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Low complexity regions are often treated as the regions of biased composition containing 

simple sequence repeats. New genome sequencing data issues the challenge to search for the 

regions with the low text complexity, which could be functionally important. Next generation 

sequencing technologies provides ever growing volume of sequence data to be verified, checked for 

technological errors and bias before functional annotation (Li et al., 2012). 

The sequence enriched with imperfect direct and inverted repeats may be considered as the 

sequence with low complexity. Intuitively, complexity of symbolic sequence reflects an ability to 

represent a sequence in a compact form based on some structural features of this sequence. To 

evaluate text complexity, several groups of methods were developed: entropy measures (Shannon 

entropy), with the simplest of them using only the alphabet symbol frequencies; method of 

clusterization of cryptically simple sequences; evaluation of the alphabet capacity l-gram 

(combinatorial complexity and linguistic complexity); modifications of complexity measure by Lempel 

and Ziv; stochastic complexity; and grammatical complexity (Orlov&Potapov, 2004; Orlov et al., 

2006). 

We consider application of complexity measures to genomic texts. Intuitively, complexity of 

symbolic sequence reflects an ability to represent a sequence in a compact form based on some 

structural features of this sequence. The general approach to estimating complexity of symbolic 

sequences (binary texts) was suggested by A.N. Kolmogorov (Kolmogorov, 1965). Kolmogorov 

complexity is the length of the shortest code generating given sequence. Kolmogorov complexity is 

not recursive function (is not realized in computational scheme). However, for the sequence of finite 

length, various constructive realizations of non-optimal coding were developed (Lempel and Ziv, 

1976), including classical compression algorithm LZ77. Approaches to genetic sequence analysis 

based on compression algorithms, has been suggested different authors. The mutual information, a 

measure intimately related to entropies, has been successfully used to predict protein coding regions 

in DNA (Grosse et al., 2000). We introduce a complexity measure based on sequence segmentation, 

which we call complexity decomposition, and we present several applications of this complexity 

measure. As the method for complexity evaluation, we have chosen the scheme of the text 

representation in terms of repeats, which uses the concept of complexity of a finite symbolic 

sequence, introduced by Lempel and Ziv (Lempel and Ziv, 1976), but oriented on DNA sequences. 

While studying complexity, we are interested not in a mere compression of genetic texts, but rather in 

detection of the regularities underlying it. The Lempel–Ziv complexity measure is based on text 

segmentation; so called complexity decomposition (Gusev et al., 1993). It may be interpreted as 

representation of a text in terms of repeats and allow find repeated sequence blocks, in smaller scale 

in gene transcription regulatory regions, and in larger scale in complete bacterial genomes. Original 

program is available at http://wwwmgs.bionet.nsc.ru/mgs/programs/lzcomposer/ (Orlov&Potapov, 

2004). Fast search of repeated fragments across mitochondrial genome using such complexity 

decomposition approach allows find "fragile” site potentially damaged by mutations (Guo et al., 2010). 

Recent application of complexity measures and analysis of over-represented oligonucleotides for 

transcription factor binding sites will be also presented (Putta et al., 2011). 



As noted, when studying complexity of genomic sequences, we are not interested in a mere 

compression of these sequences, but rather in the detection of regularities hidden in these 

sequences, that could be in form of “building blocks” or overall similarity of sequence to other 

ancestor or “source” sequence. In addition, we apply the method of optimal text compression 

introduced by J.Rissanen in 1986 to construction of context source trees. It is a variant of Markov 

model of text generation allowing estimate probability for a given nucleotide sequence to be 

generated by fixed source sequence. The model allows find larger regions in genomes that differ by 

sequence content, but could not be detected by standard alignment-based sequence comparison 

method. We will discuss visual presentation of context trees for genomic sequences based on the 

method developed. 

Finally we extent existing set of algorithms for sequence complexity estimations (Orlov et al., 

2006) by new methods related to nucleotide variability in different positions, variance in nucleotide 

content composition to compare all mathematical measures of sequence complexity for different 

genomic applications related to transcription regulation (Putta et al., 2011). Our tool can investigate 

regions of lower complexity found in a phased sample of nucleotide sequences for presence of 

specific oligonucleotide signals and visualize it in complexity profile. 
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