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I. INTRODUCTION
High-throughput sequencing speed is faster than before[1].

By sequencing, it is possible to research microorganisms which
are difficult to cultivate. Many diseases are caused by
microorganisms such as bacteria and virus. For example, 12%
of human cancers are caused by viruses[2]. Therefore, the
detection of microorganisms is particularly important. Some
microorganism detection algorithms are released recently, such
as PathSeq[3], RINS[4], VirusSeq[5], CaPSID[6], et al.

RINS uses the priori knowledge algorithm to reduce the
data processed, so it is much faster than PathSeq. But if the
assumption is proved to be wrong when using RINS, then users
need to reassume, analyze and verify the data. RINS is weak in
finding the microorganisms with no reference genomes. While
PathSeq depends on Amazon's EC2 cloud computing platform
[7] and S3 cloud storage platform[8], the use of PathSeq is
influenced by the network, and PathSeq takes more time to
process. Microorganism detection algorithm can synthesize the
two ideas to achieve better performance.

II. ALGORITHM FOR MICROORGANISM DETECTION

The detection algorithm is designed as Fig. 1.

Figure 1. The pipeline of microorganism detection algorithm

Short read aligner is used to map the sequencing data in the
above steps. By comparison, BWA[9] can get more mapped
reads than Bowtie[10], while the processing speed of the two
software is very close. Our algorithm uses BWA to improve
accuracy. Velvet[12] is used in the algorithm as short reads
assembler, which is based on De Bruijn graph[11]. Assembled
contigs are long reads. Our algorithm uses BLAST[13] to
perform the alignment.

III. RESULT
Hg19[16] is used as reference human genome. Microbial

reference genomes are downloaded from NCBI[17] from viruses,
bacteria and fungi categories ( Update to Sep., 2012)

Simulated sequencing datasets: simulated sequencing data
are generated by GemSIM [18], described as follows.

(1) Known microbial sequencing data: It means there is
reference genome for the microorganism in the sample.
GemSIM uses the human genome hg19 and the bacteria
genome Helicobacter_pylori_Sat464_uid159467 as
templates to generate simulated data. Generated reads are
paired-end sequencing data, and read length is 101bp.

(2) Unknown microbial sequencing data: It means there is no
reference genome for the microorganism in the sample.
GemSIM uses the human genome hg19 and a simulated
mutated virus sequence as templates to generate simulated
data. Reads generated are paired-end, and the read length
is 101bp. Virus Hepatitis B virus isolate HK2100 is used
as the original sequence to generate mutated virus
sequence. The mutation rate is 80%.
Real sequencing data: the dataset is SRR073726, which is

human CA-HPV-10 prostate cancer sequencing data. The
sequencing reads are paired-end sequencing data, with read
length 40bp. The serum samples contain Human Papilloma
Virus subtype 18 (HPV18)

Results for the known microbial sequencing data are
described in Table 1

TABLE I. RESULT FOR KNOWNMICROBIAL SEQUENCING DATA

Data
Group

Runtime
(s)

Contigs
Number

Length>10
kbp

Longest
contig

Avg.
Length

Top 20% 758 2134 0 3293 1337

Top 40% 963 310 46 53168 15451



Top 60% 1216 143 40 130802 35677

Top 80% 1474 127 37 130802 39174

100% 1738 128 37 130802 39174

These contigs are aligned to microbial genomes by
BLASTN. According to the map result, microbial genome
gi|384893616|ref|NC_017359.1 | Helicobacter pylori Sat464
chromosome gets the highest match score with these contigs.

Results for the unknown microbial sequencing data are
shown in Table 2.

TABLE II. RESULT FOR UNKNOWNMICROBIAL SEQUENCING DATA

Data Group Runtime(s) Contigs(bp) Mapped Bases(bp)

Top 20% 533 1636, 1431 1636, 1431

Top 40% 782 2113, 960 2113, 960

Top 60% 1019 3074 3074

Top 80% 1257 2114, 961 2114, 960

100% 1522 3136 3076

Results for the real sequencing data are shown in Table 3.

TABLE III. RESULT FOR REAL SEQUENCING DATA

Data Group Runtime(s) Contigs(bp_ Mapped Bases(bp)

Top 20% 118 600, 182 583, 126

Top 40% 126 590, 180 58p, 175

Top 60% 223 592, 186 583, 181

Top 80% 356 592, 186 58p, 181

100% 441 592, 186 583, 181

IV. DISCUSSION
The algorithm described in the paper first reference RINS

algorithm to extract the microbial sequencing data in the data
processing, which can reduce the amount of sequencing data
need to be processed. Meanwhile, in the algorithm, if the
analysis results of the extracted data of the virus sequence fail
to pass the verification, then in turn change the reference
genomes to bacteria and fungi to extract the bacterial and
fungus sequencing data for analysis and verification. The
purpose is to avoid analyzing partial data when replacing the

reference genomes. This algorithm can also analyze the
remaining reads after the extraction of microbial genomes
sequencing data, thereby reducing the probability of missing
unknown microorganism.

When using the sequencing-by-side method to deal with the
three test datasets, our detection algorithm gets short contigs
for the first obtained sequencing data, with the increase of
sequencing data, contigs obtained by the algorithm gradually
become longer. When the amount of sequencing data is 60% of
the total amount of data, the detection algorithm gets almost the
same result The results of sequencing-by-side analysis show
that the method can obtain preliminary test results with the
initial sequencing data of the sample. Along with the increase
of the sequencing data, the results become more reliable.
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