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In silico approaches to the identification of bacterial promoters are hampered by poor conservation 

of their characteristic binding sites. This suggests that the usual position weight matrix models of 

bacterial promoters are incomplete. A number of methods have been used to overcome this 

inadequacy, one of which is to incorporate structural properties of DNA. In this paper we describe 

an extension of the promoter description to include SIDD (stress induced duplex destabilization), 

DNA curvature and stacking energy. Although we report the best result to date for a realistic 

promoter prediction task, surprisingly, DNA structural properties did not contribute significantly to 

this result. We also demonstrate for the first time, that sigma-54 promoters have a stronger 

association with SIDD than do other promoter types. 
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1. Introduction 

The identification of promoters is essential for an understanding of gene regulation. 

However wet-lab techniques to identify bacterial promoters are costly and time 

consuming and thus in silico methods have strong appeal. Unfortunately, computational 

approaches to promoter identification are confounded by the poor conservation of their 

important functional sites. Transcription in bacteria is initiated by a protein complex 

known as RNA polymerase (RNAP), consisting of five subunits (collectively known as 

the core enzyme) and an additional σ factor. The σ factor is responsible for locating 

promoters by recognizing two binding sites, typically located at the -10 and -35 positions 

with respect to the transcription start site (TSS). Once transcription has begun, the σ 

factor dissociates and transcription continues with core enzyme alone. 

In silico identification of promoters has tended to focus on detecting the -10 and -35 

binding site motifs which are typically (in the case of the most common housekeeping 

σ
70

) separated by a spacer of 14 to 20 base pairs (bp). However, it was established early 

using information theoretic reasoning, that the known -35 and -10 binding sites are 

insufficiently conserved to account for all the expected promoters in the background 

genome [15]. Furthermore, when potential binding sites are scored using position weight 

matrices (PWMs), it is found that about 50% of the known TSSs are not located at the 
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highest scoring position upstream of a gene start site [7]. Clearly there are other factors 

involved in the positioning of promoters that are not captured in a simple PWM 

description. In this regard, it is extremely interesting that experiments have demonstrated 

that many look-alike promoter sites initiate transcription in vitro even though they fail to 

do so in vivo [8]. 

Several attempts have been made to use more sophisticated machine learning 

methods to identify promoters, for example neural networks [3] and support vector 

machines (SVM) [4]. While these methods offer somewhat increased accuracy depending 

on how the task is constructed, the improvements may not justify the heavy computation 

required for training the classifiers. Maetschke et al. [11] revisited the PWM approach, 

but this time utilizing information that has recently come to light about the mode of action 

of RNA polymerase. Incorporating extended -10 motifs [12] and UP elements (AT rich 

regions upstream of the promoter) [18] into their promoter description slightly improved 

predictive accuracy to around 50%, but clearly the most important predictive 

improvement for E. coli promoters was obtained by including information about the 

distance of the putative TSS from the gene start site (hereafter referred to as the TSS-GSS 

distance). This observation has also been made in [3]. 

There are at least three explanations advanced to explain the poor predictive 

performance of existing bacterial promoter models. First, it is possible that potentially 

strong promoter sites are masked by some mechanism that makes them inaccessible to 

RNA polymerase. In chlamydial species, for example, DNA is condensed by the binding 

of histone-like proteins during late development, which plays a role in down-regulating 

gene expression by removing the accessibility of promoters [6]. Secondly it is well known 

that some weak promoters can only function in conjunction with activators. 

Unfortunately, while many transcription factors have been identified, most of their 

binding sites have not, and it is not clear how transcription factor binding sites can be 

included in promoter models, except in the case of some well characterized global 

regulators [16]. Thirdly, it is becoming increasingly clear that structural features of DNA 

have an important regulatory role in gene expression, for example stacking energy [1], 

DNA curvature [9, 13] and Stress Induced Duplex Destabilization (SIDD) [19]. Our 

paper investigates the use of these DNA structural properties to help identify promoters. 

Stacking energy refers to the interactions between consecutive base pairs of a 

‘stacked’ DNA sequence. It is assumed to be a purely local phenomenon depending only 

on nearest neighbour interactions and contributes to local duplex stability or meltability. 

Units are kcal/mole and more negative values correspond to higher duplex stability. 

Curved DNA is believed to play an important role in many cell processes such as 

transcription initiation and termination, DNA replication and nucleosome positioning [9]. 

DNA curvature influences the binding affinity of regulatory proteins while DNA looping 

can increase the proximity of separated regulatory sites. Curvature is defined as the 

inverse of the radius of an arc that approximates a given DNA sequence. A value of one 

corresponds to the degree of curvature seen in nucleosomal DNA (see Figure 1, right). 
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SIDD is a thermodynamic quantity whose value for any DNA base pair may be 

defined as the incremental free energy (kcal/mole) required to force that base pair to 

remain open. Regions having low SIDD energy are strongly destabilized, that is, they 

have a high propensity to melt under normal physiological conditions. The SIDD value 

for any particular base pair depends on the local GC content and on the superhelicity 

(degree of negative super-coiling) of the DNA molecule. However unlike stacking energy, 

SIDD is not purely a local property but rather depends on the distribution of SIDD 

throughout the molecule. Calculating SIDD for an entire bacterial DNA molecule is a 

computationally demanding exercise. Even in a 4 Mbp genome, every base pair 

potentially affects every other base pair. 

 

 

Figure 1. A representation of SIDD (left) and DNA curvature (right) in the vicinity of ltuA (Chlamydia 

trachomatis). Vertical lines indicate the TSS location. Horizontal arrows show coding regions. The promoter 

for ltuA lies within a strong SIDD region which occupies the entire upstream non-coding region. It also lies just 

upstream of a region of high curvature. (Curvature window=100) 

Wang and Benham [19] have demonstrated that SIDD energy is a useful predictor of 

promoter regions. Their reported accuracy of around 80% is, on the face of it, a 

remarkable result given that the best typical result for promoter prediction in E. coli is 

around 50% [4, 11]. The authors attribute their success to the fact that about 80% of 

documented promoters contain a strong SIDD site. They define a promoter as extending 

from positions -80 to +20 with respect to the TSS and they define strong SIDD as any 

value below 6 kcal/mole. The association of strong SIDD with intergenic regions (see 

Figure 1, left, for an example) appears to be a general property of all bacterial species [2, 

22] although specific association with promoters has been shown only for E. coli and B. 

subtilis [19], species for which there is a large number of mapped promoters. 

Our group has an interest in the prediction of bacterial promoters using both PWMs 

and machine learning methods. We have previously shown that the success rates reported 

for the promoter prediction task are acutely sensitive to the task definition. In particular, 

the choice of negative instances for the binary prediction task can make the task 

artificially easy [5] and the degree of focus on regions where TSSs are likely to be found 

can also bias performance [4]. 

In this paper we examine the use of DNA structural properties as predictive 

attributes for finding promoters. Once again we note the sensitivity of the results to the 
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task definition. Our results appear to be the best yet reported for a biologically realistic 

promoter prediction task. Perhaps surprisingly, structural properties did not contribute 

appreciably to achieving this result even though they are indeed important for the 

regulatory activity of many promoters. We also demonstrate for the first time that sigma-

54 promoters have a stronger association with SIDD than do promoters associated with 

sigma-70 and other sigma factors. 

2. Methods 

2.1. Data 

All investigations were performed with the genome of Escherichia coli K-12 MG1655 

(ACCN:U00096.2) [23]. Experimentally confirmed TSS locations for this genome were 

obtained from RegulonDB [24]. The data set was filtered for known TSS locations 

associated with sigma-70 promoters, resulting in 542 records. We extracted 250 bp 

sequences upstream of those genes closest to the given TSSs. Following Huerta et al [7], 

this approach eliminated all TSSs further than 250 bp from the gene start. We also 

eliminated seven TSSs that were located within 10 bp of another known TSS because our 

approach did not discriminate two TSSs closer than 10 bp. The final data set consisted of 

439 sequences each 250 bp long, containing a total of 487 annotated TSS locations. 

Thirty nine of the sequences contained multiple TSS locations. 

Stacking energy values were obtained from [1]. SIDD data for the E. coli genome 

were kindly provided by Dr Craig Benham and are available at [22]. DNA curvature was 

calculated using the CURVA software kindly provided by Dr. Alexander Bolshoy [9]. 

2.2. Experimental design 

We approached the promoter prediction task in two steps. First, we constructed a 

description of a sigma-70 promoter using BioPatML, an XML language for the 

description of biological patterns [10]. See the next section for more detail of our 

promoter definition. We scanned all 439 upstream sequences and assigned a score to each 

position indicating the similarity of that region to our promoter definition as if that 

position were a TSS. After smoothing the resultant similarity profile with a moving 

average filter (window = 3), peaks were identified as described in [17] and marked as 

candidate TSS locations. The rationale is that true TSSs are most likely to be found close 

to high scoring peaks, that is, locations where the upstream region has high similarity to 

our promoter definition. 

The second step involved using a suitably trained decision tree to classify as true or 

false each of the TSS candidates found in step 1. For the decision tree we used the 

popular WEKA data mining tool [20] and its implementation of C4.5 [14]. This classifier 

was trained using a selection of promoter features such as the similarity score of the 

candidate TSS, the -10 and -35 scores of the candidate and a variety of DNA structural 

features as described later in the paper. 
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To estimate prediction accuracy, we adopted a 10 fold cross-validation protocol as 

follows: The 439 sequences were divided into 10 sets. For each fold, nine sets were 

scanned with our promoter definition to obtain TSS candidates for C4.5 training data. 

Features were extracted from true TSS locations in each set to obtain positive training 

instances and from false step 1 TSS candidates to obtain negative training instances.  

Testing was performed on candidate predictions obtained from the tenth (holdout) 

set of sequences. A true positive (TP) was any positive prediction five bp or less from a 

known TSS. A false positive (FP) was any positive prediction more than five bp from a 

known TSS. Recall was defined as TP/(TP+FN) and precision as TP/(TP+FP) where FP 

denotes false positive and FN denotes false negative. Averages were obtained for recall 

and precision over 10 repeats of 10 fold cross-validation, that is, over 100 folds. 

2.3. Step 1: Use of BioPatML to obtain candidate TSS locations 

Our promoter definition included five elements: an UP element, the -35 element, a spacer, 

the -10 element and the discriminator (the region between the -10 element and the TSS). 

The -35 and -10 elements were defined using PWMs prepared from sequence data for 

known -10 and -35 binding sites available at DPInteract [25]. Scores for the spacer and 

discriminator widths were calculated using the accessibility formula of Shultzberger et al. 

[16, Eq.(2)]. The UP element was defined as a 17 bp sequence, W15N2, directly upstream 

of the -35 element, where W = A or T and N = any base [11]. Adding an extended -10 

element or constraining the TSS to be a Purine did not improve performance.  

BioPatML normalises the match score for each pattern element to a value between 0 

and 1 - 0 for the minimum possible score and 1 for the maximum. The combined match 

score is a weighted sum of the normalised element match scores and hence optimisation 

of the weighting parameters is required. We did this by line search, fixing the weight for 

the -10 element at 1.0. Interestingly, the optimum weight obtained for the UP element, 

0.45, was slightly greater than that for the -35 element, 0.35, indicating the importance of 

the UP element in E. coli promoters. 

TSS candidates were obtained by identifying peak locations in the graph of 

similarity scores. Candidate selection was constrained such that no two candidates could 

be within 5 bp of each other, i.e. the permitted error tolerance for a correct prediction.  

2.4. Step 2: Classification of candidate TSS locations 

The TSS candidates obtained from step 1 were labeled as positive or negative depending 

on their distance from the nearest true TSS. C4.5 training data included the negative 

candidates from step 1 and positive instances obtained directly from the set of known 

TSSs. Consequently the available training data consisted of 487 known TSSs (positive 

class) and 4751 candidate TSSs not biologically confirmed as promoters (negative class)
a
. 

                                                           
a
 It is likely that some of these negative instances are indeed as yet unidentified 

promoters. 
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This over-representation of negative instances was found to reduce the accuracy of the 

resultant classifier. Consequently, we trained C4.5 with all the positive instances but only 

the five top ranking (highest scoring) negative instances from each sequence. Note that 

this set of negatives includes candidates that are most like positives and hence makes the 

task difficult, albeit realistic. For training, we used the default C4.5 parameters provided 

by WEKA except that we set the Laplace parameter true since this slightly improved 

performance. 

3. Results and Discussion 

3.1 The TSS Prediction Task 

The first step in our promoter prediction algorithm involved finding candidate 

TSSs/promoters in each upstream sequence. An average of 11.9 candidates or predictions 

per sequence was obtained. These were ranked according to their similarity score and 

each candidate labeled as a TP or FP prediction. Table 1 indicates that of the 217 rank 1 

predictions closest to a true TSS, 206 were TP and the remainder FP predictions (>5 bp 

from the true TSS). The average error of the 217 predictions was 1.98 bp. Recall and 

precision for the rank 1 predictions were 42% and 47% respectively. This is comparable 

to the result reported in [11] for the case where TSS-GSS distance was not incorporated 

into the pattern description. Observe that while 90% of true TSSs were within 5 bp of a 

local maximum, only 42% of them were located within 5 bp of the sequence global 

maximum. This is consistent with the findings in [7]. As is to be expected, recall 

increased but precision declined when lower ranked predictions were accepted. 

 
Table 1. Counts of TP TSS predictions obtained from step 1 using a 

BioPatML description of a promoter. The predictions for each 

sequence/gene were ranked by BioPatML similarity score. 

 
Rank # TP 

predictions 

# true TSSs 

closest to peak 

Av error (bp) 

for predictions 

1 206 217 1.98 

2 80 92 2.26 

3 33 41 2.98 

4 33 40 2.88 

5 29 32 2.44 

6 18 19 2.05 

7 12 15 3.47 

8 7 9 2.56 

9 5 7 2.71 

10 7 9 4.44 

11 4 4 3.25 

12 2 2 1.50 

total 436 487 - 

 

The object of step 2 was to design a classifier which could select the true TSS(s) 

from the candidates identified in step 1. We used the well established C4.5 decision tree 
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because, in our initial investigations, C4.5 outperformed WEKA’s implementation of a 

neural network and an SVM with standard kernels (results not shown).  

Success with a classification task depends primarily on identifying appropriate 

features for the task. Even when a DNA property such as curvature or SIDD is known to 

play a role in many promoters, finding an appropriate machine learning representation for 

that feature is not necessarily trivial. We trialed many representations for stacking energy, 

curvature and SIDD in the vicinity of promoters, the most promising of which are shown 

in Table 2 along with more obvious features such as TSS-GSS distance. 

 
Table 2. Information Gain merit scores [20] obtained for a range of 

potential promoter attributes ranked in order of merit. Note that the 

neighbourhood of a TSS candidate (attributes 4, 10 & 11) is the 

region -80 to +20 wrt the TSS. The promoter upstream region 

(attributes 8, 9 & 10) refers to -80 to -1 wrt the TSS. 

 
Attribute 

ID 

Attribute description Merit Score 

1 Rank of candidate TSS at Step 1. 0.113 

2 Distance of candidate TSS from GSS. 0.072 

3 Match score of candidate -10 element at Step 1. 0.068 

4 Av. similarity score in neighbourhood of candidate TSS at Step 1. 0.066 

5 Combined similarity score of candidate TSS at Step 1. 0.061 

6 Match score of candidate -35 element at Step 1. 0.028 

7 Distance of candidate TSS from position of max. curvature. 0.022 

8 GC content of the promoter upstream region. 0.015 

9 Stacking energy of the promoter upstream region. 0.014 

10 Maximum SIDD gradient in neighbourhood of candidate TSS. 0.008 

11 Minimum SIDD value in neighbourhood of candidate TSS. 0.005 

12 Maximum curvature in the promoter upstream region. 0.003 

13 Is candidate TSS located in low SIDD region? (Boolean) 0.002 

14 Is candidate TSS located in the lowest intergenic SIDD region? 0.001 

 

WEKA offers a number of statistical tests to evaluate the efficacy of an attribute 

when used in isolation for a classification task. Table 2 displays the Information Gain 

merit scores [20] obtained for a range of potential promoter features ranked in order of 

merit. The first six features include TSS-GSS distance and various similarity scores 

obtained from step 1 but do not include DNA structural features, which received low 

merit scores. The best structural DNA feature was distance of the putative TSS from the 

position of maximum DNA curvature. Of interest is that maximum SIDD gradient in the 

vicinity of a promoter was a better feature than minimum SIDD value, so confirming an 

observation that many TSSs are located near the downstream boundary of a SIDD region. 

Based upon the merit scores shown in Table 2, we trained a C4.5 classifier using the 

first six attributes. This classifier achieved a recall of 50.6% and a precision of 54.0% 

(Table 3, row 2) on the Step Two task. This was a significant improvement over the 

results obtained in Step One using the BioPatML promoter description alone (Table 3, 

row 1). However most of the structural DNA features (such as 7, 8, 9 in Table 2), when 

added to the basic six features, degraded classification performance. We found two SIDD 
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features and one curvature feature that slightly increased performance when added to the 

basic six (Table 3, rows 3, 4, 5) but the increase was not significant. 

 
Table 3. Recall and precision for the promoter prediction task 

obtained after step 1 (selecting promoter candidates) and step 2 

(classification of candidates). Feature ID numbers refer to those used 

in Table 2. Averages are over 10 repeats of 10 fold cross-validation. 

95% confidence intervals are shown for the output from step 2. 

Step Feature 

representation 

Include DNA 

structural features? 

Recall Precision 

1 BioPatML No 42.3% 46.9% 

2 1-6 No 50.6±1.6% 54.0±1.4% 

2 1-6, 12 Yes 51.1±1.6% 53.9±1.3% 

2 1-6, 13, 14 Yes 51.5±1.4% 54.5±1.4% 

2 1-6, 12, 13, 14 Yes 51.4±1.4% 54.8±1.4% 

 

A comparison of our best result with previously published results for the TSS 

prediction task is not straight forward. The difficulty is that there is no standard promoter 

prediction task and results are sensitive to task definition and the constraints applied. First 

we must address the issue of task definition. The 80% accuracy achieved by Wang and 

Benham [19] is readily explained by their task definition. Their positive instances 

consisted of 500 known promoter sequences which were considered against a set of 

negative sequences obtained from 500 coding regions and a further 500 convergent non-

coding regions, thus yielding a positive-negative ratio of 1:2. The task was then to classify 

sequences as containing a TSS or not. We have previously argued [5] that this is not the 

real promoter prediction task because promoters are seldom found in coding sequences or 

in convergent non-coding regions. The promoter prediction task as addressed in [3, 4, 7 

and 11] is to determine the location of promoters/TSSs in regions upstream of gene start 

sites, since this is where the great majority of promoters are to be found. It is also a much 

more difficult task because the prediction algorithm must sift through many strong 

candidates, the majority of which prove to be false instances. 

Even where authors agree on the task definition, interpretation is clouded by varying 

task constraints. Three factors in particular are relevant: (1) the definition of a true 

positive, (2) the length of the searched upstream region and (3) explicit use (or otherwise) 

of the TSS-GSS distance. With regard to (1), typically a true positive is a predicted TSS 

five bp or less from a true TSS. This margin of error is considered acceptable because 

biological confirmation of an in silico prediction does not require greater accuracy. 

Obviously if the error threshold is tightened, the task becomes more difficult. With regard 

to (2), 91% of confirmed E. coli sigma-70 TSSs are located within 250 bp of the GSS and 

consequently, most investigations restrict their search to this region. Increasing the 

distance to 500 bp or more increases the task difficulty as it increases the opportunity to 

make false positive errors. The search distance also influences the relative performance of 

algorithms. Using TSS-GSS distance alone as a predictor compares favorably with PWMs 

where the search distance is 750 bp but not if it is 250 bp [4]. With regard to (3) it has 

already been noted that prediction accuracy can be increased using TSS-GSS distance 
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because most TSSs are located in a region 30 to 60 bp upstream of the TSS. Whether one 

considers TSS-GSS distance a valid attribute for this task depends on whether one’s goal 

is to model the behaviour of the RNA polymerase holoenzyme or to find promoters by 

any means possible. 

 
Table 4. A comparison of the task constraints, recall and precision for 

several studies of the well defined TSS prediction task. 

 

Authors 

 

Method 

 

Recall 

 

Precision 

Error 

threshold 

Explicit use 

of TSS-GSS 

distance 

 

Search 

length 

Huerta et al [7] PWMs 50% 33% 5bp Yes 250bp 

Burden et al [3] Neural network 50% 17% 3bp Yes 500bp 

Gordon et al [4] SVM 50% 33% 5bp No 750bp 

Maetschke et al [11] PWMs+EM 48% 48% 5bp Yes 250bp 

This study PWMs+C4.5 51% 55% 5bp Yes 250bp 

 

Our recall and precision values for the TSS prediction task (in Table 3) are 

compared with four previous sets of published results (see Table 4). Huerta et al. [7] in 

2003 claimed ‘the highest predictive capability reported so far’ with a recall of 50% at a 

precision of 33% (these values are derived from Figure 8e in [7]). We regard this as the 

benchmark result for a standard set of realistic constraints. Burden et al. [3] in 2005 using 

neural nets, obtained a weaker result probably because they set themselves more difficult 

task constraints. Gordon et al. [4] also obtained a recall of 50% at a precision of 33% but 

since they searched 750 bp upstream, their task was also notably more difficult. 

Maetschke et al. [11] obtained similar recall but at the significantly higher precision of 

48% using an expanded promoter description whose parameters were trained using an 

Expectation Maximization (EM) approach. Our results offer a modest increase in recall 

and precision over [11] and therefore represent to our knowledge, the best published 

result for this task and this set of realistic constraints.  

3.2 SIDD and Promoter Type 

Using the information supplied in RegulonDB [24], we determined the promoter 

boundaries (-80 to +20 wrt TSS) for all biologically mapped sigma-70, sigma-24, sigma-

38, sigma-32 and sigma-54 TSSs. For each TSS, we determined the minimum SIDD 

value inside its promoter boundaries as defined above. The histograms in Figure 2 show, 

for each promoter type, the relative frequency of promoters having a given minimum 

SIDD value. Wang and Benham [19] show similar data but as a probability distribution 

for all 927 mapped TSS locations in RegulonDB [24]. When we group the promoters 

according to type, we observe a somewhat uniform distribution of SIDD values for all 

types except sigma-54, which has 57% of its promoters associated with a SIDD value of 

less than zero. Only one of the 14 mapped sigma-54 promoters has a minimum SIDD 

value greater than the strong/weak threshold of 6 kcal/mole set in [19]. It is not surprising 

that sigma-54 promoters require increased upstream duplex destabilisation. Transcription 

initiation with sigma-54 requires activation by an enhancer binding protein which binds 
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upstream of the promoter and resulting in interaction with sigma-54 mediated by DNA 

bending [21]. 

 

 

Figure 2. Histograms of the minimum SIDD value associated with five different types of promoter in E. coli. 

 

4. Conclusion 

We report in this work the best results to date for a well defined and realistic TSS 

prediction task. We have also demonstrated that sigma-54 promoters have a stronger 

association with SIDD regions than do other promoter types. Although DNA structural 

properties are known to be important in the regulation of many sigma-70 promoters, we 

were not able to find a suitable representation of these features that helped to increase the 

in silico prediction of sigma-70 promoters. This requires some explanation. 

It should be noted that the TSS/promoter task that we undertake in this paper is 

inherently difficult because it involves the selection of a true TSS from of a set of strong 

candidates. We find that SIDD regions are generally wide enough to contain several 

strong candidates and therefore a local SIDD value will not be discriminative. Likewise, 

regions of high curvature in an intergenic region are sufficiently long and numerous that 
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they do not have strong discriminative value. Finally any selection of promoter features 

implicitly biases the training towards a particular promoter model but it is known that 

there are many variations on how promoters initiate transcription, so it is unlikely that any 

one model or set of features can serve as a general purpose predictor of all the known 

promoters.  
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