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Super-Secondary structure elements (super-SSEs) are the structurally conserved ensem-
bles of secondary structure elements (SSEs) within a protein. They are of great biological
interest. In this work, we present a method to formally represent and mine the sequence
order independent super-SSE motifs that occur repeatedly in large data sets of protein
structures. We represent a protein structure as a graph, and mine the common cliques
from a set of protein graphs in order to find the motifs. We mine two categories of super-
SSE motifs: the generic motifs that occur frequently across the entire database of protein
structures, and the fold-preferential motifs that are concentrated in particular protein
fold types. From the experimental data set of 600 proteins belonging to 15 large SCOP
Folds, we have discovered 21 generic motifs and 75 fold-preferential motifs that are both
statistically significant and biologically relevant. A number of the discovered motifs (both
generic and fold-preferential) resemble the well-known super-SSE motifs in the literature
such as beta hairpins, Greek keys, zinc fingers, etc. Some of the discovered motifs are of
novel shapes that have not been documented yet. Our method is time-efficient where it
can discover all the motifs across the 600 proteins in less than 14 minutes on a stand-
alone PC. The discovered motifs are reported in our project webpage:
http://www1.i2r.a-star.edu.sg/~azeyar/SuperSSE/
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1. Introduction

Proteins are the workhorses in the cells of living organisms. A protein is made up of
a sequence of amino acid (AA) residues which folds into a particular 3-dimensional
(3D) structure by the various forces of nature. A 3D protein structure consists of
frequent and structurally conserved elements called secondary structure elements
(SSEs). Alpha helices and beta strands are the two common types of SSEs. There
are in turn some ensembles of SSEs that are frequent and structurally conserved.
They usually serve as the structural and/or functional units within a protein, and
are called super-secondary structure elements (super-SSEs) [4].

Biologists are very interested in super-SSEs because they are usually associated
with basic structural configurations and/or basic biological functions of the proteins.
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Some of the well-known super-SSE types are helix-loop-helix, beta ribbon, beta
hairpin, beta-alpha-beta, zinc finger, EF hand, Greek key, etc. Researchers have
studied super-SSEs extensively for more than three decades [12, 21, 23–26].

A super-SSE motif is a particular type of structurally similar super-SSEs that
occur frequently across a given set of protein structures. In this paper, we propose
a method to (1) formally represent the sequence order independent (sequentially
disconnected) super-SSEs with respect to their structural conformations, and (2)
mine the motifs of those super-SSEs in a given set (either the entire database or a
particular fold type) of protein structures.

Conventionally, a super-SSE is defined as a set of sequentially connected (i.e.
sequence order preserved) SSEs that are neighbored to each other in 3D space.
However, there exists a number of biologically significant structural motifs being
composed of SSEs that are spatially proximate yet sequentially not connected [5, 9,
25]. Such a motif can be termed a sequence order independent motif.

In this work, we generalize the definition of a super-SSE by relaxing the sequence
order constraint with a view to covering the sequence order independent motifs. For
example, while the conventional definition covers only the sequence order preserved
motif A–B–C as shown in Fig. 1(a), our definition can also deal with the sequence
order independent motif A’–B’–C’ as shown in Fig. 1(b).

 

Fig. 1. (a) A conventional (sequence order
preserved) beta-alpha-alpha super-SSE. (b) A
sequence order independent super-SSE with the
same spatial configuration.

 

Fig. 2. Two beta-alpha-alpha super-SSEs
with different structural configurations.

In our proposed method, we represent a protein structure as a labeled graph with
each node being an SSE, and each edge being the relationship between two close
enough SSEs. A clique (a fully connected sub-graph) within a graph corresponds to
a super-SSE. We develop an algorithm to mine the frequent clique types (super-SSE
motifs) in a given protein structure data set. From a experimental data set of 600
proteins, we can discover a number of generic and fold-preferential motifs that are
both statistically significant and biologically relevant within a short time.

2. Motivations

2.1. Need for a Formal Representation Scheme

Traditionally, super-SSEs (both sequence order preserved and sequence order inde-
pendent) are described less formally with the names such as helix-loop-helix, alpha-
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beta-alpha, etc. Using this verbal description, we have only a very limited ability
to identify and quantify the super-SSEs systematically. For example, we may be
able to distinguish a beta-alpha-alpha from an alpha-beta-beta. But we may not
be able to differentiate between two beta-alpha-alpha super-SSEs having different
structural configurations as shown in Fig. 2. The ability to distinguish or classify
such kinds of SSEs into different types is highly desirable for the biologists, since it
will enable them to study super-SSEs in a more subtle manner [12].

Some methods such as [12, 24] try to identify the different types of super-SSEs
by characterizing the loops between the constituent SSEs of a super-SSE. But, this
approach is also limited because it requires the sequence order constraint, and its
applicability is confined to the super-SSEs with only two elements.

Thus, there is a need for a formal representation scheme which enables the
identification and quantitative manipulation (comparison, clustering, etc.) of super-
SSEs in a more general manner (i.e. applicable to all kinds of super-SSEs regardless
of their sequence order and the number of SSEs they contain). In this work, we
try to address this formalization issue by representing proteins and super-SSEs as
labeled graphs and labeled cliques respectively.

2.2. Need for a Large-Scale Motif Mining Method

Structural motif mining is an active area of research in structural bioinformatics.
Different methods use different description of structural motifs, and try to mine the
frequent motifs from a set of protein structures. Trilogy [3] explores the sequence–
structure motifs made up of AA residue triplets; SPratt2 [17] mines the conserved
residues within a fixed-size bounding sphere; MotifMiner [6] mines the frequent
atom-sets; and Huan et al. [15, 16] mines the frequent sub-graphs/cliques of AA
residues, etc.

In this study, we will focus on the discovery of structural motifs in terms of the
super-SSEs. A number of methods, such as Koch et al. [19], MASS [9], PROTEP [1],
and Szustakowski et al. [25], have been proposed to detect both sequence order
preserved and sequence order independent super-SSE motifs. All of these methods
adopt the comparison-based motif discovery approach [11] in which each method
employs one of the many multiple structural alignment algorithms to generate the
motifs. Unfortunately, such a comparison-based approach is only suitable for the
discovery of motifs from small data sets with just tens of protein structures. In
terms of its scalability, it is not suited for motif discovery from larger data sets with
hundreds or thousands of proteins for the following reasons.

• Usually, a motif does not occur in all proteins in the data set, but only in
a subset of it. Since we do not know a priori the motifs nor the subsets
of proteins in which these motifs occur, we need to explore all the possible
combinations of proteins in the data set. In order to retrieve the complete
set of motifs from a given set of N proteins, a naive approach will take an
exponential time, whist an intelligent approach, such as the one described
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in Koch et al. [19], will still take an O(N3) time.
• If a greedy strategy is adopted to reduce the time cost, some pivot proteins

can be selected to serve as seeds for multiple alignments. But, this cannot
always guarantee a complete answer in the event where a motif does not
occur in any of the selected pivots.

• Although a single run of an expensive comparison-based motif discovery
algorithm (which may take several days to several weeks) may still be af-
fordable, one will need multiple runs of the algorithm with different sets of
parameters in order to secure the desired results. Such multiple runs are
prohibitively expensive to be carried out in reality.

With a view to overcoming the abovementioned problems, we adopt the pattern-
mining approach — also known as the pattern-driven approach [11] — for the
large-scale discovery of super-SSE motifs. The pattern-mining strategy has been
used for discovering sequence, structure, and sequence–structure motifs of various
kinds [3, 6, 15–17]. However, to our best knowledge, it has not been used for the
discovery of super-SSE motifs before.

Since we represent a protein structure as a graph, we need to apply pattern
mining algorithms for graphs so as to discover our desired super-SSE motifs from
the graphs. This has been technically infeasible until the recent emergence of the
algorithms for the large-scale mining of graph databases for sub-graphs [28], quasi-
cliques [22], and cliques [27].

In this work, we utilize one of these latest technologies, namely CLAN [27], to
mine the frequent cliques representing the super-SSE motifs. CLAN is known to
be a complete clique mining algorithm where it enumerates all the frequent closed
cliques from a given database of graphs. It is also an efficient tool that can manage
large graph databases with fast response times.

Recently, Huan et al. [15, 16] has used graph representation and mining to find
the motifs of AA residue nodes. However, it should be noted that their objective is
substantially different from ours in which they try to mine the small residue-based
packing motifs rather than the relatively large super-SSE motifs as in our case.

3. Methods

3.1. Formal Representation Of Super-SSE Motifs

In this section we will describe how we formalize the representation of a protein and
that of a super-SSE motif.

3.1.1. SSE as a Vector

We use the STRIDE algorithm [13] to identify the SSEs in protein structures. Since
SSEs are relatively straight in structure, we can approximate each SSE with a vector
(line segment) in 3D space [9, 21]. Fig. 3(b) shows the vector representation of SSEs.
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3.1.2. Protein Structure as a Graph

We present a protein structure as a graph with its nodes being the SSE vectors,
and edges being the relationships between these SSE vectors. Graph representation
of protein structures has also been used previously in a number of protein structure
comparison and analysis methods [1, 19, 21].

For a protein with n number of SSEs, we have a graph of n nodes. A pair of
nodes in the graph is connected by an edge if the distance of closest approach [31]
between the corresponding SSE vector pair is less than the distance threshold dt.
The constituent SSEs in a super-SSE must be close enough to each other, i.e. less
than dt, in order to act effectively as a structural/functional unit. Since we do not
put an edge between any pair of nodes whose SSE vectors are farther than dt, those
two SSEs can never become parts of a single super-SSE. We use dt = 16Å as the
default value. The graph representation of a protein structure is depicted in Fig. 4.
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Fig. 3. (a) Original SSEs (b) Vector represen-
tation of SSEs and (c) Various types of rela-
tionships between SSEs.
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Fig. 4. Graph representation of a protein
structure with 5 SSEs. A dotted line denotes
a non-existing edge between two node because
their SSEs are farther than the distance thresh-
old dt.

Labels are assigned to all nodes and edges. Each node label corresponds to the
attributes of the SSE it represents. We use two attributes: (1) type (alpha-helix
or beta-strand) and (2) length (in terms of the number of AAs) of the SSE for a
node label. Each edge label corresponds to the attributes of the relationship of the
two SSEs it connects. We use four attributes: (1) acute angle, (2) nearest vertex-
pair distance, (3) other vertex-pair distance, and (4) midpoint-midpoint distance
between the two SSE vectors for an edge label. Fig. 3(c) demonstrates the four edge
label attributes. Our graph representation scheme is sequence order independent in
that the node and the edge labels do not carry any information regarding sequence
positions or sequential connectivity of the SSEs.

For each label (either for node or edge), we quantize each attribute, concatenate
the binary values for all attributes, and convert the concatenated bit string into a
single integer value. The number of bins for each attribute is empirically determined.
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3.1.3. Super-SSE Motif as a Clique

In a graph for a protein structure as described above, each clique (a sub-graph
where every node is connected by an edge with every other node) can be viewed
as a super-SSE. According to our definition, every constituent SSE within a super-
SSE must be close enough (i.e. connected by an edge) to every other constituent
SSE. Thus, any other kind of non-clique induced sub-graph does not qualify as a
super-SSE.

Two given cliques (representing two super-SSEs) can be considered as struc-
turally similar and thus belonging to the same type if they are isomorphic, i.e. all of
their corresponding node and edge labels are matched. (Partially-matched cliques
are not guaranteed to similar to each other despite their matching portions.) If the
instances of a particular super-SSE type occurs frequently in a given set of protein,
this super-SSE type can be defined as a motif.

3.2. Mining Super-SSE Motifs

A frequent clique is a clique that occurs in at least st graphs in a given set of
protein structure graphs, where st is a user-defined support threshold. A frequent
clique corresponds to a super-SSE motif.

We find the frequent cliques from the given set of graphs using a general-purpose
frequent clique mining algorithm called CLAN [27]. CLAN reports the frequent
cliques only in terms of their node labels. (Hereafter, we will name such a clique as
a node-frequent clique.) In other words, the set of node-frequent cliques reported by
CLAN is a superset of the set of actual frequent cliques with both their node and
edge labels taken into account.

Thus, we have to test whether a clique reported by CLAN is actually frequent or
not. Since CLAN reports only the node labels of the node-frequent cliques and their
respective support values, we have to find the actual instances of these node-frequent
cliques in all the protein graphs in the data set. We use the VF2 [7] sub-graph
isomorphism algorithm to find these instances.

After finding all the instances for a node-frequent clique in all protein graphs,
we find the frequent instance(s) (both in terms of their node and edge labels) that
occur in at least st protein graphs in the given data set, and report them as the
desired super-SSE motifs. (Note that, for one node-frequent clique, there may be
more than one distinct frequent clique because of the different edge labels. On the
other hand, for some node-frequent cliques, there may be no actual frequent clique
at all. It was observed that the number of the actual frequent cliques is only about
10% of the original node-frequent cliques.)

We try to find two categories of super-SSE motifs: (1) the motifs that occur
frequently across the entire database — termed the generic motifs, and (2) the
motifs that occur concentratively in particular protein fold types (SCOP Folds in
our case) — termed the fold-preferential motifs.
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3.2.1. Generic Motifs

First, we find the generic motifs each of which occurs in at least stg proteins across
the whole given database of protein structures, where stg is a user-defined support
threshold. After we have discovered the generic motifs by the procedure described
above, we need to assess their statistical significance. For that, we calculate the
estimated p-values of them using the model described by He and Singh [14].

According to this model, we can represent a generic motif ω as a feature vector
of the occurrences of the basic elements it contains.

ω = {y1, y2, . . . , yt} (1)

where t is the number of unique basic elements in the database, and yi (1 ≤ i ≤ t)
is the number of occurrences of the i-th basic element in the motif ω.

Here, we treat each distinct combined label, which is a concatenated string of
the label of an edge plus the labels of nodes connected by the edge, as our basic
element. We can calculate the probability of ω occurring at random in a protein
graph in the database as:

P̂ (ω) =
t∏

i=1

P (Yi ≥ yi) (2)

where P (Yi ≥ yi) is the probability that the i-th basic element (combined label)
occurs at least yi times in a random vector. This is calculated based on the back-
ground distribution of the basic elements in the database. Finally, the p-value of
the generic motif ω (termed generic p-value) is calculated as:

PVg(ω) =
N∑

µ=T

bino(µ,N, P̂ (ω)) (3)

where N is the number of graphs (proteins) in the database; T is the support, i.e,
the number of proteins in which the motif ω occurs (T ≥ stg); and bino(¦, ¦, ¦) is the
binomial distribution function. If the generic p-value is less than or equal to 0.05,
the motif is considered statistically significant.

3.2.2. Fold-preferential Motifs

Second, we mine the fold-preferential motifs that occur more frequently in a certain
protein fold type rather than in the other protein fold types. In particular, we find
the motifs that are concentrated in certain SCOP Folds. (SCOP [30] is a protein
structure classification system. A Fold in SCOP consists of a set of proteins that
are generally similar to each other in terms of their 3D structures.) We define
a particular motif as fold-preferential only if the motif occurs in at least twice the
number of proteins in its most frequent SCOP Fold than in its second-most frequent
SCOP Fold.

We find the fold-preferential motifs each of which occurs in at least stf proteins in
its most frequent SCOP Fold, where stf is a user-defined support threshold. Then,
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we calculate the statistical significance of the fold-preferential motifs in terms of
another type of p-value named fold-preferential p-value.

We can calculate the fold-preferential p-value of a particular motif ω to occur
by chance in a particular SCOP Fold by using a hypergeometric distribution [15]:

PVf (ω) = 1−
K−1∑

i=0

(
F
i

)(
N−F
T−i

)
(
N
T

) (4)

where N is the number of proteins in the entire database; T is the total number
of proteins in which the motif occurs in the entire database; (For each motif for a
SCOP Fold, we also have to enumerate its other instances outside its own Fold in the
rest of the database by using the VF2 algorithm again.) F is the size of the SCOP
Fold in which the motif most frequently occurs; and K is the number of proteins
in which the motif occurs in this Fold (K = T ∩ F ). Again, if the fold-preferential
p-value is less than or equal to 0.05, the motif is regarded as statistically significant.

4. Results and Discussions

We use the same database of 600 proteins as previously used in [2]. The list of
the 600 proteins is given in the project webpage. This is a subset of the SCOP
database [30] with less than 40% sequence homology. The PDB-style co-ordinates
for these proteins are obtained from the ASTRAL database [29].

The database of 600 proteins is composed of 15 large SCOP Folds each having
40 member proteins. (If a Fold contains more than 40 members, we randomly select
40 from it.) The SCOP designations for these 15 Folds and their descriptions are
given in Table 1.

First, we mine the generic super-SSE motifs that occur frequently across the
whole database of 600 proteins with the support threshold of stg = 3%, and assign
the generic p-values to the motifs. Then, we find the fold-preferential super-SSE
motifs for each of the 15 SCOP Folds with the support threshold stf = 10%, and
assign both the fold-preferential p-values and the generic p-values to the motifs.

We conducted our experiments on a single PC with Pentium D 3.2GHz processor
and 2GB main memory running Windows XP. The time statistics show that the
proposed method is efficient. The total running time using the default parameters
(dt = 16Å, stg = 3%, and stf = 10%) is only 805 sec (13 min 25 sec) in which
178 sec is for constructing the protein structure graphs, 274 sec is for mining of the
generic motifs, and 353 sec for mining the fold-preferential motifs.

The effects of varying the three important parameters dt, stg and stf are dis-
cussed in the project webpage.

4.1. Generic Motifs

We have discovered a total of 22 generic motifs among which 21 are statistically
significant in terms of their generic p-values. All of these 21 generic motifs are 3-SSE
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Table 1. Number of significant fold-preferential motifs discovered in the SCOP Folds (dt = 16Å,
stf = 10%).

SCOP Description #3-SSE #4-SSE Total
Fold motifs motifs

a.4 DNA/RNA-binding 3-helical bundle 0 0 0
a.39 EF Hand-like 0 0 0
a.118 alpha-alpha superhelix 0 0 0
b.1 Immunoglobulin-like beta-sandwich 1 0 1
b.40 OB-fold 0 0 0
c.1 TIM beta/alpha-barrel 8 0 8
c.2 NAD(P)-binding Rossmann-fold domains 20 3 23
c.3 FAD/NAD(P)-binding domain 13 4 17
c.23 Flavodoxin-like 0 0 0
c.37 P-loop containing nucleoside triphosphate hydrolases 1 0 1
c.47 Thioredoxin fold 3 0 3
c.55 Ribonuclease H-like motif 0 0 0
c.69 alpha/beta-Hydrolases 20 1 21
d.15 beta-Grasp (ubiquitin-like) 1 0 1
d.58 Ferredoxin-like 0 0 0

Total 67 8 75

motifs. (There are a vast number of 2-SSE motifs. In this work, we simply ignore
them because they are considered less significant. On the other hand, we have not
detected any frequent motif with the size larger than 3 SSEs.) We rank the motifs
by their generic p-values. The distribution of the motifs’ generic p-values is shown
in Fig. 5.

The highest-ranked generic motif has the lowest p-value of 5.75×10−22. Its ran-
dom probability P̂ (ω) is 0.0272, and it occurs in 67 proteins across 7 distinct SCOP
Folds. It resembles a version of a well-known conventional super-SSE motif called
three-stranded beta hairpin [8, 10] with all beta strands approximately parallel to
each other as shown in Fig. 7. (Higher-resolution images for Fig. 7–10 can be viewed
in the project webpage.)

We have also discovered a number of other biologically relevant motifs that look
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Fig. 5. P-values of generic motifs (dt = 16Å,
stg = 3%).
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d1db3a_  
(c.2) 

d3lada2  
(c.3) 

d1eucb1  
(c.23) 

d1j6za2  
(c.55) 

Fig. 7. Some instances of the rank #1 generic
motif: a 3-SSE motif resembling a three-
stranded beta hairpin with all parallel beta
strands.

 
 
 

d1edza1 d1gcoa_ d1edoa_ d1e7wa_ 

Fig. 8. Some instances of the rank #1 fold-
preferential motif in SCOP Fold c.2: a 3-SSE
motif resembling a three-stranded beta hairpin
with two parallel and one angled beta strands.

like the well-known conventional super-SSE motifs such as different versions of beta
hairpins, beta-alpha-beta, zinc fingers, etc. The complete list of 21 generic motifs
and their occurrences is reported in the project webpage.

4.2. Fold-preferential Motifs

We have found a total of 110 fold-preferential motifs among which 75 are statistically
significant in terms of both their fold-preferential and generic p-values. Among these
75 significant motifs, 67 are the 3-SSE and 8 are the 4-SSE motifs. 9 of the fold-
preferential motifs overlap with the generic motifs.

The motifs are found in 8 out of the 15 SCOP Folds investigated. The number
of motifs found for each Fold is given in Table 1. We rank the motifs by their fold-
preferential p-values. The distributions of the p-values of both kinds for those 75
motifs are shown in Fig. 6.

The highest-ranked motif has the lowest fold-preferential p-value of 3.22×10−11,
and the genetic p-value of 1.40×10−5. It is preferential to SCOP Fold c.2. It occurs
in 10 proteins in c.2, but only in 2 proteins in the rest of the database. It is also
similar to a version of the three-stranded beta hairpin motif [8, 10] with two parallel
and one angled beta strands as shown in Fig. 8.

We have found a 4-SSE motif as our third-ranked motif. It is a beta-beta-beta-
alpha motif (Fig. 9) which resembles the sequence order preserved version described
in [18]. It has the fold-preferential p-value of 2.56×10−8, and the genetic p-value of
3.80×10−17. It is preferential to SCOP Fold c.3. It exists in 7 proteins in c.3, but
only in 1 protein in the rest of the database.

We have also discovered a number of other biologically relevant motifs as our
fold-preferential motifs. We report the full list of the 75 fold-preferential motifs in
the project webpage.

It is observed that we have achieved our objective of formalization and specifi-
cation of the super-SSE motifs as discussed in Section 2.1. Different versions of the
motifs with the same verbal description can be classified based on their structural
configurations. For example, we are able to distinguish the two different versions
of the 3-SSE motifs resembling the three-stranded beta hairpin [8, 10] as shown in
Figures 7 and 8. It has been previously observed that super-SSEs or SSE packings
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d1ojt_2 d3lada2 d1d7ya2 d3grs_2 

Fig. 9. Some instances of the rank #3 fold-
preferential motif in SCOP Fold c.3: a 4-SSE
motif resembling a beta-beta-beta-alpha motif.

 
 
 

d2bce__ d1qe3a_ d1thg__ d1ea5a_ 
 

Fig. 10. Instances of a 3-SSE T-shape fold-
preferential motif in SCOP Fold c.69 (fold-
preferential rank #44).

with the same SSE components but with the different configurations correspond
to different biological functions [12, 20]. As such, it can be conjectured that those
different versions of motifs may have different functions. However, an in-depth bio-
logical analysis will be required to verify this.

In addition, we have also discovered some new types of super-SSE motifs (both
generic and fold-preferential) whose shapes have not been documented in the lit-
erature yet. For example, we have discovered a 3-SSE T-shape motif preferential
to SCOP Fold c.69 as shown in Fig. 10. Biologists can further investigate their
detailed structural and functional properties, and possibly explore their potential
usability in biomedical applications such as drug target finding.

5. Conclusion

In this paper, we have proposed a method to formalize the representation of se-
quence order independent super-SSEs, and mine the frequent super-SSE motifs
from a large data set of protein structures. We have shown that our method is both
effective and efficient. It can discover the generic and fold-preferential motifs that
are statistically significant and biologically interesting within a short time. Biolo-
gists can further explore our discovered motifs to find out the potential usability of
them in biomedical applications.

References

[1] Artymiuk, P. J., Spriggs, R. V., and Willett P., Graph theoretic methods for the
analysis of structural relationships in biological macromolecules, J. Am. Soc. Info.
Sci. Tech., 56:518–528, 2005.

[2] Aung, Z. and Tan, K. L., Automatic 3D protein structure classification without struc-
tural alignment, J. Comp. Biol., 12:1221–1241, 2005.

[3] Bradley, P., Kim, P. S., and Berger B., TRILOGY: discovery of sequence–structure
patterns across diverse proteins, Proc. Natl Acad. Sci., USA, 99:8500–8505, 2002.

[4] Branden, C. and Tooze, J., Introduction to Protein Structure, Garland Publishing,
2nd edition, 1999.

[5] Chothia, C., Levitt, M., and Richardson, D., Structure of proteins: packing of alpha-
helices and pleated sheets, Proc. Natl Acad. Sci., USA, 74:4130–4134, 1977.

[6] Coatney, M. and Parthasarathy, S., MotifMiner: efficient discovery of common sub-
structures in biochemical molecules, Knowl. & Infom. Sys., 7:202–223, 2005.

[7] Cordella, L. P., Foggia, P., Sansone, C., and Vento, M., An improved algorithm for
matching large graphs, Proc. IAPR GbRPR’01, 149–159, 2001.



August 2, 2007 19:41 WSPC - Proceedings Trim Size: 9.75in x 6.5in SuperSSE˙GIW

12 Z. Aung & J. Li

[8] Das, C., Raghothama, S., and Balaram, P., A designed three stranded beta-sheet
peptide as a multiple beta-hairpin model, J. Am. Chem. Soc., 120:5812–5813, 1998.

[9] Dror, O., Benyamini, H., Nussinov, R., and Wolfson, H., MASS: multiple structural
alignment by secondary structures, Bioinformatics, 19(Suppl. 1):i95–i104, 2003.

[10] Efimov, A. V., Super-secondary structures involving triple-strand beta-sheets, FEBS
Lett., 334:253–256, 1993.

[11] Eidhammer, I., Jonassen, I., and Taylor, W. R., Protein structure comparison and
structure patterns, J. Comp. Biol., 7:685–716, 2000.

[12] Fernandez-Fuentes, N., Oliva, B., and Fiser, A., A supersecondary structure library
and search algorithm for modeling loops in protein structures, Nucleic Acids Res.,
34:2085–2097, 2006.

[13] Frishman, D. and Argos, P., Knowledge-based secondary structure assignment, Prot.
Struct. Funct. Genet., 23:566–579, 1995.

[14] He, H. and Singh, A. K., GraphRank: statistical modeling and mining of significant
subgraphs in the feature space, Proc. ICDM’06, 885–890, 2006.

[15] Huan, J., Bandyopadhyay, D., Prins, J., Snoeyink, J., Tropsha, A., and Wang, W.,
Distance-based identification of spatial motifs in proteins using constrained frequent
subgraph mining, Proc. CSB’06, 227–238, 2006.

[16] Huan, J., Bandyopadhyay, D., Wang, W., Snoeyink, J., Prins, J., and Tropsha,
A., Comparing graph representations of protein structure for mining family-specific
residue-based packing motifs, J. Comp. Biol., 12:657–671, 2005.

[17] Jonassen, I., Eidhammer, I., Conklin, D., and Taylor, W. R., Structure motif discovery
and mining the PDB, Bioinformatics, 18:362–367, 2002.

[18] Kagawa, W., Kurumizaka, H., Ishitani, R., Fukai, S., Nureki, O., Shibata, T., and
Yokoyama, S., Crystal structure of the homologous-pairing domain from the human
Rad52 recombinase in the undecameric form, Mol. Cell, 10:359–371, 2002.

[19] Koch, I., Lengauer, T., and Wanke, E., An algorithm for finding maximal common
subtopologies in a set of protein structures, J. Comp. Biol., 3:289–306, 1996.

[20] Kurochkina, N. and Privalov, G., Heterogeneity of packing: structural approach, Pro-
tein Sci., 7:897–905, 1998.

[21] Mitchell, E. M., Artymiuk, P. J., Rice, D. W., and Willett, P., Use of techniques
derived from graph theory to compare secondary structure motifs in proteins, J. Mol.
Biol., 212:151–166, 1989.

[22] Pei, J., Jiang, D., and Zhang, A., On mining cross-graph quasi-cliques, Proc.
SIGKDD’05, 228–238, 2005.

[23] Rao, S. T. and Rossman, M. G., Comparison of super-secondary structures in pro-
teins, J. Mol. Biol., 76:241–256, 1973.

[24] Sun, Z. and Blundell, T., The pattern of common supersecondary structure (motifs)
in protein database, Proc. HICSS’95, 312–318, 1995.

[25] Szustakowski, J. D., Kasif, S., and Weng, Z., Less is more: towards an optimal uni-
versal description of protein folds, Bioinformatics, 21(Suppl. 2):ii66–ii71, 2005.

[26] Taylor, W. R. and Thornton, J. M., Prediction of super-secondary structure in pro-
teins, Nature, 301:540–542, 1983.

[27] Wang, J., Zeng, Z., and Zhou, L., CLAN: an algorithm for mining closed cliques from
large dense graph databases, Proc. ICDE’06, 73, 2006.

[28] Yan, X. and Han, J., CloseGraph: mining closed frequent graph patterns, Proc.
SIGKDD’03, 286–295, 2003.

[29] http://astral.berkeley.edu/

[30] http://scop.mrc-lmb.cam.ac.uk/scop/

[31] http://softsurfer.com/Archive/algorithm_0106/algorithm_0106.htm


