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We evaluate the performance of six amino acid indices in B cell epitope residue prediction using the 
classical sliding window method on five data sets. Four of the indices: i.e. relative connectivity, 
clustering coefficient, closeness and betweenness are newly derived from the topological parameters 
of residue networks. The other two are Parker's hydrophilicity and Levitt's index, known as the best 
indices so far for B cell epitope prediction. On four of the data sets, the performance of all the 
indices was comparable and poor in general. When applied to one well-annotated data set, the 
performances improved and the 4 network based indices showed better performance than that of 
Parker's hydrophilicity and Levitt's index. When using the relative connectivity index on this data 
set, the prediction accuracy, sensitivity and specificity reached 73.6%, 73.0% and 75.0% 
respectively, with an area under the curve about 0.796. Thus, we suggested that this index is a good 
choice for B cell epitope prediction. It also indicates that the low performance of B cell epitope 
prediction is not only due to the methods and amino acid indices used, but also the data set as well. 
Interestingly, on the well-annotated data set, the performance of B cell epitope residue prediction is 
very similar to that of protein surface residue prediction, especially at the 10 and 20 Å2 cutoffs. It is 
suggested that the performance in surface residue prediction might form a theoretical upper limit for 
the performance of B cell epitope residue prediction methods. 
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1. Introduction 

The B cell epitopes of proteins are special regions on proteins that can be recognized by 
the antigen binding sites of antibodies or B cell receptors. Identified B cell epitopes are 
very useful because they can further be developed into diagnostics [1], therapeutics and 
vaccines [2, 3]. Therefore, it's only natural that B cell epitope mapping has been a major 
field of immunology research. 

As identifying B cell epitopes experimentally is time-consuming and expensive, 
techniques to predict B cell epitopes have been developed for almost 30 years [4-17]. 
Most of these techniques are sliding window based sequence profiling methods. In brief, 
a window slides from the N-terminal to C-terminal of the query protein sequence. The 
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mean propensity value of the residues in the window is then assigned to the residue in the 
middle according on the amino acid index [18-20] (also known as the propensity scale) 
used in the prediction. By combining such predictions with experimental verification, 
many successful cases have been reported. However, the performance of this kind of B 
cell epitope predictions has been disputed [21-23]. In a recent report, Blythe et al 
assessed 484 amino acid indices in the AAindex database [20] with sequence profiling 
methods. They found that even the best set of amino acid indices performed only 
marginally better than random [24], indicating that better methods or new amino acid 
indices are needed for B cell epitope prediction. A very recent study has confirmed that 
Parker's hydrophilicity (Ph) [8] and Levitt's index (Li) [12] are the best two indices so far 
for sequence profiling based B cell epitope prediction. However, even the performance 
of Ph and Li are unsatisfactory [25]. 

In a previous study, we built four new amino acid indices, termed relative 
connectivity (Rk), relative clustering coefficient (Rc), relative closeness (Ro) and relative 
betweenness (Rb), based on residue networks constructed from 640 representative PDB 
structures [26]. Compared with Ph and Li, these network topology based indices have 
shown better performance in protein surface residue prediction [26]. Surface residue 
prediction is related to B cell epitope prediction, due to the requirement for epitopes to be 
surface accessible to interact with an antibody [27, 28]. Since the network topology 
based indices have significantly better performance than Ph and Li in protein surface 
residue prediction [26], will they perform better in B cell epitope residue prediction too?  

To answer the above question, the performance of Ph, Li and the 4 residue network 
topology derived amino acid indices in B cell epitope residue prediction are evaluated 
and compared in this study. 

2. Methods and Data Sets 

2.1. Data sets 

Five data sets of proteins with annotated B cell epitope residues are used in the current 
study. The first data set, originally composed by Pellequer et al, contains 14 protein 
sequences and 82 epitopes [15]. We took the recreated electronic form of this dataset 
from the Lund group [25]. The second and the third data sets, denoted as AntiJen data set 
and HIV data set respectively, are composed by the Lund group [25]. The fourth data set 
is the DiscoTope data set, which has 75 antigens with B cell epitope residue annotation 
[29].  

We compiled a fifth data set from the CED database [30]. Taking the well-studied 
hen egg white lysozyme (HEL) as the model antigen, 19 epitopes were found and used as 
annotation. We call this data set the HEL data set. For the purpose of comparison, the 
solvent accessible area of hen egg white lysozyme is computed from its PDB structure 
(1HEL) with the NACCESS program [31] using default parameters. Surface residues are 
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assigned based on the solvent accessible area at different cutoff values of 1, 10, 20, 50 
and 100 Å2. 

2.2. Amino acid indices 

The 4 network topology based amino acid indices are taken from our pervious study [26]. 
The best two indices (Parker's hydrophilicity and Levitt's index) known for B cell epitope 
prediction are taken from references [12, 25]. They are listed in Table 1.  
 

Table 1. Amino acid indices used in prediction. 

 A C D E F G H I K L M N P Q R S T V W Y 

Rk 1.05 1.17 0.88 0.85 1.07 0.99 0.99 1.11 0.88 1.07 1.04 0.93 0.92 0.93 0.94 0.96 0.99 1.12 1.05 1.05 

Rc 0.99 0.89 1.11 1.13 0.92 1.08 1.00 0.89 1.10 0.92 0.95 1.07 1.01 1.06 1.04 1.05 1.01 0.90 0.93 0.94 

Ro 1.00 1.13 0.95 0.95 1.03 0.99 1.01 1.04 0.96 1.02 1.02 0.96 0.96 0.97 0.98 0.98 0.99 1.04 1.01 1.02 

Ro 0.96 1.60 0.63 0.61 1.31 0.77 1.03 1.43 0.61 1.30 1.24 0.72 0.83 0.73 0.82 0.80 0.90 1.35 1.20 1.16 

Ph 0.03 0.11 2.46 1.86 -2.78 1.28 0.30 -2.45 1.26 -2.87 -1.41 1.64 0.30 1.37 0.87 1.50 1.15 -1.27 -3.00 -0.78 
Li -0.56 -0.44 1.43 0.11 -1.13 2.15 -0.85 -1.38 0.02 -1.16 -1.69 1.02 3.00 0.08 -0.22 1.15 0.27 -1.50 -0.60 0.30 

 

2.3. Sequence profiling 

Sequence profiling is completed with the classical sliding window method. Briefly, a 
window slides from the N-terminal to C-terminal of the query protein sequence. The 
mean propensity value of the residues in the window is then assigned to the residue in the 
middle. At the N- and C- termini, we use asymmetric windows to avoid omitting 
prediction examples. Different window sizes of 1, 3, 5, 7, 9 and 11 are tested. If an index 
correlates negatively to the B cell epitope residues, it is then multiplied by -1 when used 
in prediction; this process makes the index have a positive predictive power. 

2.4. Performance measures  

Receiver operating characteristics (ROC) curves are constructed by varying the 
prediction threshold and plot the false-positive proportion (1-specificity) on the x-axis 
against the true positive proportion (sensitivity) on the y-axis [32]. The area under the 
ROC curve (Aroc) is used as the performance measure. For a random prediction, Aroc 
equals 0.5; for a perfect method, Aroc equals 1. Empirically, a prediction with an Aroc 
between 0.9 and 1 would be considered as "excellent"; 0.8-0.9, "good"; 0.7-0.8, "fair"; 
0.6-0.7, "poor"; 0.5-0.6, "fail". More practically, an Aroc value higher than 0.7 indicates 
a useful prediction performance [33]. In this study, ROC curves and related performance 
measures are constructed, visualized and calculated with the ROCR package [34]. 
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2.5. Programming and Statistics  

All analyses are implemented in Perl or R; the latter is a language and environment for 
statistical computing and graphics. For predictions of special interest, they are further 
bootstrapped 1000 times. Random predictions are simulated through permuting the 
prediction results 1000 times. The Aroc differences of different indices are evaluated 
with t-tests.  

3. Results 

3.1. Performances of indices on different data sets 

For each index and for each data set, sliding window sizes of 1, 3, 5, 7, 9 and 11 were 
used for B cell epitope residue prediction. The performance of the indices on each data 
set is shown in Table 2. The results for the window size at which the majority of indices 
reach maximum performance are shown. For example, "Pellequer(7)" means the Aroc 
values are from testing the Pellequer dataset using a sliding window size of 7. As shown 
in Table 2, all indices performed poorly on the Pellequer, AntiJen, HIV, and DiscoTope 
data sets. However, their performance improved significantly when applied to the well-
annotated HEL data set.  

 
Table 2. Index performance on 5 data sets. 

  Pellequer(7) AntiJen(11) HIV (11) DiscoTope(9) HEL (1) 

Rk 0.627  0.561  0.588  0.591  0.794  

Rc 0.637  0.564  0.586  0.608  0.752  

Ro 0.609  0.566  0.575  0.583  0.787  

Rb 0.633  0.567  0.589  0.610  0.772  

Ph 0.655  0.565  0.586  0.622  0.733  

Li 0.620  0.572  0.567  0.613  0.711  

 

3.2. ROC curves and statistical analysis 

According to Table 2, each index showed its best performance on the HEL data set at a 
sliding window size of 1. The prediction using the relative connectivity, Parker's 
hydrophilicity and Levitt's index were further bootstrapped 1000 times. Random 
predictions were simulated by permuting the prediction results 1000 times (see Table 3). 
Statistical tests showed that the relative connectivity index performed significantly better 
than the Parker's hydrophilicity and Levitt's index and the performance of all 3 were 
significantly better than random (P＜2.2×10-16). Their ROC curves were shown in 
Figure 1. On the HEL data set at a sliding window size of 1, the prediction accuracy, 
sensitivity and specificity of relative connectivity reached 73.6%, 73.0% and 75.0% 
respectively, with an area under the curve of 0.796. 
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Table 3. Comparing Rk performance with Ph, Li and Random on the HEL data set. 

 Mean Aroc±Standard Error 
Rk 0.796±0.001 
Ph 0.733±0.001 
Li 0.708±0.002 

Random 0.497±0.002 

 
 
 

 
 

Figure 1: ROC curves for Rk, Ph, Li and Random. Based on the HEL data set at a window size of 1. 

 

3.3. Similar performance between surface and B cell epitope residue prediction  

The solvent accessible area of hen egg white lysozyme is computed from its PDB 
structure (1HEL) with the NACCESS program using default parameters. Surface 
residues are assigned based on the solvent accessible area at different cutoff values of 1, 
10, 20, 50 and 100 Å2. Prediction of surface residues was carried out using a sliding 
window size of 1. Aroc values are shown in Table 4, where "Bepi" means B cell epitope 
residue prediction and "Surf1" means surface residue prediction at the 1 Å2 cutoff and so 
on. As shown in Table 4, the performance of B cell epitope residue prediction is very 
similar to that of protein surface residue prediction, especially at the 10 and 20 Å2 
cutoffs. 
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Table 4. Performance similarity between surface and B cell epitope residue prediction. 
 

 Bepi Surf1 Surf10 Surf20 Surf50 Surf100 

Rk 0.794 0.758 0.794 0.791 0.778 0.731 

Rc 0.752 0.727 0.773 0.767 0.732 0.594 

Ro 0.787 0.753 0.787 0.784 0.766 0.707 

Rb 0.772 0.744 0.786 0.777 0.744 0.624 

Ph 0.733 0.713 0.709 0.734 0.673 0.574 

Li 0.711 0.722 0.711 0.729 0.666 0.527 

 

4. Discussions 

4.1. Relative connectivity can be a good choice for B cell epitope prediction 

The most common method for B cell epitope prediction is the sliding window and amino 
acid index based sequence profiling method [4-17]. However, its performance has been 
disputed [21-23]. In a recent report, 484 amino acid indices in the AAindex database 
were assessed with sequence profiling methods and the results showed that even the best 
set of amino acid indices performed only marginally better than random [24]. This 
indicates that better methods or new amino acid indices are needed for B cell epitope 
prediction. New methods such as neural networks, hidden Markov models and support 
vector machines have been applied to B cell epitope prediction very recently [25, 35-37]. 
However, the performance improvements are still limited.  

In a previous study, we built four new amino acid indices based on the topological 
parameters of residue networks constructed from 640 representative PDB structures [26]. 
The Parker's hydrophilicity index and the Levitt's index have been confirmed to be the 
best two indices so far for B cell epitope prediction [12, 25]. Compared with the two 
indices, the 4 network topology based indices showed better performance in protein 
surface residue prediction [26]. Since surface accessibility implies antibody accessibility 
[27, 28], we wondered if the new indices would also show better performance in B cell 
epitope residue prediction. 

Indeed, the results of this study show that the network based indices, especially 
relative connectivity, perform better than the Parker's hydrophilicity and Levitt's index on 
the well-annotated HEL data set. For other data sets, the performances of all indices are 
comparable. On the HEL data set at the sliding window size of 1, the relative 
connectivity performed significantly better than the Parker's hydrophilicity and Levitt's 
index and the performance of all 3 was significantly better than random prediction. The 
prediction accuracy, sensitivity and specificity of relative connectivity reached 73.6%, 
73.0% and 75.0% respectively, with an area under the curve of 0.796. In fact, even on a 
poor performing data set (e.g. AntiJen data set), all the predictions were still significantly 
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better than random (data not shown). We concluded that the network topology based 
indices, especially the relative connectivity, are useful indices for B cell epitope residue 
prediction. 

4.2. Performance depends on the data sets 

A trend that better performance depends on better-annotated data set was observed. 
According to Table 2, all indices performed poorly on the Pellequer, AntiJen, HIV, and 
DiscoTope data sets. However, their performance improved significantly when applied to 
the HEL data set. The HEL data set is based on the well-studied model antigen hen egg 
white lysozyme. The protein was densely annotated with 19 epitopes, most of them 
derived from high quality structures of antigen-antibody complexes. The Discotope data 
set is also derived from crystals of antigen-antibody complexes. However, in this data 
set, each antigen sequence is only annotated with one epitope. Most data in the left 3 data 
sets is annotated with information from overlapping peptide experiments, which might 
have errors because a peptide can bind an antibody even if some residues of the peptide 
are not interacting with the antibody [29]. Even so, the trend in these 3 data sets is also 
obvious. The performance on the fully annotated Pellequer data set is better than the less 
annotated AntiJen and HIV data sets. One can also expect that some false positive 
predictions are actually undiscovered B cell epitope residues.  

Thus, we concluded that the low performance of B cell epitope prediction is not only 
due to the methodology used, but the data set as well. The limited performance 
improvements observed with new methods might also be due to the data set itself. The 
importance of data set for B cell epitope prediction has also been addressed in a 
workshop very recently [38]. Another interesting phenomenon was also observed, that is 
the better the data set is annotated, the smaller the optimum sliding window size is (see 
Table 2 and data not shown). 

4.3. The relationship between surface residues and B cell epitope prediction 

The problem of surface residue prediction is related to that of B cell epitope prediction, 
due to the requirement for epitopes to be surface accessible to interact with an antibody 
[27, 28]. In fact, most amino acid index based B cell epitope prediction methods, if not 
all, utilize this correlation. The Parker's hydrophilicty index [8] and β turn scale [15] are 
two good examples. In our previous study, the 4 network topology based amino acid 
indices showed a useful performance in surface residue prediction and they also 
correlated with hydrophobicity (or hydrophilicty) and β propensity [26].  

In the current study, we found that the performance of B cell epitope residue 
prediction is very similar to that of protein surface residue prediction on the well-
annotated HEL data set, especially at the at the 10 and 20 Å2 cutoffs (see Table 4). It is 
proposed that any part of the accessible surface of a globular protein antigen can be 
recognized by antibodies, and the entire exposed surface represents a "continuum" of 
overlapping potential epitopes [39]. Therefore, we suggest that the performance in 
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surface residue prediction might form a theoretical upper limit for the performance in B 
cell epitope residue prediction. As a B cell epitope is a context dependent immunological 
entity [38, 40, 41], a new paradigm for B cell epitope prediction may emerge, shifted 
from an "all B cell epitopes model" to a "single B cell epitope model", and from an "only 
antigen sequence based model" to a "multiple information based model." Besides the 
antigen sequence information, other information such as antigen structure [29], antibody 
sequence or mimotopes [42] are needed in the new generation of B cell epitope 
prediction methods. 
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