assigned to all information stored within our database cache.

Upon reaching the expiry date, scripts are triggered to run, automatically extracting

information from the reference databases (KEGG and Wikipathways) and populating it

into our database cache.

4.4 API Implementation: Short specification of the API

We provide a single common API to access the different databases. This common API

works in this manner: A local database serves as a cache, storing data from the other



Chapter 4. Pathway API — Methods 64

repositories. Requests for information from the different repositories are directed to

this cache to obtain the required information. To ensure that our interface is always

kept up to date, automatic incremental updates are run periodically to extract the latest

information from the different repositories. This process creates a unified interface for

the different databases, as well as a unified database where graphs of the same pathway

are merged.

The database is available at www.pathwayapi.com. The recommended requirements

are: 1 Mbps internet connection, 1GHz Processor, 512MB Memory. The database cache

currently stores a total of 397 gene pathways, 21,314 genes and 60,900 gene pairs. From

this API, access to pathways from both the integrated and the individual sources are

provided. Further details of this interface can be found at (PathwayAPI, 2009).

The API was written in PHP, and data transfer in JSON format. We have chosen

JSON over SOAP or XML because:

+ JSON is lighter in weight, transmitting less information over the internet. Client

applications therefore executes faster.

+ JSON has the ability to easily represent most general data structures such as

records, lists and trees.

+ With SOAP or XML, dedicated parsers are always required on the client. JSON

is innately supported by most programming languages, eliminating the need for

client parsers.

Some implemented functions of the API include:

+ GetDatabase: Returns all repositories supported by our API. No parameters

are required for this function. The usage example is: www.pathwayapi.com/

api/API_GetDatabase.php and the sample results returned is:

[“KEGG”,“Ingenuity”,“Wiki”].



Chapter 4. Pathway API — Methods 65

+ GetGene: Returns the NCBI GeneID of the gene. This function takes the name

of the gene as the parameter. An usage example is: www.pathwayapi.com/

api/API_GetGeneID.php?SearchGene=MDM1. The format returned is:

[[“MDM1”,“252867”],[“MDM1”,“56890”]]. In this case, there are two separate gene

ids that are returned.

+ GetDBPathways: Returns the all pathway names and IDs of a specific repository.

Only the database name needs to be submitted to the function. For instance,

www.pathwayapi.com/api/API_GetDBPathways.php?DatabaseName=KEGG. Here,

the following will be returned: [kegg{“1”: {“DatabaseName”: “KEGG”, “Pathway-

Name”: “Glycolysis Gluconeogenesis - Homo sapiens (human)”}, “2”:{“Database-

Name”: “KEGG”, “PathwayName”: “Citrate cycle (TCA cycle) - Homo sapiens

(human)”}, etc...] where “1” refers to the Pathway ID, “KEGG” refers to the name

of the database and “Glycolysis Gluconeogenesis...” refers to the name of the

pathway.

+ GetPathway: Returns the pathway ID of a specific pathway of a repository. Posting

the name of the pathway in this manner:

www.pathwayapi.com/ api/API_GetPathway.php?Pathway=Apoptosis will return

the jason format like: [[“Apoptosis - Homo sapiens (human)”,“KEGG”,"140”],

[“Apoptosis Signaling”,“Ingenuity”,“210”]].

In this instance, this implies that there are at least two pathways with the

“Apoptosis” keyword witin their pathway names. The two pathways occurs in the

KEGG databases and in the Ingenuity databases. The pathway id associated to

each is 140 and 210 respectively.

+ GetPathwayGenes: Returns all the GeneID of a specific pathway of a repository.

Providing the pathway ID to this function returns the user all the genes within

this pathway in this manner:
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www.pathwayapi.com api/API_GetPathwayGenes.php?Pathway=7 Resulting in:

[“231”:“AKR1B1”,“2538” :“G6PC”,“2548”:“GAA”,“2582”:“GALE”] where “231” refers

to the gene ID and “AKR1B1” refers to the name of the gene.

+ GetGenePathways: Returns all the pathways which a gene occurs. In the opposite

note, this function returns all the pathways which a supplied gene occurs in.

http://www.pathwayapi.com/ api/API_GetGenePathways.php?SearchGene=7157 We

obtain the following database pathway pairs: [“128”:“MAPK signaling pathway

- Homo sapiens (human)”,“134”:“Cell cycle - Homo sapiens (human)”,“135”:“p53

signaling pathway - Homo sapiens (human)”] In this example, “128” refers to the

Pathway ID and "MAPK signaling pathway - Homo sapiens (human)" refers to the

name of the pathway.

+ GetPathwayInteractions: Returns all interactions within a pathway of a database.

Passing in the ID of the pathway, the API returns all the interactions within the

pathway. www.pathwayapi.com/ api/API_GetPathwayInteractions.php?Pathway=7

will result in [[“231”,“AKR1B1”,“2584”,“GALK1”,“Activate”]

,[“231”,“AKR1B1”,“2585”,“GALK2”,“Activate”]] In the example above: “231” and

“2584” refers to the IDs of the gene pair “AKR1B1” and “GALK1” refers to the

corresponding genes of the ID.

+ GetPathwayDiff: Get the differences in genes and gene interactions across path-

ways. This function requires the user to supply the IDs of the two pathways he/she

wish to check on the difference in. The call below shows the difference in genes

and gene interactions between pathway 7 and pathway 8. www.pathwayapi.com/

api/API_GetPathwayDiff.php?Pathway1=7&Pathway2=8

This gives the following results where: [[“AKR1B1”,“G6PC”,“GAA”,“GALE”,“GALK1”],

[“ALDH2”,“ALDH3A1”], [“AKR1B1_GALK1”,“AKR1B1_GALK2”,“AKR1B1_GLA”],[]]



Chapter 4. Pathway API — Methods 67

Where [“AKR1B1”,“G6PC”,“GAA”,“GALE”,“GALK1”] refers to the genes within

pathway 7 not in pathway 8.

[“ALDH2”,“ALDH3A1”] refers to the genes within pathway 8 not in pathway 7.

[“AKR1B1_GALK1”,“AKR1B1_GALK2”,“AKR1B1_GLA”] refers to the gene inter-

actions within pathway 7 not in pathway 8.

[] refers to the gene interactions within pathway 8 not in pathway 7. This set is

empty because all interections in pathway 8 are in pathway 7.

4.5 Example Usage of API

Here we show an example on how we use this API to find out the pathways with the

most number of differentially expressed genes within a microarray experiment.

1 Find out the genes within the microarray experiment which are differentially

expressed. This step can be easily achieved by using the t-test or any other

statistical test mentioned in the earlier chapters.

2 Find out which pathways these genes belong to. For each gene found differentially

expressed in the previous step, we carry out iteratively the following API call:

http://www.pathwayapi.com/api/API_GetGenePathways.php?SearchGene=

individual_gene_id where individual_gene_id refers to the gene ID for each indi-

vidual gene within the microarray experiment

This gives us a whole list of pathways where the gene is found to be differentially

expressed.

3 Depending on the number of occurrences each pathway appears, as well as the

number of genes present within the pathway, we can assign a score to each

individual pathway. The pathway with such highest score can be deemed as

the pathway that is most significant (due to the large number of differentially

expressed genes within that pathway) for the microarray experiment.
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4.6 Discussions

The advantages of having such an aggregated database with common API are:

+ Consistent data Where possible, we have combined information of similar path-

ways from different repositories. Thus if Gene A is quoted in Pathway P of

Repository X, and Gene B is quoted in Pathway P of Repository Y, both Genes

A and B are quoted in Pathway P of our new repository. This goes the same as well

for the pathway relationships.

+ Consistent referrals to gene names We refer to all proteins and genes via consistent

NCBI gene id-s. If a protein is being referenced, we represent that protein as the

genes it translates to.

+ Consistent methods for data acquisition Computer scientists can use our single

API to obtain pathway information from supported repositories. This reduces the

need for the computer scientist to customise a new acquisition method based on

the repository. In addition, data returned is in a single consistent format.

A single microarray experiment contains at least 10,000 genes. If we were to just

require to find out the pathways each gene appears in, it would already take 10,000 API

calls and this might take some time. To expedite processing, we have allowed users to

download the entire database in a SQL dump. This allows the user to host his/her own

data. Information that the user requires can be obtained directly through SQL queries,

thereby reducing processing time.
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Figure 4.5: The database schema used for our pathway api database (PathwayAPI, 2009).
Each column represents a separate table. The name of the table is represented as the first
row in each column. The rest of the rows within each column refers to the table entities. The
underlined rows refer to their primary keys.
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Figure 4.6: A diagram depicting how relationships would look like in Wikipathways
(Wikipathways, 2004). Here, the genes CycE and CDK2 are depicted as inhibiting the ORC
class of proteins, which contains genes ORC1L, ORC2L, ORC3L, ORC4L and ORC6L
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CHAPTER 5

Pathway API — Evaluation

Chapter Synopsis

Summary

Chapter 4 outlined our techniques and methodology for the creation of our unified

database. This chapter evaluates our database to ensure that it is consistent, comprehen-

sive and compatible for integration into computational microarray algorithms. We make

quantitative evaluations by comparisons between three databases (KEGG (Kanehisa and

Goto, 2000), Ingenuity (Ingenuity, 1998) and Wikipathways (Wikipathways, 2004)). This

comparison is made by calculating the percentage overlap in genes, gene pairs and

pathways across these three datasets. Finally a qualitative examination is being done

to arguing that our standardised nomenclature (such as gene references and key pathway

features), makes our database compatible for integration into computational techniques.

Conclusions

After unifying information from three different biological databases (KEGG, Ingenuity,

Wikipatways), we show that indeed there is a low level of consistency among them (specific

figures provided below). Generally, the level of consistency for genes in similar pathways

across databases ranges from 0% to 88% while the level of consistency for interacting

genes pairs ranges from 0%-61%. Hence biological information stored within our unified
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database is more comprehensive information as compared to the individual databases

KEGG, Ingenuity or Wikipatways.

Qualitatively, because we (1) unified pathway data from three independent biological

sources, (2) created consistent data access methods and formats, (3) standardised

nomenclature such as gene references and pathway key features, researchers will be able

to access complete information (from different databases) easier by using a single access

method (PathwayAPI) and using standardised nomenclature.

5.1 Introduction

Pathway API was implemented over a period of one to two years. A version of the

system has been made public online at www.pathwayapi.com. Access to data within

the database can be achieved by invoking the database API. The entire database has

also been released to my colleagues at NUS and they are using the data on a limited

basis.

5.2 Quantitative Evaluation

5.2.1 Database Consistency

Pathway databases (eg KEGG, Ingenuity, Wikipathways) have always been assumed

to be consistent because they share a common data source: published literature

(Wikipathways is based on established databases like KEGG or Netpath, hence sharing

the same roots of published literature). We show here that this assumption is not true.

We reuse the definition that was done for the gene pair count and the gene agreement

count in the earlier chapter. In the case of metabolic pathways, we define an interacting

gene pair as proteins that catalyse adjacent steps in the pathway.

The three databases represent some of their pathway entries not as genes but as

proteins or symbols depicting protein families or classes. In such instances we replace

all such proteins and symbols with the genes they represent. For example, suppose that

A activates B within a pathway, where A and B are symbols representing protein classes
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that are products of 3 genes and 2 genes respectively. We replace A activates B by 6 new

activating relationships. We claim the validity of this replacement method because it

exactly captures all the genes and relationships the original curator had intended. All

statistics calculated here are based on the expanded relationships.

As listed in the earlier chapters, our investigation into database consistency began

with a manual comparison on the agreement of the apoptosis pathway across databases.

This achieved an extremely low level of agreement within a range of 11%-16% (Gene

Pair Agreement Percentage) and 32%-46% (Gene Agreement Percentage). For clarity,

we reproduce the results once again in Table 5.1.

The next step involves an automated extraction for the apoptosis pathway between

the databases. The results are shown in Table 5.2. The results indicate a range of 12%-

14% (Gene Pair Agreement Percentage) and 30%-46% (Gene Agreement Percentage).

This is indicative that the above mentioned gene matching procedure is reliable and not

missing significant numbers of equivalent genes.

Table 5.1: Table showing data overlap for apoptosis Pathway. This table shows the
manual calculation of the gene/gene pair differences between the different repositories for
the apoptosis pathway.

Apoptosis Pathway
KEGG x Ingenuity KEGG x Wiki Ingenuity x Wiki

Gene Pair Count: 151 vs 3374 151 vs 133 3374 vs 133
Gene Count: 89 vs 169 89 vs 82 169 vs 82
Gene Overlap: 33 38 26
Gene % Overlap: 37% 46% 32%
Gene Pair Overlap: 21 21 15
Gene Pair % Overlap: 14% 16% 11%

Table 5.2: This table shows the calculation of the gene/gene pair differences between the
different repositories for the apoptosis pathway based on the automated processing described
in this paper.

Apoptosis Pathway
KEGG x Ingenuity KEGG x Wiki Ingenuity x Wiki

Gene Pair Count: 182 vs 3486 182 vs 155 3486 vs 155
Gene Count: 84 vs 185 84 vs 79 185 vs 79
Gene Overlap: 28 36 24
Gene % Overlap: 33% 46% 30%
Gene Pair Overlap: 22 22 18
Gene Pair % Overlap: 12% 14% 12%
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We subsequently followed up with an automated extraction and comparison between

the databases. The ranges are 0%-88% (Gene Agreement Percentage) and 0%-61% (Gene

Pair Agreement Percentage). These numbers confirm our earlier suspicion that there is

an extremely low level of consistency between the databases. For results depicting the

level of overlap for the other pathways refer to Table 5.3, Table 5.4 and Table 5.5.



Chapter 5. Pathway API — Evaluation 75

Ta
bl

e
5.

3:
Ta

bl
e

sh
ow

in
g

da
ta

ov
er

la
p

be
tw

ee
n

K
E

G
G

an
d

In
ge

nu
it

y.
T

he
fir

st
co

lu
m

n
sh

ow
s

th
e

na
m

es
of

th
e

di
ff

er
en

t
pa

th
w

ay
s

an
al

yz
ed

.S
ec

on
d

co
lu

m
n

sh
ow

s
th

e
nu

m
be

r
of

ge
ne

s
w

it
hi

n
ea

ch
pa

th
w

ay
ac

ro
ss

th
e

tw
o

da
ta

ba
se

s.
T

he
th

ir
d

co
lu

m
n

sh
ow

s
th

e
ge

ne
pa

ir
s

pr
es

en
t

w
it

hi
n

ea
ch

pa
th

w
ay

.
T

he
co

lu
m

n
on

ge
ne

ov
er

la
p

re
fe

rs
to

th
e

nu
m

be
r

of
ge

ne
s

ov
er

la
pp

in
g

be
tw

ee
n

K
E

G
G

an
d

In
ge

nu
it

y.
T

he
re

al
nu

m
be

rs
re

fe
r

to
th

e
nu

m
be

r
of

ov
er

la
pp

in
g

ge
ne

s
w

hi
le

th
e

pe
rc

en
ta

ge
fig

ur
e

in
br

ac
ke

ts
re

fe
r

to
th

e
pe

rc
en

ta
ge

ov
er

la
p.

T
he

la
st

co
lu

m
n

re
fe

rs
to

th
e

ge
ne

pa
ir

ov
er

la
p.

In
th

e
sa

m
e

m
an

ne
r,

th
e

re
al

nu
m

be
rs

re
fe

r
to

th
e

nu
m

be
r

of
ov

er
la

pp
in

g
ge

ne
pa

ir
s

w
hi

le
th

e
pe

rc
en

ta
ge

fig
ur

e
in

br
ac

ke
ts

re
fe

r
to

th
e

ge
ne

pa
ir

ov
er

la
p

pe
rc

en
ta

ge
.

K
E

G
G

x
In

ge
nu

it
y

Pa
th

w
ay

N
am

e
G

en
e

C
ou

nt
Pa

ir
C

ou
nt

G
en

e
%

O
ve

rl
ap

Pa
ir

%
O

ve
rl

ap
A

po
pt

os
is

Si
gn

al
lin

g
89

vs
16

9
15

1
vs

33
74

33
(3

7%
)

21
(1

4%
)

A
xo

na
lG

ui
da

nc
e

12
9

vs
21

3
30

8
vs

18
43

85
(6

6%
)

15
9(

52
%

)
C

al
ci

um
Si

gn
al

lin
g

17
9

vs
51

58
2

vs
20

2
18

(3
5%

)
0(

0%
)

C
el

lC
yc

le
-G

2M
11

9
vs

13
78

vs
18

11
(8

5%
)

11
(6

1%
)

C
el

lc
yc

le
11

9
vs

31
78

vs
59

26
(8

4%
)

6(
10

%
)

F
c

ep
si

lo
n

R
I

Si
gn

al
lin

g
78

vs
75

18
4

vs
22

5
61

(8
1%

)
10

8(
59

%
)

JA
K

/S
ta

t
Si

gn
al

lin
g

15
5

vs
14

4
86

8
vs

31
92

42
(2

9%
)

88
(1

0%
)

A
ct

in
C

yt
os

ke
le

to
n

Si
gn

al
lin

g
21

7
vs

21
3

67
2

vs
22

97
13

7(
64

%
)

23
0(

34
%

)
T

ce
ll

re
ce

pt
or

Si
gn

al
lin

g
94

vs
63

17
5

vs
13

3
41

(6
5%

)
39

(2
9%

)
T

G
F

-B
et

a
Si

gn
al

lin
g

87
vs

84
15

5
vs

11
3

12
(1

4%
)

5(
4%

)
V

E
G

F
Si

gn
al

lin
g

74
vs

69
24

0
vs

16
7

29
(4

2%
)

27
(1

6%
)

W
nt

Si
gn

al
lin

g
15

2
vs

76
77

8
vs

13
4

33
(4

3%
)

11
(8

%
)



Chapter 5. Pathway API — Evaluation 76

Ta
bl

e
5.

4:
Ta

bl
e

sh
ow

in
g

da
ta

ov
er

la
p

be
tw

ee
n

K
E

G
G

an
d

W
ik

i.
K

in
dl

y
re

fe
r

to
F

ig
ur

e
5.

3
fo

r
a

de
ta

ile
d

ex
pl

an
at

io
n

on
th

e
fo

rm
at

of
th

e
ta

bl
e.

K
E

G
G

x
W

ik
i

Pa
th

w
ay

N
am

e
G

en
e

C
ou

nt
Pa

ir
C

ou
nt

G
en

e
%

O
ve

rl
ap

Pa
ir

%
O

ve
rl

ap
A

po
pt

os
is

89
vs

82
15

1
vs

13
3

38
(4

6%
)

21
(1

6%
)

A
po

pt
os

is
M

od
ul

at
io

n
by

H
SP

70
89

vs
18

15
1

vs
33

14
(7

8%
)

5(
15

%
)

C
el

lc
yc

le
11

9
vs

91
78

vs
14

7
76

(8
4%

)
35

(4
5%

)
G

1
to

S
ce

ll
cy

cl
e

co
nt

ro
l

11
9

vs
67

78
vs

25
45

(6
7%

)
1(

4%
)

C
om

pl
em

en
t

an
d

co
ag

ul
at

io
n

ca
sc

ad
es

69
vs

65
69

vs
10

7
52

(8
0%

)
24

(3
5%

)
Fo

ca
lA

dh
es

io
n

20
3

vs
18

8
70

6
vs

28
8

15
4(

82
%

)
11

0(
38

%
)

In
su

lin
Si

gn
al

lin
g

13
8

vs
15

9
41

2
vs

25
5

66
(4

8%
)

13
(5

%
)

M
A

P
K

C
as

ca
de

26
9

vs
31

89
1

vs
55

23
(7

4%
)

24
(4

4%
)

N
ot

ch
Si

gn
al

lin
g

46
vs

46
90

vs
98

39
(8

5%
)

32
(3

6%
)

R
eg

ul
at

io
n

of
ac

ti
n

cy
to

sk
el

et
on

21
7

vs
15

1
67

2
vs

24
4

13
3(

88
%

)
11

3(
46

%
)

T
C

el
lR

ec
ep

to
r

Si
gn

al
lin

g
94

vs
13

5
17

5
vs

26
1

37
(3

9%
)

6(
3%

)
T

G
F

B
et

a
Si

gn
al

lin
g

87
vs

52
15

5
vs

80
23

(4
4%

)
6(

8%
)

T
ry

pt
op

ha
n

m
et

ab
ol

is
m

51
vs

94
23

3
vs

33
29

(5
7%

)
2(

6%
)

U
re

a
cy

cl
e

28
vs

66
69

vs
14

13
(4

6%
)

1(
7%

)
W

nt
Si

gn
al

lin
g

15
2

vs
61

77
8

vs
18

4
49

(8
0%

)
34

(1
8%

)



Chapter 5. Pathway API — Evaluation 77

Ta
bl

e
5.

5:
Ta

bl
e

sh
ow

in
g

da
ta

ov
er

la
p

be
tw

ee
n

In
ge

nu
it

y
an

d
W

ik
i.

K
in

dl
y

re
fe

r
to

F
ig

ur
e

5.
3

fo
r

a
de

ta
ile

d
ex

pl
an

at
io

n
on

th
e

fo
rm

at
of

th
e

ta
bl

e.
In

ge
nu

it
y

x
W

ik
i

Pa
th

w
ay

N
am

e
G

en
e

C
ou

nt
Pa

ir
C

ou
nt

G
en

e
%

O
ve

rl
ap

Pa
ir

%
O

ve
rl

ap
A

po
pt

os
is

16
9

vs
82

33
74

vs
13

3
26

(3
2%

)
15

(1
1%

)
C

al
ci

um
Si

gn
al

lin
g

51
vs

15
2

20
2

vs
11

1
14

(2
7%

)
0(

0%
)

C
el

lC
yc

le
13

vs
91

18
vs

14
7

7(
54

%
)

5(
28

%
)

G
1/

S
C

he
ck

po
in

t
R

eg
ul

at
io

n
31

vs
91

59
vs

14
7

24
(7

7%
)

10
(1

7%
)

IL
-4

Si
gn

al
lin

g
21

vs
62

21
vs

47
8(

38
%

)
1(

5%
)

IL
6

Si
gn

al
lin

g
67

vs
10

0
14

8
vs

12
1

21
(3

1%
)

4(
3%

)
In

su
lin

R
ec

ep
to

r
Si

gn
al

lin
g

66
vs

15
9

14
8

vs
25

5
40

(6
1%

)
12

(8
%

)
T

G
F

-B
et

a
Si

gn
al

lin
g

84
vs

52
11

3
vs

80
13

(2
5%

)
0(

0%
)

p3
8

M
A

P
K

Si
gn

al
lin

g
53

vs
34

88
vs

35
13

(3
8%

)
4(

11
%

)
T

ce
ll

re
ce

pt
or

Si
gn

al
lin

g
63

vs
13

5
13

3
vs

26
1

25
(4

0%
)

3(
2%

)
W

nt
Si

gn
al

lin
g

76
vs

61
13

4
vs

18
4

17
(2

8%
)

0(
0%

)



Chapter 5. Pathway API — Evaluation 78

5.2.2 Database Comprehensiveness

This section conducts an independent audit on the comprehensiveness of individual

pathway databases.

The pie charts in Figure 5.1 and Figure 5.2 shows the comprehensiveness of databases

(with respect to its gene and gene pairs). One can tell from the pie charts that the

amount of overlap is very low, depicting a low level of comprehensiveness for all three

biological databases analysed.

Figure 5.1: Pie charts depicting gene overlap proportions. The lighter shade refers to the
proportions of unique genes while the darker shade refers to proportions where there was an
overlap of genes. (Graphs generated with Google charts (Google, 2009))

Figure 5.2: Pie charts depicting gene pair overlap proportions. Similarly, the lighter shade
refers to the proportions of unique gene pairs while the darker shade refers to proportions
where there was an overlap of gene pairs. (Graphs generated with Google charts (Google,
2009))

We use a metric called “Pathway Comprehensive Score” to study database comprehen-

siveness. This metric first counts the total number of unique pathways present within

the three databases (Ingenuity, KEGG and Wikipathways). A score for each database

is next calculated by dividing the number of pathways a database hosts by the total
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number of unique pathways. A score of 0 indicates that the database hosts nil pathways

while a score of 1 indicates it hosts all the pathways.

KEGG achieved the highest score of 0.59. This was followed by Wikipathways (0.42)

and Ingenuity (0.13). This short study indicates that KEGG Pathways remains the most

comprehensive of all databases. This is illustrated by a Venn diagram in Figure 5.3.

Figure 5.3: Venn diagram depicting overlapping pathways across the three databases,
KEGG, Ingenuity and Wikipathways.

We match pathways across separate databases via the following technique: Given a

pathway X in database 1, we generate a list of pathways Y in database 2. This list Y is

ranked according to the length of the longest common substrings with pathway X. This
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list is next manually scanned to obtain the pathway which has the closest nomenclature

match to pathway X.

To validate this technique of matching pathways, we did the following: Given a

pathway X in source 1, we match it against the top three pathways in source 2 that

has largest gene overlap with pathway X. 94% of the time we obtained a pathway match

identical to the pathway we would have achieved if we had done by our technique.

In addition, for the remaining 6% of these pathways, we carry out the following

comparison: Suppose that P-Q are the pathway pairs found by our algorithm and P-

R are the pathways found by matching the genes. We found out that the number of

gene pair intersections is higher in the P-Q pathway pair compared to P-R pathway pair.

Hence we believe our name-based pathway matching is more likely to have correctly

matched the pathways.

5.3 Qualitative Evaluation

5.3.1 Database Consistency

Microarray algorithms produce different (subjective) results depending on the database

being used. This may cause further inconsistencies and confusions in analysis. This

is especially accentuated because the boundaries of signalling pathways are not that

clearly defined. Therefore scientifically, making the question of exactly which genes to

include in pathways is quite subjective.

To make databases consistent, our strategy is to first aggregate all similar pathways

from the different databases. This is followed by combining the gene and gene pair

information for each pathway.

This solves the problem where we have genes or gene relationships lacking from

certain pathways. Hence we can use pathway which is present across the different

repositories.
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5.3.1.1 Consistent data access and formats

Having obtained the data and having control over its data access and formats, we

can accommodate several standard methods of accessing the data. As mentioned, we

have written an API to provide quick access to the data online. However for serious

practitioners who would require huge amounts (> 10,000) of API data connections daily,

using the API for such purposes would be impractical. For such users, we would

recommend downloading our sql dump which contains the entire collection of data

available on our database. Doing so would allow the user to setup a database on his

own localhost and access the data using very fast sql queries instead.

5.3.1.2 Consistent Molecular Representation

Our representation of proteins, genes etc are a lot more consistent because we convert

all such molecular representations (eg genes, proteins, pathways) into individual genes,

and represent them by their respective gene IDs (obtained from NCBI).

5.4 Discussions

It is widely accepted that analysing microarray experiments with biological information

provides biological inferences of a greater detail. Examples of such analysis are

(Draghici et al., 2007; Efroni et al., 2007; Tian et al., 2005).

However, such techniques run into issues if the data source used is not consistent or

comprehensive. For example, using the same technique on a different database yields a

differing analysis result.

Faced with such an issue, the solution is to integrate biological information across

different data sources to obtain a more wholesome analysis. Yet the incompatibility of

the different data sources renders this option extremely challenging.

Furthermore, our investigations reveal low levels of consistency, comprehensiveness

and compatibility among three popular pathway databases (KEGG, Ingenuity and

Wikipathways).
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Our strategy of addressing this issue is to create an API (described in the previous

chapter) which gives researchers access to various pathway databases of their choice as

well as to an integrated database. This integrated database resolves all incompatibilities

because now we have one API and one data format. The integrated database is also

more comprehensive because it is the union of the data sources. Every gene/edge in

any of the three data sources is also in the integrated database. Furthermore, the

integrated database is equipped with a API to allow the user to conveniently identify

inconsistencies and to resolve them in accordance to his specific application needs.

To ensure fast responsiveness, API connections are made towards a central unified

database which keeps a cached copy of the records of the other databases. To ascertain

that the cached entries are always kept up to date, entries from the cache are flushed

periodically and automatically updated again from the reference databases.

There are many efforts on the aggregation of pathways data (like Reactome (Joshi-

Tope et al., 2005), PathCase (Elliott et al., 2008; Krishnamurthy et al., 2003) and

MappFinder (Doniger et al., 2003)). There are also many tools to explore, edit and

export biological pathways (such as GenMapp (Salomonis et al., 2007), BioCyc (Karp

et al., 2005), PathVisio (van Iersel et al., 2008), Cytoscape (Shannon et al., 2003)).

However manipulation of pathways in these earlier works still relies heavily on

human intervention with little provision for programming interfaces. Indeed projects

like Cytoscape and Pathcase have very sophisticated GUI visualisation tools to help

researchers manipulate pathways. Yet such visualisation tools are impractical when

one is required to analyse of thousands of genes across hundreds of pathways for each

microarray experiment. The nearest to a programming interface was the provision of a

AQI (Application Query Interface) (Elliott et al., 2008) where users can recall predefined

queries using a web interface. Yet the scope of such queries remains limited and

insufficient.
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One issue we have with most data aggregators is their lack of explanation on how

their data is kept updated. For instance, little mention is made on how the aggregated

data is updated from the various repositories. In fact this issue is acknowledged in

(Elliott et al., 2008). Here we set an expiry date for every data entry and once it expires,

automated scripts are fired off to extract data from the data sources and populate them

within our database cache.

Our final point deals with the aggregator’s inaction to develop integrated pathway

data from their diverse data sources. By standardising gene references and key features

within pathways, we have the ability to integrate similar pathways together. As a result

our integrated pathways are more comprehensive.

Contrasting to prior available methods, researchers can easily use our API to obtain

data for each pathway either from the integrated database or from a specific database

of their choice. This gives researchers a straightforward mechanism for incorporating

pathway information into their microarray analysis.

However, because we use only known biological information in the analysis, it might

suffer from “myopia” as additional new insights without supporting biological basis yet

would be left undiscovered.
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CHAPTER 6

Disease and Drug-Response
Pathway Identification —
Algorithm

Chapter Synopsis

Summary

Contemporary techniques for analysing biological information have two main deficien-

cies: one, they provide results that are not biologically descriptive and two, results

obtained from one dataset often do not translate easily across a similar but different

dataset. Here we demonstrate the different decision making steps taken to ensure that the

results obtained will provide proper biological analysis to the microarray experiments.

We first explain how we create the foundation to allow biologically descriptive results by

deciding on a proper level of granularity required within the biological pathways of the

unified database. Following which we explain how we arrange genes into their respective

pathway components to take advantage of the gene-gene relationships within pathways.

This is further substantiated with an explanation of statistical testing (which is required

to test for significant pathway components). Finally, these are strung together with a

detailed explanation and example of our algorithm.
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Conclusions

We introduced the concept of a biological “subnetwork” as a suitable degree of granularity

for providing biological descriptive results. This concept was chosen such that it could

provide detailed biological analysis (such as individual differential gene expression),

broad based information (such as the specific topological interactions of these genes

within the subnetworks) and even high-level functional information (such as the original

pathway of the subnetwork).

In addition, we have paid special attention in our algorithmic design (e.g. in the

manner of gene selection, subnetwork scoring, etc) to generate consistent results over

different microarray datasets. These algorithmic details are explained in this chapter

while the performance of it on actual microarray experiments is demonstrated in the next.

6.1 Introduction

As mentioned earlier, most contemporary algorithms (Liu et al., 2007; Pavlidis et al.,

2002; Subramanian et al., 2005) concentrate on finding individual genes or gene pairs

which are differentially expressed. We discussed that using such fine granularity

of information would provide the researchers with long lists of genes/gene lists thus

rendering them ineffective for making biological inferences. Recent advancements have

attempted to solve such issues by using gene sets or gene pathways.

GSEA (Subramanian et al., 2005) uses the strategy of using gene sets to detect entire

groups of genes acting differentially. The research group for GSEA (at Broad Institute)

manually curated their own biological data, placing the genes into individual sets

according to various parameters (eg chromosomal location, biological process, molecular

function, etc). These gene sets are given to the GSEA algorithm which detects the

activated gene sets in the microarray experiment. Because the gene sets are biological

correlated to one another, GSEA can immediately provide biological inferences based on

the functional gene sets.
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The other known solution (used by pathway express (PathwayExpress, 2009), ORA

(Khatri and Draghici, 2005) and FCS (Pavlidis et al., 2002)) is to use known biological

pathways. These pathways are entire groups of genes which are agreed to have a

relationship with one another via consortiums or domain experts. Hence this faces the

immediate issue of deciding which pathways are more accurate because the decision of

which genes should belong to a pathway is still very subjective (Green ML, 2006). We

expect this problem to accentuate as our knowledge of pathways and genes increase.

The main problem of using either gene sets or gene pathways lies in the biological

fact that not all the genes in a set / pathway are affected within a phenotype. Indeed it

is expected that perhaps one portion (say 5-10 genes) of a pathway are affected within a

disease phenotype and a strategy like using entire gene sets or gene pathways result

in such information being missed. In addition, although gene sets or pathways are

being used, these techniques continue to score entire gene sets or pathways via the

individual genes. Hence their technique disregards entirely the relationships between

the genes of the gene set and pathway (Sivachenko et al., 2007; Subramanian et al.,

2005).

Our solution to this is to identify gene regions that are differentially expressed using

connected components. We define the term “subnetwork” or “connected component” as “a

set of genes and relationships where all genes in the connected component are reachable

by all other genes in the (undirected) connected component. Reachability between genes

is established by the existence of an undirected path between the genes of the connected

component.” This is analogous to the definition of “connected components” in classical

graph theory (Cormen et al., 2001). In this thesis, we consider connected components as

a portion of a pathway that fits the above definition. Using connected components as the

level of granularity in analysing our microarray data, we are hence able to:

1. Give detailed information on genes which are differentially expressed.
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2. Provide general analysis and biological inferences on connected components which

are differentially expressed.

3. Directly focus into relevant portions of a pathway.

6.2 Choice of Datasets

Currently, there are two types of microarray experiments, namely spotted microarrays

(which were pioneered by (Eisen and Brown, 1999)) and oligonucleotide microarrays,

invented by (Chee et al., 1996).

The difference is mainly due to the difference in manufacturing of the probes. The

probes of spotted microarrays (oligonucleotides, cDNA, PCR fragments) are synthesised

prior to deposition on the array surface and are then "spotted" onto glass surface.

Probes of oligonucleotide microarrays are short sequences designed to match sequences

of known open reading frames. These sequences are designed to represent single genes

or family of genes.

Numerous studies have been conducted to compare the variation of results across

different platforms and results have been shown to be largely inconclusive. Some of

these studies have shown that the difference in variation is significant (Kuo et al., 2002;

Rogojina et al., 2003; Tan et al., 2003) while others have argued that such differences

are acceptable (Ishii et al., 2000; Yuen et al., 2002).

This phenomena is known as “batch effect” (Lander, 1999) which is often experienced

when experiments are carried out independently (and especially across different plat-

forms). Batch effects can be considered as non-biological experimental variation often

experienced when dealing with multiple batches or platforms of microarray experiments

(Rhodes et al., 2004). This makes analysing datasets across batches difficult. Indeed

attempts have been made to create algorithms to reduce the batch effect by using eigen

vectors or certain forms of mathematical models (Alter et al., 2000; Benito et al., 2004;

Johnson et al., 2007). However require a large number (> 25) of patients within a
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phenotype or these mathematical models fail when some underlying distribution for the

data is not met.

For the datasets we have chosen, most of them are from oligonucleotide Affymetrix

platforms. However we have also chosen experiments where one dataset is from the

oligonucleotide platform while the other is a spotted cDNA microarray. We show that we

can obtain consistent results even across different platforms and types of microarrays.

6.3 Creation of Connected Components from Microarray Data

We create connected components for each dataset by first creating a list of genes that are

significantly expressed and forming connected components from this gene list based on

prior biological knowledge from the integrated database as described in Chapter 4 and

Chapter 5.

6.3.1 Derivation of highly expressed set of genes

We derive our set of highly expressed genes of a phenotype A by first ranking the gene

expression values of each patient of phenotype A. The top n% of genes from each patient

is next selected. Finally we select genes that appear in the top n% of genes for at least

m% percent of the patients of phenotype A. This forms the final list GL of genes which

are considered to be highly expressed within phenotype A.

This technique removes the need to carry out data normalisation because we are

directly ranking genes of each patient according to their expression levels.

Some of the other techniques such as ORA and FCS uses a fixed threshold to obtain

genes which are highly expressed. For instance, we could set the threshold to be ”Mean

+ Std Dev” which implies that all genes with an expression value higher than ”Mean

+ Std Dev” would be considered as significant. However we abandoned this approach

because it introduces additional points of failure. There are multiple techniques put

forth to the simple step of array normalisation (Bilban et al., 2002; Quackenbush, 2002;

Yang et al., 2002) and the techniques to be used might be very subjective. In addition,
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these techniques might yield very different results especially if the experiments are from

different batches and are especially apparent on different platforms.

Hence we put forth our approach of ranking genes and choosing the top n% of genes

common to m% of the patients because this technique is general enough to be applied

in various scenarios. Our motivation for such a technique is to alleviate batch issues by

concentrating on the genes which are expressed relatively higher in the phenotype. The

other alternatives include, for example, carrying out array normalisation, adjusting for

batch effects followed by using the threshold “Mean + Std Dev”. However, we have found

in our experiments that our simpler technique already works well enough.

6.3.2 Derivation of connected components

From this list of top genes, we refer to the biological data repository created in Chapter

4. Using the information within that database, we segregate that list of top genes into

their respective pathways. This is a list of genes considered highly expressed arranged

according to their pathways. We represent genes from the ith pathway as GLi.

The next step involves finding the relationships within the genes of each pathway.

Hence for the ith pathway, we pair up each and every gene within GLi and check with the

data repository if such a gene-gene connection exists within the pathway. (We point out

that we are making a simplification here. Instead of looking at relationships between

genes, example gene g1 activates gene g2, we focus instead only on connections. This

means that regardless of the activating or inhibiting relationships between two genes

within a pathway, we only represent them as gene g1 is connected to gene g2. So we

lose the directional aspect of relationships. (E.g., we will be unable to determine if the

activating relationship between gene g1 and gene g2 is initiated by gene g1 or gene g2.)

Again, for the ith pathway, this gives us a list of gene pairs represented as GPi.

As a final step to obtain the connected components, we first represent each gene within

GLi as a set (with only one member gene). Next we iterate through each gene pair within

GPi. For each gene pair (gene g1 and gene g2), we test if the set containing gene g1 is



Chapter 6. Disease and Drug-Response Pathway Identification — Algorithm 90

equal to the set containing gene g2. If they are not equal, the sets are merged. Else we

move on to the next gene pair.

This algorithm is made more lucid with the pseudo code and example as shown below:

connected_components(GL)

for each gene g within GL

make-set(g)

end for

for each edge (g1, g2) within GL

if set(g1) != set(g2)

merge(g1, g2)

end if

end for

This small code takes in the gene set GLi as input. The first loop creates a set from

each gene within the list. The second loop goes through all the individual gene pairs and

merges the gene sets from each gene within the gene pair if they are not equal. Note

that the function set(g1) means a retrieval of the gene set containing the gene g1.

An example, taken from (Cormen et al., 2001) can be seen in Table 6.1. Here we

begin with 10 genes and 7 relationships within the pathway. The first column gives

the different relationships and the first row gives the initial sets, where each set only

contains just a single individual gene. Each new row gives an iteration of the second for

loop in the pseudo code. For instance, in the first iteration, the pair (b, d) is processed.

This merges the sets which contains the gene b and the gene d. Hence the combined set

{b, d}. Take note how the connected components grow during the iterations, giving us

4 different connected components ({a, b, c, d}, {e, f, g}, {h, i} and {j}) at the end of the

routine.
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Table 6.1: Example depicting how connected components are generated. The first row refers
to the starting sets where each gene is in its individual set. The first column refers to the
7 relationships. Each new row shows the processing of the gene sets according to the gene
relationship of the first column. For instance, in the first relationship (b, d), the gene sets b
and d are merged to form the gene set b, d.

{a} {b} {c} {d} {e} {f} {g} {h} {i} {j}
(b,d) {a} {b,d} {c} {e} {f} {g} {h} {i} {j}
(e,g) {a} {b,d} {c} {e,g} {f} {h} {i} {j}
(a,c) {a,c} {b,d} {e,g} {f} {h} {i} {j}
(h,i) {a,c} {b,d} {e,g} {f} {h,i} {j}
(a,b) {a,b,c,d} {e,g} {f} {h,i} {j}
(e,f) {a,b,c,d} {e,f,g} {h,i} {j}
(b,c) {a,b,c,d} {e,f,g} {h,i} {j}

Figure 6.1 shows clearly in a pictorial form how we obtain the connected components

from the microarray experiment and prior biological information.

After obtaining the connected components, we score them with a metric (introduced

later in this chapter). The connected component is scored across both phenotypes

of the experiment. Hence each connected component ends up with two scores, one

for phenotype A and the other for phenotype B. Details of our scoring technique is

elaborated later in Section 6.6.

Our aim then is to devise a statistical test to find components whose score distribution

differs consistently across phenotypes of a disease. The next section provides more

information on how we devise the statistical tests to reject / not reject this hypothesis.
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Figure 6.1: Image depicting how we split the genes GL up to their respective pathways,
match them into e gene pairs and finally connected into their respective cc subnetworks.
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6.4 Statistical Background

Before analysing the different types of hypothesis testing that are available, we first go

through some of the basic technical details of hypothesis testing.

6.4.1 Hypothesis Testing

A hypothesis is a proposed explanation for an observable phenomenon. A null hypothesis

is a specific baseline statement to be tested and it usually implies a state of ”no

difference”. Here, the null hypothesis would probably take the form: that there is no

difference between the means of the expression values across the two phenotype groups.

Hypothesis testing is a scientific process to examine (on the observed phenomenon)

if a hypothesis is plausible or not. In general, hypothesis testing follows the next five

steps.

1. State the null hypothesis

2. Determine the level of significance and whether it is a one-tailed or two-tailed test.

This gives us the thresholds required to reject the null hypothesis.

3. Compute the test statistic and p-value

4. Reject or do not reject the null hypothesis based on the criteria (test size,

significance level, tail test) and the calculated test statistic or p-value.

5. Draw conclusions from rejection / non rejection of the null hypothesis

The classical approach to hypothesis testing computes a test statistic or p value and

compares it with a critical value or significance value. If the test value goes above the

critical value or the p value goes below the significance level, the null hypothesis is

rejected. When rejecting the null hypothesis, two errors may emerge. One where a null

hypothesis is rejected when it is true (Type I errors) and two where we failed to reject

the null hypothesis when it is not true (Type II errors). One of the manners used in

reducing Type I errors is in the proper selection of the level of significance. A level of
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significance at 0.05 means that we are comfortable with the risk of having five incorrect

predictions for every 100 trials. Hence a level of significance at 0.1 would mean that the

test is rather lenient, more apt to produce Type I errors and hence less convincing. A

strict level of significance of 0.01 imply a stricter and more convincing test.

6.4.2 Types of Hypothesis Testing

With this understanding the concepts of hypothesis testing, we analysed the different

techniques available that can be used for hypothesis testing between our experimental

phenotypes. Such means of testing are expounded as below. In addition to explaining

the technical details of each technique, we explain how this technique can be applied in

our context.

6.4.2.1 t-test

t-tests are employed to test the significance of the difference between the means of

two normally distributed populations. If the means of the population differ by a large

amount, it would have a large t-value and normally a low p-value. If the p-value is

sufficiently low, we reject the null hypothesis that the means are equal and conclude that

the means are significantly different. Such tests are typically referred to as "unpaired" or

"independent samples" t-tests, because the two samples being compared are independent

from one another. An example of such an independent test occurs when we are trying

to determine if diabetic subjects are more likely to be obese then in normal non-diabetic

subjects. Conversely, an example of a dependent test occurs when we measure the size of

a patient’s tumour before and after a treatment. If the treatment is effective, we would

expect the tumour to have shrunk after it. Such a statistical test is often called a paired

dependent t-test. Here we are concerned with the former.

In our analysis, we let the statistical null hypothesis be the case where the distribu-

tion of scores for the connected components are similar across the two phenotypes. We

assume that the patients from both phenotypes have the same variance. The number of
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degrees of freedom for either group is the total sample size minus two. This would be

used for significance testing. Hence the formula of such a t-test would be:

t =
X̄1 − X̄2

SX1X2

√
1

n1
+ 1

n2

(6.1)

where

SX1X2 =

√
(n1 − 1)S2

X1
+ (n2 − 1)S2

X2

n1 + n2 − 2
(6.2)

SX1X2 is defined as the estimator of the common standard deviation of the two

samples, n1 is the number of samples in the first phenotype and X̄1 is the mean of

the values in the patients of the first phenotype. n2 is correspondingly the number of

samples in the second phenotype and X̄2 is the mean of the values in the patients of the

second phenotype.

Application

For instance, we take the DMD dataset and compare between the patients suffering from

DMD with normal subjects. With a score assigned for each component to each patient.

We create an array of component scores for the DMD patients as well as a corresponding

array of component scores for the normal subjects. We simple apply 6.1 to the two arrays

and calculate the t-score for component. This is repeated for the rest of the connected

components.

6.4.2.2 chi-square

In this section we describe the technical details of Pearson’s chi-square test. This chi-

square test will test the frequency distribution with that of a theoretical distribution

to determine if the distributions between observed frequency distribution differ from

that of the theoretical distribution. A key requirement is the mutual exclusivity of the

individual events. For instance, if a patient appears in the BCR leukemia subtype, that

same patient cannot appear in the MLL leukemia subtype.
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The value of the test statistic is as follows:

χ2 =
n∑

i

(Oi − Ei)2

Ei
(6.3)

Where n is the number of possible outcomes and the degrees of freedom is equal to

the number of possible outcomes minus 1. However the chi-square test makes a few

assumptions. Firstly, a sample with a sufficiently large size is assumed (to reduce the

probability of committing a Type II error). It is essential that each observation cell

within the contingency table has a size of five or more else the approximation to the

chi-square distribution will not be valid.

Application

Using the DMD dataset, we compare between the patients suffering from DMD with

normal subjects. The normal patients are considered as the expected dataset while the

DMD patients are considered as the observed dataset. A score for each component is

assigned to each patient. We pick a threshold for the score to split the patients into the

2x2 contingency table. An example on how this is done is in Figure 6.2. The threshold

chosen here was the value 5. We have for Phenotype I 4 patients with a component

score greater or equal than 5, 3 patients less than 5. For Phenotype II all patients were

below the threshold of 5. From the creation of this contingency table, we were able to

determine the p-value for each component and determine the components reject the null

hypothesis. Such a rejection would mean that the distribution for that component is

different between the DMD patients and the normal subjects. This is repeated for the

rest of the connected components.

When the chi-square test was deployed unto our experiment, it was able to differ-

entiate the components which behaved differently across the two phenotypes. There

was however an extremely serious issue, which was the size of values within the 2x2

contingency table. Most of the time, the values fell below < 5. Although we understand

that we could have alleviated this problem by using the Yate’s correction, we are aware
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Figure 6.2: Illustration of how we create the 2x2 contingency table. The top table refers
to the scores obtained for the patients. P1, P2, .. P8 refers to the identities of individual
patients. I and II refers to the phenotype. By counting the number of patients in the top
table, with score ≤ 5 for phenotype I, we obtain he figure of three in the top left cell of
the contingency table. The reminder of the contingency table can be calculated in a similar
fashion.

of the fact that Yates’ correction tends to overcorrect resulting in a more conservative

result, failing to reject the null hypothesis when it should.

6.4.2.3 One-way ANOVA

The one-way ANOVA is a statistical test of testing if the means of several groups are

all equal. Therefore, it can be considered to be a generalisation of the two-sample t-

test for more than two independent groups. The motivation for using the ANOVA can

be best illustrated with a simple example. For instance, we are testing the response of

three different subtypes of ALL Leukemia, BCR, MLL and E2A. On the surface, one of

the ways to determine if one subtype differs from the other subtype is by performing

a separate t-test between each of the possible pairs of subtypes. For instance, between

BCR and MLL, MLL and E2A and lastly BCR and E2A. Such a strategy is not feasible

because if t-tests are performed on multiple pairs of means, the probability that one

phenotype is classified as "significant" at the 0.05, is substantially greater than 0.05.

Hence the ANOVA was created to address such complications.

ANOVA uses a metric known as the sum of squares (SST) which is given by the

formula below:

SST =
r∑

i=1

c∑

j=1

(Xij − ¯̄X)2 (6.4)

Where r is the number of rows in the table, c the number of columns and ¯̄X the grand

mean of the entire table.
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The next metric is known as the Treatment Sum of Squares, given by:

SSTR =
c∑

j=1

rj(X̄j − ¯̄X)2 (6.5)

Where rj is the number of patients in the jth phenotype and X̄j is the mean of the jth

phenotype. (An example illustrating the calculation of SST and SSTR can be found in

Table 6.2 and Table 6.3.)

Table 6.2: Sample figures to illustrate the Anova algorithm. The figures refers to the
microarray expression values for the different leukemia subtypes, BCR, MLL and E2A for
a single gene.

BCR MLL E2A
16 20 18
15 19 19
17 21 18
15 16 23
20 18 18

Table 6.3: Sample figures illustrating the calculation of SST and SSTR. The raw expression
values are taken from Table 6.2 and the formulae to calculate the values referred from
Equation 6.4 and Equation 6.5.

Metric BCR MLL E2A Total
Mean 16.6 18.8 19.2 18.2
SST_j 17.2 14.8 18.8 70.4
SSTR_j 12.8 1.8 5.0

Lastly, the sum of squares is given by:

SSE =
r∑

i=1

c∑

j=1

(Xij − X̄j)2 (6.6)

Finally we obtain two variance estimates called the MSTR and the MSE. These are

provided in Equation 6.7 and Equation 6.8 respectively. MSTR measures the degree of

the variance between the different phenotypes BCR, MLL and E2A while MSE reflects

the degree of variance of the patients within the same phenotype. Understanding this,

we would expect that if MSTR is larger than MSE, we would be more liable to reject

the null hypothesis. Conversely if MSE is larger than that of MSTR, we would be liable

not to reject the null hypothesis.
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MSTR =
SSTR

c− 1
(6.7)

MSE =
SSE

N − c
(6.8)

where c refers to the number of phenotypes in the experiment and N refers to the total

number of observations. The F score is simply taken to be the division between MSTR

and MSE.

F =
MSTR

MSE
(6.9)

Application

As mentioned above, the ANOVA method is widely used to determine if the means

of various groups of phenotypes are equal or not. In the experiments conducted

in this thesis, we only compared between two phenotypes. Hence when ANOVA is

executed on just two phenotypes, it effectively reduces to the t-test (ANOVA is merely a

generalisation of the t-test to compare the means between more than two phenotypes)

Therefore there is no difference between using the t-test or ANOVA here. However

should we decide to include more phenotypes into our experiments at a future date,

using the ANOVA test to find test the significance of the differences of means between

> 2 phenotypes would be an extremely viable option.

The remaining two techniques that follow are, strictly speaking, non statistical tests.

However, because these techniques are capable of measuring the response differences

between the two phenotypes, they are considered as potential candidates for testing the

difference in scores for the connected components between the phenotypes.
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6.4.2.4 Entropy

The definition for entropy used is similar to that used by Shannon in information theory.

It is the measure of the uncertainty associated within a variable. For instance, a fair coin

has an entropy of 1 because it is uncertain if the outcome is going to be heads or tails.

Conversely in tossing a biased coin which only turns up heads, it has an entropy rate of

0 since every toss of the coin is predictably heads. The entropy of can be calculated as:

H(X) = −
n∑

i=1

p(xi)log2p(xi) (6.10)

Application

In our context, it is the measure of uncertainty associated with the score of a connected

component has in both phenotypes of the experiment. In the same manner as the chi-

square test, we first split the patients into a 2x2 contingency table. The probability

values were calculated as in Figure 6.3 for each entry of the contingency table (column

wise, according to each phenotype). We chose the option of calculating the entropy value

for each component for each phenotype. The Table 6.4 below how the entropy values

change when the data is in extremes.

Although we are able to determine if the scores are skewed within the phenotypes, we

have no direct way of finding out how the scores in the phenotypes are skewed. Hence

we are unable to differentiate the following two scenarios:

1. Scores in phenotype I are skewed high and the scores in phenotype II are skewed

low (and vice versa)

2. Both the scores in phenotype I and phenotype II are skewed high (or both of them

are skewed low)

The entropy scores for both phenotypes in both scenarios will be low. However the

first scenario is desirable (because it shows a difference in the distribution of scores

between the phenotypes) while the second is not (because they would have the same
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score distribution). Therefore because of this inability to distinguish between these two

important scenarios, this technique for testing may not be very applicable.

Figure 6.3: Illustration of how we create the probability values column wise from the 2x2
contingency table. The top two tables are reproduced from Figure 6.2.

Table 6.4: Table depicting the behaviour of entropy values according to the behaviour of the
phenotype values. For instance, when the values of Phenotype I and Phenotype 2 are skewed,
both their entropy values will be high.

Phenotype 1 Phenotype 2 Entropy 1 Entropy 2
Random Random High High
Random Skewed High Low
Skewed Random Low High
Skewed Skewed Low Low
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6.4.2.5 Gini Coefficient

The gini coefficient is a measure of inequality in a sample group. It is often used in

economics to measure the difference in equality among different income groups. It can

be obtained by dividing the difference between every possible pair of individual – the

”relative mean difference” – by the mean size. With µ defined as the mean size, the gini

coefficient can be calculated by using the formula in Equation 6.11.

G =

∑n
i=1

∑n
j=1 |xi − xj |
2n2µ

(6.11)

The lower the coefficient is, the more equal the distribution is. When the coefficient

is 0, it would mean that there is perfect equality and everyone receives the same

percentage of the total income. When the coefficient is 1, there is perfect inequality

and a single person gets 100% of the income and the remaining (infinite) population

receive none.

Application

In our context, we use the scores obtained in the components as the income figure. Hence

we take the relative mean difference between the component scores to depict the gini

coefficient. Similar to our metric using entropy, we wish to find scenarios where the

component scores are as biased as possible. Meaning that the scores for the phenotype

I are high and the scores the phenotype II are low, and vice versa. Unfortunately this

metric suffers from the same limitations as using the entropy as a metric (see Table 6.5).

Table 6.5: Table depicting the behaviour of gini coefficient values according to the behaviour
of the phenotype values. For instance, when the values of Phenotype I and Phenotype 2 are
uniform, both their entropy values will be low.

Phenotype 1 Phenotype 2 Gini Coeff 1 Gini Coeff 2
Uniform Uniform Low Low
Uniform Skewed Low High
Skewed Uniform High Low
Skewed Skewed High High
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In a parallel fashion, the gini index is unable to differentiate the scenarios as in

Section 6.4.2.4, where the scores for both phenotypes are skewed high (or skewed low)

between the scenario where the scores of phenotype is skewed high, the scores of other

phenotype is skewed low. In this case, the gini coefficient gives a high gini coefficient in

both phenotypes for both scenarios, and there is no direct way of segregating instances

of one scenario from the other.

6.4.2.6 Final selection of hypothesis test: t-test

To reiterate the objective that the test is supposed to serve, it’s main purpose is to easily

select components which gives unfair distribution scores to different phenotypes. If such

components are found, it would mean that the component score is skewed towards some

particular phenotype within the disease and not the other phenotype. The three key

scenarios where this occurs is when:

1. Scores in phenotype I are skewed high and the scores in phenotype II are skewed

low (and vice versa)

2. Scores in phenotype I are skewed high and the scores in phenotype II are uniform

(and vice versa)

3. Scores in phenotype I are skewed low and the scores in phenotype II are uniform

(and vice versa)

Naturally components which exhibit the first characteristic should be given a high

significance value rather than components exhibiting the second and the third scenario.

Given the above criteria, only the t-test, chi-square and ANOVA fulfil them. Both the

entropy and gini coefficient fail as they are unable to sieve out components that fall

under the first criteria. Hence we are left with only the t-test, chi-square and ANOVA.

However, some of the parameters required for the chi-square test are below the required

threshold. Lastly, the metrics ANOVA and t-test are both suitable candidates for the

hypothesis test, fulfilling all three criteria stated. (Indeed ANOVA is a generalization of
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the t-test when applied to more than two variables.) To make our algorithm as general

as possible, it would be best to use the ANOVA as the hypothesis testing method of

choice. However as all our experiments in this thesis only have two phenotypes, both

the ANOVA and t-test produce the same results. Hence, for simplicity, we have used the

t-test for hypothesis testing in this thesis.

6.4.3 Calculation of p-value

The previous section gives an explanation of hypothesis testing and examines the

different types of hypothesis tests that can be used in our experiment. The merits of

each type of test are implemented and we analysed how suitable these hypothesis tests

are. Based on this analysis, we conclude that the t-test is the most suitable choice as

it could meet our requirements of finding components that gave different distributive

scores across the phenotypes.

We form the component scores of both phenotypes, we obtain a t value (based on the

formula for t-test) commonly known as a t-score. This t-score is required to be converted

to a p-value to decide if the component should be significant or not. If its p-value is below

a certain threshold (say 0.05), we would reject the null hypothesis that the mean of the

phenotypes are statistical similar to one another. This means that we have a 5% chance

that component gives a statistically different score between the two phenotypes. There

are two main techniques of obtaining the p-value from the t-score, one by statistical

distribution tables and the other from permuting the empirical data. We describe both

techniques briefly below.

6.4.3.1 Usage of Statistical Tables

In probability and statistics, the t-distribution statistical tables is a probability distri-

bution that is used when estimating the p-value based on the t-score and its sample size

(degrees of freedom). Generally it is bell-shaped, flatter for smaller sample sizes. Hence

getting the p-value from statistical tables involves the straightforward way of reading
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it from a table with the t-score and its corresponding degrees of freedom. The crucial

assumption made here is that getting the p-value from the statistical table assumes

that population follows a normal distribution.

6.4.3.2 Permutation Analysis

The usage of t-test tables requires that the distribution follows a normal distribution.

However if such an assumption is not certain, the other technique of creating the

distribution is by permuting the labels randomly from the experiments and creating

a distribution through such randomisations. This technique is known as permutation

analysis.

Specifically, for each dataset, we permute the phenotype labels, create a new set

of connected components and recompute the scores of this new set of connected

components. This process of permuting the phenotype labels, creating connected

components and lastly recomputing of the scores of the connected components is

repeated for n times. The set of all the randomly generated scores for the connected

components forms the null distribution for dataset. The empirical p-value for each

component can then be calculated relative to this null distribution. More importantly,

the permutation of class labels preserves gene-gene correlations and thus provides

a more biologically reasonable assessment of significance than would be obtained by

permuting genes (Subramanian et al., 2005).

6.4.3.3 Final Selection of Distribution for p-value Calculation: Permutation

Test

Due to the fact that we have no manner of determining if the scores from the connected

components follow a normal distribution, taking the p-values from statistical tables may

result unnecessarily in both Type I and Type II errors. Hence we use the randomisation

process to produce the distribution for each dataset. Using this distribution, we

calculate the p-values for each dataset and obtain the components which are deemed
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as significant. We render components significant if their empirical p-values are less

than 0.05.

6.4.4 Calculation of the p-value from Randomisation Test

From the distributions obtained from the randomisation processes, we have two methods

of calculating the p-value. From the previous section, we have pointed out that during

the randomisation process we randomise the phenotype labels and create randomised

connected components. For each such randomly generated connected component, they

have a corresponding t-score as well as their component size. Hence we have two distinct

distributions. The first is the random distribution of the sizes of such components. The

second is the random distribution of the t-scores of such components. We can either

user both distributions to create our p-value or just the latter distribution to create the

p-value.

6.4.5 Significance of subnetworks

We explain here how the p-value is generated from the permutation tests. There

are two ways to generate this p-value, from (1) the combined distribution of t-scores

and component sizes of the subnetworks or (2) the distribution of the t-scores of the

subnetworks. Both techniques are explained briefly below.

6.4.5.1 Usage of component sizes and t-scores

As mentioned above, one of the methods of obtaining the score from the permutation

process is via both the randomly generated component sizes and their t-scores. Permut-

ing the phenotype labels of the microarray data, and repeating this permutation for n

iterations gives us three distributions: the distribution of the size of the subnetworks

produced using the randomised datasets (Figure 6.4); the distribution of the score of

the subnetworks produced using the randomised datasets (Figure 6.5); and finally a

combined histogram distribution of the size and score of the subnetworks produced using

the randomised datasets (Figure 6.6).



Chapter 6. Disease and Drug-Response Pathway Identification — Algorithm 107

Figure 6.5 gives the distribution of the scores of the components. The x-axis refers

to the score obtained by the randomly generated components and the y-axis refers

to the percentage of components who has that score. Hence in that figure, we have

approximately 13% of the components with a score of 1, 5% of components with a score

of 2, etc. Figure 6.4 shows the size of the randomly generated components. Here we

find that we have more than 45% of the components with a size of 2 genes, 20% with a

size of 3 genes, etc. The last figure, Figure 6.6 somewhat shows a histogram of these

two distributions. The x-axis is the random component score while the y-axis gives

the random component sizes. The z-axis gives the empirical p-value associated with

such a component score and size. We calculate this p-value by dividing the number

of components with at least size s1 and score s2 by the total number of components

generated by the permutation process.

We can thus find the set of significant subnetworks by calculating the empirical

probability of each subnetwork. Specifically for each subnetwork of size s1 and score

s2, we find (from the histogram) the empirical probability of a subnetwork of at least

s1 genes with score of at least s2 randomly occurring. As an example, Figure 6.4,

Figure 6.5 and Figure 6.6 shows the distribution for dataset on childhood ALL subtype

identification. The blue portion in Figure 6.6 depicts subnetworks whose p-value is below

that of 0.05. This figure clearly shows that the subnetworks which we select (size ≥ 6

genes and score ≥ 2.0) have a p-value small enough ( 0.05) to render such subnetworks

significant.

6.4.5.2 Usage of t-scores

The other technique of obtaining the p-value is to use the scores of the components, based

on the distribution shown in Figure 6.5. Specifically, this means that scores which rank

in the top 5% (with respect to the random distribution) are considered as significant.
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Figure 6.4: Size (number of genes) distribution of the randomly generated subnetworks. The
x-axis refers to the number of genes present within each subnetwork. The y-axis refers to the
percentage of randomly generated subnetworks with that corresponding subnetwork size.

Figure 6.5: Score distribution of the randomly generated subnetworks. The x-axis refers
to the components scores of the randomly generated components. The y-axis refers to the
percentage of randomly generated subnetworks having that component score.

6.4.5.3 Final selection of technique for p-value calculation: Usage of t-scores

After implementing both techniques, we realised that when both component scores and

component sizes are used, components that are large in size but with very low scores

would be deemed as significant. Because of the low score, we realised that they do not
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Figure 6.6: Three dimensional histogram of the size and score distribution of the randomly
generated subnetworks. Note that the portion shaded in blue are the subnetworks rendered
significant.

give good segregation results across the phenotypes and are deemed significant largely

because of their huge size. In contrast, when we used the t-scores to calculate the p-

values, the components deemed significant could obtain better segregation across the

two phenotypes.

6.5 Detailed Approach

This section documents the individual steps of our technique. We first hypothesise that

specific biological processes within pathways are relevant to specific diseases. Thus

our approach concentrates on identifying these biological processes that we termed

“subnetworks”. These subnetworks should be largely the same across independent

datasets of the same disease. Because the probability of such a subnetwork of highly

expressed genes randomly occurring is sufficiently low, we are able to conclude that

these subnetworks have a strong biological relevance with respect to the disease.

Furthermore, such a subnetwork provides intricate information on the interplay and

relationship between the genes, which is advantageous in guiding subsequent research.
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This technique also removes sporadic genes that appear solitary within a biological

pathway (because of their higher possibility of being a false positive).

Only two types of gene-gene relationships are considered: inhibition and activation.

In the example in Figure 6.7, we see the genes ATM, CHK1, CHK2 and MDM2 with the

relationships: ATM activating CHK1, CHK2 and MDM2 inhibiting p53. Thus we define

the term “relationship” between a pair of genes X and Y as a situation where either X

“activates” Y or X “inhibits” Y.

Figure 6.7: Example of the two gene-gene relationships. Left: Type 1 relationship where
gene ATM activates both genes Chk1 and Chk2. Right: Type 2 relationship where gene
MDM2 inhibits gene p53. (Image reproduced from (Soh et al., 2007))

Because of the fine granularity of analysis, the pathway repository must allow

us to easily segregate the original microarray data into its relevant pathways, gene

relationships and subnetworks. Due to the large amount of data, the pathway repository

must also facilitate the development of automated analysis workflows. The repository

therefore is required to have the following characteristics:

• Gene annotations have to be consistent with that in microarray experiments.

• Individual gene relationships within pathways have to be provided.

• The database must have a programmatic interface to access the data.
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However, this set of stringent criteria eliminates contemporary pathway databases

such as Ingenuity (Ingenuity, 1998), BioPax (Kotecha et al., 2008), and GenMapp

(Dahlquist et al., 2002), and we are left with KEGG (Kanehisa and Goto, 2000). However,

KEGG has a number of limitations. Firstly, its collection of pathways is not sufficiently

comprehensive (Green ML, 2006). For example, our analysis in previous sections showed

that 78.8% of pathways in Ingenuity and 64.4% of pathways in Wikipathways are not

contained in KEGG. Secondly, KEGG still uses an old-fashioned SOAP/XML interface.

So we developed PathwayAPI (PathwayAPI, 2009) which offers the combined pathway

information of KEGG, Ingenuity, and Wikipathways along with a modern JSON-based

application programming interface.

Our technique (to be described later) is applied on the disease types listed below with

two different datasets analysed independently for each disease type. The selection of the

two datasets for each disease is made because they were used to compare gene selection

methods in earlier papers (Zhang et al., 2009). In addition, the two datasets for each

disease type are from different platforms, thus providing a more stringent test as they

make it harder for the gene selection algorithms to consistently select the same genes

independently from the two datasets. The disease types of interest include:

• Leukemia: Comparison between leukemia subtypes ALL and AML. Golub (Golub

et al., 1999) uses the Affymetrix HU6800 GeneChip with 47 ALL and 25 AML

patients. Armstrong (Armstrong et al., 2002) uses the Affymetrix HG-U95Av2

GeneChip with 24 ALL patients and 24 AML patients.

• Childhood Acute Lymphoblastic Leukemia (ALL) Subtype: Comparison between

two subtypes of childhood ALL leukemia, E2A-PBX1 and BCR-ABL. Mary (Ross

et al., 2004) uses the Affymetrix HG-U95Av2 GeneChip with 15 BCR-ABL patients

and 27 E2A-PBX1 patients. Yeoh (Yeoh et al., 2002) uses the U133A GeneChip with

15 BCR-ABL patients and 18 E2A-PBX1 patients.
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• Duchenne Muscular Dystrophy (DMD): Comparison between patients suffering

from DMD and normal patients. Haslett (Haslett et al., 2002) uses the Affymetrix

HG-U95Av2 GeneChip while Pescatori (Pescatori et al., 2007) uses HG-U133A

GeneChip. Haslett contains 24 samples from 12 DMD patients and 12 unaffected

controls and Pescatori consists of 36 samples from 22 DMD patients and 14

controls.

• Lung Cancer (Squamous): Comparison between patients suffering from squamous

cell lung carcinomas and normal patients. For lung cancer, the cDNA microarray

data consisted of 13 samples with squamous cell lung carcinomas and five normal

lung specimens (Garber et al., 2001), while the data by Affymetrix human U95A

oligonucleotide arrays consist of 21 squamous cell lung carcinomas and 17 normal

lung specimens (Bhattacharjee et al., 2001).

6.6 Methods

Overview Suppose that the phenotype investigated on is d and the remaining pheno-

types are simply classified as ¬d. We first extract genes which are highly expressed

within this phenotype d from the microarray experiment. This set of genes is next

segregated into their respective subnetworks using apriori biological information from

the pathway repository. This gives us a list of subnetworks cc (whose genes are highly

expressed) within d. A score (depending on the size of the subnetwork and its consistency

among the patients) is next calculated and assigned to each subnetwork. Finally we

estimate the p-value of every single subnetwork within the list and keep those which

are significant. This is elaborated in the following steps:

Step 1: Subnetwork Extraction We create a ranked gene list for each patient

within a phenotype according to the gene expression level of that patient. From this

ranked gene list we extract only the top α% of genes for each patient. This condensed

gene list is referred to as GPi for the ith patient Pi. We next iterate across gene lists GPi
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only for patients of phenotype d, extracting only genes which appear in more than β%

of the patients of phenotype d. This creates a list of genes GL which turns up highly

expressed across most of the patients of phenotype d. Finally, using the programmatic

interface of the database, gene list GL is segregated up the gene list into the respective

subnetworks. In our experiments, α is taken to be 10 and β to be 50.

To segregate GL into the different subnetworks, we first split gene list GL into its

pathways and the gene-gene relationships within these pathways. (We highlight that a

gene is allowed to appear in more than one pathway.) Next by treating each gene as a

vertex and each gene-gene relationship as an edge, we can easily locate the connected

components (subnetworks) formed by these edges (gene-gene relationships) and vertices

(genes). This process is illustrated in Figure 6.1.

Step 2: Subnetwork Scoring We assign a score vector Sspsp,d with respect to

phenotype d to each subnetwork sp within cc according to Equation 6.12.

Sspsp,d = 〈Sccsp,1,d, Sccsp,2,d, ..., Sccsp,n,d〉 (6.12)

Where n is the number of patients in phenotype d. The formula Sccsp,i,d for the ith

patient (also the ith element of this vector) is given by:

Sccsp,i,d =
g∑

j=1

Sgsp,j,d (6.13)

Sgsp,j,d refers to the score of the jth gene (say, gene x) in the subnetwork sp for

phenotype d. (This score Sgsp,j,d is given by Equation 6.14) and is simply given by:

Sgsp,j,d = k/n (6.14)

Here, k is the number of patients of phenotype d who have both gene x highly

expressed (top α%) and n is the total number of patients of phenotype d. The entire

Step 2 is repeated for the other disease phenotype ¬d, giving us the score vectors, Sspsp,d
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and Sspsp,¬d for the same set of connected components. The t-test is finally calculated

between these two vectors, creating a final score for each subnetwork within cc.

Step 3: Subnetwork Significance We repeat Steps 1 and 2 for all the phenotypes

in the dataset to extract a list of subnetworks SN. The significance of the observed

subnetworks is estimated by randomly permuting the phenotypes labels, re-extracting

the subnetworks and recomputing their scores. This generates a null distribution for the

score and size of the subnetworks. The p-value of each subnetwork is then calculated

relative to this null distribution.

A Randomly swap the phenotype labels of the patients, recreating the subnetworks

and recalculating their scores.

B Repeat [A] for 1,000 permutations. This creates a two dimensional histogram of

the scores and sizes of the subnetworks.

C Estimate the nominal p-value of each subnetwork by using the histogram created

in point [B].

Finally, we consider subnetworks whose p-value was sufficiently small (≤ 0.05) to

be significant. Doing so would provide us with an independent set of significant

subnetworks SN for each dataset. Using our algorithm, we have managed to show that

we are able to obtain consistent significant subnetworks across different datasets of the

same disease. This is illustrated in further details in the next chapter.

6.7 Example

We present some short results here based on the DMD datasets from (Pescatori et al.,

2007) and (Haslett et al., 2002) to illustrate the working of our algorithm.

Running the algorithm concurrently on both datasets and comparing the significant

components across the datasets, we saw an overlap percentage of 58.33% (7 overlapping

components) between the two datasets. Overlap of the genes within the components
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was computed and an overlap percentage value of 69.23% was obtained. More detailed

comparisons with the other algorithms will be presented in the following chapter.

How we obtain the significant components is as follows: In the Pescatori dataset,

we have 22 DMD patients and 14 normal patients. Our first objective is to locate the

connected components that have a majority of their genes highly ranked in the majority

of the DMD patients.

We first rank the genes of each patient according to their expression values. The top

10% of the genes is next extracted from the ranked list of each DMD patient. From the

top 10% gene list from each DMD patient, we select only the genes which appear in more

than 50% of the patients. This provides us with a list of genes that are generally highly

expressed among the DMD phenotype for the Pescatori dataset. We construct a set of

connected components from this list of genes and our aggregated database.

We next calculate a score of each connected component for each patient (from both

phenotypes) according to the formula provided in 6.12. Finally we calculate the p-value

of each connected component by taking the t-statistic test of the connected component

score across both the DMD and Normal phenotype patients. Existance of a connected

component with high t-value suggests that there is a significant difference between the

DMD and Normal patients within the datasets, thus making that particular component

more significant.

The p-value is calculated via a randomisation process similar to the randomisation

processes seen in (Subramanian et al., 2005). Basically, using the data from the

Pescatori dataset, we do a random assignment of the 22 DMD and 14 normal phenotypes.

With this new set of data with randomised phenotypes, we repeat the procedure for

calculation of the t-score again. This involves ranking of genes, obtaining the genes

which are significant, recreating the subnetworks once again and finally calculating

a t-score for each subnetwork. This randomisation process is repeated for 1000

permutations, producing a distribution of randomly generated connected components
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with their relevant t-scores. This distribution is used to calculate the p-value of each

of the connected components of the original Pescatori dataset. From this original set

of components, we find the components with scores higher than 95% of the component

scores from the randomised distribution. These components are rendered as significant

components.
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CHAPTER 7

Disease and Drug-Response
Pathway Identification —
Results

Chapter Synopsis

Summary

We compare our technique with several popular methods of microarray analysis such

as SAM (Tusher et al., 2001), t-test (Cui et al., 2005) and GSEA (Subramanian et al.,

2005) in this chapter. This comparison is made on four different disease types and

eight different datasets (Leukemia (Armstrong et al., 2002; Golub et al., 1999), Leukemia

Subtypes (Ross et al., 2004; Yeoh et al., 2002), DMD (Haslett et al., 2002; Pescatori et al.,

2007), Lung Cancer (Bhattacharjee et al., 2001; Garber et al., 2001)). We make our

comparisons by finding:

1. The significant pathway overlap between datasets of the same disease

2. The significant gene overlap between datasets of the same disease

3. The size of subnetworks obtained from our technique compared with the size of

subnetworks obtained from the t-test

4. Consistency of significant genes with genes obtained from t-test

5. Biological relevance of sample subnetworks
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Conclusions

We illustrate that we consistently outperform the other techniques in our experiments.

Specifically we achieved,

1. a significant pathway overlap of 47.63% to 83.33% as compares to GSEA (0% to

55.6%).

2. a significant gene overlap of 51.18% to 93.01% as compares to that of the GSEA

(2.38% to 28.90%), t-test (49.60% to 73.01%) or SAM (49.96% to 81.25%).

3. subnetworks of a larger size (5 to 16 genes) as compares to t-test (2 to 5 genes).

4. subnetworks whose genes are also marked as significant by the t-test

5. biological validation of two sample subnetworks by existing biological literature.

This clearly demonstrates that our technique generates significant subnetworks and

genes that are more consistent across datasets compared to the other popular methods

available (GSEA, t-test and SAM). The large size of subnetworks which we generate

indicates that they are generally more biologically significant (less likely to be spurious).

To validate our results, we show that most of our genes from the generated subnetworks

have also been considered significant by the t-test. In addition, we have chosen two sample

subnetworks and validated them with references from biological literature. This shows

that our algorithm is capable of generating descriptive biologically conclusions.

7.1 Introduction

To demonstrate the utility of our algorithm, we employ it to analyse the differential

response between phenotypes of a few diseases. This is employed independently across

two different datasets of the same disease.

To show that the output connected components from both datasets of the same disease

are consistent, we first analyse the overlap of significant connected components over both

datasets of the same disease. A high level of overlap means that the results are more
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biologically significant, being more consistent over datasets of the same diseases. This is

compared with GSEA where we ran the GSEA algorithm over both datasets of the same

disease, found the significant pathways from each dataset and calculated the pathway

consistency overlap across the two datasets for each disease.

After analysing the overlap on connected components / pathways, we concentrate on

analysing the overlap of significant genes from the two datasets of the same disease. A

gene list is formed by taking the genes within all the significant components of each

dataset. Next we calculate the percentage overlap within the gene list across both

datasets of the same disease. This gene percentage overlap is compared with three other

algorithms: t-test, SAM and GSEA.

With the significant genes (obtained from the t-test) from the two datasets of the each

disease, we make two further comparisons:

1. We create connected components from this list of genes to compare the sizes of

connected components obtained from the t-test with that from our technique.

The purpose is to find out which technique generates larger (and possibly more

significant) components.

2. We analyse if the genes found within our connected components are also contained

within this list of significant genes. This test acts as an independent check that

genes obtained from our algorithm have also been confirmed to be significant by

another algorithm.

With the connected components obtained from our technique, we score them using

our formula in Equation 6.12 and show a few sample histograms depicting the scores

for the connected components. These sample histograms differentiate the patients of the

different phenotypes for the different diseases.

For ease of explanation, the results for our technique are named under the acronym

SCC, which simply stands for “significant connected components”
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7.2 Significant Subnetworks Overlap

For each disease, two lists of significant subnetworks are identified by applying our

technique independently on the two different datasets for the disease. We next calculate

the percentage overlap between the two lists of significant subnetworks.

This result is compared with another algorithm that extracts significant gene lists

from microarray data, GSEA. The individual pathways from the database (PathwayAPI)

and their associated genes are used as input gene sets for GSEA. Hence running GSEA

with this database of pathways gives us a selected set of pathways deemed as significant

by GSEA. GSEA is applied to both datasets of the same disease. For each dataset, we

obtain a list of pathways significantly expressed and remove the pathways whose FDR

q-value falls below 0.25. Finally we calculate the percentage intersection between the

remaining pathways within these two lists.

Results indicate that our technique (as compared to GSEA) consistently gives a higher

percentage overlap for different datasets of the same disease. Here, our technique

obtained a high overlap percentage for these datasets (47.63% to 83.33%). As an example

from Table 7.1, the percentage overlap of pathways in determining the ALL Subtype

(second row in that table) in SCC is 47.63% while that for GSEA is 23.1%. The full results

can be observed in Table 7.1. Table 7.2 shows the number of overlapping significant

pathways for each disease type.

Table 7.1: Table showing the percentage overlap significant pathways between the datasets.
Each row refers to a separate disease (as indicated in the first column). Each disease is tested
against two datasets depicted in the second and third column. The overlap percentages refer
to the pathway overlaps obtained from running SCC (column 4) and GSEA (column 5).

Disease Dataset 1 Dataset 2 SCC GSEA
Leukemia Golub Armstrong 83.33% 0%
ALL Subtype Ross Yeoh 47.63% 23.1%
DMD Haslett Pescatori 58.33% 55.6%
Lung Bhattacharjee Garber 90.90% 0%
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Table 7.2: Table showing the number of significant overlapping pathways between the
significant pathways. Each row refers to a separate disease (as indicated in the first column).
Each disease is tested against two datasets depicted in the second and third column. The
overlapping figures refer to the pathway overlaps obtained from running SCC (column 4) and
GSEA (column 5).

Disease Dataset 1 Dataset 2 SCC GSEA
Leukemia Golub Armstrong 20 0
ALL Subtype Ross Yeoh 10 6
DMD Haslett Pescatori 7 10
Lung Bhattacharjee Garber 9 0

This high level of overlap between different datasets means that our technique is able

to obtain more consistent results across datasets of the same disease. Such consistency

may indicate that our algorithm is able to obtain results that are more significant

because of our technique and granularity of the usage of biological data within our

analysis.

We obtain a low result overlap from GSEA possibly because the pathways from

PathwayApi are very large and GSEA relies on a large portion of a pathway exhibiting

a correlated change. Hence when only a subset of a pathway demonstrates differential

expression, GSEA may be unable to pick this up. We verified this hypothesis by feeding

into GSEA subnetworks that we found from our algorithm into the leukemia datasets.

Indeed, the overlap percentage improved. The following subnetworks were found to be

significant and overlapping.

Table 7.3: Overlapping subnetworks when running our subnetworks on GSEA
Overlapping Subnetworks
leukemia_Glutathione metabolism_GPX1
leukemia_ERK/MAPK Signaling_GRB2
leukemia_Glutathione metabolism_GPX1
leukemia_Oxidative Stress_FOS
leukemia_Focal Adhesion_MAP2K2
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7.3 Significant Genes Overlap

From the two lists of significant subnetworks for each disease, we extract two lists

of genes that occur in the two corresponding lists of subnetworks and find out the

percentage overlap of these genes that are present. This percentage is defined as the

number of overlapped genes divided by the number of genes in the smaller list (We term

the number of genes in the smaller list as γ).

We carry out the t-test on our datasets by calculating a p-value for each gene and only

selecting the genes which has a p-value of less than 0.05. We next take only the top γ

genes that are significant. Following which we evaluate the percentage overlap between

the two lists of top γ genes from each dataset.

For GSEA, we obtain the significant set of genes by first selecting the leading edge

set of genes from the well expressed pathways for each dataset. We obtain two such

lists for each dataset and calculate the percentage overlap between these two lists (The

percentage overlap is simply defined as γ
δ where γ is the number of overlapping genes

between the two lists and δ is the size of the smaller gene list).

The results, shown in Table 7.4, Table 7.5 and Table 7.6 show that the gene overlap

obtained from GSEA, t-test and SAM are consistently and significantly lower (2.38% to

28.90% for GSEA, 49.60% to 73.01% for t-test, 49.96% to 81.25% for SAM) as compared

to that of our technique (51.18% to 93.01%).

In Table 7.5 and Table 7.6, there are two columns with the same labels. Specifically in

Table 7.5 there are two headers with the same column “t-test” and in Table 7.6 are two

columns with the same column label “SAM”. Notice however that the number of genes

being compared are different. For example in Table 7.5, for the first disease leukemia,

we compare the gene overlap in the first 1239 genes in the first column for the t-test and

84 genes in the second column for the t-test. We obtain the comparison figure of 1239

genes by counting the number of genes which are significant by the t-test (p-value <
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0.05). The other comparison figure of 84 genes is obtained by counting the total number

of genes present within our subnetworks obtained for the leukemia datasets.

We point out that the gene overlap for SAM is better in some instances. This is

probably due to the stringent criteria that we have for some of the parameters. For

instance, we select the top n% of genes that appear in m% of patients of a phenotype.

We have used the values of 10 for n and 50 for m. If these values are relaxed, it would

probably result in more genes being selected and provide a better overlap value.

Table 7.4: Table showing the number and percentage of significant overlapping genes. γ

refers to the number of genes compared against and is the number of unique genes within all
the significant connected components of the disease datasets. The gene overlap refers to the
percentage gene overlap between the two datasets of a disease for SCC (column 3) and GSEA
(column 4).

SCC GSEA
Leukemia Num Genes γ =84 84

Genes overlap 91.30% 2.38%
ALL Subtype Num Genes γ =75 75

Genes overlap 93.01% 4.0%
DMD Num Genes γ =45 45

Genes overlap 69.23% 28.9%
Lung Num Genes γ =65 65

Genes overlap 51.18% 4.0%

Table 7.5: Table showing the number and percentage of significant overlapping genes. γ

refers to the number of genes compared against and is the number of unique genes within all
the significant connected components of the disease datasets. The gene overlap refers to the
percentage gene overlap between the two datasets of a disease for SCC (column 3) and t-test
(column 4).

SCC t-test t-test
Leukemia Num Genes δ =84 1239 84

Genes overlap 91.30% 73.01% 14.29%
ALL Subtype Num Genes δ =75 1072 75

Genes overlap 93.01% 60.20% 57.33%
DMD Num Genes δ =45 1319 45

Genes overlap 69.23% 49.60% 20.00%
Lung Num Genes δ =65 2091 65

Genes overlap 51.18% 65.61 26.16%
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Table 7.6: Table showing the number and percentage of significant overlapping genes. γ

refers to the number of genes compared against and is the number of unique genes within all
the significant connected components of the disease datasets. The gene overlap refers to the
percentage gene overlap between the two datasets of a disease for SSP (column 3) and SAM
(column 4).

SCC SAM SAM
Leukemia Num Genes δ =84 1305 84

Genes overlap 91.30% 49.96% 22.62%
ALL Subtype Num Genes δ =75 464 75

Genes overlap 93.01% 81.25% 49.33%
DMD Num Genes δ =45 126 45

Genes overlap 69.23% 76.98% 42.22%
Lung Num Genes δ =65 966 65

Genes overlap 51.18% 65.61 24.62%

7.4 Size of subnetworks obtained from t-test

This section shows that the size of the subnetworks we obtain using our algorithm is

significantly larger than those we would obtain from the t-test algorithm. Naturally

the larger the components are, the more biological inferences can be drawn from the

microarray data and the more significant they are likely to be. We first obtain a ranked

gene list for each dataset using the t-test algorithm. We therefore obtain two ranked

gene lists for each disease i. Assuming once again that the total number of genes present

within the significant subnetworks for a disease i is δ_i, we extract the top δ_i genes

common to both ranked gene lists of each disease i. Lastly, we calculate the size of

the subnetworks formed by this top δ_i genes. The results in Table 7.7 show that the

subnetworks obtained are smaller in size (≤ 5 genes) and hence less interesting and

significant.

7.5 Validity of Subpathway Genes

To check the validity of the connected components selected, we compare the genes are

present within each connected component with those deemed significant by the t-test. A

high percentage would mean that we are able to capture connected components which

are highly consistent to established methods such as the t-test. The tables below, Table
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Table 7.7: Table comparing the size of the subnetworks obtained from the t-test and
from SCC. The first column shows the disease that is being considered and the second
column shows the number of genes used to create the subnetworks. The third column
(which comprises additionally of 4 subcolumns) depicts the number of genes present within
each subnetwork for the t-test. Similarly the fourth column depicts the number of genes
present within each subnetwork for SCC. So for instance in the leukemia dataset, we have
8 subnetworks with size 2 genes, 1 subnetwork with size 3 genes for the t-test. For SCC, we
have 2 subnetworks with size 5 genes, 3 subnetworks with size 6 genes, 2 subnetworks with
size 7 genes and 1 subnetwork with a size of ≥ 8 genes

Disease γ Num genes (t-test) Num genes (SCC)
2 3 4 5 5 6 7 ≥ 8

Leukemia 84 8 1 0 0 2 3 2 1
Subtype 75 5 1 1 1 1 0 1 6
DMD 45 3 1 0 0 1 0 0 5
Lung 65 3 2 1 0 5 3 0 1

Table 7.8: Table depicting the percentage of genes from connected components which are also
significant for the t-test. The first column depicts the name of the subnetwork considered.
The second column depicts the percentage of genes from that subnetwork which are also
deemed significant for the t-test. (Leukemia datasets (Armstrong et al., 2002; Golub et al.,
1999))

Component name Percentage
leukemia_B Cell_VAV1 81.82%
leukemia_Purine metabolism_NP 83.33%
leukemia_Phosphatidylinositol signaling_PLCG2 100.00%
leukemia_Regulation of actin cytoskeleton_RAC1 57.14%
leukemia_Proteasome Degradation_UBC 100.00%
leukemia_Regulation of Actin Cytoskeleton_RAC1 57.14%
leukemia_B Cell_NFKB1 80.00%
leukemia_Regulation of actin cytoskeleton_CSK 75.00%
leukemia_B Cell Receptor Signaling_POU2F2 75.00%
leukemia_IL6 Signaling_IL8 75.00%
leukemia_Focal Adhesion_ACTB 100.00%

7.8 to Table 7.11 show the different components found significant within their respective

disease sets. The corresponding percentage depicts the percentage of genes present

within the connected component which is also significant by the t-test (taken with a p-

value threshold of 0.05). We can observe from the tables that the bulk of the components

have a high consistency percentage, falling between 70% to 100%.
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Table 7.9: Table depicting the percentage of genes from connected components which are also
significant for the t-test. The first column depicts the name of the subnetwork considered.
The second column depicts the percentage of genes from that subnetwork which are also
deemed significant for the t-test. (Leukemia Subtype datasets (Ross et al., 2004; Yeoh et al.,
2002))

Component name Percentage
MLLBCR_Fatty acid metabolism_ACAA1 28.57%
MLLBCR_Valine, leucine and isoleucine degradation_HSD17B10 40.00%
MLLBCR_B Cell_BLNK 72.73%
MLLBCR_Valine, leucine and isoleucine degradation_HSD17B10 33.33%
MLLBCR_B cell receptor signaling pathway_BLNK 72.73%
MLLBCR_Acute myeloid leukemia_FLT3 44.44%
BCR_Chronic myeloid leukemia_ABL1 75.00%
BCR_Fc Epsilon RI Signaling_PIK3C2B 70.00%
BCR_T Cell Receptor Signaling Pathway_RASA1 44.44%

Table 7.10: Table depicting the percentage of genes from connected components which
are also significant for the t-test. The first column depicts the name of the subnetwork
considered. The second column depicts the percentage of genes from that subnetwork which
are also deemed significant for the t-test. (DMD datasets (Haslett et al., 2002; Pescatori et al.,
2007))

Component name Percentage
DMD_Tight junction_RHOA 87.50%
DMD_Integrin Signaling_TTN 75.00%
DMD_ECM-receptor interaction_SDC3 88.89%
DMD_Tight junction_RHOA 85.71%
DMD_Leukocyte transendothelial migration_ACTB 83.33%
DMD_Actin Cytoskeleton Signaling_MYL9 78.57%
DMD_Calcium signaling pathway_CALM1 80.00%

Table 7.11: Table depicting the percentage of genes from connected components which
are also significant for the t-test. The first column depicts the name of the subnetwork
considered. The second column depicts the percentage of genes from that subnetwork which
are also deemed significant for the t-test. (Lung datasets (Bhattacharjee et al., 2001; Garber
et al., 2001))

Component name Percentage
SCC_Notch signaling pathway_NOTCH3 100.00%
SCC_ECM-receptor interaction_SDC1 69.23%
SCC_Adherens junction_CTNNB1 100.00%
SCC_Tyrosine metabolism_ADH1B 100.00%
SCC_Phenylalanine metabolism_ALDH3B1 100.00%
SCC_Tryptophan metabolism_WBSCR22 80.00%
SCC_Natural killer cell mediated cytotoxicity_TNFSF10 60.00%
SCC_Insulin Recpetor Signaling_AKT3 100.00%
SCC_Glycogen Metabolism_PYGM 60.00%



Chapter 7. Disease and Drug-Response Pathway Identification — Results 127

7.6 Histograms of Connected Components

Finally, we show the histogram of the distributions of the different connected compo-

nents. The y-axis of the histograms depict the number of patients while the x-axis

depicts the percentage of genes that are high in that segment. We will first show a

few sample histograms (Figure 7.1) where we are able to obtain nice histograms which

clearly show the difference between the phenotypes of the various diseases. The rest of

the histograms are included in the Appendix for the interested reader’s reference.

Figure 7.1: Sample histograms depicting the scores obtained from the connected
components. The top two graphs, refer to the 097_304_1_Golub_AML connected component.
The left graph shows the scores obtained from the Armstrong microarray experiment and
the right from the Golub microarray experiment. The x-axis refers to the score assigned and
the y-axis refers to the number of patients with that score. The dark colored bars refers to
the patients suffering from AML while the light colored bars refers to patients suffering from
ALL. For the DMD graphs, dark colored bars refers to normal control patients while light
colored bars refer to patients suffering from DMD.
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7.7 Biological Relevance of Sample Subnetworks

Two small sample subnetworks are chosen here to show the biological significance of the

results obtained. The first which we describe below in Figure 7.2 is generated from the

leukemia dataset. The genes within this subnetwork are very substantially supported

by literature with respect to their role in leukemia. For instance, the gene RAC (which

regulate a diverse array of cellular events) is referenced in (Krishna and LeDoux, 2006;

Wang et al., 2009) as having an effect on leukemia. Other genes within the network are

Rhoa (regulates the actin cytoskeleton in formation of stress fibers) in (Booden et al.,

2002; Kristelly et al., 2004), Vav1 (plays a major role in development and activation

of T-cell and B-cell blood cells) in (Katzav, 2007) and IQGAP (regulates cell adhesion,

morphology and motility) in (Juliana et al., 2006).

Figure 7.2: A sample pathway component from leukemia dataset (Armstrong et al., 2002;
Golub et al., 1999).
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The next subnetwork shown in Figure 7.3 is generated from the DMD disease

datasets, and is taken from the Apoptosis pathway. Results from our algorithm indicated

that the genes groups MYL and MYH are significantly differentiately expressed between

the DMD patients and the normal patients. MYH (myosin, heavy chain) and MYL

(myosin, light chain) are known to be major gene groups involved in release of

mechanical energy allowing muscles to contract. These genes are heavily quoted in

literature with regard to their involvement in the disease DMD: MYH3 and MYH8

(Haslett et al., 2002), MYH6 (Balagopal et al., 2006), MYH7 (Baker et al., 2006), MYL1,

MYL2, MYL3, MYL4, MYL5, MYL6 and MYL9 (Balagopal et al., 2006). In addition, the

gene titin which was identified. Titin is a gene which encodes a large protein of the spinal

skeletal muscles and its mutation is widely found to occur in various types of muscular

dystropy (Garvey et al., 2002; Gerull et al., 2002; Hackman et al., 2002; Itoh-Satoh et al.,

2002).
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Figure 7.3: A sample pathway component from DMD dataset (Haslett et al., 2002; Pescatori
et al., 2007).
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CHAPTER 8

Conclusions

8.1 Conclusions

Microarray experiments are crucial because they measure the behaviour of individual

genes with respect to diseases or treatments. Results from these experiments are

heavily scrutinised to obtain biological insights into the occurrence of diseases or the

effectiveness of certain types of treatments.

In order to provide more indepth analysis to experiments, contemporary algorithms

have incorporated biological information into their analysis so that the analysis can

be more descriptive and hopefully useful to the researchers. Our techniques have

taken this approach one step further. Firstly, we no longer consider prior biological

knowledge as a separate aspect of microarray analysis. Rather, we take into account

the integrity of the biological information that is being provided into the algorithm

for analysis. Secondly, our algorithm uses both the gene-gene interaction information

and pathway information in our analysis. Because of these two enhancements, we are

able to generate subnetworks in real-time according to the responses of the microarray

experiments. These contributions helps us avoid some of the potential caveats present

within microarray experiments.

Our first rigorous step (as explained in Chapter 3) of demonstrating qualitatively

the huge inconsistencies within current databases is already a non-trivial contribution.

This step is crucial because it demonstrates the lack of coherency (qualitatively results
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seen in Chapter 5) between microarray analysis if different databases are to be used.

Hence we created our own database by combining the information from several other

well established biological databases. This ensures that the prior biological information

going into the algorithm is generally agreed upon among the databases and hence we

can expect greater consistency in the results.

Referencing our chapter about algorithmic design (chapter 6), we again distinct

ourselves from the algorithms such as GSEA and NEA (Sivachenko et al., 2007) by

using both gene-gene relationships and pathway information. The paper by (He and

Zhang, 2006) pointed out that such hubs in gene-gene interaction networks correspond

to essential genes because they have a higher probability of involvement in essential

gene-gene interactions. Therefore the usage of gene-gene relationships provides us with

information on how genes affect one another and pathway information organises such

relational information within their relevant biological processes. In contrast, GSEA only

uses gene sets (akin to our pathway information), hence losing crucial information on the

individual processes occurring between genes. In general, not all genes in a gene set are

connected to each other (and rightfully so), GSEA might rank gene sets as significant

although the number interactions between the proteins within each gene set is weak. In

addition, other processing steps are required to decipher how genes within a gene set

interact with one another. In addition, GSEA might also rank a gene set as insignificant

if the gene set is very big and most of the genes are not differentially expressed, even

when there is a path within the large set that is differentially expressed. This happens

when a portion of the gene set is significantly differentially expressed, but the rest of the

genes are not. Thus even though that particular portion of the gene set is biologically

significant, this will not be indicated out by GSEA.

We are certainly not the first to integrate gene-expression data with gene-gene

relationships. GNEA (Liu et al., 2007) is one such example. GNEA uses a global protein-
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protein interaction network, finds a subnetwork within this global interaction network

and compares this subnetwork within gene sets to find out the significant gene sets.

However in creating a single global biological interaction network, it makes the

biological assumption that the local behaviour of proteins can be translated in a similar

fashion globally and that gene expression levels are in a tight correspondence to protein

levels (which is not generally true). A similar issue is raised in (Sivachenko et al., 2007)

where the authors argued that proteins which are very well connected have an extremely

high chance of obtaining a low p-value and being ranked as significant. Because of

the high connectivity of such proteins, they are liable to be involved in various disjoint

biological processes, leading to the error of combining independent subnetworks through

these proteins. To prevent such scenarios, we instead implemented our algorithm via

identifying localised gene-gene subnetworks within pathways.

In addition, we show in Chapter 7 that our technique generates significant subnet-

works and genes that are more consistent across datasets compared to the other popular

methods available (GSEA, t-test and SAM). The large size of subnetworks which we

generate indicates that they are generally more biologically significant (less likely to be

spurious). To validate our results, we show that most of our genes from the generated

subnetworks have also been considered significant by the t-test. In addition, we have

chosen two sample subnetworks and validated them with references from biological

literature. This shows that our algorithm is capable of generating descriptive biologically

conclusions.

Our final contribution lies in our ability to create connected components (of known

pathways) in real time based on microarray data. This allows us to obtain connected

components according to the microarray data. GSEA uses fixed gene sets and determines

if these gene sets are significant or not. GNEA first finds subnetworks from a global PPI

(protein protein interaction) network. The GNEA next carries out a statistical test on

fixed gene sets, to determine the individual gene set has a significant proportion of genes
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within this subnetwork. Hence these techniques assume that a gene set is significant

only if it has a substantial proportion of its genes significant. This assumption might not

be valid because there are instances where only part of a gene set becomes significant,

and it would probably go noticed if the rest of the genes are unaffected. Our ability to

create connected components based on the microarray data of the phenotypes ensures

that we have sufficient granularity to capture portions of pathways or gene sets are

affected.

With reference to Chapter 1, these contributions enable us to successfully make

consistent biological inferences from microarray experiments and prior biological infor-

mation.

8.2 Future Work

Biologically descriptive analysis of microarrays is currently an active of research,

providing many opportunities for novel ideas. While this thesis has contributed some

new concepts in this area, it contains its own shortfalls and there remains many

interesting issues that necessitate further research.

8.2.1 Building an automated tool

To demonstrate the validity of our algorithm, we have chosen to use only two datasets of

various diseases rather digging in depth into a single disease but across many datasets.

Though this has shown that we are able to obtain significant results across two datasets

of the same disease, we would have achieved an interesting biological result if we were

able to find consistent results of similar nature if we had used numerous datasets of the

same disease. If biological conclusions from a single disease are consistently significant

over all the other datasets, it is very possible that such a biological conclusion is heavily

supported.
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To carry out such large-scale analysis, it will require us extending the algorithm

towards building a more automated tool. This tool will require us to revise the following

components:

1. Microarray input formats The current method of accepting DNA microarray inputs

into the algorithm is still very manual. The extension will allow the algorithm to

accept the microarray data with its annotation information and automatically link

it back to the biological pathway inputs.

2. Biological input formats Only biological data from PathwayAPI is accepted cur-

rently. One of the extension will be to extend this to other biological formats like

SBML, BioPaX and SGML. This will allow the tool to be more pervasive and not be

tied down to any particular biological repository.

3. Statistical processing For statistical processing, we will have to replace the

hypothesis test with the ANOVA so as to allow connected components from multiple

datasets of the same disease to be tested at the same time.

These will allow us to carry out wide and large scale studies within GEO and other

important databases, allowing us to detect significant subnetworks that are consistent

within more databases. As these subnetworks are significant across more datasets, they

will definitely give a lot more insights for the researcher.

8.2.2 RNA Seq

An extension to use RNA-Seq as the choice of experimental input is possible. However

the design of the algorithm will have to cater to the vast amounts of additional data when

RNA-Seq is being used and there being a greater level of biological granularity within

RNA-Seq experiments. Together with a biological database that supports this level of

granularity, the algorithm will be able to increase the amount of descriptive information

that the algorithm will be able to provide (without a large change in the fundamental

algorithm).
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8.2.3 Over-reliance on biological information

The main conceptual shortfall of the algorithm involves our reliance on biological

data. As pointed out also in (Sivachenko et al., 2007), there are two scenarios where

our solution will find it challenging to find any biologically significant results. One

such situation occurs when the biological information available is not sufficiently

comprehensive. Naturally when the information is not comprehensive, the connected

components created will not be sufficiently large / comprehensive to be significant and

hence will be unable to provide proper biological descriptions. The second situation

occurs when the biological information provided is inaccurate. In such cases, we will

create the wrong components within the pathways and hence draw incorrect conclusions

from the results. We understand such a problem and have tried to alleviate such

issues by creating our own integrated biological database. However we realise that

such issues are inevitable and there is always a probability of it occurring. Naturally in

such scenarios, the system must at least be able to differentiate the difference between

the situation where “no significant results are found because of a lack of biological a

priori information” and “no significant results are found because of a lack of correlating

microarray data”.

8.2.4 Pairwise connections within components

In addition, although biological information is being integrated into the analysis, we

are utilising gene pairwise connections within components instead of their pairwise

relationships (For instance, instead of taking into account the relationship p53 activates

MDM2 or MDM2 inhibits p53, we merely use the connection between the two genes,

simplifying their relationship to one that p53 is connected to MDM2). This simplification

greatly reduces the granularity of our analysis. For instance, if in the scenario where

both p53 and MDM2 are activated, we could deduced that the relationship “p53 activates

MDM2” is significant and in the scenario where only MDM2 is activated, we could

deduce that “MDM2 inhibits p53” is significant. However with our simplification, we
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can only deduce that the connected between p53 and MDM2 is significant in the former

scenario and we can deduce nothing significant in the second scenario.

Finally, although we have used our best efforts to ensure a professional standard in all

our experimental studies, there are still some limitations of the project due to its scale.

For instance, the biological repository we created came from only three independent

pathway repositories. Although the number of pathways combined together is already

considered substantial (as most analysis only use a single database), we understand that

the more databases we include in our study, the more complete the information we would

hold and the more complete the study would be.

8.3 Discussions

8.3.1 Comparison with previous techniques

We are able to perform better than GSEA because we have managed to concentrate on

a more focused granularity, finding connected components which are significant and not

entire pathways. This gives us an extremely good size for biological analysis because

it is large enough to make proper biological inferences, yet small enough such that the

possibility of false positives and false negatives is kept as low as possible. This especially

goes true in the future as lines between pathways become blurred (deciding which genes

should be allowed in which pathways is already a subjective issue). In addition, as more

data gets available, pathways tend to increase in size as well and not all genes within

it are actually relevant to the analysis. (We have tried running the data on Pathway

Express (PathwayExpress, 2009) but unfortunately were unable to obtain any results.

This is probably due to the size of the data as Pathway Express works better on smaller

datasets.)

8.3.2 Irregularity of microarray experiments

Though microarray experiments have seen vast improvements over the last few years,

they are still relatively rudimentary as compared to the exact binary computational
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systems that we are so used to. For instance, it is a known fact that there is a natural

fluctuation in the expression level of genes within a cell. This natural fluctuation may

cause the natural ranges of expression of the same gene from different cell phenotypes

(eg normal vs disease) to overlap. A sudden rise of the expression level of a gene therefore

may not suggest the cell phenotype. To alleviate the impact of such scenarios, our

solution was to chose only genes who appear highly expressed in more than 50% of the

patients of a phenotype.

8.3.3 Metrics Used

The final version of our algorithm used the t-test to find components which are activated

more in one component and less in the other component. Other than the t-test we

had tested a numerous host of techniques such as chi-square, gini coefficient, entropy,

etc. The other techniques unfortunately could not differentiate components as well

as the t-test. For instance, in using the chi-square test, some of the minimal values

required for the parameters of the chi-square test are often not fulfilled. Entropy

failed as a metric as well because the (absolute) value of the entropy is high when the

components behave similarly across phenotypes (a case of total information) as well as

when the components behave totally differently across phenotypes (a case of totally no

information). Ultimately, we found the t-test to still be the best in capturing the different

behaviour of components across different phenotypes.

8.3.4 Size of Subnetwork

In the beginning of the project we had attempted to carry out our pathway analysis on

a smaller scale (using only < 5 pathways) using an extremely manual process. Although

such a technique would provide us with results of a very high granularity, reproducing

such techniques on the many pathways available would not have been a feasible option.

In addition, it would run contrary to the technological trend that requires us to process

more data within a shorter period of time. After the decision was made to expand the
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analysis to a technique that is scalable, we managed to test our algorithm in rapidly

across many pathways.

8.3.5 Overlap of Components vs Overlap of Genes

We recognise that the percentage overlap of components is consistently not as high as

compared to the overlap of genes. We argue that such a phenomena occurs because there

is a key group of genes (which belong to a few key components) acting specifically for that

phenotype. However this key group of genes (being more influential) occur in various

other (non significant) components as well. Hence when spurious genes or false positives

(possibly due to batch effect) occur, they may make the non-significant components to be

deemed as significant as well. This probably means that the technique is still not refined

enough to capture the nuances within the components since it is unable to reject such

false positives.

8.3.6 Selection of m and n

We have chosen the value of m and n through empirical means and found 10% of the

top genes, 50% of patients as suitable parameters to be used in the experiment. A more

methodological way is to assess based on the distribution of gene expression values.

Specifically, we can:

1. Optionally do a log transform of the gene expression values.

2. Divide the gene expression values into 100 intervals (buckets).

3. (iii) Plot the frequency distribution of gene expression values into these intervals.

It should form a normal-like distribution.

4. Most of the samples (in our experience, 8̃0%) will be near the mean, x̃% (in our

experience, 1̃0%) near the left (i.e. low) extreme. x̃% (in our experience, 1̃0%) near

the right (i.e. high) extreme. This suggests x% to be the threshold.
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It is also possible to consider an optimization approach, first seeding the values of n

and m, and then carry out a simple hill climbing process, tweaking the values of n and

m and stopping when the score starts to deteriorate (this score can be the number of

consistent subneworks obtained). The seeding of n and m with the hill climbing can be

repeated several times to ensure that we do not hit into a local maximum. However, this

approach may risk overtuning of the n and m parameters.

8.3.7 Extension to other datasets

As mentioned in the previous section, one of the extensions would be to create a large-

scale tool which will be able to read in both microarray data and biological data of

different formats. This is a non-trivial engineering issue and a possible solution will be

to standardize two fixed formats. One format for the microarray data and the other for

the biological data. Software connectors will be written to convert both the microarray

data as well as the biological data into one of these fixed formats. The algorithm then

accepts only these two fixed formats as inputs. This framework will allow other formats

to be easily added and make the tool more scalable.

8.3.8 Specificity of the Algorithm

When running the algorithm for the leukemia dataset, we failed initially to take note

that the data consisted of different types of ALL leukemia. Although both datasets

boasted that the samples were taken from ALL patients, we were unaware that

(Armstrong et al., 2002) consisted of patients only from T-cell ALL patients while the

dataset from (Golub et al., 1999) consisted of patients from B-cell ALL and T-cell ALL. In

using the mixed dataset, we were unable to find a good component intersection between

the datasets and the percentage overlap stuck at 30% or lower. However when this

was discovered and we removed the B cell patients from the list, the overlap percentage

increased to more than 70%. This shows the high level of specificity of the algorithm.
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APPENDIX A

Histograms

We show here the histograms from the connected components in Chapter 7.
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Figure A.1: Histogram of leukemia connected components (a).
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Figure A.2: Histogram of leukemia connected components (b).
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Figure A.3: Histogram of leukemia connected components (c).
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Figure A.4: Histogram of leukemia connected components (d).
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Figure A.5: Histogram of leukemia connected components (e).



Appendix A. Histograms 147

Figure A.6: Histogram of leukemia connected components (f).
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Figure A.7: Histogram of leukemia connected components (g).
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Figure A.8: Histogram of DMD connected components (a).
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Figure A.9: Histogram of DMD connected components (b).
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Figure A.10: Histogram of DMD connected components (c).
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Figure A.11: Histogram of Subtype connected components (a).
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Figure A.12: Histogram of Subtype connected components (b).
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Figure A.13: Histogram of Subtype connected components (c).
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Figure A.14: Histogram of Subtype connected components (d).
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Figure A.15: Histogram of Lung connected components (a).
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Figure A.16: Histogram of Lung connected components (b).
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Figure A.17: Histogram of Lung connected components (c).



Figure A.18: Histogram of Lung connected components (d).
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