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ABSTRACT
Motivation: Nasopharyngeal carcinoma (NPC) is a malignant can-
cer in the head and neck region, with especially high incidence in
South China, Southeastern Asia and North Africa. Recently, a cyclin
dependent kinase (CDK) inhibitor, CYC202, is studied for its anti-
tumor effect in human NPC cells in vitro and in vivo. Results show
that both cell lines and patients in the study responded to the drug
treatment differently. To further investigate the drug response, expres-
sion of selected genes for apoptosis, cell proliferation and cell cycle
regulation were measured during the process of treatment. Our issue
is how to identify the reason for the different responses in these NPC
individuals using the gene expression data.
Results: Biological pathway information has long been incorporated
into gene expression analysis for the purpose of treatment response
understanding. However, the conclusions are usually too general, and
hardly sufficient for guiding further research. In our current study,
we design a drug pathway identification system, the Drug Pathway
Decipherer, which identifies genetic regulations in response to drug
treatment that are consistent with respect to a given detailed signa-
ling pathway structure. By applying our system to the NPC dataset,
we discover that the status of ERK pathway and apoptosis pathway
are differently regulated between responders and non-responders
both in vitro and in vivo. Our results indicate that the dysregula-
tion of Ras-ERK pathway and PI3K-Akt-NFκB pathway are probably
the mechanisms for CYC202-insensitive NPC cells to resist the drug
treatment.
Availability: The Drug Pathway Decipherer is available at
http://www.comp.nus.edu.sg/∼wongls/projects/drug-pathway/DPD-v1.
It is implemented in JAVA.
Contact: dongdife@comp.nus.edu.sg, ccy@ccmu.edu.cn,
bmow@westexcellence.com, and wongls@comp.nus.edu.sg

INTRODUCTION
NPC is a malignant cancer in the head and neck region, with
especially high incidence in South China, Southeastern Asia and
North Africa (Yu and Yuan, 2002). Despite the high rates of local
tumor control with the technique of intensity-modulated radio-
therapy (RT), NPC patients suffer from a high ratio of distant
metastasis (Sultanemet al., 2000; Leeet al., 2002). Therefore, new
chemotherapy is necessary to improve the treatment outcome of

RT. In our recent research, CYC202 (Cyclacel Ltd, Dundee, Uni-
ted Kingdom; Seliciclib; R-roscovitine), a CDK inhibitor, is studied
for its anti-tumor effect on NPC cellsin vitro and in vivo. 3 NPC
cell lines and 13 NPC patients were treated with CYC202, and the
expression of selected genes were measured during the process of
treatment. Results show that both cell lines and patients in the study
responded to the drug treatment differently. Our target is to identify
the reason underlying the different responses in these NPC cells and
patients.

There are past works that incorporate biological pathways into
gene expression analysis to understand drug treatment response.
Some of them focus on the enrichment analysis of gene groups on
pathways (Zeeberget al., 2003; Donigeret al., 2003; Subramanian
et al., 2005; Sivachenkoet al., 2005, 2007). Zeeberget al. (2003)
and Donigeret al. (2003) use the hypergeometric test to deter-
mine statistically over-represented biological pathways in a given
list of differentially expressed genes. Subramanianet al. (2005)
propose the gene set enrichment analysis (GSEA), which uses a
weighted Kolmogorov-Smirnov statistics to compare the two sets
of distributions and also uses resampling to estimate false discovery
rates (FDR). Sivachenkoet al. (2005, 2007) split genes into separate
regulatory groups, each sharing the same transcriptional regulators,
and evaluate these gene groups in a GSEA-like manner.

Other research groups concentrate on statistically significant
pathway search with the list of differentially expressed genes (Soh-
ler et al., 2004; Scottet al., 2005; Cabusoraet al., 2005; Nacuet al.,
2007). Since this problem is NP hard (Idekeret al., 2002), various
heuristics are used. Sohleret al. (2004) expand the seed genes by
iteratively including the most significant neighbor, with respect to
Fisher’s inverseχ2 statistics (Fisher, 1932). Cabusoraet al. (2005)
use Dijkstra’s algorithm (Dijkstra, 1959) to search for the shortest
path between each pair of the seed genes. Scottet al. (2005) reduce
the pathway search into the node-weighted Steiner tree problem,
viz., to find the minimal set of edges to connect nodes reaching the
maximal weight, and tackle it with graph theory.

More related works identify responsive molecular pathways under
drug treatment (Zienet al., 2000; Idekeret al., 2002; Hanischet al.,
2002; Guoet al., 2007; Breitlinget al., 2004). Hanischet al. (2002)
cluster genes with a metric preferring both genetic co-expression
and short distance within a network topology. Zienet al. (2000)
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exhaustively enumerate all possible gene combinations on a meta-
bolic pathway, and identify the most co-expressed gene group as the
responsive pathway. Idekeret al. (2002) extend the method of Zien
et al. (2000) to a protein-protein interaction (PPI) network, and use
an annealed random selection to generate candidate gene groups for
the co-expression evaluation. Guoet al. (2007) follow Idekeret al.
(2002), but their random selection is based on interaction between
genes rather than directly on gene itself.

However, most existing works fall short on several issues (Soh
et al., 2007): these works provide little information on the interplay
between selected genes; the collection of pathways that can be used,
evaluated and ranked against the observed expression data is limited;
and the generated hypotheses are still too general to guide further
research. So we have two aims in our current study: to propose
effective computational methods for treatment response understan-
ding, and to interpret drug treatment response for the NPC study. In
this paper, we present a drug pathway identification system, which
we called Drug Pathway Decipherer, to identify consistent genetic
regulations in response to drug treatment according to some speci-
fied detailed signaling pathway structure. The status of the specified
signaling pathways are estimated and compared with respect to the
identified drug pathways. We show how to apply the system to the
NPC dataset, and to use the results for further analysis. In addition,
our system allows users to construct, remove, and modify biological
pathways for their own research purposes.

METHODS

Overview
The Drug Pathway Decipherer consists of 4 partitions distributed on
two biological levels. Figure 1 gives the diagram of its workflow.
It takes signaling pathways and gene expression datasets as input.
To enable signaling pathways to be evaluated against gene expres-
sion data, for each pathway, the system extracts genetic relationships
from the pathway data source, and passes them to the genetic level
to perform a genetic pathway search. The derived genetic pathways
then constitute a candidate set for hypotheses of drug pathway. For
each candidate, transformed gene expression data are used to eva-
luate the correlation of expression regulations between genes on the
pathway against the pathway structure. After that, statistical pro-
cedures are applied to select pathways with significant evaluations
from the candidate set as drug pathway hypotheses. Finally, these
hypothesized pathways are aggregated to estimate the status of the
corresponding signaling pathway.

Data source
The NPC gene expression data comprise one dataset for cell lines
and another for patients, with both containing 380 genes selected
for apoptosis, cell proliferation, and cell cycle regulation. For the
in vitro part, 3 cell lines, CNE1, CNE2 and HK1 were measured
for their gene expression before treatment, and 2hs, 4hs, 6hs, 12hs
and 24hs after treatment respectively. It was observed that CNE1
responded poorly; CNE2 responded in a limited way; and HK1 fully
responded. For thein vivo part, 12 tumor samples and 1 non-tumor
sample were taken from the NPC patients, who were traced for their
response to treatment. Gene expression were measured before and

after the treatment. 5 patients were reported to have a molecular
response.

With respect to the selected genes, 4 signaling pathways are
extracted from KEGG pathway database (October 17, 2007) (Kane-
hisa et al., 2002): ERK pathway (from hsa04010), JNK/p38
pathway (from hsa04010), the G1/S cell cycle progression pathway
(from hsa04110) and the apoptosis pathway (from hsa04210). These
pathways are represented as directed graphs, with nodes denoting
proteins and edges denoting PPIs. Figure 2 shows the modeled
pathways in our study.

Preprocessing data source
In order to capture gene expression change in response to drug
treatment, the original gene expression data are transformed into
the relative expression (RE) values. RE values describe expression
change in multiples in a linear scale. A positive RE value suggests a
gene is up regulated, and a negative value suggests a transcriptional
suppression. RE value which is defined as:

DEFINITION 1. Given a time-course gene expression datasetE,
its corresponding RE dataset isR, whereeij andrij are the original
expression value and RE value of genei at time pointj, respectively.
If eij > ei0, thenrij = eij/ei0 − 1; otherwise,rij = 1− ei0/eij .

Signaling pathways are represented as directed graphs in our
system, which can be formally described as:

DEFINITION 2. A signaling pathwayγ is a directed graph
(P, I), with P the vertex set, representing the collection of pro-
teins on pathway, andI the edge set, representing the collec-
tion of interactions between proteins. An interaction is a triplet
i = 〈p1, p2, s〉, with p1, p2 ∈ P and s ∈ S, whereS =
{$stimulation, $suppression} is the set of terms used to denote
interaction types.

The terminology setS can be enriched with other terms to des-
cribe the type of interactions between proteins. This requires a
corresponding interpretation to genetic relationships, which is intro-
duced in the next part. In the current system, a signaling pathway is
preprocessed into a list of interactions, with each protein associated
with its encoding genes.

Extracting genetic relationships
The procedure of genetic relationship extraction passes pathway
information from the proteomic level to the genetic level, allowing
signaling pathways to be evaluated against gene expression data.
AssumingG is a gene set, andT = {$positive, $negative}, is an
associated terminology set used to describe relations between genes
in G, the genetic relationship is defined as:

DEFINITION 3. A genetic relationship (or simply a relationship)
is a triplet q = 〈g1, g2, t〉, with g1, g2 ∈ G andt ∈ T .

The extraction of genetic relationships from a signaling pathway
is:

DEFINITION 4. Given a signaling pathwayγ = (P, I) and a
relationship setQ ⊆ G×G× T , a relationship extraction is a set
of functionsϕ,ψ, φ, withϕ : P → G, a one-to-many mapping from
a protein to a set of genes,ψ : S → T , a mapping between two
terminology sets on two different biological levels, andφ : I → Q,
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Fig. 1. The workflow of the drug pathway identification system.

Fig. 2. The modeled signaling pathways. The downstream events of pathways are represented as virtual nodes. “→” and “–p” represent “stimulation” and
“suppression”, respectively.

a mapping from an interaction to multiple relationships respecting
ϕ andψ.

In our implementation,ϕ associates each protein with its enco-
ding genes;ψmaps$stimulation and$suppression to$positive
and$negative, respectively; andφ replaces the proteins and the
type of an interaction with exhaustive combinations of the mapped
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genes and relation. In particular, the interpretation of a relationship
is different from that of an interaction. An interaction describes a
real process in a biological system. It forms a deductive logic for
the occurrence of downstream events. However, a relationship is
only an evidence for the occurrence of an interaction. For exam-
ple, gene MAP2K7 and MAPK8 are the encoding genes of protein
MKK7 and JNK, respectively. MKK7 stimulates JNK. If MKK7 is
activated by upstream events, then JNK will be activated as well; if
the expression of both MAP2K7 and MAPK8 are up regulated, then
probably, the interaction between MKK7 and JNK is largely carried
out, and JNK is activated.

Scoring a genetic pathway
A genetic pathway can be intuitively understood as a map of a
signaling pathway on the genetic level, which is formally defined
as:

DEFINITION 5. Given a relationshipq = 〈g1, g2, t〉, if there does
not exist a relationshipq′ = 〈g′1, g′2, t′〉, with g1 = g′2, thenq is
called a source relationship.

DEFINITION 6. Given a relationshipq = 〈g1, g2, t〉, if there does
not exist a relationshipq′ = 〈g′1, g′2, t′〉, with g2 = g′1, thenq is
called a sink relationship.

DEFINITION 7. Given two relationshipsq = 〈g1, g2, t〉 andq′ =
〈g′1, g′2, t′〉, if g2 = g′1, thenq is said to immediately precedeq′,
denoted byq ≺i q

′.

DEFINITION 8. Given a relationship arrangementA =
〈q1, q2, . . . , qn〉, if there exists a permutationπ, π(A) =
〈q′1, q′2, . . . , q′n〉, satisfyingq′1 ≺i q

′
2 ≺i · · · ≺i q

′
n, withq′1 a source

relationship andq′n a sink relationship, thenϑ = 〈q′1, q′2, . . . , q′n〉
is called a genetic pathway andA is called a genetic pathway seed.

Given a relationshipq = 〈g1, g2, t〉, if the expression ofg1 and
g2 are measured at multiple time points (as ourin vitro dataset), then
the correlation ofq is:

Corr(q) = Corr(−→rg1 ,
−→rg2),

whereCorr(−→rg1 ,
−→rg2) is the Pearson correlation coefficient between

RE vector−→rg1 and−→rg2 . If gene expression are only measured at two
time points (as ourin vivodataset), then the correlation is estimated
simply by comparing post-treatment RE values of the two genes:

Corr(q) =
sgn(rpost

g1 )× sgn(rpost
g2 )×mini=1,2 |rpost

gi
|

maxj=1,2 |rpost
gj |

.

The derived correlation is then transformed into az-score,z(q),
evaluated against the sample background of correlation.

To produce an aggregatedz-score,zϑ, for an entire pathwayϑ
with k relationships,z(q) are summed up over all relationships in
ϑ, with respect to the relation ofq:

z(ϑ) =
1√
k

X
q∈ϑ

(−1)αz(q),

whereα = 0 if q.relation = $positive; α = 1 if q.relation =
$negative. This score function takes pathway structure into consi-
deration. Genes are expected to exhibit co-regulation patterns con-
sistent with the relations between them. For example, if two genes

have a negative relation, then we expect their REs are negatively
correlated as well.

For each pathwayϑ with k relationships, we randomly select
10000 gene groups ofk + 1 size (the gene number ofϑ is k+ 1) to
estimate the p-value ofz(ϑ), denoted byscore(ϑ). Intuitively, the
pathway score represents the consistency between a genetic pathway
structure and the expression regulations of genes on it.

Searching for computable genetic pathways
Given the definition of genetic pathway, the procedure of pathway
discovery is trivial. However, not all genes on a pathway is obser-
vable. In our system, two relationships sharing an unobservable
gene are combined into one relationship, connected with the relative
relation defined as:

DEFINITION 9. Given two relationshipsq1 = 〈g1, g2, t1〉 and
q2 = 〈g2, g3, t2〉 such thatq1 ≺i q2. If t1 = t2, the relative relation
betweeng1 andg3 is $positive; otherwise,$negative.

Unobservable genes on a pathway can be bypassed by recursi-
vely invoking this procedure, which finally forms valid input for the
scoring mechanism.

Generating hypotheses
Genetic pathway hypotheses are generated for each signaling
pathway.p-value and FDR cutoff are used to control the statistical
significance and the rate of false positive of the generated hypothe-
ses. Since the pathway score itself is ap-value measurement, the
procedure of significance control is straight forward. For FDR, we
first rank the scores of pathways which pass thep-value filtering.
Then, we identify the maximal rank indexj, satisfying

pj <
j · α
CN ·N ,

wherepj is j-th rankedp-value;α is the user specified threshold;
N is the total number of hypotheses; andCN =

PN
i=1

1
i
, is the

constant for dependent test1.
Signaling pathway status are estimated by the hypothesized gene-

tic pathways. To get a more intuitive interpretation, the pathway
scorescore(ϑ) is converted into a probability metric:

conf(ϑ) = 1− score(ϑ).

According to the definition, each geneg on a genetic pathway has
an impact on the downstream events. This impact can be represented
as the relative relationship betweeng and the virtual node of the
pathway, which is denoted byimpact(g).

Thus, for a signaling pathwayγ, letϑ ∼ γ denote the hypothesi-
zed genetic pathwayϑ for γ, andGϑ denote the genes involved in
ϑ. The signaling pathway statusZγ

i is a weighted aggregation of RE
of genes onγ respecting to their impact onγ at time pointi, with
the weight equaling to the confidence value of the pathway, which

1 This is because multiple hypotheses for the same signaling pathway have
overlap on genes. More details are in Herrington (2002).
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Fig. 3. Comparable diagrams of pathway status profiles of the three cell lines.

is in formula:

Zγ
i =

X
ϑ∼γ

X
g∈Gϑ

 
1

| Gϑ | × impact(g)× rgi ×
conf(ϑ)P

ϑ′∼γ conf(ϑ′)

!
.

Similarly, the confidence of the status ofγ is a weighted aggregation
of the confidence ofϑ, represented in formula as:

conf(Zγ) =
X
ϑ∼γ

 
conf(ϑ)× conf(ϑ)P

ϑ′∼γ conf(ϑ′)

!
.

The pathway status is a synthesis for expression change of genes
on regulated genetic pathways. It is a snapshot of pathway regu-
lation on genetic level and provides a benchmark to compare
different sample response to drug treatment. Specifically, both gene-
tic pathway and signaling pathway are associated with confidence
scores, but the meanings are different. For a genetic pathway, the
confidence represents the probability for a pathway to be a regulated
pathway under treatment, while for a signaling pathway, the confi-
dence is simply an overall evaluation of the hypothesized underlying
genetic pathways.

Evaluating differentially regulated pathways
Signaling pathway status can be compared to discover the reasons
for different drug response in different samples. For this reason, we
calculate the difference of signaling pathwayγ between samples1
ands2 by measuring the maximal differentiation of pathway status
betweens1 ands2, formulated as:

diff λ(s1, s2) = max
i

|Zγs1
i − Zγs2

i |.

To verify the effectiveness of our method, for each signaling
pathway, we randomly select gene sets of the same size as the obser-
ved genes on the hypothesized genetic pathways for 10000 times,

Table 1. p-values for the differentiations of status of signaling pathways.

Comparison Group ERK Apoptosis JNK/p38 G1/S
CNE1vs.CNE2 < 0.0001 0.0028 0.2921 -
CNE1vs.HK1 < 0.0001 0.0006 - 0.4992

CNE2vs.HK1 0.0004 0.0022 - -

and estimate significance of the pairwise differentiations of pathway
status.

RESULTS AND DISCUSSION
We show the results of applying our system to the NPC study. For
both datasets, we set 0.05 as the threshold forp-value cutoff and
0.5 for FDR control. For thein vitro part, the diagrams of com-
parable pathway status profiles and the pairwisep-values of the
differentiations between cell lines are shown in Figure 3 and Table 1,
respectively. The regulation of ERK pathway and the apoptosis
pathway are significantly differentiated among the three cell lines
(reaching4E − 4 at least for ERK pathway and2.8E − 3 at least
for the apoptosis pathway).

ERK pathway regulates the survival, proliferation and differen-
tiation of cells. In the diagrams, it is significantly suppressed in the
responding cell line, HK1, but less suppressed or not suppressed
in the half-responding cell line, CNE2, and the resistant cell line,
CNE1, respectively. This observation is consistent with the results
of the trypan blue test (shown in Figure 4 (a)), which measures
the viability of NPC cells under treatment. The apoptosis pathway,
on the other hand, is more significantly up regulated in HK1 rat-
her than in CNE1 and CNE2. We confirm this hypothesis with the
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Fig. 4. Results of the associated medical assays in the drug study: (a) shows the change of cell viability for three cell lines under the drug treatment across the
time. (b) shows the extent of caspase-dependent apoptosis in three cell lines. zVAD.fmk is a caspase activity inhibitor.

Table 2. List of the identified genetic pathways: Genes for replacement are separated by “/”.

Signaling Pathway Genetic Pathway Confidence
CNE1

ERK GRB2→SOS2→HRAS→RAF1→MAP2K1→MAPK1/MAPK3 > 0.999

Apoptosis PIK3CB→PTEN→AKT2/AKT3→CHUK/IKBKB/IKBKG→NFKB2→BIRC2/BIRC5 > 0.9998

JNK/p38 MAP3K12→MAP2K7→MAPK9 0.9665

G1/S CCND1→CDK4–pRB1–pE2F2/E2F3 > 0.9906

CNE2
ERK GRB2→SOS1→MRAS/KRAS/NRAS/RRAS→BRAF→MAP2K1→MAPK1 > 0.9885

Apoptosis PIK3CA/PIK3CB→PTEN→AKT1→IKBKB→RELA→BIRC2/BIRC5 > 0.9949

JNK/p38 MAP4K3/TRAF2→MAP3K1→MAP2K4→MAPK8/MAPK10 > 0.9658

HK1
ERK GRB2→SOS1→HRAS→BRAF→MAP2K1/MAP2K2→MAPK1/MAPK3 > 0.9646

Apoptosis PIK3R1→PTEN→AKT2/AKT3→IKBKB→NFKB2/RELA→BCL2/BIRC2 > 0.9663

G1/S CUL1→SKP2→CDKN1A–pCDK6–pRB1–pE2F2/E2F3 > 0.9645

results of the assay testing the caspase-dependent apoptosis (shown
in Figure 4 (b)).

The list of hypothesized genetic pathways are given in Table 2
with their associated confidence. For ERK pathway, the regulati-
ons of Ras family genes as well as ERKs, MAPK1 and MAPK3,
are significant. For the apoptosis pathway, we identify the regu-
lation of anti-apoptotic PI3K-Akt-NFκB pathway. The activation
of this pathway will induce the expression of multiple cell survi-
val genes, including BIRC2, BIRC4, BIRC5, BCL2, BCLXL, etc,
leading to the suppression of cell death. Respecting the results of
pathway status evaluation, this discovery suggests that compared
to pro-apoptotic caspase cascade, the suppression of anti-apoptotic
mechanism seems to play more important roles in effective NPC
treatment.

The results of thein vivo dataset is shown in Table 3. From the
table, tumor samples are classified into two groups with respect to
their molecular response to treatment. Pt18 is the sample without
tumor. For this sample, consistent pathways are identified for
cell proliferation, cell cycle regulation, and apoptosis, with ERK
pathway slightly suppressed, and the G1/S cell cycle progres-
sion and apoptosis pathway slightly induced. From the table, we
observe that the post-treatment status of ERK pathway and apop-
tosis pathway of Pt18 can be used to separate the two responding

groups in a nearly perfect manner. Except for Pt14, all respon-
ders exhibit a more significant suppression in ERK pathway and
induction in the apoptosis pathway compared to Pt18, while all
non-responders exhibit the opposite behavior. This observation is
consistent with the results of thein vitro dataset.

Epstein-Barr virus (EBV) infection has been learnt to play a cri-
tical role in the pathogenesis of NPC (Pathmanathanet al., 1995)
(the LMP1, a key effector of EBV-mediated B cell transformation
is reported to express in more than 80% of NPC biopsies (Brook
et al., 1992)). The dysregulation of multiple signaling pathways,
including NFκB, MAP kinase (ERK, JNK and p38), JAK-STAT
and PI3K-Akt are suggested induced by EBV infection (Tsaoet al.,
2002). Particularly, it is specified that the up regulation of NFKB2
and BIRC5 contribute in increasing resistance to apoptosis, and the
role of BIRC5 in resisting apoptosis in NPC has been confirmed by
RNA interference (Shiet al., 2006). On the other hand, CYC202
inhibits CDK-2, -7 and -9 through competitive inhibition of ATP
binding (Mcclueet al., 2002). CDK7 and CDK9 phosphorylate the
carboxyl terminal domain of RNA polymerase II, which initiates the
gene transcription. The efficacy of CYC202 has been evaluated in a
panel of cancer cells, including B-cell chronic lymphocytic leuke-
mia (Alvi et al., 2005), colon cancer (Whittakeret al., 2004), lung
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Table 3. The results of signaling pathway status estimation for thein vivo dataset: The “response”
column shows the molecular response to treatment for patients. The “status” column shows the
estimated post-treatment pathway status.

Patient Response ERK JNK/p38 G1/S Apoptosis
Status Conf. Status Conf. Status Conf. Status Conf.

Pt5 P(ositive) -2.25 0.98 -3.08 0.99 - - 1.34 0.99
Pt8 P - - -1.01 0.99 - - 0.82 0.98
Pt9 P -0.97 0.98 - - 0.76 0.95 - -
Pt14 P - - - - -0.61 0.99 -0.86 0.99
Pt16 P -0.20 0.99 -0.20 0.95 0.29 0.99 1.42 0.97
Pt17 P -1.02 0.99 -1.02 0.99 -0.33 0.96 1.01 0.99
Pt19 P - - -0.86 0.98 - - 0.91 0.98
Pt18 No Tumor -0.15 0.99 - - 0.28 0.99 0.13 0.99
Pt1 N(egative) 0.21 0.95 0.52 0.99 1.06 0.97 -1.00 0.98
Pt7 N -0.10 0.97 -0.68 0.96 0.28 0.98 0.11 0.98
Pt10 N 1.02 0.99 1.16 0.99 - - -1.57 0.97
Pt15 N - - - - - - -1.01 0.98
Pt20 N 1.30 0.98 - - -0.93 0.96 -1.68 0.99

cancer (Rajeet al., 2005), etc. Due to the suppression of gene trans-
cription, the greatest effect is observed on gene products with short
mRNA and protein half life, such as apoptosis regulators, inclu-
ding NFκB targeted genes and IAP family (BIRC2, BIRC4 and
BIRC5), M-phase cell cycle regulators, and some other transcrip-
tional inducible genes (Lamet al., 2001). The suppression of genes
involved in ERK pathway, anti-apoptotic pathway and cell cycle
regulation, including MAPK1, MAPK3, MCL1, BCL2, BIRC4,
BIRC5, CCND1, are frequently observed associated with the treat-
ment of CYC202 (Meijeret al., 1997; Whittakeret al., 2004; Alvi
et al., 2005; Rajeet al., 2005; Smith and Yue, 2006; Lacrimaet al.,
2005).

In the present study, our Drug Pathway Decipherer identifies the
different regulation of ERK pathway and the apoptosis pathway bet-
ween responders and non-responders bothin vitro andin vivo. The
hypothesized underlying genetic regulatory mechanisms are consi-
stent with the results from the literature. Our results indicate that the
dysregulation of Ras-ERK pathway and PI3K-Akt-NFκB pathway
are probably the mechanisms for CYC202-insensitive NPC cells to
resist the drug treatment. Evidences show that the simultaneous fai-
lure of multiple cancer suppression pathways may be derived from
the unsuccessful suppression of the activity of RNA polymerase II.
Furthermore, respecting the observation of decreasing Rb phospho-
rylation and obvious G1 cell cycle arrest in CNE1 (data not shown),
it suggests the drug has a potency on the suppression of G1/S pro-
gression in non-responders. We suspect that CYC202 has a binding
preference to CDK2 rather than to CDK7 and CDK9 in the drug
resistant NPC cells.

CONCLUSIONS
In this paper, we introduce our drug pathway identification system
for the purpose of treatment understanding, and report the applica-
tion of this system to an NPC study. We generate hypotheses for
consistently regulated genetic pathways and estimate the status of
multiple signaling pathways. By comparing the pathway status, we
conclude that the unsuccessful suppression of the ERK pathway and

anti-apoptosis pathway is the reason for non-responders to escape
the drug arrest, which is probably due to the binding preference of
the drug in different samples.

Two issues remain in our system. First, the responding group
information is ignored. Samples with similar response may include
extra information for drug pathway identification. Because of the
limitation of the sample size of our study, this information is
not taken into consideration, while nevertheless, from the expe-
riment results of thein vitro dataset, the drug responders and
non-responders can be nearly perfectly separated with respect to the
pathway status, which verifies our expectation. Second, the com-
pensatory relationships between genes are not considered. Since
gene functions are redundant, it is non-trivial to consider genes with
similar roles in a particular process to estimate the overall status of
pathway regulation.
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