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The detection of gene fusion events across genomes can be used for the prediction of functional 
associations of proteins, including physical interactions or complex formation. These predictions are 
obtained by the detection of similarity for pairs of ‘component’ proteins to ‘composite’ proteins. Since 
the amount of composite proteins is limited in nature, we augment this set by creating artificial fusion 
proteins from experimentally determined protein interacting pairs. The goal is to study the extent of 
protein interaction partners with increasing phylogenetic distance, using an automated method. We have 
thus detected component pairs within seven entire genome sequences of similar size, using artificially 
generated composite proteins that have been shown to interact experimentally. Our results indicate that 
protein interactions are not conserved over large phylogenetic distances. In addition, we provide a set of 
predictions for functionally associated proteins across seven species using experimental information and 
demonstrate the applicability of fusion analysis for the comparative genomics of protein interactions. 

       Keywords: comparative genomics, protein interactions, Escherichia coli, Helicobacter pylori, two-hybrid 
screening. 

 

1. Introduction 

 
It has been shown that it is possible to predict protein interactions or, more generally, 

functional associations of proteins, including physical interaction or complex formation, 
using genome sequence analysis [1-3]. Fused genes encoding a single multifunctional 
protein in one species tend to be found in other species as pairs of genes encoding 
proteins showing similar functions or forming protein complexes [4]. Gene fusion is a 
well-known process in molecular evolution [5]; consequently, computational methods 
were developed to determine gene fusion events in complete genomes aiming to predict 
functional associations of proteins [1]. Many of these gene fusion events appear to be 
selectively advantageous by decreasing the regulational load in the cell for a particular 
process [1,3,5]. Thus, the detection of fused genes in one genome (defined as 'composite' 
proteins) allows the prediction of functional associations between homologous genes that 
remain separate in another genome (defined as 'component' proteins) [6]. 

 
Although gene fusion events (composite proteins) appear to be relatively rare [6], the 

accurate detection of a gene fusion event in one genome allows interactions to be 
predicted between many proteins across other genomes [1]. It is this kind of one-to-many 
relationship what makes this concept unique for discovering possible interactions or 
functional associations between proteins, even for those of unknown function, using 
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comparative genomics. Unlike other methods that rely on gene proximity to predict 
functional coupling [7], the gene fusion method can also detect functional relationships of 
distal genes within a genome. Furthermore, we have previously demonstrated the high 
precision of the gene fusion method using the DIFFUSE algorithm [1] (see methods and 
Figure 1 for a flowchart of the algorithm), which with an additional constraint of 
minimum alignment overlap [6] has increased to over 86% (see Methods). This 
computational method is analogous and complementary to the experimental approaches 
for the detection of protein interactions [8]. 
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query genome that are detected as a fused, artificial composite protein in a reference 
genome (Figure 1). 

 
DIFFUSE was applied individually for each of the seven genomes, against the 

artificially merged sequences which are used as the reference set (see Methods). Paralogy 
in the query genome makes it difficult to determine precisely the actual number of 
possible associations and increases uncertainty in accurately predicting component 
proteins [1]. However, the detection of component pairs, in different species with 
similarly sized genomes, via their similarity to interacting pairs in H. pylori followed by 
and additional constraint of minimal alignment overlap, allows us to assess the extent of 
the conservation of interacting proteins and generate predictions of protein interactions 
for distantly related species. 

 

2. Methods 

 
To generate predictions of functional associations in complete genomes, we have 

extracted the information and sequences of interacting proteins (6,797 sequences involved 
in 11,251 protein interactions) from the Database of Interacting Proteins (DIP) [10]. Of 
these interactions, 13% refer to Helicobacter pylori and were subsequently used in this 
analysis. We artificially merged sequence pairs using their original DIP binary 
relationships in order to get a Reference data set (Figure 1). 

 
All selected genome sequences were obtained from their original sources [11] and 

used as queries. Genomes were selected based on phylogenetic distance to the reference 
genome H. pylori. Phylogenetic distance was defined by phylogenetic depth in a species-
tree built by using Small Subunit rRNAs from the Ribosomal Database Project (RDP) 
[http://rdp.cme.msu.edu/html/].  

 
The query database is compared against itself using BLASTp [12] (E-value threshold 

10-06), after masking compositional biased regions with the CAST [13] algorithm (score 
threshold 40), and all pairwise sequence similarities are recorded in a binary matrix. The 
query database is also compared against the reference database, as above, and similarities 
are recorded in another binary matrix. The DIFFUSE algorithm [1] (see Figure 1 for a 
flowchart of the algorithm) was then applied to both matrices and the detected 'artificial' 
gene fusion results were further filtered for significant overlap by more than 10% of their 
total length when aligned together with the artificial composite protein [6]. 

 
To assess the quality of the interaction and prediction data, we filtered all interacting 

pairs using either a functional class or subcellular localization criteria. We created 3 
categories for functional classes (identical or positive, different, and unknown class), and 
2 categories for subcellular localization (identical or positive, and different). The 
information about functional classes and subcellular localization was extracted from 
GeneQuiz [14] and MIPS [15], respectively. 

 
The total automatic analysis was performed over a period of 72 hours on a 4-CPU Sun 

E450 with 2GB of RAM. 
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3. Results 

 
As a first estimate of the performance of our approach and in order to assess the 

quality of our predictions, we have first tested a H. pylori-related species, the complete 
genome of the Proteobacteria Escherichia coli (4,290 ORFs) as query, against 1,359 
Helicobacter pylori artificially fused sequences, defined as the reference set. We thus 
detected possible interacting partners using the DIFFUSE algorithm [1,6] and subsequently 
made predictions of functional associations of proteins across species. True positive 
protein interactions are expected to involve protein partners that belong to the same 
functional class [16]. Hence, we tested whether the artificial fusion events and component 
proteins identified by the DIFFUSE algorithm tend to involve component proteins with 
similar functional annotation. Thus, whenever a possible artificial fusion event is found, 
the artificial composites and the two components detected are assigned to 3 classes of 
functional information (see Methods). Conceptually, this approach is similar to the 
comparative analysis of protein interactions for H. pylori and E. coli [17]. Our analysis 
yields 1,487 pairs of E. coli proteins, with 141 (9%) classified as positives cases (i.e. in 
the same functional class)(see methods), 711 (48%) in different classes and 635 (43%) 
have at least one component with no functional class assignment (unknown) (see 
Methods). 

 
To enhance the quality of our predictive analysis and eliminate noise from 

experimental procedures, we only consider components classified in the same functional 
class, thus all observations of different classes or those not fully classified are not further 
considered. This assumption obviously decreases the predictive potential of our method 
because it ignores cases of pairs of interacting proteins without class assignment, which 
may be functionally related [1,16]. The detected component proteins are far fewer in 
number than for the five previous reports of E. coli [1,3,6,16,17], due to the much more 
stricter criteria employed in this study and the multi-step protocol we have developed. Of 
these 141 positive cases only 12 appear to represent the same pairs of interacting proteins 
(putative orthologs)(see methods) in both the query (components) and reference set 
(artificial composites) (Table 1). Our method identifies a number of well-known 
interacting protein pairs. These are proteins participating in the same protein complex or 
biochemical process, such as Regulatory functions, Replication, Transcription, 
Translation and Transport-and-Binding proteins, according to the GeneQuiz functional 
classification (formed by 15 different functional classes) [14]. A number of unconfirmed 
cases constitute some interesting testable predictions. For example the phosphate regulon 
transcriptional regulatory protein PhoB was predicted to interact with the chemotaxis 
protein CheA (see URL in Discussion). The other 129 cases do not have consistent 
annotations across the two species because they are either paralogous genes or share 
specific domains with one or both of the artificial fused genes. 

 
Coverage cannot easily be estimated, as we do not know in advance how many 

proteins potentially interact within the query genome. Thus, we have tried to estimate 
coverage by using the H. pylori genome as query against the H. pylori artificially fused 
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sequences reference set, as described above, and then counting the number of predicted 
artificial composites.  

 
Table 1. Prediction of protein interactions in E. coli using artificially fused H. pilory sequences.  
 
S FC SI ID  FUNCTION SI ID FUNCTION 
R Rg HP1067 CHEY_HELPY Chemotaxis protein

CheY 
HP0392 O25153 Chemotaxis protein CHEA 

(EC 2.7.3.-) 
P  1788191 CHEY_ECOLI  1788197 CHEA_ECOLI  
R Rp HP0705 UVRA_HELPY Excinuclease ABC

subunit A 
HP1541 MFD_HELPY Transcription-repair 

coupling factor (TRCF) 
P  2367343 UVRA_ECOLI  1787357 MFD_ECOLI  
R Rp HP0705 UVRA_HELPY Excinuclease ABC 

subunit A 
HP1114  UVRB_HELPY Excinuclease ABC subunit 

B 

P  2367343 UVRA_ECOLI  1786996 UVRB_ECOLI  
R Rp HP0705 UVRA_HELPY Excinuclease ABC

subunit A 
HP0821 UVRC_HELPY Excinuclease ABC subunit 

C 
P  2367343 UVRA_ECOLI  1788221 UVRC_ECOLI  
R Tc HP1293 RPOA_HELPY RNA polymerase alpha

subunit 
HP1198 O25806 RNA polymerase beta 

chain (EC 2.7.7.6) 
P  1789690 RPOA_ECOLI  1790419 RPOB_ECOLI  
R Tl HP0399 RS1_HELPY 30S ribosomal protein

S1 
HP1048 IF2_HELPY Translation initiation factor 

IF-2 
P  1787140 RS1_ECOLI  1789559 IF2_ECOLI  
R Tl HP1246 RS6_HELPY 30S ribosomal protein

S6 
HP1244 RS18_HELPY 30S ribosomal protein S18 

P  1790644 RS6_ECOLI  1790646 RS18_ECOLI  
R Tl HP1246 RS6_HELPY 30S ribosomal protein

S6 
HP0886 SYC_HELPY Cysteinyl-tRNA synthetase 

(EC 6.1.1.16) 
P  1790644 RS6_ECOLI  1786737 SYC_ECOLI  
R Tl HP1312 RL16_HELPY 50S ribosomal protein

L16 
HP0083 RS9_HELPY 30S ribosomal protein S9 

(BS10) 
P  1789709 RL16_ECOLI  1789625 RS9_ECOLI  
R Tl HP1312 RL16_HELPY 50S ribosomal protein

L16 
HP1316 RL2_HELPY 50S ribosomal protein L2 

P  1789709 RL16_ECOLI  1789713 RL2_ECOLI  
R Tp HP0687 O25396 Ferrous iron transport

protein B 
HP1072 COA0_HELPY Copper-transporting 

ATPase (EC 3.6.1.36) 
P  1789813 FEOB_ECOLI  1786691 ATCU_ECOLI  
R Tp HP0687 O25396 Ferrous iron transport

protein B 
HP1506 O26036 Sodium/Glutamate symport 

carrier protein 

P 

 1789813 FEOB_ECOLI  1790085 GLTS_ECOLI  

 
The 12 positive pairs with identical functional class assignments (see Methods): pairs of interacting proteins in 
the query (E. coli components) and reference set (H. pylori artificial composites). Column names: Source (S) of 
information divided into Reference set (R) and the prediction for E. coli (P); Functional Class (FC) (Rg, 
Regulatory functions; Rp, Replication; Tc, Transcription; Tl, Translation; and Tp, Transport-and-binding 
proteins); Identifier (ID) from Swissprot and Fuctional assignment (Function), Sequence Identifier (SI), 
according to Genequiz [14]. Table is sorted by Functional class. Empty cells in Function columns, for 
simplicity, imply identical assignment between Reference and Prediction. Columns 3-5 and 6-8 correspond to 
the details of the individual component proteins. Predictions were performed with the DIFFUSE algorithm [1,6] 
using the H. pylori artificially merged sequences as Reference set and the E. coli genome as query (see Figure 
1). 

 
This number is equal to the number of composites in the original reference set, i .e. we 
obtained a 100% coverage when self-interactions are removed from the original DIP [10] 
data set, and 96% coverage when self-interactions are not removed, since DIFFUSE cannot 
detect sequence-similar components (see methods) [1,6]. We then calculated the 
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percentage of interacting proteins (components) that are shared by the two species, 
defined as the number of unique (non-redundant) detected components in E. coli vs. the 
H. pylori reference set, divided by the number of unique components in a control 
experiment of the H. pylori genome as query vs. H. pylori reference set. This yielded a 
60% of conserved protein pairs. This number strongly depends on the phylogenetic 
distance between query and reference genomes [6] but, a priori, it suggests that protein 
interactions (as pairs of proteins) may not be strongly conserved across related species.  

 
To investigate the conservation of interacting pairs across other genomes in a more 

consistent way, we have repeated this analysis across other six species with similar 
genome sizes. Previously, we have explored the influence of three key factors in gene 
fusion analysis: genome size, paralogy and phylogenetic distance [6]. Herein, we focus on 
the latter, to understand the conservation of protein interactions from a comparative 
genomics perspective. To investigate further the results obtained from the comparison 
with E. coli (see above), we used an additional six genomes of similar size: 
Campylobacter jejuni (1,634 ORFs), Haemophilus influenzae (1,707 ORFs), Borrelia 
burgdorferi (1,639 ORFs), Streptococcus pyogenes (1,696 ORFs), Thermotoga maritima 
(1,849 ORFs) and Thermoplasma acidophilum (1,478 ORFs); plus the H. pylori genome 
(1,575 ORFs) as control. Since the number of components detected in each species 
depends on genome size, we have selected genomes according to two criteria: roughly 
similar genome size as the H. pylori genome (ranging between 1,478 and 1,849 ORFs) 
and a wide range of phylogenetic distances to H. pylori (Figure 2). As expected, there is 
an inverse relationship between the number of components and phylogenetic distance. 
This trend is only violated in the case of the S. pyogenes and T. maritima genomes, partly 
explained by the degree of paralogy for certain proteins [1]. The key conclusion from this 
analysis is that interactions as 'pairs' of protein partners seem are not highly conserved, 
are eroded over large phylogenetic distances, and may correspond to species-specific 
instances of interacting pairs (Figure 2). 
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Figure 2. Numbers of protein interactions detected in seven genomes. Genomes are shown on the x-axis and the 
relative number of artificial component pairs (putative homolog interactions) on the y-axis. Genomes are sorted 
by decreased phylogenetic distance (see methods) to the H. pylori genome, which was used as control set. Bar 
shading from black to white represents phylogenetic distance to H. pylori (last two bars with white color for 
simplicity). Counts are normalized by genome size, although genomes sizes are comparable (actual counts are 
shown in Table 2A, row: TOTAL). 

 

How many of the conserved pairs are predicted to belong to the positive class (i.e. 
same functional class)? When we perform the same analysis using functional class 



7 

assignments, it is possible to associate those with phylogenetic distance (Table 2A). 
Again, generally speaking, the trend of decreasing number of interactions over large 
phylogenetic distances is observed, although less clearly – due to various degrees of 
annotation accuracy, obtained from GeneQuiz [14]. We again focus on positive cases (see 
methods) where predictions are of the highest quality  (Table 2B). Among all predicted 
positive cases only predictions assigned to the Transcription class, namely between RNA 
polymerase subunits, are detected in 6 out of the 7 genomes. The method cannot predict 
the same pair of interacting proteins in the Thermoplasma acidophilum genome, due to 
the highly divergent nature of the archaeal RNA polymerase. This fact further illustrates 
the point that only a few interactions seem to be highly conserved or detectable across 
large evolutionary distances (see discussion). 

 
Table 2. Prediction of protein interactions in complete genomes. Predictions were performed by the DIFFUSE 
algorithm (see Figure 1) [1] using the H. pylori artificially fused set as Reference and 6 different genomes as 
queries. (A) Number of components pairs in different genomes. The H. pylori genome was used as a control. 
Column names: Categories according to their distribution of functional classes (see Methods) followed by 
species names (*). Species (columns 2 to 8) are sorted by phylogenetic distance to H. pylori. (B) Potential 
positive examples of pairs of interacting proteins in the query genomes (components) and reference set 
(artificial composites) are listed.  
(A) 
 Categories H. pylori C. jejuni H. influenzae B. burgdorferi S. pyogenes T. maritima T. acidophilum 

 
Same functional class 

41 48 39 14 26 30 15 

 Different functional class 292     300 284 54 293 173 101 
 At least one unknown 
functonal class 

   4461     935 196 195 285 600 70 

 TOTAL    4794   1283 519 263 604 803 186 
(B) 

S FC SI ID FUNCTION SI ID  FUNCTION 
R Tc HP1293 RPOA_HELPY RNA polymerase alpha HP1198 O25806 RNA polymerase beta 
Hp Tc HP1293 RPOA_HELPY  HP1198 O25806  
Cj Tc 6969012 RPOA_CAMJE  6967949 RPOB_CAMJE  
Hi Tc HI0802 RPOA_HAEIN  HI0515 RPOB_HAEIN  
Bb Tc BB0502 RPOA_BORBU  BB0389 RPOB_BORBU  
Sp Tc 13621394 RPOA_STRPY  13621404 Q9A1U1  
Tm Tc TM1472 RPOA_THEMA  TM0458 RPOB_THEMA  
Cj Tc 6969012 RPOA_CAMJE RNA polymerase alpha 6967950 RPOC_CAMJE RNA polymerase beta' 
Hi Tc HI0802 RPOA_HAEIN  HI0514 RPOC_HAEIN  
Bb Tc BB0502 RPOA_BORBU  BB0388 RPOC_BORBU  
Sp Tc 13621394 RPOA_STRPY  13621405 RPOC_STRPY  
Tm Tc TM1472 RPOA_THEMA  TM0459 RPOC_THEMA  
Cj Tc 6967949 RPOB_CAMJE RNA polymerase beta 6967950 RPOC_CAMJE RNA polymerase beta' 
Hi Tc HI0515 RPOB_HAEIN  HI0514 RPOC_HAEIN  
Bb Tc BB0389 RPOB_BORBU  BB0388 RPOC_BORBU  
Sp Tc 13621404 Q9A1U1  13621405 RPOC_STRPY  
Tm Tc TM0458 RPOB_THEMA  TM0459 RPOC_THEMA  
Ta Tc 10639562 RPOB_THEAC RNA polymerase B 10639564 RPA2_THEAC RNA polymerase A" 
Column names: as in Table 1. Note that only the first case corresponds to the reference set, while the other 
cases are identified due to paralogy between the corresponding components. (*) Abbreviations: Hp, 
Helicobacter pylori; Cj, Campylobacter jejuni; Hi,Haemophilus influenzae; Bb, Borrelia burgdorferi; Sp, 
Streptococcus pyogenes; Tm, Thermotoga maritima; and Ta, Thermoplasma acidophilum.. Tc, Transcription 
class. 
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In order to assess the quality of the original data from DIP [10] in terms of predicting 

functional associations, we analyzed the patterns of distribution of Functional Classes for 
protein pairs (in terms of positive, different or unknown classes)(see methods) according 
to three different annotation schemes: Clusters of Orthologous Groups (COGs) [18], 
Euclid [19] and GeneQuiz [14]. The COG scheme yields more cases in the same 
functional class compared to the other two schemes in relative terms (9% of interactions 
in the reference set), although only 1106 sequences out of the total 1575 sequences from 
H. pylori genome are assigned to COGs. Therefore, we opted using the GeneQuiz 
functional class scheme (2%), since it provides maximum coverage of the genome, 
similarly to Euclid (3%) [19]. 

 
We then assessed the patterns of distribution per functional class in the positive 

category (see methods) for the six selected genomes and the reference set (Figure 3). In 
general, functional class distribution of positive pairs exhibits a highly non-uniform 
pattern for all six species examined and the reference set. The three more abundant 
functional classes correspond to the transport-and-binding-proteins, replication and 
translation, in this order, whose pattern is different from the reference set, suggesting that 
the observed interactions in H. pylori are not conserved in terms of functional class. The 
cell envelope functional class, which is one of the most abundant classes in the reference 
set, does not give rise to any predictions across the selected six genomes except for the 
case of the H. pylori genome used as control. 

 
Figure 3. Relative distribution of functional classes for pairs of component proteins in the positive category. 
Functional classes are shown on the x-axis and the number of component pairs (as %) per functional class on 
the y-axis. Genomes are sorted by phylogenetic distance to the H. pylori genome, which was used as a control 
set. Functional class are sorted out by alphabetical order. Bar shading as in Figure 2 but the reference set which 
is shown as dark horizontal. 
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4. Discussion  

 
Is there any bias in protein interaction information stemming from specific 

experimental techniques? Given the fact that all the H. pylori data comes exclusively from 
two-hybrid screening tests [9], we examine the influence of other experimental techniques 
for protein interaction detection. We counted the number of protein interactions per 
method (available in DIP), finding out that there are only two (out of 38) methods with 
more than 1,000 interactions per method (out of 11,251 recorded protein interactions in 
total). These two methods are two-hybrid screening and immunoprecipitation with 9,781 
and 1,243 protein interactions, respectively. The remaining cases all have counts less than 
400 interactions per method for a variety of species. 

 
In fact, the only species (out of 112 species represented in DIP) for which there is 

sufficient information of protein interactions obtained by more than one method, 
including two-hybrid screening and immunoprecipitation is Saccharomyces cerevisiae. 
Protein interactions from this species can be validated not only by functional classes but 
also by subcellular localization. When all interacting proteins from S. cerevisiae are 
extracted and classified according to the corresponding experimental method, 
immunoprecipitation appears to yield more consistent functional classes (28% of 
interactions) and subcellular localization (75% of interactions), compared to two-hybrid 
screening (5% and 44%, respectively). Thus, there is a potential bias due to the 
experimental data used in our study. Furthermore, two-hybrid screening have been shown 
to have a high false positive (and false negative) rate [20]. Our results also show that 
subcellular localization is a highly desirable attribute for protein interactions that could be 
used both as a quality measure for the original DIP information as well as a filter for 
predicting reliable interactions. We should also note that only in a handful of cases, the 
two above mentioned experimental methods result in identical pairs of proteins, 
indicating that there is very little overlap of reliable experimental observations [21] (not 
shown). 

 
Another caveat of our approach is that our results on the poor conservation of 

interactions across genomes may be due to difficulty of retrieving such relationships 
across large phylogenetic distances due to the use of BLAST [12] for protein similarity 
searches. Therefore, there is a possibility that the interaction pairs are indeed maintained 
across evolution but our approach failed to retrieve it. Furthermore, our approach rely on 
the quality and extent of the functional annotation data. Since our analysis shows that  
annotation schemes differ across genomes and it is biased towards identifying proteins of 
known function in more distantly related taxa (see Table 2) this might represent a bias in 
the extent and quality of the annotations used in this study.  

 
In summary, although our approach has some caveats that will be addressed in a larger 

scale follow-up analysis, our preliminary analysis shows that the exhaustive detection of 
'artificial' gene fusion events allows the prediction of functionally associated components 
based merely on genome structure. This approach for the prediction of functional 
associations of proteins results in accurate predictions for physical interactions, pathway 
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involvement, complex formation and other types of functional associations of protein 
molecules, many of them may provide further support for previous studies [1,3,6,16,17].   

 
All the cases presented here are based on the high-throughput protein interaction set 

from H. pylori and represent interesting and novel findings available at the following 
URL: http://cgg.ebi.ac.uk/old/cgg//projects/mining/artifuse/. 
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