
August 2, 2007 19:51 WSPC - Proceedings Trim Size: 9.75in x 6.5in tree˙zrhc

1

Linear-Time Reconstruction of Zero-Recombinant Mendelian
Inheritance on Pedigrees without Mating Loops

LAN LIU1 TAO JIANG1

lliu@cs.ucr.edu jiang@cs.ucr.edu

1Department of Computer Science and Engineering, University of California, River-
side, CA, USA

With the launch of the international HapMap project, the haplotype inference problem
has attracted a great deal of attention in the computational biology community recently.
In this paper, we study the question of how to efficiently infer haplotypes from genotypes
of individuals related by a pedigree without mating loops, assuming that the hereditary
process was free of mutations (i.e. the Mendelian law of inheritance) and recombinants.
We model the haplotype inference problem as a system of linear equations as in [10] and
present an (optimal) linear-time (i.e. O(mn) time) algorithm to generate a particular
solution ∗ to the haplotype inference problem, where m is the number of loci (or markers)
in a genotype and n is the number of individuals in the pedigree. Moreover, the algorithm
also provides a general solution † in O(mn2) time, which is optimal because the size of a
general solution could be as large as Θ(mn2). The key ingredients of our construction are
(i) a fast consistency checking procedure for the system of linear equations introduced
in [10] based on a careful investigation of the relationship between the equations (ii)
a novel linear-time method for solving linear equations without invoking the Gaussian
elimination method. Although such a fast method for solving equations is not known
for general systems of linear equations, we take advantage of the underlying loop-free
pedigree graph and some special properties of the linear equations.

Keywords: haplotype inference, pedigree analysis, mating loop, tree-pedigree, linear-time
algorithm, system of linear equation, general solution.

1. Introduction
In October 2002, a multi-country collaboration, namely, the international HapMap
project was launched [5]. One of the main objectives of the HapMap project is to
identify the haplotype structure of humans and common haplotypes among various
populations. This information will greatly facilitate the mapping of many impor-
tant disease-susceptible genes. However, due to the diploid structure of the human
genome, in practice, genotype data, instead of haplotype data are collected rou-
tinely, especially in large-scale sequencing projects mainly to save experimental
costs. Hence, combinatorial algorithms as well as statistical methods for the infer-
ence of haplotypes from genotypes, which is also commonly referred to as phasing,
are urgently needed and have been intensively studied in the literature.

This paper is concerned with the inference of haplotypes from genotypes of
individuals related by a pedigree, which describes the parent-offspring relation-

∗A particular solution of any linear system is an assignment of numerical values to the variables
in the system which satisfies the equations in the system.
†A general solution of any linear system is denoted by the span of a basis in the solution space to
its associated homogeneous system, offset from the origin by a vector, namely by any particular
solution. A general solution for ZRHC is very useful in practice because it allows the end user to
efficiently enumerate all solutions for ZRHC and performs tasks such as random sampling.

August 2, 2007 19:51 WSPC - Proceedings Trim Size: 9.75in x 6.5in tree˙zrhc

2

ship among the individuals. Two biological assumptions will be made, namely, the
Mendelian law of inheritance, i.e. one haplotype of each child is inherited from
the father while the other is inherited from the mother free of mutations, and the
zero-recombinant principle which says that genetic recombination is very rare or
nonexistent for closely linked markers and thus in haplotype inference we prefer
haplotype configurations with zero recombinants if they exist [3, 9]. The problem of
inferring zero-recombinant haplotypes from given genotypes under the Mendelian
law, where we would like to enumerate all haplotype solutions that require no re-
combinants (if such solutions exist), is called the zero-recombinant haplotype con-
figuration (ZRHC) problem and was studied recently in [6, 10]. When the input
pedigree is a tree pedigree with no mating loops (which is often true for human
pedigrees), the ZRHC problem is called the Loop-Free ZRHC problem. Figure 1
gives an illustrative example of pedigree, genotype, haplotype, as well as recombi-
nation where the haplotypes of a parent recombine to produce a haplotype of her
child. (See the appendix for a more formal definition of the above biological concepts
and computational problems).

2
2

1

1

2

1
1

2

1

2

Genotype

H
a
p

lo
ty

p
e

Paternal Maternal

A B C

1 2

54
7 8

6

3

9

1

3 4

2
1 | 2

2 | 1

2 | 2

2 | 2

1 | 2

1 | 2

1 | 2

2 | 2

Fig. 1. (A). The structure of a pair of chromosomes from a mathematical point of view. In
the figure, each numeric value (1 or 2) represents a marker state or an allele. The haplotype
inherited from the father (or the mother) is called paternal haplotype (or maternal haplotype,
respectively). The paternal and maternal haplotypes are thus strings 22112 and 11212, and
they form the genotype {1, 2}{1, 2}{1, 2}{1, 1}{2, 2}, which is a string of unordered pairs of
alleles at each locus. (B). An illustration of a pedigree with 9 members with a mating loop,
where circles represent females and boxes represent males. Children are shown under their
parents with line connections. For example, individuals 7 and 8 are children of individuals
2 and 3. Individuals without parents, such as individuals 1 and 2 are called founders. A
pedigree without mating loops is called a tree pedigree conventionally. (C). An example of
recombination event where the haplotypes of individual 1 recombine to produce the paternal
haplotype of individual 3. The numbers inside the circles/boxes are individual IDs. Here, a
“|” is used to indicate the phase of the two alleles at a marker locus, with the left allele being
paternal and the right maternal. Both loci of individual 2 and the 2nd locus of individual 4
are homozygous while all the other loci in the pedigree are heterozygous.

The Algorithmic Problem, Previous Results and Our Result. The ZRHC
problem can also be stated abstractly as a simple inheritance reconstruction prob-
lem as follows [10]. We have a pedigree connecting n individuals where each in-
dividual j has a genotype given in the form of string {aj,1, bj,1} · · · {aj,m, bj,m}
defined on m marker loci. We would like to reconstruct two haplotypes (i.e. strings)
aj,1 · · · aj,m and bj,1 · · · bj,m for each individual j such that the inferred haplo-
types obey the Mendelian law and the zero-recombinant principle. That is, suppose
that haplotypes aj,1 · · · aj,m and bj,1 · · · bj,m are inherited from j’s father j1 and
mother j2 respectively, then we have aj,1 · · · aj,m ∈ {aj1,1 · · ·aj1,m, bj1,1 · · · bj1,m}
and bj,1 · · · bj,m ∈ {aj2,1 · · · aj2,m, bj2,1 · · · bj2,m}.

Li and Jiang presented an O(m3n3) time algorithm for ZRHC by formulating
it as a system of O(mn) linear equations with mn variables over the finite field
F (2) and applying Gaussian elimination [6]. Although this cubic time algorithm
is reasonably fast, it is inadequate for large scale pedigree analysis where both m
and n can be in the order of tens or even hundreds, and we may have to examine

August 2, 2007 19:51 WSPC - Proceedings Trim Size: 9.75in x 6.5in tree˙zrhc

3

many pedigrees and haplotype blocks. There are, for example, over five million
SNP markers in the public database dbSNP [5]. Recently, Xiao et al. [10] presented

a much faster algorithm for ZRHC with running time O(mn2 + n3 log2
n log log n)

by introducing a new system of O(mn) linear equations over F (2) with mn variables

and reducing it to an effectively equivalent system with only O(n log2 n log log n)
equations and at most 2n variables.

For Loop-Free ZRHC, the method proposed by Xiao et al. [10] runs in time
O(mn2 + n3) to produce a general solution and in time O(mn + n3) to produce
a particular solution. Chan et al. [4] proposed a linear-time (i.e. O(mn) time) al-
gorithm to find a particular solution. It is unclear how the algorithm can be ex-
tended to produce general solutions efficiently. Moreover, the algorithm has four
different stages and needs to maintain various consistency conditions (called SNP-
consistency, Mendelian consistency, and endgame-consistency) and avoid some in-
consistency conditions (such as the family problem) at these stages (see [4] for the
details of the (in)consistency conditions). As a result, the analysis of the algorithm
(concerning both correctness and complexity) is quite involved.

In this paper, we present a linear-time algorithm to generate a particular so-
lution for Loop-Free ZRHC. Moreover, the algorithm can also provide a general
solution in O(mn2) time, which is optimal because the size of a general solution
could be as large as Θ(mn2). a Our construction is based on the system of linear
equations/constraints introduced in [10], a careful examination of the relationship
between the constraints using the so called constraint graphs (to be defined later
on), and a novel linear-time method for solving linear systems without invoking
Gaussian elimination. In the algorithm, we first build a one-to-one mapping from
the constraints to the edges in the pedigree graph, then solve the constraints by
a single BFS traversal on the pedigree graph. We also give a rigorous proof of the
correctness and tight analysis of the time complexity of our algorithm.

The rest of the paper is organized as follows. In section 2, we describe a system
of linear equations for ZRHC and some useful graphs derived from the input pedi-
gree introduced in [10] to make the paper self-contained. A linear-time algorithm to
check if the linear equations derived from an input tree pedigree are consistent (i.e.
if solutions for the linear system and thus ZRHC exist) and solve the linear system
to attain a general solution is presented in section 3. The method of obtaining a par-
ticular solution by the algorithm is also described in this section. Some concluding
remarks are given in section 4. Due to page limit, all proofs, some detailed biological
definitions and an example execution of the main algorithm will be shown in the
full version [1].

2. A System of Linear Equations and Equivalent Linear
Constraints

In this section, we present a formulation of ZRHC in terms of linear equations and
define some graph structures that will be used in our algorithm. The linear system
and definitions were all introduced in [10], and are included here for the convenience
of the reader.

2.1. The Linear System

Throughout this paper, n denotes the number of the individuals (or members) in the
input pedigree and m denotes the number of marker loci. Without loss of generality,

aAn instance of the Loop-Free ZRHC problem that has a general solution of size Θ(mn2) is given
in the appendix.

August 2, 2007 19:51 WSPC - Proceedings Trim Size: 9.75in x 6.5in tree˙zrhc

4

suppose that each allele in the given genotypes is numbered numerically as 1 or 2
(i.e. the markers are assumed to be bi-allelic, which make the hardest case for
ZRHC [6, 10]), and the pedigree is free of genotype errors (i.e. the two alleles at
each locus of a child can always be obtained from her respective parents). Hence, we
can represent the genotype of member j as a ternary vector gj as follows: gj [i] = 0 if
locus i of member j is homozygous with both alleles being 1’s, gj [i] = 1 if the locus
is homozygous with both alleles being 2’s, and gj[i] = 2 otherwise (i.e. the locus is
heterozygous). For any heterozygous locus i of member j, we use a binary variable
pj [i] to denote the phase at the locus as follows: pj [i] = 0 if allele 2 is paternal,
and pj [i] = 1 otherwise. When the locus is homozygous, the variable is set to gj[i]
for some technical reasons (so that the equations below involving pj [i] will hold).
Hence, the vector pj describes the paternal and maternal haplotypes of member j.

Observe that the vectors p1, . . . ,pn represent a complete haplotype configura-
tion of the pedigree. In fact, the sparse linear system in [6] was based on these
vectors. Also for technical reasons, define a vector wj for member j such that
wj [i] = 0 if its i-th locus is homozygous and wj [i] = 1 otherwise. Suppose that j
is a non-founder member with her father and mother being j1 and j2, respectively.
We define djr ,j(r = 1, 2) as follows: dj1,j be the vector 0 and dj2,j = wj .

Utilizing the above definitions, we can formally express the ZRHC problem as a
system of linear equations (refer to [10] for the details of deriving the linear system)
over F (2):8
>>>><
>>>>:

pk[i] + hk,j · wk[i] = pj [i] + dk,j [i] 1 ≤ i ≤ m, 1 ≤ j, k ≤ n, k is a parent of j
pj [i] = gj [i] 1 ≤ i ≤ m, 1 ≤ j ≤ n, gj [i] 6= 2
wj [i] = 1 1 ≤ i ≤ m, 1 ≤ j ≤ n, gj [i] = 2
wj [i] = 0 1 ≤ i ≤ m, 1 ≤ j ≤ n, gj [i] 6= 2
dk,j [i] = wj [i] 1 ≤ i ≤ m, 1 ≤ j, k ≤ n, k is the mother of j
dk,j [i] = 0 1 ≤ i ≤ m, 1 ≤ j, k ≤ n, k is the father of j

(1)
where gj[i], wj [i], dk,j [i] are all constants depending on the input genotypes, and

pj [i], hk,j are the unknowns. Note that, the number of p-variables is exactly mn and
the number of h-variables is at most 2n since every child has two parents and there
are at most n children in the pedigree.

Remark: Observe that for any member j, if the member itself or one of its parents
are homozygous at locus i, pj[i] is fixed based on Equation (1). In the rest of the
paper, we will assume that all such variables pj[i] are pre-determined (without any
conflict), and use them as “anchor points” to define some new constraints about
the h-variables.

2.2. The Pedigree Graph and Locus Graphs

To conform with standard graph theory notations, we transform the input pedigree
into a graph, called the pedigree graph, by connecting each parent directly to her
children, as shown in Figure 2 (B). Although the edges in the pedigree represent
the inheritance relationship between a parent and a child and are directed, we will
think of the pedigree graph, and more importantly, the subsequent locus graphs
(to be defined below), as undirected in future definitions and constructions, since
each edge (j, k) of the pedigree graph (and locus graphs) will be used to represent
the constraint between the vectors pj and pk (i.e. the phases at j and k) via the

variable hj,k, which is symmetric. b

bThe reader can also verify that the direction of an edge will not affect the graph traversal and
the ensuing treatment of constraint equations to be discussed in the next two sections.

August 2, 2007 19:51 WSPC - Proceedings Trim Size: 9.75in x 6.5in tree˙zrhc

5

A B C

3

5 6

4

1 2
1 2
1 1

2 2
1 2

1 2
1 2

1 2
1 1

1 2
1 2

1 2
1 1

3

5 6

4

1 2

3

5 6

4

1 2

3

5 6

4

1 21

2

3

4

6

5

Fig. 2. (A). An example pedigree with genotype data. Here, the alleles at a locus are ordered
according to their id numbers instead of phase (which is unknown). (B). The pedigree graph
with a spanning tree. The tree edges are highlighted. Observe that there lies a cycle of length
4 in the given tree pedigree graph. The root of the tree is v1. The number (in blue) next to
a vertex is the index generated by a BFS traversal of the spanning tree. For instance, v3 is
v2’s predecessor in the BFS traversak where index(v3) = 2 and index(v2) = 4, while v2 is v3’s
biological father. (C). The locus graphs. The left graph is for the first locus, which has a
cycle, while the right graph is for the second locus. The locus forests are highlighted.

Clearly, such a pedigree graph G = (V, E) may be cyclic due to mating loops
or multiple children shared by a pair of parents. Let T (G) be any spanning tree of
G. We also set an arbitrary vertex as the root of T (G). We start a BFS traversal
on T (G) from the root, and index the vertices in E based on the order of their
first-time occurrences in the traverse. For a vertex j, we denote by index(j) the
index of j. For instance, index(r) = 1 if vertex r is the root of T (G). If the last
edge on the path from the root to vertex j is (k, j), k is called the predecessor of j,
and denoted by pred(j). c Obviously, index(pred(k)) < index(j) for every non-root
vertex j. T (G) partitions the edge set E into two subsets: tree edges and non-tree
edges. For simplicity, the non-tree edges will be called cross edges. Let EX denote
the set of cross edges. Since |E| ≤ 2n and the number of edges in T (G) is n− 1, we
have |EX| ≤ n + 1. Figure 2 (B) gives an example of tree edges, cross edges and an
indexing on vertices.

For any fixed locus i, the value wk[i] can be viewed as the label of each edge
(k, j) ∈ E, where k is a parent of j. We construct the i-th locus graph Gi as
the subgraph of G induced by the edges with label 1. Formally, Gi = (V, Ei),
where Ei = {(k, j)| k is a parent of j, wk[i] = 1}. The i-th locus graph Gi induces
a subgraph of the spanning tree T (G). Since the subgraph is a spanning forest, it
will be referred to as the i-th locus forest and denoted by T (Gi). Figure 2 (C) shows
the locus graphs and the locus forests of the given pedigree.

The locus graphs can be used to identify some implicit constraints on the h-
variables as follows. First, we need “symmetrizing” the h-variables and d-constants:
for any edge (k, j) ∈ E, define hk,j = hj,k and dk,j = dj,k.

As discussed in [10], we can see that for any cycle in Gi, the summation of all
the h-variables corresponding to the edges on the cycle is a constant. The constant
is said to be associated with the cycle. Formally, given a cycle C = j0, . . . , jk, j0 in

Gi, the constant b is defined as b =
∑k

r=0 djr ,jr+1 mod k+1
[i]. We can easily verify∑k

r=0 hjr ,jr+1 mod k+1
= b [10].

Moreover, if the p-variables at the endpoints of a path are pre-determined, then
the summation of all the h-variables corresponding to the edges on the path is a
constant. The constant is said to be associated with the path [10]. Formally, given

cConventionally, k is called the father of j in graph theory. In order to distinguish the concept of
father in graph theory and the concept of biological father, we use the term predecessor in this
paper.

August 2, 2007 19:51 WSPC - Proceedings Trim Size: 9.75in x 6.5in tree˙zrhc

6

a path P = j0, . . . , jk in Gi connecting vertices j0 and jk, if the variables pj0 [i] and
pjk

[i] are pre-determined, the binary constant b is defined as b = pj0 [i] + pjk
[i] +∑k−1

r=0 djr ,jr+1 [i]. It is easy to verify that
∑k−1

r=0 hjr ,jr+1 = b [10]. Again, notice that
the constant b does not depend on the direction that path P is read.

2.3. Linear Constraints on the h-Variables

We will introduce constraint equations to “cover” all the edges in each locus graph.
As mentioned above, these equations connect the p-variables and will suffice to help
determine their values. The constraints can be classified into two categories with
respect to the spanning tree T (G): constraints for cross edges and constraints for
tree edges.

Cross Edge Constraints. Adding a cross edge e to the spanning tree T (G) yields
a cycle C in the pedigree graph G. Suppose that the edge e exists in the i-th locus
graph Gi, and consider two cases of the cycle C with respect to graph Gi.

Case 1: The cycle exists in Gi. We introduce a constraint along the cycle, which
is called a cycle constraint. The set of such cycle constraints for edge e in all locus
graphs is denoted by CC(e), i.e.

C
C(e) = {(b, e) | b is associated with the cycle in T (Gi) ∪ {e}, 1 ≤ i ≤ m}

The set of cycle constraints for all cross edges is denoted by CC =
⊎

e∈EX CC(e). d

Case 2: Some of the edges of the cycle do not exist in Gi. This means that the
cycle C is broken into several disjoint paths in Gi by the pre-determined vertices.
Since e exists in Gi, exactly one of these paths, denoted as P , contains e. Observe
that both endpoints of P are pre-determined and the constraint concerning the h-
variables along the path. Such a constraint will be called a path constraint. The set
of such path constraints for e in all locus graphs Gi is denoted by CP(e), i.e.

C
P(e) =

(k, j, b, e)

˛̨
˛̨ in T (Gi) ∪ {e}, b is associated with the path containing e
connecting two pre-determined vertices k and j, 1 ≤ i ≤ m

ff

The set of path constraints for all cross edges is denoted by CP =
⊎

e∈EX CP(e).

Tree Edge Constraints. There is an implicit constraint concerning the h-variables
along each path between two pre-determined vertices in the same connected com-
ponent of T (Gi). Therefore, for each connected component of T (Gi), we arbitrarily
pick a pre-determined vertex in the component as the seed vertex, and generate a
constraint for the unique path in T (Gi) between the seed and each of the other
pre-determined vertices in the component. Such a constraint will be called a tree
constraint. Notice that if there exists any component having no pre-determined ver-
tices, then locus i must be heterozygous across the entire pedigree and T (Gi) is
actually a spanning tree. To conform with the notation of path constraints and for
the convenience of presentation, we arbitrarily pick a tree edge denoted as e0, and
write the set of tree constraints at all loci as

C
T =

(k, j, b, e0)

˛̨
˛̨ in a connected component of T (Gi) with seed k, b is associated with
the path connecting vertices k and a predetermined vertex j, 1 ≤ i ≤ m

ff

Note that e0 is the same for all the tree constraints, and will be used as an indictor
to distinguish tree constraints from path constraints defined by cross edges.

dHere the operator ⊎ denotes disjoint union and is used to save running time in our algorithm.

August 2, 2007 19:51 WSPC - Proceedings Trim Size: 9.75in x 6.5in tree˙zrhc

7

Again, we need symmetrize path constraints and tree constraints: given any
constraint (k, j, b, e) generated for a path connecting two pre-determined vertices
k and j in a locus graph, define (k, j, b, e) = (j, k, b, e). We can easily see that
|CC|+ |CP|+ |CT| ≤ 2mn, since |CP|+ |CC| ≤ m|EX| = m(n+1) and |CC| ≤ m(|V |−
1) = m(n−1). Moreover, the construction of the locus graphs, the constraints CC, CP

and CT can be done in O(mn) time (the detailed pseudo-code for the constructions
is given in [10]).

3. A Linear-Time Algorithm for Solving Loop-Free ZRHC

As pointed out in [10], ZRHC has a solution if and only if the above linear sys-
tem for the h-variables has a solution. Now we focus on how to solve the linear
system to obtain solutions to the h-variables. We will check the consistency of the
path/cycle constraints and tree constraints first, perform some transformation on
the constraints to obtain an equivalent but smaller system of constraints, and then
solve the h-variables for tree edges and cross edges with respect to the spanning
tree T (G).

3.1. Consistency Checking

First, we transform the path/cycle constraints to eliminate redundancy. The tree
constraints will be dealt with in a similar way.

Path/Cycle Consistency Checking and Redundancy Removal. Due to page
constraint, we leave the proof of the following lemma and corollary in the full
version [1]. The pseudo-code for path/cyle constraint consistency checking is given
in Fig. 3.

Lemma 3.1. Given the path constraint set CP(e) and the cycle constraint cycle
CC(e) for a cross edge e in a tree pedigree, we can reduce them to an equivalent
constraint set of size at most one, in O(|CC(e) ⊎ CP(e)|) time.

As a natural extension of Lemma 3.1, we have the following corollary:

Corollary 3.1. Given the path constraint set CP and the cycle constraint cycle CC

for a tree pedigree, we can reduce them to an equivalent constraint set of size at
most |EX|, in O(|CC ⊎ CP|) time.

Tree Constraint Consistency Checking and Redundancy Removal. To
clearly demonstrate the relationship among the constraints in CT, we define a con-
straint graph G∗ as follows. e For each vertex in the pedigree graph, we create a
vertex in G∗. For each tree constraint (k, j, b, e0) ∈ CT, we introduce an edge con-
necting vertices k and j in G∗ with weight b. We denote by E(G∗) the edge set
in G∗. The weight of a path P (or a cycle C) in the constraint graph is defined as
the summation (in F (2)) over the weights of the edges along path P (or cycle C),
which is denoted as W (C) (or W (P), respectively). We choose a spanning forest
T (G∗) on the constraint graph G∗. In each connected component T of T (G∗), the
vertex with the smallest index is designated as the root of T . (We set the roots in
this way to facilitate solving the h-variables in subsection 3.2). T (G∗) partitions
the edge set E(G∗) into two subsets: tree edges and cross edges. Conventionally, a
cycle containing exactly one cross edge is called a basic cycle. Figure 5 illustrates
an example constraint graph and its basic cycles.

eNote that a constraint graph can be a weighted multigraph.

August 2, 2007 19:51 WSPC - Proceedings Trim Size: 9.75in x 6.5in tree˙zrhc

8

Procedure Constraints consistency

input: CC, CP, CT, and a fixed tree edge e0

output: compact CC, CP and CT

begin

Step 1. Consistency checking for path/cycle

constraints

for each cross edge e

Pick an arbitrary constraint, say (j, k, b, e),

from CC(e);

if there exists a constraint (j, k, b + 1, e)

∈ CC(e)

exit “Input genotypes are inconsistent.”;

CP = {(j, k, b, e)};

for each cross edge e

Pick an arbitrary constraint, say (b, e),

from CC(e);

if there exists a constraint (b+1,e)∈CC(e)

exit “Input genotypes are inconsistent.”;

CC = {(b, e)};

if CP 6= ∅ (i.e. CP contains exactly one

constraint)

Suppose the constraint ∈CP is (j,k,b′,e);

CT = {(j, k, b′ + b, e0)};

CP = ∅;

Step 2. Consistency checking for tree

constraints

Construct the constraint graph G∗ for CT;

bC = ∅;

for each connected component S of G∗

Generate the spanning tree T (S) of S;

Suppose vertex k0 is the vertex with the

smallest index;

Let vertex k0 be the root of T (S);

Traverse T (S) by BFS starting from k0;

for each vertex k ∈ S

visited(k) = false;

W (k0) = 0; visited(k0) = true;

for each tree edge (j,k) with respect to T (S)

Suppose the edge represents constraint

(j, k, b, e0)

Suppose visited(j)=true,visited(k)=false;

W (k) = W (j) + b; visited(k) = true;

bC = bC ⊎ {(k0, k, W (k), e0)};

for each non-tree edge (j, k) w.r.t. T (S)

Suppose the edge represents constraint

(j, k, b, e0)

if W [j] + W [k] + b = 1 (i.e. ∃ a 1-weight

basic cycle)

exit “Input genotypes are inconsistent.”;

CT= bC;

return CC, CP and CT

end.

Fig. 3. The procedure for checking the con-
sistency among the constraints.

Algorithm Loop Free ZRHC Phase

input: a tree pedigree G = (V, E) and

genotypes {gj}

output: a general solution of {pj}

begin

Step 1. Preprocessing

Choose an arbitrary vertex r as the root

of a spanning tree T (G) for the

pedigree graph G;

Index the vertices by a BFS traversal on

T (G);

Step 2. Constraint generation

e0 is an arbitrary tree edge w.r.t.T (G) ;

Generate CC, CP and CT;

Step 2′. Redundant Constraint Elimination

Constraints Consistency(CC,CP,CT,e0);

Define C = CC ⊎ CP ⊎ CT;

Step 3. Solve the h-variables

Construct the mapping f:C 7→E′ in Equ.(3);

Traverse G in BFS order;

W [r] = 0;

for each tree edge (pred(k), k) ∈ E

if (pred(k), k) /∈ E′

Define hpred(k),k as a free variable;

W (k) = hpred(k),k + W (pred(k));

if (pred(k), k) ∈ E′

Suppose f−1((pred(k),k))=(j,k,b,e0)

(index(j)<index(k));

hpred(k),k = b + W (j) + W (pred(k));

W (k) = b + W (j);

for each cross edge (i, j) ∈ E

if (i, j) /∈ E′

Define hi,j as a free variable;

if (i, j) ∈ E′

if f−1((i, j)) is a path constraint, say,

(k1, k2, b, e)
hi,j=b+W (k1)+W (k2)+W (i)+W (j);

else (i.e. f−1((i, j)) is a cycle

constraint, say,(b, e))

hi,j = b + W (i) + W (j);

Step 4. Solve {pj} by propagation

for each locus i
for each component T in T (Gi)

if T has no pre-determined vertices

Set the seed’s p-variable as a free

variable and treat it as determined;

Traverse T by BFS from the seed;

for each edge (j, k) in T

if pj [i] is determined but pk[i] is

undetermined
pk[i] = pj [i] + hj,k + dj,k[i];

return {pj};

end.

Fig. 4. The algorithm for solving the linear sys-
tem for Loop-Free ZRHC.

August 2, 2007 19:51 WSPC - Proceedings Trim Size: 9.75in x 6.5in tree˙zrhc

9

1 2

3 4

1

1
1

1

0

A

1 2

3 4

1

1

0

D

1 2

3 4

1

1
1

C

1 2

3 4

1

1

B
Fig. 5. A constraint graph and its basic cycles. (A). Given a set of tree constraints CT =
{(v1, v2, 1, e0), (v1, v3, 1, e0), (v2, v3, 1, e0), (v2, v4, 1, e0), (v3, v4, 0, e0)}, we can construct the
constraint graph G∗ shown in (A), where the number on an edge in G∗ is the weight of the
edge, i.e. the b-constant in the constraint represented by the edge. For example, (v1, v3, 1, e0)
is represented by edge (v1, v3) with weight 1 in the constraint graph G∗. We choose a spanning
tree T (G∗), where the tree edges of T (G∗) are highlighted. (B). A path connecting v2 and v3

on the spanning tree T (G∗). The weight of the path (i.e. the summation over weights of the
edges along the path) is 0. (C). A cycle consisting of v1, v2 and v3 with weight 1. The cycle
contains only one cross edge in E(G∗), and is thus a basic cycle. (D). A cycle consisting of
v2, v3 and v4 with weight 0. The cycle contains two cross edges in E(G∗), and is thus not a
basic cycle.

In the rest of this subsection, we will consider some basic properties of the
constraint graph, which will be used to check the consistency on tree constraints.
The proofs of the following lemmas are given in the appendix.

Lemma 3.2. For any three vertices i, j and k in a connected component of the
spanning forest T (G∗), the weight of the path connecting vertices j and k is equal
to the total weight of the path connecting vertices i and j and the path connecting
vertices i and k.

Lemma 3.3. In a constraint graph, the weight of every cycle can be represented as
a summation over the weights of some basic cycles.

The next corollary follows from Lemma 3.3 easily.

Corollary 3.2. In a constraint graph, every cycle has weight 0 if and only every
basic cycle has weight 0.

Now we present our key lemma, which suggests how to use the constraint graph
constructed from CT to check the consistency among the constraints in CT.

Lemma 3.4. CT has a solution if and only if every cycle in the corresponding
constraint graph has weight 0.

Corollary 3.2 and Lemma 3.4 imply the following theorem.

Theorem 3.1. CT has a solution if and only if every basic cycle in the correspond-
ing constraint graph has weight 0.

Therefore, we can check the consistency of CT by detecting the existence of 1-
weight basic cycles. Notice that every basic cycle contains exactly one cross edge in
E(G∗). We can calculate the weights of basic cycles by first calculating the weight
of the path connecting every pair of vertices in each connected component of the
spanning forest T (G∗), and then checking if the basic cycle induced by each cross
edge has weight 0. By Lemma 3.2, in every connected component T of the forest
T (G∗), the weight of the path connecting each pair of vertices can be obtained from
the weights of the paths connecting the root of T and each of involved vertices. In

August 2, 2007 19:51 WSPC - Proceedings Trim Size: 9.75in x 6.5in tree˙zrhc

10

the following, we denote by W (k) the weight of the path between the root and a
vertex k in a connected component of T (G∗).

The detailed pseudo-code for checking the consistency of CT is given in Figure 3.
Besides consistency checking, the procedure also generates an equivalent constraint

set Ĉ for CT based on T (G∗), which is defined as follows,

bC =

(k0, k, W (k), e0)

˛̨
˛̨ k ∈ V , k0 is the root of the connected component
containing k in T (G∗), and k 6= k0

ff
(2)

Clearly, |Ĉ| ≤ |V | − 1 = n − 1. This discussion is summarized formally in the
following lemma. f

Lemma 3.5. Given the tree constraint set CT, we can reduce it to an equivalent
constraint set of size at most (n − 1) in O(|CT)| time.

The following corollary holds from Corollary 3.1, Lemma 3.5, and the fact |CC|+
|CP| + |CT| ≤ 2mn.

Corollary 3.3. Given the linear constraint set C = CC⊎CP⊎CT for a tree pedigree,
we can reduce it to an equivalent constraint set of size at most |E| in O(mn) time,
where E is the set of the edges in the pedigree graph and |E| ≤ 2n.

3.2. Solving the h-Variables Efficiently

Now we return to the pedigree graph G and show how to solve the h-variables for
tree edges and for cross edges separately. Our idea is as follows. We first construct
a one-to-one mapping from the constraints to the edges in the pedigree graph,
and then assign values to the h-variables consistent with the constraints by a BFS
traversal on the pedigree graph.

Constructing a Mapping from Constraints to Edges. We want to construct
a mapping f from the (reduced) constraints C = CC ⊎ CP ⊎ CT to a subset E′ ⊆ E
of the edges satisfying the following two conditions:

• Condition 1: For every tree/path constraint (or every cycle constraint),
there exists exactly one edge of E′ on the path (or the cycle, respectively)
corresponding to the constraint.

• Condition 2: f is one-to-one.

We define the mapping f : C 7→ S′ as follows, where C = CT ⊎ CP ⊎ CC and the
subset S′ is implied by the definition.

f(c) =

(

(pred(k), k) if c = (j, k, b, e0) ∈ CT and index(j) < index(k) (i.e. c is a tree constraint)
(i, j) if c = (k1, k2, b, e) ∈ CP, where e = (i, j) (i.e. c is a path constraint)
(i, j) otherwise c = (b, e) ∈ CC, where e = (i, j) (i.e. c is a cycle constraint)

(3)

Clearly, the mapping for every path (or cycle) constraint satisfies condition 1.
Consider a tree constraint (j, k, b, e0) ∈ CT and suppose that index(j) < index(k).
Because we construct the indexing from top to bottom in T (G), vertex j must be
at the same or a higher level than vertex k. Hence, (pred(k), k) must be on the path
connecting vertices j and k in T (G). As a result, condition 1 holds for the mapping
f . The proof of the mapping f is one-to-one is omitted here and can be found in
the full version [1].

fA similar lemma is given in [10] too.

August 2, 2007 19:51 WSPC - Proceedings Trim Size: 9.75in x 6.5in tree˙zrhc

11

Once the mapping f is defined, we can solve the constraints as follows. We set
each h-variable corresponding to an edge in E−E′ as a free variable, and represent
the h-variable corresponding to an edge in E′ as a linear combination of the free
variables based on the constraint mapped to the edge so that the constraint is
satisfied.

Assigning Values to the h-Variables We need assign values to the h-variables
so that all the path/cycle/tree constraints are satisfied. Given a vertex j, we denote
by W [j] the sum of the h-variables along the path between the root of the spanning
tree T (G) and vertex j. We will treat h-variables for tree edges and cross edges
separately, utilizing the mapping f .

j pred(k)
k

A B

k1

r

i j

k2

C

r

i
j

P1
P

P

P1

P2
P

C
C

r

Fig. 6. The spanning tree T (G) with root r. The tree edges are highlighted. (A) The path
P connecting vertices j and k on T (G) for a given tree constraint (j, k, b, e0), and the path
P1 connecting vertices j and pred(k). (B) The cycle C induced by adding e = (i, j) to the
spanning tree T (G) for given a path constraint (k1, k2, b, e), and the paths P, P1, and P2

connecting vertices k1 and k2, vertices k1 and i, and vertices j and k2, respectively. Notice
that P1 and P2 do not contain e while P does. (C) The cycle C induced by adding e = (i, j)
to the spanning tree T (G) for a given cycle constraint (b, e) and the path P connecting the
vertices i and j. Note that P does not contain e.

• Handling h-variables for tree edges. We solve the h-variables by a BFS
traversal on T (G) starting from the root r. First, we set W [r] = 0. If we
encounter a tree edge (pred(k), k) in (E − E′), we set hpred(k),k as a free
variable, and set W (k) = hpred(k),k +W (pred(k)). Otherwise, we encounter

a tree edge (pred(k), k) in E′ (assuming f−1((pred(k), k)) = (j, k, b, e0) and
index(j) < index(k)), and we set hpred(k),k as:

hpred(k),k = b + W (j) + W (pred(k)) (4)

Note that since index(j) < index(k) and index(pred(k)) < index(k), W (j)
and W (pred(k)) are known at this time. We also set W (k) = b +W (j). An
illustration of the vertices j, pred(k) and k is given in Figure 6(A). After
the BFS traversal, we determine W [j] for every vertex j. We will use W [j]
to solve the h-variables for cross edges.

• Handling h-variables for cross edges: If we encounter a cross edge
(i, j) ∈ (E − E′), we set hi,j as a free variable. Otherwise, we encounter a
cross edge (i, j) ∈ E′, and have |CC(e) ⊎ CP(e)| = 1 based on Lemma 3.3
and Equation (3). We assign hi,j as follows.

– Case 1: CC(e) ⊎ CP(e) contains a path constraint (k1, k2, b, e). We set

hi,j = b + W (k1) + W (k2) + W (i) + W (j) (5)

An illustration of the vertices k1, k2, i and j is demonstrated in Figure
6(B).

August 2, 2007 19:51 WSPC - Proceedings Trim Size: 9.75in x 6.5in tree˙zrhc

12

– Case 2: CC(e) ⊎ CP(e) contains a cycle constraint (b, e). We set

hi,j = b + W (i) + W (j) (6)

An illustration of the vertices i and j is given in Figure 6(C).

Figure 4 displays a pseudo-code of the above procedure. The algorithm is called
Loop Free ZRHC Phase, which generates a general solution. Note that if we assign a
particular binary value to each free variable in the algorithm, the algorithm obtains
a particular solution. The correctness of the algorithm is given in the following
lemma.

Lemma 3.6. The algorithm Loop Free ZRHC Phase correctly solves the ZRHC prob-
lem on a tree pedigree.

Theorem 3.2. The algorithm Loop Free ZRHC Phase produces a particular solution
to the ZRHC problem on a tree pedigree in O(mn) time, and a general solution in
O(mn2) time.

4. Concluding Remarks
It still remains open if one could extend the algorithm Loop Free ZRHC Phase to solve
the ZRHC problem on a general pedigree in linear time.

Acknowledgement

We would like to thank Jing Xiao, Marek Chrobak and Qi Fu for many useful dis-
cussions. The research is supported in part by NSF grant CCR-0309902, NIH grant
LM008991-01, NSFC grant 60528001, and the Changjiang Visiting Professorship at
Tsinghua University.

References

[1] The full version of this paper is available at http://www.cs.ucr.edu/~lliu/paper/
tree_zrhc_full.ps

[2] G. R. Abecasis, S. S. Cherny, W. O. Cookson and L. R. Cardon, Merlin–rapid analysis
of dense genetic maps using sparse gene flow trees. Nat. Genet., 30(1):97-101, 2002.

[3] J. R. O’Connell. Zero-recombinant haplotyping: applications to fine mapping using
SNPs. Genet. Epidemiol., 19 Suppl 1:S64–70, 2000.

[4] M. Y. Chan, W. Chan, F. Chin, S. Fung, and M. Kao Linear-Time Haplotype In-
ference on Pedigrees without Recombinations. Proc. of the 6th Annual Workshop on
Algorithms in Bioinformatics (WABI’06), 56-67 ,2006.

[5] The international HapMap Consortium. International HapMap Project. Nature,
426:789-796, 2003.

[6] J. Li and T. Jiang. Efficient rule-Based haplotyping algorithm for pedigree data.
Proc. of 7th Annual Conference on Research in Computational Molecular Biology
(RECOMB’03), 197-206, 2003.

[7] J. Li and T. Jiang. An exact solution for finding minimum recombinant haplotype
configurations on pedigrees with missing data by integer linear programming. Proc.
of RECOMB’04, 20-29, 2004.

[8] J. Li and T. Jiang. Computing the minimum recombinant haplotype configuration
from incomplete genotype data on a pedigree by Integer Linear Programming. J. of
Computational Biology 12(6), 719-739, 2005.

[9] D. Qian and L. Beckmann. Minimum-recombinant haplotyping in pedigrees. Am. J.
of Hum. Genet., 70(6):1434–1445, 2002.

[10] J. Xiao, L. Liu, L. Xia, T. Jiang. Fast Elimination of Redundant Linear Equations and
Reconstruction of Recombination-Free Mendelian Inheritance on a Pedigree. Proc. of
18th Annual ACM-SIAM Symoposium on Discrete Algorithms (SODA’07), 655-664,
2007.

