
LI et al.: MAXIMAL BICLIQUE ONE-TO-ONE CORRESPONDENCE 1

Maximal Biclique Subgraphs and Closed Pattern
Pairs of the Adjacency Matrix: A One-to-one

Correspondence and Mining Algorithms
Jinyan Li, Member, IEEE, Guimei Liu, Haiquan Li, and Limsoon Wong

Abstract— Maximal biclique (also known as complete bipartite)
subgraphs can model many applications in web mining, business,
and bioinformatics. Enumerating maximal biclique subgraphs
from a graph is a computationally challenging problem, as
the size of the output can become exponentially large with
respect to the vertex number when the graph grows. In this
paper, we efficiently enumerate them through the use of closed
patterns of the adjacency matrix of the graph. For an undirected
graph G without self-loops, we prove that: (i) the number of
closed patterns in the adjacency matrix of G is even; (ii) the
number of the closed patterns is precisely double the number of
maximal biclique subgraphs of G; and (iii) for every maximal
biclique subgraph, there always exists a unique pair of closed
patterns that matches the two vertex sets of the subgraph.
Therefore, the problem of enumerating maximal bicliques can be
solved by using efficient algorithms for mining closed patterns,
which are algorithms extensively studied in the data mining
field. However, this direct use of existing algorithms causes a
duplicated enumeration. To achieve high efficiency, we propose an
O(mn) time delay algorithm for a non-duplicated enumeration,
in particular for enumerating those maximal bicliques with a
large size, where m and n are the number of edges and vertices
of the graph respectively. We evaluate the high efficiency of our
algorithm by comparing it to state-of-the-art algorithms on three
categories of graphs: randomly generated graphs, benchmarks,
and a real-life protein interaction network. In this paper, we also
prove that if self-loops are allowed in a graph, then the number
of closed patterns in the adjacency matrix is not necessarily even;
but the maximal bicliques are exactly the same as those of the
graph after removing all the self-loops.

Index Terms— Maximal biclique subgraphs, closed patterns,
mining methods and algorithms, bioinformatics (genome or
protein) database.

I. INTRODUCTION

Graph mining has recently become an important and active
research topic in the data mining field. Indeed, there are plenty
of prior work on mining frequent subgraphs [1], [2], [3], [4],
[5], [6], on mining patterns from graph databases [7], [8], [9],
[10], [11], on mining dense subgraphs or important quasi-cliques
crossing graphs [12], [13], on mining closed graph patterns [14],
[15], etc. (See [16] for a survey on earlier graph mining research

Manuscript received August 31, 2006; revised March 15, 2007 and August
3, 2007.

J. Li is with the School of Computer Engineering, Nanyang Technolog-
ical University, Singapore 639798. Email: jyli@ntu.edu.sg. Correspondence
author.

G. Liu is with the School of Computing, National University of Singapore.
Email: liugm@comp.nus.edu.sg.

H. Li is with the Institute for Infocomm Research, Singapore. Email:
Haiquan@alumni.nus.edu.sg.

L. Wong is with the School of Computing, National University of Singa-
pore. Email: wongls@comp.nus.edu.sg.

work.) In this paper, we investigate efficient algorithms for mining
maximal biclique subgraphs from a large graph. Given a graph
G, a maximal biclique subgraph consists of two disjoint subsets
of vertices of G that exhibit a full connectivity between the two
vertex groups. This subgraph concept emphasizes the interaction
between the two groups of vertices. In contrast, the notion of
cliques and quasi-cliques reflects just the density of edges within
one group of vertices or the compactness of this group, and the
notion of frequent subgraphs captures only the occurrence of
subgraphs in a given graph or a graph database.

Many real-life applications can be modeled by maximal bi-
cliques. Here we give two examples. The first one is from social
networks. Web communities have been modeled by bipartite
cores [17], [18], [19], [20], and they can be discovered through
identifying maximal bicliques from web networks. This idea can
be easily extended to mobile communication networks to find
out interacting customer communities which perhaps are commer-
cially useful. The second example is about protein interactions in
the biological field. The thousands of proteins in a biological
cell can be modeled by a graph with a vertex representing a
protein and an edge representing an interaction between a pair
of proteins. The maximal biclique subgraphs from such protein
interaction graphs are critical to questions such as which two
protein groups have a full interaction. This is an important
problem in bioinformatics and biology [21], [22], [23], [24] for
a variety of purposes, such as for function inference of unknown
proteins, for discovery of binding motif pairs, and for study of
topological sub-structures of protein interaction networks. The
same mining problem has been also observed in the reconstruction
of the supertree of Life, the central topic in the phylogenetics
studies [25], [26], [27], where co-clusterings (bicliques) between
groups of species and genes are demanded.

The enumeration of maximal bicliques from a graph has been
long studied [28], [29], [30]. Eppstein [29] has proposed an
algorithm with the time complexity of O(a3 · 22·a · n), where
n is the number of vertices of G, and a the arboricity of the
graph—the minimum number of forests into which the edges
of G can be partitioned. Since the number a can be easily
large, this linear complexity algorithm is actually not efficient
for large graphs. Makino’s three algorithms [30] all deal with the
mining of biclique subgraphs from bipartite graphs, which are a
special type of graph. 1 Dias et al. [31] had an excellent work
on listing induced maximal bicliques. As an induced maximal
biclique strictly forbids any intra-edges within the two vertex sets,

1While it is possible to modify these algorithms to handle general graphs,
we were unable to obtain the source codes from Makino et al. for this
modification and comparison purposes.

LI et al.: MAXIMAL BICLIQUE ONE-TO-ONE CORRESPONDENCE 2

non-induced maximal bicliques (our work) are more suitable for
real-life applications such as those mentioned above. Unlike our
approach transforming a graph into a transactional database [32]
for subgraph enumeration, Zaki and Ogihara had an innovative
work [33] on how a transactional database can be converted
into a bipartite graph for itemset discovery. Only the work by
Alex et al. [28] has studied the same problem as ours. Their
consensus algorithm is called MICA, with the time complexity
of O(n3 ·N) and the space complexity of O(N), where N is the
number of maximal bicliques.

In this paper, we introduce a new algorithm with the time
complexity of O(mn·N) and the space complexity of only O(mn)

to enumerate maximal bicliques from large graphs, where m is
the number of edges of the graph. Unlike the MICA algorithm,
our algorithm does not have to store all the maximal bicliques
in memory. Our method is based on the novel observation that
enumerating all maximal biclique subgraphs from a graph is
equivalent to the problem of mining closed patterns [34] from
the adjacency matrix of this graph. This observation is derived
from the following two propositions. For an undirected graph G

without self-loops:
• The number of the closed patterns in the adjacency matrix

of G is precisely double the number of maximal biclique
subgraphs of G;

• For every maximal biclique subgraph, there always exists a
unique pair of closed patterns that matches the two vertex
sets of the subgraph.

Many prior algorithms and implementations have been de-
veloped for efficient mining of closed patterns, e.g., the pi-
oneering A-close algorithm [34], the later CHARM [35] and
CLOSET+ [36], and the more recent FPclose [37], [38] and
LCM [39]. Each of these can be directly applied for the enu-
meration. However, one drawback with such a direct use is that
the maximal bicliques will be all enumerated twice. Therefore, we
modify the LCM [39] algorithm to develop our new algorithm,
called LCM-MBC, tailoring for a non-redundant enumeration
of maximal bicliques from a large and dense graph. As not
all maximal bicliques are equally interesting, we adapt LCM-
MBC to discover only (p, q)-large maximal biclique subgraphs
without enumerating small maximal bicliques. To evaluate the
high efficience of LCM-BMC, we not only test and compare our
algorithm on randomly generated and benchmark graph datasets,
but also on a real-life protein interaction network.

The rest of the paper is organized as follows: Sections II and III
provide basic definitions and properties for graphs and closed
patterns. Section IV presents a proof for the one-to-one corre-
spondence between closed pattern pairs and maximal biclique
subgraphs of a graph. Section 5 presents our main algorithm,
LCM-MBC, for mining maximal bicliques whose vertex size is
larger than a threshold. Section VI shows our experimental results
at two aspects: (i) comparing the efficiency of our LCM-MBC
algorithm to that of LCM [39] and MICA [28]; (ii) reporting
maximal biclique subgraphs discovered from a protein interaction
graph, and using them to explain and re-confirm the so-called
“many-few” property of protein interaction networks. Section
7 discusses how to determine and enumerate maximal biclique
subgraphs when self-loops are allowed in a graph. Section 8
discusses relationships with formal concept analysis [40], and
biclustering techniques [41]. Section 9 concludes this paper with
a summary and a future work.

A CB

y

u v

w x

u v

w x

vu

w x

Fig. 1. Three graphs and their relationships.

II. MAXIMAL BICLIQUE SUBGRAPHS: THE BACKGROUND

A graph G = 〈V G, EG〉 comprises a set of vertices V G and
a set of edges EG ⊆ V G × V G. Through this paper, we assume
G is an undirected graph without self-loops (unless specified
otherwise); namely, no edge (u, u) ∈ EG, and every (u, v) ∈ EG

is an unordered pair. The superscripts in V G and EG can be
omitted when the context is clear.

A graph H is a subgraph of a graph G iff V H ⊆ V G and
EH ⊆ EG. Let S be a non-empty set of vertices of a graph
G. The subgraph induced by S is the maximal subgraph of G

with vertex set S, denoted by 〈S〉G. So, 〈S〉G contains precisely
those edges of G joining all possible two vertices in S. Subgraph
〈S〉G is called a vertex-induced subgraph of G, or simply, an
induced subgraph of G. A graph G is bipartite if V G can be
partitioned into two disjoint non-empty subsets V1 and V2 such
that EG ⊆ V1 × V2. In this case, the graph G is usually denoted
by G = 〈V1 ∪V2, EG〉. Note that there is no edge in G that joins
any two vertices within V1 or V2. G is a complete bipartite, or
called a biclique, if EG = V1 × V2.

Suppose H is a bipartite subgraph of a graph G, then the
subgraph induced by V H may not be a bipartite subgraph of G.
So, the number of induced bipartite subgraphs cannot be larger
than—and it is often less than—that of bipartite subgraphs in a
graph. In this paper, we focus on the normal bipartite subgraphs,
rather than vertex-induced bipartite subgraphs [31].

Example 1: Figure 1 shows three graphs A, B, and C, where

A = 〈{u, v, w, x, y}, {(u, v), (u, x), (u, w), (w, v), (x, y)}〉
B = 〈{u, v} ∪ {w, x}, {(u, x), (w, v)}〉
C = 〈{u, v, w, x}, {(u, v), (u, w), (u, x), (w, v)}〉

Then B is a bipartite subgraph of A, but it is not a vertex-induced
subgraph from the vertex set {u, v, w, x}. On the other hand, C

is a vertex-induced subgraph from the vertex set {u, v, w, x}, but
C is not a bipartite subgraph of A.

Two vertices u, v of a graph G are said to be adjacent if
(u, v) ∈ EG. The neighborhood βG(v) of a vertex v of a
graph G is the set of all vertices in G that are adjacent to
v, namely, βG(v) = {u | (u, v) ∈ EG}. The neighborhood
βG(X) for a non-empty subset X of vertices of a graph G is
the set of common neighborhoods of the vertices in X. That is,
βG(X) =

⋂
x∈X βG(x).

For every non-empty subset X of vertices in a graph G such
that βG(X) is also non-empty, then it is the case that H =

〈X ∪ βG(X), X × βG(X)〉 is a biclique subgraph of G. It is
possible that a vertex v 6∈ X of G can be adjacent to every
vertex of βG(X). In this case, the subset X can be expanded by
adding the vertex v, while maintaining the same neighborhood.
The intuition behind this expansion can be used to define the
concept of maximal biclique subgraphs.

LI et al.: MAXIMAL BICLIQUE ONE-TO-ONE CORRESPONDENCE 3

w

v

u
x

y

z

Fig. 2. A graph and a maximal biclique subgraph.

Definition 1: A biclique subgraph H = 〈V1 ∪ V2, E〉 is a
maximal biclique subgraph of G if βG(V1) = V2 and βG(V2) =

V1.
This maximality is in the sense that there is no other biclique

subgraph H ′ = 〈V ′1 ∪ V ′2 , E′〉 of G with V1 ⊂ V ′1 and V2 ⊂ V ′2 ,
or with V1 ⊂ V ′1 and V2 = V ′2 , or V1 = V ′1 and V2 ⊂ V ′2 ,
that can satisfy βG(V ′1) = V ′2 and βG(V ′2) = V ′1 . The following
proposition proves this maximality.

Proposition 1: Let H = 〈V1 ∪ V2, E〉 and H ′ = 〈V ′1 ∪ V ′2 , E′〉
be two maximal biclique subgraphs of G such that V1 ⊆ V ′1 and
V2 ⊆ V ′2 . Then H = H ′.

Proof: Since V1 ⊆ V ′1 and V2 ⊆ V ′2 , we have βG(V ′1) ⊆
βG(V1) and βG(V ′2) ⊆ βG(V2). Using the definition of maximal
biclique subgraphs, we derive V ′2 = βG(V ′1) ⊆ βG(V1) = V2 and
V ′1 = βG(V ′2) ⊆ βG(V2) = V1. Then E = V1 × V2 = V ′1 × V ′2 =

E′. Thus H = H ′ as desired.
Example 2: The graph shown in Figure 2 contains

a maximal biclique subgraph H = 〈{u, v, w} ∪
{x, y}, {(u, x), (u, y), (v, x), (v, y), (w, x), (w, y)}〉. Note that
the subgraph

〈{u, v} ∪ {x, y}, {(u, x), (u, y), (v, x), (v, y)}〉
is a biclique, but it is not maximal.

III. CLOSED PATTERNS OF AN ADJACENCY MATRIX

A graph can be equivalently described by its adjacency matrix.
Let G be a graph with V G = {v1, v2, . . . , vp}. The adjacency
matrix A of G is a p× p matrix defined by

A[i, j] =

{
1 if (vi, vj) ∈ EG

0 otherwise

Recall that our graphs do not have self-loops and are undi-
rected. Thus A is a symmetric matrix and every entry on the main
diagonal is 0. So, {vj | A[k, j] = 1, 1 ≤ j ≤ p} = βG(vk) =

{vj | A[j, k] = 1, 1 ≤ j ≤ p}.

A. Transformation from a graph to a special transactional
database

The adjacency matrix of a graph can be transformed into a
transactional database (DB) [32]. For ease of understanding, we
review definitions related to transactional databases. A DB is a
non-empty multi-set of transactions, a transaction is a subset of
a pre-specified set I of items. Each transaction T in a DB is
assigned a unique identity id(T). A pattern, or called an itemset,
is defined as a non-empty set2 of items of I. Given a DB and

2The ∅ is usually defined as a valid pattern in the data mining community.
However, in this paper, to be consistent to the definition of βG(X), it is
excluded.

a pattern P , the number of transactions in DB containing P

is called the support of P , denoted supDB(P). A pattern P is
frequent if supDB(P) ≥ ms, for a threshold ms > 0. In this
paper, unless mentioned otherwise, we consider all patterns with
a non-zero support, namely all those frequent patterns with the
support threshold ms = 1. So, by a pattern of a DB, we mean
that it is non-empty and it occurs in DB at least once.

Let G be a graph with V G = {v1, v2, . . . , vp}. If every vertex
vi in V G is defined as an item, then its neighborhood βG(vi) is
a transaction. Thus,

{βG(v1), β
G(v2), . . . , β

G(vp)}
is a DB. Such a DB is specially denoted by DBG. Observe that
DBG has the same number of items and transactions; and that
item vi is never contained in transaction βG(vi). In this paper,
we use “a pattern of DBG” or “a pattern of the adjacency matrix
of G” interchangeably.

Definition 2: The identity of a transaction βG(vi) in DBG is
defined as vi, namely, id(βG(vi)) = vi.

Example 3: Figure 3 illustrates how a graph G is described by
its adjacency matrix, and how it is transformed into a transactional
database DBG.

B. Closed patterns and occurrence sets

Definition 3: Let I be a set of items, and DB be a transactional
database defined on I. Let P be a pattern, then CLDB(P) =

g(fDB(P)) is defined as the closure of P , where fDB(P) =

{T ∈ DB |P ⊆ T}—all transactions in DB containing the pattern
P ; g(D′) =

⋂
T∈D′ T =

⋂
D′—the set of items which are shared

by all transactions in D′ for a D′ ⊆ DB.
A pattern P is a closed pattern of DB iff CLDB(P) = P . It

is already known that the adjacency matrix of a graph G can be
transformed into a special transactional database DBG, as shown
in Figure 3. Therefore, we can mine closed patterns from every
DBG. A brute-force approach to mining closed patterns from
DBG is to directly use one of existing closed pattern mining
algorithms [42], [43], [38], [34], [39], [36], [35].

We also define the occurrence set of a pattern P in DBG:
Definition 4: Let G be a graph. The occurrence set of a pattern

P in DBG, denoted occDBG(P), is defined as occDBG(P) =

{id(T) | T ∈ DBG, P ⊆ T} = {id(T) | T ∈ fDBG(P)}.
In other words, id(T) ∈ occDBG(P) iff T ∈ fDBG(P), or,

v ∈ occ(P) iff v is adjacent to every vertex in P .
Proposition 2: Given a graph G and a pattern P of DBG. Then

occDBG(P) = βG(P).
Proof: To prove the left-to-right direction of the proposition,

we suppose v ∈ occ(P). Then v is adjacent to every vertex in P .
Then v ∈ β(v′) for each v′ ∈ P . Thus v ∈ ⋂

v′∈P β(v′) = β(P).
To prove the right-to-left direction, we suppose u ∈ β(P). Then

u is adjacent to every vertex in P . Then β(u) ⊇ P . Therefore,
β(u) is a transaction of DBG containing P . So, u ∈ occ(P). This
completes the proof.

Proposition 3: Given a graph G and a pattern P of DBG.
Then βG(βG(P)) = CLDBG(P). Proof: By Proposition 2,
β(β(P)) = β(occ(P)) =

⋂
id(T)∈occ(P) T =

⋂
T∈f(P) T =

g(f(P)) = CL(P).
Thus, βG ◦ βG is a closure operation on patterns of DBG.
We also prove in the next section that occDBG(P) or βG(P) is

a closed pattern for any pattern P , and in particular when P is a
closed pattern of DBG. This result together with Propositions 2

LI et al.: MAXIMAL BICLIQUE ONE-TO-ONE CORRESPONDENCE 4

v1

v2

v3 v5

v4

⇒

v1 v2 v3 v4 v5

v1 0 1 1 0 0
v2 1 0 1 1 1
v3 1 1 0 1 1
v4 0 1 1 0 0
v5 0 1 1 0 0

⇒

id(T) T items
v1 v2 v3 v4 v5

v1 β(v1) 0 1 1 0 0
v2 β(v2) 1 0 1 1 1
v3 β(v3) 1 1 0 1 1
v4 β(v4) 0 1 1 0 0
v5 β(v5) 0 1 1 0 0

A graph G its adjacency matrix transformation to DBG

Fig. 3. A graph G is transformed into a transactional database.

and 3 are critical to relationships between the closed patterns of
DBG and the maximal biclique subgraphs of G.

IV. THE MAPPING BETWEEN MAXIMAL BICLIQUE

SUBGRAPHS AND CLOSED PATTERN PAIRS

Lemma 1: Let G be a graph. Let
C be a closed pattern of DBG. Then
fDBG(occDBG(C)) = {βG(c) | c ∈ C}.

Proof: As C is a closed pattern, we have C = g(f(C)).
It follows easily from the definitions of g and f that C =⋂

T∈DBG, C⊆T T . Hence, the set of items in C are exactly those
items contained in every transaction T ∈ DBG that contains C.
Then, by Proposition 2, the set of items in C are exactly those
vertices of G that are adjacent to every vertex id(T) where the
transaction T ∈ DBG contains C. That is, C = {c ∈ V G | c ∈
β(id(T)), T ∈ DBG, C ⊆ T}. Then it follows from the definition
of occurrence set that C is exactly the set of vertices of G

that are adjacent to every vertex in occ(C). This implies that
{β(c) | c ∈ C} are exactly those transactions that contain occ(C).
In other words, f(occ(C)) = {β(c) | c ∈ C}.

Proposition 4: Let G be a graph and C a closed pattern of
DBG. Then occDBG(C) is also a closed pattern of DBG.

Proof: By Lemma 1, f(occ(C)) = {β(c) | c ∈ C}. So,
CL(occ(C)) = g(f(occ(C))) =

⋂
f(occ(C)) =

⋂
c∈C β(c) =

β(C). By Proposition 2, β(C) = occ(C). Thus occ(C) is a closed
pattern.

Proposition 5: Let G be a graph and C a closed pattern of
DBG. Then C and its occurrence set has empty intersection. That
is, occDBG(C) ∩ C = {}.

Proof: Let v ∈ occ(C). Then v is adjacent to every vertex
in C. Since we assume G is a graph without self-loops, v 6∈ C.
Therefore, occDBG(C) ∩ C = {}.

In fact Proposition 5 holds for any pattern P , not necessarily
a closed pattern C.

Now, we present the main result of this paper: the pair of a
closed pattern C and its occurrence set occDBG(C) always yields
a distinct maximal biclique subgraph of G.

Theorem 1: Let G be an undirected graph without self-loops.
Let C be a closed pattern of DBG. Then the graph

H = 〈C ∪ occDBG(C), C × occDBG(C)〉
is a maximal biclique subgraph of G.

Proof: By assumption, C is non-empty and C has a non-zero
support in DBG. Therefore, occ(C) is non-empty. By Proposi-
tion 5, C ∩ occDBG(C) = {}. Furthermore, for every v ∈ occ(C),
v is adjacent in G to every vertex of C. So, C×occ(C) ⊆ EG, and
every edge of H connects a vertex of C and a vertex of occ(C).
Thus, H is a biclique subgraph of G. By Proposition 2, we have

occDBG(C) = βG(C). By Proposition 3, C = βG(βG(C)). By
Proposition 2, we derive C = βG(occDBG(C)). So H is maximal.
This finishes the proof.

Theorem 2: Let G be an undirected graph without self-loops.
Let graph H = 〈V1∪V2, E〉 be a maximal biclique subgraph of G.
Then, V1 and V2 are both closed patterns of DBG, occDBG(V1) =

V2 and occDBG(V2) = V1.
Proof: Since H is a maximal biclique subgraph of G, then

β(V1) = V2 and β(V2) = V1. By Proposition 3, CL(V1) =

β(β(V1)) = β(V2) = V1. So, V1 is a closed pattern. Similarly,
we can get V2 is a closed pattern. By Proposition 2, occ(V1) =

β(V1) = V2 and occ(V2) = β(V2) = V1, as required.
Theorems 1 and 2 say that maximal bicliques of G are all

in the form of H = 〈V1 ∪ V2, E〉, where V1 and V2 are both
closed patterns of DBG. Also, for every closed pattern C of
DBG, the graph H = 〈C ∪ occDBG(C), C × occDBG(C)〉 is a
maximal biclique of G. So, given a graph G, there exists a one-
to-one correspondence between the maximal bicliques of G and
the closed pattern pairs of DBG.

Example 4: Consider the graph G and DBG given in
Example 3 again. The adjacency matrix is:

v1 v2 v3 v4 v5

β(v1) 0 1 1 0 0
β(v2) 1 0 1 1 1
β(v3) 1 1 0 1 1
β(v4) 0 1 1 0 0
β(v5) 0 1 1 0 0

The closed patterns, their support, and their occurrence sets
are as follows:

sup(X) closed pattern X Y = occ(X) sup(Y)

3 {v2, v3} {v1, v4, v5} 2
4 {v2} {v1, v3, v4, v5} 1
4 {v3} {v1, v2, v4, v5} 1

This DBG has a total of 6 closed patterns; and this graph G

has exactly three maximal biclique subgraphs:

H1 = 〈{v2, v3} ∪ {v1, v4, v5},
{(v2, v1), (v2, v4), (v2, v5), (v3, v1), (v3, v4), (v3, v5)}〉

H2 = 〈{v2} ∪ {v1, v3, v4, v5},
{(v2, v1), (v2, v4), (v2, v5), (v3, v2)}〉

H3 = 〈{v3} ∪ {v1, v2, v4, v5},
{(v3, v1), (v3, v4), (v3, v5), (v3, v2)}〉

This can be visually verified from Figure 3 easily.

LI et al.: MAXIMAL BICLIQUE ONE-TO-ONE CORRESPONDENCE 5

Proposition 6: Let G be a graph. Let C1 and C2 be two closed
patterns of DBG. Then C1 = C2 iff occDBG(C1) = occDBG(C2).

Proof: The proof is obvious, thus omitted.
Propositions 4, 5, and 6 give rise to two corollaries.
Corollary 1: Let G be a graph. Then the number of closed

patterns in DBG is even.
Proof: Suppose there are n closed patterns that appear at

least once in DBG, denoted as C1, C2, ..., Cn. As per Proposi-
tion 4, occ(C1), occ(C2), ..., occ(Cn) are all closed patterns of
DBG. As per Proposition 6, occ(Ci) is different from occ(Cj) iff
Ci is different from Cj . So every closed pattern can be paired
with a distinct closed pattern by occ(·) in a bijective manner.
Furthermore, as per Proposition 5, no closed pattern is paired
with itself. This is possible only when the number n is even.

Corollary 2: Let G be a graph. Then the number of closed
patterns C, such that both C and occDBG(C) appear at least ms

times in DBG, is even.
Proof: As seen from the proof of Corollary 1, every closed

pattern C of DBG can be paired with occDBG(C), and the entire
set of closed patterns can be partitioned into such pairs. So a
pair of closed patterns C and occDBG(C) either satisfy or do not
satisfy the condition that both C and occDBG(C) appear at least
ms times in DBG. Therefore, the number of closed patterns C,
satisfying that both C and occDBG(C) appear at least ms times
in DBG, is even.

Note that this corollary does not imply the number of frequent
closed patterns in DBG is always even. See the following counter
example.

Example 5: Continue with the graph G and DBG used in
Example 4. It is already known that DBG has a total of 6 closed
patterns. But if we set ms = 3, then there are only 3 closed
patterns—an odd number—that occur at least ms times, viz.
{v2, v3}, {v2}, and {v3}.

V. EFFICIENT MINING OF LARGE MAXIMAL BICLIQUES

Not all maximal biclique subgraphs are equally interesting.
Recall our earlier motivating example involving customers in a
mobile communication network. Those two groups of customers
with a small size containing only a single person or just a few
would be trivial, while if one or both of the groups are large,
then they are useful. Hence, we introduce the concept of large
bipartites to exclude those bipartites with trivial sizes. We also
present an efficient algorithm for mining maximal bicliques of
large size.

A. Maximal bicliques of large size

Definition 5: A maximal biclique subgraph H = 〈V1 ∪ V2, E〉
of a graph G is said to be (p, q)-large if |V1| or |V2| is at least p,
and the other is at least q.

Proposition 7: Let G be a graph and C ⊂ V G. Then H = 〈C∪
occDBG(C), C × occDBG(C)〉 is a (p, q)-large maximal biclique
subgraph of G, where p ≤ q and |C| ≤ |occDBG(C)|, iff C is a
closed pattern with |C| ≥ p and supDBG(C) ≥ q.

Proof: The proof is easy, and thus omitted.
So, our mining problem in this work can be re-formulated as to

enuerate all closed patterns C of DBG that satisfies |C| ≥ p and
supDBG(C) ≥ q. It is straightforward for existing closed pattern
mining algorithms [42], [43], [38], [34], [39], [36], [35] to get all
those closed patterns with the support threshold set as q. However,

 {}

1
 2
 3
 4
 5

1,2
 1,3
 1,4
 1,5
 2,3
 2,4
 2,5
 3,4
 3,5
 4,5

1,2,3
 1,2,4
 1,2,5
 1,3,4
 1,3,5
 2,3,4
1,4,5
 2,3,5
 2,4,5
 3,4,5

1,2,3,4
 1,2,3,5
 1,3,4,5
1,2,4,5
 2,3,4,5

1,2,3,4,5

Fig. 4. A set-enumeration tree for a graph with vertex set {1, 2, 3, 4, 5}.

to move to identify all the (p, q)-large maximal bicliques, these
existing algorithms need two extra steps:

1) Remove those frequent closed patterns if their cardinality
is less than p (computationally trivial);

2) Pair up the remaining closed patterns to form maximal
bicliques (computationally non-trivial).

Furthermore, this filtering approach has two shortcomings: (1)
generating many frequent closed pattern with a small cardinality
(< p) which are useless in constructing large maximal bicliques;
(2) unnecessarily listing all closed patterns with the least support
of q. The reason is that whenever a closed pattern C is identified,
it is the case that occDBG(C) is also a closed pattern of DBG. If
occDBG(C) has a support ≥ q, then occDBG(C) is redundantly
enumerated, resulting in heavy computational redundancy in the
existing algorithms to list all (p, q)-large maximal bicliques.

To avoid these two drawbacks, we develop a new algorithm to
enumerate only those closed patterns C of DBG satisfying the
following three conditions:

1) supDBG(C) ≥ q,
2) |C| ≥ p, and
3) supDBG(C) ≥ |C|.

The first two conditions garranttee the completeness of the solu-
tion, the third constraint can avoid the computational redundancy.
However, we have to note that those closed pattern pairs |C| =

|occDBG(C)| ≥ q are enumerated twice in our algorithm.

B. Our algorithm LCM-MBC

Let G be a graph and I = V G be the set of items of DBG. As
every subset of I can be possibly frequent in DBG, all of them
form the search space of this frequent itemset mining problem.
The search space can be represented as a set-enumeration tree [44]
as shown in Figure 4. The root of the tree represents the empty
set. Each node at level-k represents an itemset containing k items.
The subtree rooted at itemset X is called the sub search space
tree of X. In a search space tree, the items are sorted into some
order. For every itemset X in the tree, only items after the last
item of X can appear in the sub search space tree of X. This
set of items are called tail items of X, denoted as tail(X). For
example, in Figure 4, all items are sorted into the lexicographic
order, so item 4 is in tail({1, 3}), but item 2 is not a tail item of
{1, 3} because item 2 is prior to item 3.

Most of the frequent closed itemset mining algorithms [42],
[43], [38], [34], [39], [36], [35] use the depth-first-order to explore
the search space, and use the anti-monotone property to prune the
search space. The anti-monotone property is stated as follows: if

LI et al.: MAXIMAL BICLIQUE ONE-TO-ONE CORRESPONDENCE 6

an itemset is not frequent, then none of its supersets is frequent.
Based on the anti-monotone property, if an itemset is not frequent,
then there is no need to visit the sub search space tree of the
itemset. Given two numbers (p, q) (p ≤ q) as the size constraints
on maximal bicliques, we choose the larger one q as the support
threshold to maximize the pruning power of the anti-monotone
property.

For every itemset X that is visited during the exploration,
the tail items of X that are frequent with X are identified,
and these items are used to create the child nodes of X. The
exploration is then continued on these newly created child nodes.
We incorporate two pruning techniques into the depth-first mining
framework to prune duplicate and small maximal bicliques. The
pseudo-codes of the mining algorithm is shown in Algorithm 1.
Algorithm 1 first finds the set of items in tail(X) that are frequent
with X (lines 1-3), then uses these items to extend X to obtain
longer frequent closed itemsets. The codes at line 10 and 11 are
for closed itemset identification, which has been well discussed
in frequent closed itemset mining algorithms, so we do not go
into the details here. When Algorithm 1 is first called on a graph
G = (V, E), X is set to {} and tail(X) is set to V .

Algorithm 1 LCM-MBC
Input:

X is an itemset (vertex set)
tail(X) is the tail items of X
p is the minimum size threshold
q (≥ p) is the minimum support threshold

Description:
1: for all item v ∈ tail(X) do
2: if supDBG (X ∪ {v}) < q then
3: tail(X) = tail(X)− {v};
4: if |X|+ |tail(X)| < p then
5: return ;
6: for all item v ∈ tail(X) do
7: Y = X ∪ {v};
8: tail(Y) = {u|u ∈ tail(X) ∧ u is after v};
9: if |Y |+ |tail(Y)| ≥ p then

10: Z = Y ∪ {u|u ∈ tail(Y) ∧ supDBG (Y ∪ {u}) = supDBG (Y)};
11: if Z is a closed itemset then
12: if |Z| ≥ p AND supDBG (Z) ≥ |Z| then
13: Output Z as a closed itemset;
14: if supDBG (Z) > |Z| then
15: LCM-MBC(Z, tail(Y)− Z, p, q);

Pruning small maximal biclique subgraphs. To prune small
maximal bicliques, we use the size threshold p to prune the
search space, in addition to using the support threshold q to prune
the search space as explored in common closed itemset mining
algorithms. The itemsets appearing in the sub search space of an
itemset X are subsets of X∪tail(X). Therefore, if |X|+|tail(X)|
is less than the size threshold p, then there is no need to search
in the sub search space tree of X because all the itemsets in that
subtree contain less than p items (line 9). Also observe that every
itemset Y in the sub search space tree of X with supDBG(Y) ≥ q

must be a subset of X∪{x|x ∈ tail(X)∧supDBG(X∪{x}) ≥ q}.
Therefore, if there are less than (p − |X|) items in tail(X) that
are frequent with X, then there is no need to search in the subtree
of X either (lines 4-5).

Pruning duplicate maximal biclique subgraphs. Given two
size thresholds p and q, where p ≤ q, suppose the larger value
q is used as the support threshold and p as the size threshold.
Then, a (p, q)-large maximal biclique H with two vertex sets V1

and V2 can be in three cases: (i) |V1| ≥ q and q > |V2| ≥ p, (ii)
|V2| ≥ q and q > |V1| ≥ p, and (iii) |V1| ≥ q and |V2| ≥ q. In
the first case, V2 is not frequent and only V1 is frequent, so H

is generated exactly once. Similarly in case (ii), H is generated
only once. However, H is generated twice in case (iii) where both
vertex sets of H are frequent. We prune these duplicate maximal
bicliques as follows. If the size of a closed itemset is no less
than the support of the closed itemset, then we do not extend
the closed itemset further even if the closed itemset is frequent
(line 14). Furthermore, a closed itemset is put into the output
only if its support is no less than its size (lines 12-13). In this
way, all the maximal bicliques in case (iii) whose two vertex
sets are of different size are generated exactly once. For maximal
bicliques whose two vertex sets are of equal size, we remove the
duplicates in a post processing step as follows. Let H = (V1, V2)

be a maximal biclique whose two vertex sets are of equal size,
that is, |occDBG(V1)| = |V1| and |occDBG(V2)| = |V2|. Two
copies of H are generated by Algorithm 1, and they are H1 =

〈V1 ∪ occDBG(V1), V1 × V2〉 and H2 = 〈V2 ∪ occDBG(V2), V1 ×
V2〉. For each Hi, i = 1, 2, we compare its itemset Vi with its
occurrence set occDBG(Vi) according to the lexicographic order.
If Vi is smaller than occDBG(Vi), then we keep Hi, otherwise Hi

is discarded. The condition that Vi is smaller than occDBG(Vi) is
true for only one of the two Vis, so one of His is kept and the
other one is discarded.

The above pruning techniques can be applied to any closed
itemset mining algorithm that uses the depth-first-order to explore
the search space. In this paper, we choose the state-of-the-art
closed itemset mining algorithm LCM [39]. LCM uses a prefix
preserving closure extension technique to generate all new closed
itemsets. This extension technique needs no previously obtained
closed itemsets. Hence, the memory usage of LCM does not
depend on the number of frequent closed itemsets. The time
complexity of LCM is theoretically bounded by a linear function
in the number of frequent closed itemsets, that is why LCM is
short for Linear time Closed itemset Miner [39]. We incorporate
our pruning ideas into LCM specially for mining large maximal
bicliques. We call this revised algorithm LCM-MBC, and report
its performance in the next section.

Complexity analysis. Let n be the number of vertices in G

and m be the number of edges in G. We store the adjancency list
of each vertex instead of the adjacency matrix in our computer.
As each edge appears twice, the size of our database DBG is
double the number of edges in G, namely the size of DBG is
2m. The support of the items in tail(X) can be obtained by
scanning the transactions containing itemset X once, so the time
complexity of finding items in tail(X) that are frequent with X is
O(m) (lines 1-3). Checking whether |X|+ |tail(X)| < q requires
constant time (lines 4-5). The cost of lines 7, 9, 12 and 14 is also
a constant. The cost of line 8 is bounded by the size of tail(X)

which in turn is bounded by V G, so the time complexity of line 8
is O(n). At line 10, itemset Z can be generated by scanning the
transactions containing itemset Y once. The set of transactions
containing itemset Y is a subset of the transactions in DBG.
Therefore, the total size of the transactions containing itemset Y

cannot exceeds the size of DBG, so the time complexity of line
10 is O(m). At line 11, we need to generate the closure of itemset
Z and compare it with Z. If CLDBG(Z) = Z, then itemset Z

is a closed itemset, otherwise itemset Z is not a closed itemset.
The closure of itemset Z can be generated by intersecting the
transactions containing Z, so the time complexity of line 11 is
O(m). The cost of outputting an itemset is bounded by the size
of the itemset, so the time complexity of line 13 is O(n).

LI et al.: MAXIMAL BICLIQUE ONE-TO-ONE CORRESPONDENCE 7

The codes between line 7 and line 14 are called |tail(X)|
number of times, and tail(X) is a subset of V G. Therefore, the
cost of lines 6-14 is O(nm). Algorithm 1 is recursively called for
every maximal biclique which has a vertex set larger than q (line
15). Therefore, the time complexity of Algorithm 1 is O(mnN),
where N is the number of maximal bicliques that have a vertex
set larger than q. Put in another way of a general case, let F (X)

be the time complexity of finding frequent itemset X and all the
frequent supersets of X. Then the recursive formula for the time
complexity is:

F (X) = O(m) + O(n) ∗ (O(n) + O(m) + O(m) + O(n)) +∑

v∈tail(X),sup(X∪{v})≥q,Z is closed

F (X ∪ {v})

= O(mn) + ∑

v∈tail(X),sup(X∪{v})≥q,Z is closed

F (X ∪ {v})

where Z = X ∪{v}∪{u | u ∈ tail(X) AND sup(X ∪{v, u}) =

sup(X ∪ {v})}. The time complexity of Algorithm 1 is F (∅) =

O(mnN), where N is the number of frequent closed itemsets.
We need an extra step to generate the occurrence set of each

closed itemset. The time complexity of generating one occurrence
set is O(m). After the occurrence sets are generated, we remove
duplicate maximal bicliques whose two vertices are of equal size.
This is done by comparing the two vertex sets of every generated
maximal biclique, so the time complexity of removing duplicates
is O(nN). In summary, the total time complexity is still O(mnN).

The space complexity of Algorithm 1 depends on the im-
plementation details. It is proportional to the graph size, but is
irrelevant to the number of maximal bicliques generated because
we do not need to store maximal bicliques during the mining
process. In particular, the LCM algorithm needs to maintain the
database in memory, and it also maintains the occurrence sets of
the itemsets on the current exploration path. The depth of the
path is bounded by the number of items n. At each level, the
occurrence sets of the itemsets that are of the same parent are
maintained, and their total size is bounded by the size of the
database m. Therefore, the space complexity of LCM-MBC is
O(nm).

Theorem 3: Given a graph G and two size thresholds p and q,
Algorithm 1 discovers the complete set of (p, q)-large maximal
bicliques in G.
Proof: The correctness and completeness of Algorithm 1 is
guaranteed by Proposition 7.

VI. EXPERIMENTAL RESULTS

We evaluate the efficiency of our LCM-BMC algorithm by
comparing it to the consensus algorithm MICA [28] and the
LCM algorithm [39]. Our experiments are conducted on both
benchmark and random graph datasets. We also apply our method
to a large protein interaction network to find interacting protein
groups, and report interesting results related to bioinformatics.
Our machine is a PC with a CPU clock rate 3.2GHz and 2GB
of memory. The implementation of our LCM-MBC algorithm
is modified from the source codes of the LCM algorithm by
incorporating the two pruning techniques. The source codes of
LCM were download at http://fimi.cs.helsinki.fi/
src/.

A. Efficiency comparison

As the LCM algorithm [39] outputs only individual closed
itemsets, we added a post-processing step to LCM to pair up
these closed itemsets such that every pair can form a maximal bi-
clique. This ensures a fair comparison, as our algorithm produces
maximal bicliques. The MICA [28] algorithm outputs exactly
what LCM-MBC outputs. The main idea of MICA is based on
the observation that if B1 = (X1, Y1) and B2 = (X2, Y2) are
two bicliques, then (X1 ∪ X2, Y1 ∩ Y2), (X1 ∩ X2, Y1 ∪ Y2),
(X1∪Y2, Y1∩X2) and (X1∩Y2, Y1∪X2), called the consensuses
of B1 and B2, are also bicliques. The MICA algorithm starts with
a collection of biclique subgraphs C which covers the edge set
of a graph G, and applies repeatedly two transformations—the
absorption and the consensus adjunction—and stops when neither
of the transformations can be applied. In the absorption step, if
a complete bipartite B1 is a subgraph of another biclique B2,
then B1 is removed from C. In the consensus adjunction step,
if any of the consensuses of two bicliques is not a subgraph of
a biclique in C, then the consensus is added to C. The time
complexity of the MICA algorithm is O(n3 ·N), where n is the
number of vertices and N is the number of maximal biclique
subgraphs. Some optimization techniques have been adopted to
improve the performance of MICA. We downloaded the source
codes of MICA from http://genome.cs.iastate.edu/
supertree/download/biclique/README.html.

Table I shows the performance of the three algorithms on
randomly generated graphs. (A time limit was set on the running
time of the three algorithms. If the running time of an algorithm
exceeds one hour, we terminate the program.) The first two
columns of Table I are the number of vertices and edges in the
graphs. The edge density of a graph is the ratio of the number of
edges in the graph to the total possible number of edges in the
graph. Columns 5, 6 and 7 show the average total running time of
the three algorithms over 10 runs. The running time includes both
CPU time and I/O time. On all the graphs, we set p = q = 1. Both
LCM and LCM-MBC perform significantly better than MICA. It
indicates that frequent closed itemset mining techniques are much
more efficient than the consensus algorithms for mining maximal
bicliques. With p = q = 1, all the maximal bicliques are large
bicliques. In this case, LCM-MBC cannot use the size constraint
to prune the search space, but it can prune duplicate maximal
bicliques. Therefore, LCM-MBC can still run faster than LCM
even when p = q = 1. Note that LCM-MBC did not double the
speed of LCM because both of them share the same large amount
of tree-construction and I/O time.

The last three columns shows the average delay per maximal
biclique of the three algorithms. The average delay of LCM and
LCM-MBC is more stable than MICA with the increase of edge
density and the number of vertices, which indicates that the time
complexity of LCM and LCM-MBC is lower than MICA.

Table II shows six datasets obtained from the Second DIMACS
Challenge benchmarks3 and a protein-protein interaction data
of yeast where vertices are proteins and edges are interactions
between proteins. The protein-protein interaction dataset is down-
loaded from http://dip.doe-mbi.ucla.edu/. Figure 5
shows the running time of the three algorithms on these datasets.
On all the datasets, we set the two size thresholds to the same

3ftp://dimacs.rutgers.edu/pub/challenge/graph/
benchmarks/clique/

LI et al.: MAXIMAL BICLIQUE ONE-TO-ONE CORRESPONDENCE 8

TABLE I
RUNNING TIME ON RANDOM GRAPHS. AT EACH ROW OF THE TABLE, THE PERFORMANCE WAS AVERAGED OVER 10 RANDOMLY GENERATED GRAPHS OF

THE SAME VERTEX AND EDGE NUMBER.

edge #maximal total running time (sec) average delay per max biclique (ms)
#vertices #edges density bicliques MICA LCM LCM-MBC MICA LCM LCM-MBC

100 495 0.10 615 0.063 0.012 0.010 0.102 0.0195 0.0163
100 990 0.20 5686 0.919 0.080 0.057 0.164 0.0141 0.0100
100 1485 0.30 44258 13.128 0.707 0.472 0.292 0.0160 0.0107
100 1980 0.40 398794 200.489 6.680 4.452 0.508 0.0168 0.0112
100 2475 0.50 4803620 >1 hour 89.861 60.966 - 0.0187 0.0127
500 2494 0.02 1443 0.311 0.039 0.025 0.209 0.0270 0.0173
500 6237 0.05 20387 9.662 0.322 0.222 0.472 0.0158 0.0109
500 12475 0.10 213808 233.644 6.018 4.322 1.09 0.0281 0.0202
500 18712 0.15 2112584 >1 hour 70.104 45.289 - 0.0332 0.0214
1000 4994 0.01 2084 0.790 0.039 0.035 0.378 0.0187 0.0168
2000 19989 0.01 17669 21.956 0.376 0.311 1.248 0.0213 0.0176
4000 79979 0.01 211081 829.001 5.976 4.684 3.933 0.0283 0.0222
8000 319959 0.01 2551816 >1 hour 126.294 91.743 - 0.0495 0.0360

TABLE II
A PROTEIN INTERACTION GRAPH AND 5 DIMACS BENCHMARK GRAPHS

Datasets #vertices #edges edge density
yeast-p2p 4904 17440 0.00145
c-fat500-1 500 4459 0.0357

johnson16-2-4 120 5460 0.765
keller4 171 9435 0.649

c-fat200-2 200 3235 0.163
johnson8-4-4 70 1855 0.768

value, that is, p = q.
The MICA algorithm was able to complete on only the first

three datasets which have a relatively small number of maximal
biclique subgraphs, but MICA terminated abnormally on the other
datasets which have a prolific number of maximal bicliques. The
reason of the abnormal termination is that MICA has to keep all
the maximal bicliques in the memory during the mining process,
so if the number of maximal biclique exceeds the memory, the
program collapses. MICA does not use the size constraints to
prune the search space. It mines all maximal biclique subgraphs,
and then filters out small maximal bicliques in the output step.
Therefore, the running time of MICA is almost constant with
respect to the size constraints, and the gap between MICA
and LCM, LCM-MBC increases with the increase of the size
threshold.

Algorithms LCM and LCM-MBC show similar performance on
the first three datasets, where the number of maximal bicliques is
small. But, the LCM-MBC algorithm is several times faster than
LCM on the other three datasets, where the number of maximal
bicliques is very large. The gap between LCM and LCM-MBC
increases with the increase of the size threshold, it indicates that
LCM-MBC can effectively use the size threshold to prune small
and duplicate bicliques during the mining process.

B. A real life application

The topological sub-structures of protein interaction networks
such as protein hubs, protein k-cores/quasi-cliques, and protein
quasi-bipartites are extensively studied in the bioinformatics
field [21], [45]. A protein hub is a protein that interacts with
many other proteins; a protein k-core is a set of proteins in which
every protein is interacting with at least k other proteins in the
set. To identify all protein hubs, only one scan of the network

 0.01

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12
T

im
e(

se
c)

minimum vertex set size

yeast-p2p

MICA
LCM

LCM-MBC

(a) yeast-p2p

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12

T
im

e(
se

c)

minimum vertex set size

c-fat500-1

MICA
LCM

LCM-MBC

(b) c-fat500-1

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40

T
im

e(
se

c)

minimum vertex set size

johnson16-2-4

MICA
LCM

LCM-MBC

(c) johnson16-2-4

 0.1

 1

 10

 100

 1000

 10000

 100000

 25 30 35 40 45 50 55 60

T
im

e(
se

c)

minimum vertex set size

keller4

LCM
LCM-MBC

(d) keller4

 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 11 12 13 14 15 16 17 18

T
im

e(
se

c)

minimum vertex set size

c-fat200-2

LCM
LCM-MBC

(e) c-fat200-2

 1

 10

 100

 1000

 10000

 11 12 13 14 15 16 17 18

T
im

e(
se

c)

minimum vertex set size

johnson8-4-4

LCM
LCM-MBC

(f) johnson8-4-4

Fig. 5. Running time comparison on benchmark graph datasets. The MICA
algorithm terminated abnormally on the keller4, c-fat200-2, and johnson8-4-4
datasets because of a memory problem.

is needed. The discovery of all k-cores is a bit complicated. A
recent algorithm proposed by Pei et al [13] can be used for the
efficient enumeration of k-cores (where quasi-clique is called).

Here we demonstrate the speed of our algorithm LCM-MBC for
listing all maximal biclique subgraphs from a protein interaction
network. As there are many physical protein interaction networks
corresponding to different species, we take the most comprehen-
sive yeast physical and genetic interaction network [46] as an
example. This graph consists of 4904 vertices and 17440 edges,
after removing 185 self loops and 1413 redundant edges from the
original 19038 interactions, as shown in Table II. The average size
of the neighborhood of a protein is 3.56.

Some interesting results are reported in Table III, where the
second column shows the total number of frequent closed patterns

LI et al.: MAXIMAL BICLIQUE ONE-TO-ONE CORRESPONDENCE 9

TABLE III
CLOSED PATTERNS IN A YEAST PROTEIN INTERACTION NETWORK.

support # of frequent # of qualified time in sec.
threshold (ms) closed patterns closed patterns

1 121314 121314 0.59
2 117895 114554 0.50
3 105854 95920 0.44
4 94781 80306 0.40
5 81708 60038 0.36
6 66429 36478 0.32
7 50506 15800 0.25
8 36223 3716 0.21
9 25147 406 0.11
10 17426 34 0.07
11 12402 2 0.06
12 9138 0 0.05

whose support level is at least the threshold number in the column
one. The third column of this table shows the number of closed
patterns whose cardinality and support are both at least the support
threshold; all such closed patterns are termed qualified closed
patterns. Only these qualified closed patterns can be used to form
maximal biclique subgraphs H = 〈V1 ∪ V2, E〉 such that both of
|V1| and |V2| meet the thresholds, namely those (ms, ms)-large
maximal biclique subgraphs. From the table,
• We can re-confirm that the number of all closed patterns—

corresponding to those with the support threshold of 1—is
even. Moreover, the number of qualified close patterns with
cardinality no less than any other support level is also even,
as expected from Corollary 2.

• The algorithm runs fast. The program could complete within
one second for all situations reported here. This indicates
that enumerating all maximal biclique subgraphs from a
large protein interaction network can be practically solved
by using algorithms for mining closed patterns. The speed
is hundreds of times faster than the MICA algorithm.

• A so-called “many-few” property [45] of protein interactions
is observed again in our experiment results. The “many-
few” property says that: a protein hub tends not to inter-
act with another protein hub [45]. In other words, highly
connected proteins are separated by low-connected proteins.
This is most clearly seen in Table III at the higher support
thresholds. For example, at the support threshold 11, there
are 12402 protein groups that have full interactions with at
least 11 proteins. But there are only two groups, as seen in
the third column of the table, that each contain at least 11
proteins and that have full mutual interaction.

VII. ROLE OF SELF-LOOPS

So far, all graphs are assumed to be undirected and without
self-loops. If self-loops are allowed, then the main diagonal of the
adjacency matrix of a graph are not always 0’s. Then the number
of closed patterns in the adjacency matrix is not necessarily an
even number. This is a property different from Corollary 1.

Example 6: Let G be a clique graph with n vertices
v1, v2, . . . , vn. Suppose every vertex of G is self-connected. Then,
the adjacency matrix of this graph is an n-squared matrix with 1’s
everywhere. This adjacency matrix has one and only one closed
pattern which is {v1, v2, . . . , vn} with a support of n. Thus the
number of closed patterns in this graph is odd. However, if remove

all the self-loops, the number of maximal biclique subgraphs of
the resulting graph can be proved to be (2n − 2)/2, while the
number of closed patterns to be 2n − 2.

This change in the number of closed patterns does not mean
the number of maximal biclique subgraphs is changed. In fact,
the two graphs (with or without self-loops) have the same number
of maximal biclique subgraphs.

Definition 6: Let G be a graph. Its self-cleared graph, denoted
G∗, is defined as G∗ = 〈V G, EG − {(x, x) | x ∈ V G}〉.

Theorem 4: Let G be a connected undirected graph where selp
loops are allowed. Let C be a closed pattern of DBG∗ . Then the
graph

H = 〈C ∪ occDBG∗ (C), C × occDBG∗ (C)〉
is a maximal biclique subgraph of G.

Proof: By Theorem 1, we conclude that H is a maximal
biclique subgraph of G∗. Therefore, C, occDBG∗ (C) ⊂ V G∗ =

V G, and C × occDBG∗ (C) ⊆ EG∗ ⊆ EG. Thus, H is a biclique
subgraph of G. If C ∪ occDBG∗ (C) = V G, then H is a maximal
biclique subgraph of G. We next prove H of the other case is
also a maximal biclique of G by contradiction. Let x ∈ V G but
x 6∈ C, occDBG∗ (C). Assume H ′ = 〈(C ∪x)∪ occDBG∗ (C), (C ∪
x)×occDBG∗ (C)〉 is a biclique in G. Then, x is adjacent to every
vertex in occDBG∗ (C). Thus, H ′ is a biclique of G∗. However, H

is a maximal biclique of G∗. Here is a contradiction. Therefore,
H is a maximal biclique of G.

Theorem 5: Let G be a connected undirected graph where self
loops are allowed. Let graph H = 〈V1 ∪ V2, E〉 be a maximal
biclique subgraph of G. Then, V1 and V2 are both closed patterns
of DBG∗ , and occDBG∗ (V1) = V2 and occDBG∗ (V2) = V1.

Proof: It is obvious that H is also a maximal complete
bipartite subgraph of G∗. Then the theorem follows immediately
from Theorem 2.

The above two theorems say that the maximal biclique sub-
graphs of any graph G, even with self loops, can be determined
by the closed patterns of the adjacency matrix of G∗.

VIII. RELATION WITH FORMAL CONCEPT ANALYSIS, AND

BICLUSTERING

In contrast to the current work which transforms a general
graph into a special transactional database, Zaki and Ogihara
had an innovative work [33] on how a transactional database can
be converted into a bipartite graph for itemset discovery. They
have also studied how association rule mining is closely related
to Formal Concept Analysis (FCA) [40], a powerful knowledge
representation tool. In the following, we give a short review for
FCA, and then explain why we did not choose FCA to model
and discover maximal bicliques from a large graph.

A formal context is a triple (O, A, R), where O is a set of
objects, and A a set of attributes, R a binary relation between O

and A, i.e. R ⊆ O × A. A formal concept of a formal context
(O, A, R) is defined as a pair (X, Y) with X ⊆ O, Y ⊆ A

such that (X, Y) is maximal with the property X × Y ⊆ R.
That is, R(X) = Y , R(Y) = X, where R(X) = {a | (o, a) ∈
R, for all o ∈ X}, R(Y) = {o | (o, a) ∈ R, for all a ∈ Y }.

Given a graph H = (V, E), to model H by a formal context
(O, A, R), we can set O = A = V , and let R defined by
the adjacency matrix of H . Now the question is that whether a
formal concept (X, Y) of the formal context (V, V, R) is always a
maximal biclique of H . The answer is no. Because R(X)∩R(Y)

LI et al.: MAXIMAL BICLIQUE ONE-TO-ONE CORRESPONDENCE 10

may be non-empty, e.g. when H contain some self-loops. Even H

is assumed to be a graph without self-loops, it is not obvious that
R(X)∩R(Y) = ∅. However, this is a necessary requirement by a
biclique—the two vertex sets must be non-overlapping. Therefore,
it is not effective for a formal concept to model a maximal biclique
unless a restrictive constraint is added.

Even if a maximal clique is modeled by a formal concept by
imposing the constraint that H has to be a self-loopless graph,
this model could not provide any help to claim that the mining
of maximal bicliques from a graph H is equivalent to the mining
of closed patterns of the adjacency matrix of H . Therefore, for
mining maximal bicliques as shown in this work, the FCA model
is not a necessary tool. The necessary thing is to prove that β(P)

and β(β(P)) are a pair of closed patterns of the adjacency matrix,
and thus to achieve the main objective of this work—efficiently
enumerating large maximal bicliques from a graph through closed
patterns of the adjacency matrix.

The enumeration of maximal bicliques from a graph, i.e. the
mining of closed pattern pairs from the adjacency matrix is a
special case of the biclustering problem [41]. Given a matrix
B with n rows and m columns, where every element bij is
a real number, a bicluster of B refers to a sub-matrix of B

such that the elements in this sub-matrix satisfy some specific
characteristics of homogeneity; while biclustering refers to the
problem of mining a set of biclusters from B. The biclustering
problem is more general than the biclique enumeration problem
because the former requires just an n × m matrix with real
numbers as its elements, not necessarily a squared binary matrix
as required by the latter. Also, a biclique corresponds to a sub-
matrix full of the constant 1, but the sub-matrix corresponding
to a bicluster is just required to satisfy some homogeneity
property such as coherence, constant scaling and shift, small mean
squared residues, etc [41]. However, some real-life applications
such as those mentioned in Introduction just need the maximal
biclique results, instead of the biclusters. Therefore, algorithms
tailoring for efficient enumeration of maximal bicliques is still an
interesting and important problem in discrete mathematics.

IX. CONCLUSION

In this paper, we have studied the problem of listing all
maximal biclique subgraphs from a graph that does not have any
self-loops. We have proved that this problem is equivalent to the
mining of closed patterns from the adjacency matrix of this graph.
For a graph where self-loops are allowed, we have also proved that
its maximal biclique subgraphs can be determined by the closed
patterns from the adjacency matrix of this graph after removing
its self-loops. So, the maximal biclique subgraphs of every graph,
even with self-loops, can be enumerated by using closed pattern
mining algorithms. However, direct use of these algorithms causes
a duplicated enumeration. So, we have proposed a new method,
called LCM-MBC, which can avoid the duplicated enumeration
and which can prune small bipartite subgraphs efficiently. Ex-
perimental results on many random graphs and 6 benchmark
graph datasets have shown that our LCM-MBC algorithm can be
significantly faster than MICA and LCM for enumerating large
bipartite subgraphs from dense graphs with many vertices. In this
paper, we have also reported some bipartite results obtained from
a large protein interaction network and found these results can re-
confirm the so called “many-few” property of protein interactions.
Our algorithm is very fast (within one second) for mining all

the interacting protein groups. This indicates that our method
have good potential in real-life applications in the web mining,
communication systems, and biological fields, where data are
large and timing requirement is critical. An upper bound (i.e.
2n−1 − 1) and a lower bound (i.e. 1) on the number of maximal
biclique subgraphs are briefly mentioned in this paper. It is an
open question that whether there exist a family of connected
graphs all having exactly q closed patterns, where q is a pre-
specified even number between 2 and 2n− 2. This is also one of
our future work.

ACKNOWLEDGEMENT

We are thankful to three anonymous reviewers from the Pro-
gram Committee of PKDD 2005 for their useful comments and
suggestions on an early conference version of this paper, and also
grateful to the two TKDE anonymous reviewers for their excellent
comments.

REFERENCES

[1] A. Inokuchi, T. Washio, and H. Motoda, “Complete mining of frequent
patterns from graphs: Mining graph data,” Machine Learning, vol. 50(3),
pp. 321–354, 2003.

[2] M. Kuramochi and G. Karypis, “An efficient algorithm for discovering
frequent subgraphs,” IEEE Transaction on Knowledge and Data Engi-
neering, vol. 16(9), pp. 1038–1051, 2004.

[3] M. Koyutrk, A. Grama, and W. Szpankowski, “An efficient algorithm
for detecting frequent subgraphs in biological networks,” Bioinformatics,
vol. Supp. 1, pp. 200–207, 2004.

[4] M. Kuramochi and G. Karypis, “Grew-a scalable frequent subgraph
discovery algorithm,” in ICDM, 2004, pp. 439–442.

[5] J. Huan, W. Wang, and J. Prins, “Efficient mining of frequent subgraphs
in the presence of isomorphism,” in ICDM, 2003, pp. 549–552.

[6] X. Yan and J. Han, “gspan: Graph-based substructure pattern mining,”
in ICDM, 2002, pp. 721–724.

[7] J. Huan, W. Wang, J. Prins, and J. Yang, “Spin: mining maximal frequent
subgraphs from graph databases,” in KDD, 2004, pp. 581–586.

[8] A. O. Mendelzon and P. T. Wood, “Finding regular simple paths in graph
databases,” SIAM J. Computing, vol. 24(6), pp. 1235–1258, 1995.

[9] X. Yan, P. S. Yu, and J. Han, “Substructure similarity search in graph
databases,” in SIGMOD Conference, 2005, pp. 766–777.

[10] C. Wang, W. Wang, J. Pei, Y. Zhu, and B. Shi, “Scalable mining of
large disk-based graph databases,” in KDD, 2004, pp. 316–325.

[11] S. Flesca and S. Greco, “Querying graph databases,” in EDBT, 2000,
pp. 510–524.

[12] H. Hu, X. Yan, Y. Huang, J. Han, and X. J. Zhou, “Mining coherent
dense subgraphs across massive biological networks for functional
discovery,” Bioinformatics, vol. Supp. 1, pp. 213–221, 2005.

[13] J. Pei, D. Jiang, and A. Zhang, “On mining cross-graph quasi-cliques,”
in KDD, 2005, pp. 228–238.

[14] X. Yan, X. J. Zhou, and J. Han, “Mining closed relational graphs with
connectivity constraints,” in KDD, 2005, pp. 324–333.

[15] X. Yan and J. Han, “Closegraph: mining closed frequent graph patterns,”
in KDD, 2003, pp. 286–295.

[16] T. Washio and H. Motoda, “State of the art of graph-based data mining,”
SIGKDD Explorations, vol. 5(1), pp. 59–68, 2003.

[17] A. Z. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan,
R. Stata, A. Tomkins, and J. L. Wiener, “Graph structure in the web,”
Computer Networks, vol. 33(1-6), pp. 309–320, 2000.

[18] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, “Trawling the
web for emerging cyber-communities,” Computer Networks, vol. 31(11-
16), pp. 1481–1493, 1999.

[19] T. Murata, “Discovery of user communities from web audience measure-
ment data,” in Proceedings of The 2004 IEEE/WIC/ACM International
Conference on Web Intelligence (WI 2004), 2004, pp. 673–676.

[20] J. E. Rome and R. M. Haralick, “Towards a formal concept analysis
approach to exploring communities on the world wide web,” in Inter-
national Conference on Formal Concept Analysis, 2005, pp. 33–48.

[21] D. Bu, Y. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu, J. Zhang, S. Sun,
L. Ling, N. Zhang, G. Li, and R. Chen, “Topological structure analysis of
the proteinprotein interaction network in budding yeast,” Nucleic Acids
Research, vol. 31 (9), pp. 2443–2450, 2003.

LI et al.: MAXIMAL BICLIQUE ONE-TO-ONE CORRESPONDENCE 11

[22] H. Li, J. Li, and L. Wong, “Discovering motif pairs at interaction
sites from protein sequences on a proteome-wide scale,” Bioinformatics,
vol. 22, pp. 989–996, 2006.

[23] D. J. Reiss and B. Schwikowski, “Predicting protein-peptide interactions
via a network-based motif sampler,” Bioinformatics, vol. 20 (suppl.), pp.
i274–i282, 2004.

[24] A. H. Tong, B. Drees, G. Nardelli, G. D. Bader, B. Brannetti, L. Castag-
noli, M. Evangelista, S. Ferracuti, B. Nelson, S. Paoluzi, M. Quondam,
A. Zucconi, C. W. Hogue, S. Fields, C. Boone, and G. Cesareni, “A
combined experimental and computational strategy to define protein
interaction networks for peptide recognition modules,” Science, vol. 295,
pp. 321–324, 2002.

[25] A. C. Driskell, C. Ane, J. G. B. M. M. McMahon, B. C. OMeara, and
M. J. Sanderson, “Prospects for building the tree of life from large
sequence databases,” Science, vol. 306, pp. 1172–1174, 2004.

[26] M. J. Sanderson, A. C. Driskell, R. H. Ree, O. Eulenstein, and S. Lang-
ley, “Obtaining maximal concatenated phylogenetic data sets from large
sequence databases,” Molecular Biology and Evolution, vol. 20(7), pp.
1036–1042, 2003.

[27] C. Yan, J. G. Burleigh, and O. Eulenstein, “Identifying optimal in-
complete phylogenetic data sets from sequence databases,” Molecular
Phylogenetics and Evolution, vol. 35(3), pp. 528–535, 2005.

[28] G. Alexe, S. Alexe, Y. Crama, S. Foldes, P. L. Hammer, and B. Simeone,
“Consensus algorithms for the generation of all maximal bicliques,”
Discrete Applied Mathematics, vol. 145(1), pp. 11–21, 2004.

[29] D. Eppstein, “Arboricity and bipartite subgraph listing algorithms,”
Information Processing Letters, vol. 51, pp. 207–211, 1994.

[30] K. Makino and T. Uno, “New algorithms for enumerating all maximal
cliques,” in Proceedings of the 9th Scandinavian Workshop on Algorithm
Theory (SWAT 2004). Springer-Verlag, 2004, pp. 260–272.

[31] V. M. Dias, C. M. de Figueiredo, and J. L. Szwarcfiter, “Generating
bicliques of a graph in lexicographic order,” Theoretical Computer
Science, vol. 337, pp. 240–248, 2005.

[32] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules
between sets of items in large databases,” in Proceedings of the
1993 ACM-SIGMOD International Conference on Management of Data.
Washington, D.C.: ACM Press, May 1993, pp. 207–216.

[33] M. J. Zaki and M. Ogihara, “Theoretical foundations of association
rules,” in Proc. 3rd SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery, 1998.

[34] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering frequent
closed itemsets for association rules,” in Proceedings of the 7th Inter-
national Conference on Database Theory (ICDT), 1999, pp. 398–416.

[35] M. J. Zaki and C.-J. Hsiao, “CHARM: An efficient algorithm for
closed itemset mining,” in Proceedings of the Second SIAM International
Conference on Data Mining, 2002.

[36] J. Wang, J. Han, and J. Pei, “CLOSET+: Searching for the best strategies
for mining frequent closed itemsets,” in Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD’03), Washington, DC, USA, 2003, pp. 236–245.

[37] G. Grahne and J. Zhu, “Efficiently using prefix-trees in mining frequent
itemsets,” in Proceedings of FIMI’03: Workshop on Frequent Itemset
Mining Implementations, 2003.

[38] ——, “Fast algorithms for frequent itemset mining using fp-trees,” IEEE
Transactions on Knowledge and Data Engineering, vol. 17, no. 10, pp.
1347–1362, October 2005.

[39] T. Uno, M. Kiyomi, and H. Arimura, “LCM ver.2: Efficient mining
algorithms for frequent/closed/maximal itemsets,” in IEEE ICDM’04
Workshop FIMI’04 (International Conference on Data Mining, Frequent
Itemset Mining Implementations), 2004.

[40] G. Stumme, R. Wille, and U. Wille, “Conceptual knowledge discovery
in databases using formal concept analysis methods,” in European
Symposium on Principles of Data Mining and Knowledge Discovery
(PKDD), 1998, pp. 450–458.

[41] S. C. Madeira and A. L. Oliveira, “Biclustering algorithms for biological
data analysis: a survey,” IEEE/ACM Transactions on Computational
Biology and Bioinformatics, vol. 1(1), pp. 24–45, 2004.

[42] Y. Bastide, N. Pasquier, R. Taouil, G. Stumme, and L. Lakhal, “Mining
minimal non-redundant association rules using frequent closed itemsets,”
Computational Logic, pp. 972–986, 2000.

[43] B. Goethals and M. J. Zaki, “FIMI’03: Workshop on frequent itemset
mining implementations,” in Third IEEE International Conference on
Data Mining Workshop on Frequent Itemset Mining Implementations,
2003, pp. 1–13.

[44] R. Rymon, “Search through systematic set enumeration,” in Proceedings
of the Third International Conference on Principles of Knowledge

Representation and Reasoning, Cambridge MA, October 1992, pp. 539–
550.

[45] S. Maslov and K. Sneppen, “Specificity and stability in topology of
protein networks,” Science, vol. 296, pp. 910–913, 2002.

[46] B. J. Breitkreutz, C. Stark, and M. Tyers, “The grid: The general
repository for interaction datasets,” Genome Biology, vol. 4, no. 3, p.
R23, 2003.

PLACE
PHOTO
HERE

Jinyan Li is an Associate Professor at the School
of Computer Engineering, Nanyang Technological
University. He received his PhD in computer science
from the University of Melbourne in 2001. He had
70 articles published in the fields of bioinformatics,
data mining, and machine learning. His research
focuse is currently on protein interaction networks
in computational biology, mining of statistically im-
portant discriminative patterns, mining of interaction
subgraphs, and classification methods. One of his
most interesting work is bioinformatics research on

infectious diseases in collaboration with a biological group from MIT.

PLACE
PHOTO
HERE

Guimei Liu is a post-doc research fellow at School
of Computing, National University of Singapore.
She received her PhD in computer science from
Hong Kong University of Science and Technology in
2005. Her current research interests include frequent
pattern mining and its applications, and protein
interaction networks mining and analysis.

PLACE
PHOTO
HERE

Haiquan Li received his BEng and MEng in com-
puter science from Huazhong University of Sci-
ence and Technology and his PhD in computer
science from National University of Singapore. He
is a Research Associate of The Samuel Roberts
Noble Foundation. His research is on data mining
algorithms for bioinformatics applications, such as
itemset mining, graph mining and classification for
protein interactome and plant genomics as well as
prediction and characterization of membrane trans-
porters from primary sequences.

PLACE
PHOTO
HERE

Limsoon Wong is a professor of computer sci-
ence and pathology at The National University of
Singapore. He currently works mostly on knowl-
edge discovery technologies and their application to
biomedicine. He has also done significant research
in database query language theory and finite model
theory, as well as significant development work in
broad-scale data integration systems. A few of his
papers are among the best cited of their respective
fields. He was recently an architect of Singapore
Science and Technology Plan 2010, chairing the

section on information technology and multimedia. In recognition of his
contributions to science and technology, he has received several international
and national awards. He serves on the editorial boards of Journal of Bioinfor-
matics and Computational Biology (ICP), Bioinformatics (OUP), and Drug
Discovery Today (Elsevier). He is a scientific advisor to GeneticXchange
(USA), Molecular Connections (India), CellSafe International (Malaysia), and
KooPrime (Singapore). He received his BSc(Eng) from Imperial College
London and his PhD from The University of Pennsylvania.

