
COMPRESSED INDEXING DATA STRUCTURES FOR

BIOLOGICAL SEQUENCES

DO HUY HOANG

(B.C.S. (Hons), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2012

Declaration

I hereby declare that this thesis is my original work and it has been written

by me in its entirety. I have duly acknowledged all the sources of information

which have been used in the thesis.

This thesis has also not been submitted for any degree in any university

previously.

Do Huy Hoang

November 25, 2012

Acknowledgement

I would like to express my special thanks of gratitude to my supervisor Professor Sung

Wing-Kin for valuable lessons and supports throughout my research. I am also grateful

to Jesper Jansson, Kunihiko Sadakane, Franco P. Preparata, Kwok Pui Choi, Louxin

Zhang for their great discussions and collaborations. Last but not least, I would like to

thank my family and friends for their caring before and during my research.

i

ii

Contents

1 Background 1

1.1 Introduction . 1

1.2 Preliminaries . 4

1.2.1 Strings . 4

1.2.2 rank and select data structures 5

1.2.3 Suffix data structures . 6

1.2.4 Compressed suffix structures . 7

2 Directed Acyclic Word Graph 11

2.1 Introduction . 11

2.2 Basic concepts and definitions . 12

2.2.1 Suffix tree and suffix array operations 13

2.2.2 Compressed data-structures for suffix array and suffix tree 14

2.2.3 Directed Acyclic Word Graph . 15

2.3 Simulating DAWG . 17

2.3.1 Get-Source operation . 19

2.3.2 End-Set operations . 19

2.3.3 Child operation . 20

2.3.4 Parent operations . 21

2.4 Application of DAWG in Local alignment 23

2.4.1 Definitions of global, local, and meaningful alignments 23

2.4.2 Local alignment using DAWG . 24

3 Multi-version FM-index 31

3.1 Introduction . 31

3.2 Preliminary . 33

3.3 Multi-version rank and select problem . 35

3.3.1 Alignment . 36

3.3.2 Data structure for multi-version rank and select 39

3.3.3 Query algorithms . 39

3.4 Data structure for balance matrix . 42

3.4.1 Data structure for balance matrix 43

3.5 Narrow balance matrix . 48

3.5.1 Sub-word operations in word RAM machine 49

iii

3.5.2 Balance matrix for case 1 . 50

3.5.3 Data structure case 2 . 54

3.6 Application on multi-version FM-index . 55

4 RLZ index for similar sequences 59

4.1 Introduction . 59

4.1.1 Similar text compression methods 60

4.1.2 Compressed indexes for similar text 60

4.1.3 Our results . 62

4.2 Data structure framework . 63

4.2.1 The relative Lempel-Ziv (RLZ) compression scheme 63

4.2.2 Pattern searching . 65

4.2.3 Overview of our main data structure 67

4.3 Some useful auxiliary data structures . 69

4.3.1 rank and select and integer data structures from the literature . 69

4.3.2 Suffix array and FM-index . 70

4.3.3 Bi-directional FM-index . 72

4.3.4 A new data structure for a special case of 2D range queries 74

4.4 The data structure I(T) for case 1 . 77

4.5 The data structure X (T) and X (T) for case 2 80

4.6 The data structure Y(F, T) for case 2 . 83

4.7 Decoding the occurrence locations . 87

5 Conclusions 91

iv

List of Figures

1.1 Suffix array and suffix tree of “cbcba”. The suffix ranges for “b” and “cb”

are (3,4) and (5,6), respectively. 6

1.2 Some compressed suffix array data structures with different time-space

trade-offs. (∗) Structure in [40] is also an FM-index. 8

1.3 Some compressed suffix tree data structures with different time-space

trade-offs. Note that we only list the operation time of some important

operations. 8

2.1 suffix tree of “cbcba” . 13

2.2 DAWG of string “abcbc” (left: with end-set, right: with set path labels). 16

3.1 (a) Sequences and edit operations (b) Alignment (c) Balance matrices . . 36

3.2 (a) Alignment (b) Geometrical form (c) Balance matrix (d) Compact

balance matrix . 43

3.3 Example of the construction steps for p = 2. The root node is 1 and two

children nodes are 2 and 3. Matrices S1, D2, and D3 are constructed from

D1 as indicated by the arrows. 45

3.4 Illustration for sum query. The sum for the region [1..i, 1..j] in Du equals

the sums in the three regions in Dv1 , Dv2 and Dv3 respectively. 47

3.5 Bucket illustration . 51

4.1 Summary of the compressed indexing structures. (∗): Effective for similar

sequences. (∗∗): The search time is expressed in terms of the pattern length. 61

4.2 (a) A reference string R and a set of strings S = {S1, S2, S3, S4} de-

composed into the smallest possible number of factors from R. (b) The

array T [1..8] (to be defined in Section 4.2) consists of the distinct factors

sorted in lexicographical order. (c) The array T [1..8]. 64

4.3 Algorithm to decompose a string into RLZ factors 65

4.4 When P occurs in string Si, there are two possibilities, referred to as

case 1 and case 2. In case 1 (shown on the left), P is contained inside a

single factor Sip. In case 2 (shown on the right), P stretches across two or

more factors Si(p−1), Sip, . . . , Si(q+1). 66

v

4.5 Each row represents the string T [i] in reverse; each column corresponds to

a factor suffix F [i] (with dashes to mark factor boundaries). The locations

of the number “1” in the matrix mark the factor in the row preceding

the suffix in the column. Consider an example pattern “AGTA”. There

are 5 possible partitions of the pattern: “-AGTA”, “A-GTA”, “AG-TA”,

“AGT-A” and “AGTA-”. Using the index of the sequences in Fig. 4.2, the

big shaded box is a 2D query for “A-GTA” and the small shaded box is a

2D query for “AG-TA”. 68

4.6 The time and space complexities to support the operations defined above. 70

4.7 (a) The factors (displayed as grey bars) from the example in Fig. 4.2

listed in left-to-right order, and the arrays G, Is, Ie, D, and D′ that define

the data structure I(T) in Section 4.4. (b) The same factors ordered

lexicographically from top to bottom, and the arrays B,C, and Γ that

define the data structure X (T) in Section 4.5. 79

4.8 Algorithm for computing all occurrences of P in T [1..s]. 80

4.9 Data structures used in case 2 . 81

4.10 Two sub-cases . 84

4.11 Algorithm to fill in the array A[1..|P |]. 86

4.12 (a) The array F [1..m] consists of the factor suffixes SipSi(p+1) . . . Sici ,

encoded as indices of T [1..s]. Also shown in the table is a bit vector V

and BWT-values, defined in Section 4.6. (b) For each factor suffix F [j],

column j in M indicates which of the factors that precede F [j] in S. To

search for the pattern P = AGTA, we need to do two 2D range queries

in M : one with st = 1, ed = 2, st′ = 7, ed′ = 8 since A is a suffix of

T [5] and T [7] (i.e., a prefix in T [1..2]) and GTA is a prefix in F [7..8], and

another one with st = 4, ed = 4, st′ = 9, ed′ = 9 since AG is a suffix

of T [4] (i.e., a prefix in T [4]) and TA is a prefix in F [9]. 87

vi

vii

Summary

A compressed text index is a data structure that stores a text in the compressed form while

efficiently supports pattern searching queries. This thesis investigates three compressed

text indexes and their applications in bioinformatics.

Suffix tree, suffix array, and directed acyclic word graph (DAWG) are the pioneers

text indexing structures developed during the 70’s and 80’s. Recently, the development

of compressed data-structure research has created many structures that use surprisingly

small space while being able to simulate the full set of original operations. Many of

them are compressed versions of suffix arrays and suffix trees, however, there is still no

compressed structure for DAWG with full functionality. Our first work introduces an

nHk(S) + 2nH∗0 (TS) + o(n)-bit compressed data-structure for simulating DAWG where

Hk(S) and H∗0 (TS) are the empirical entropy of the reversed input sequence and the

suffix tree topology of the reversed sequence, respectively. Besides, we also proposed an

application of DAWG to improve the time complexity for local alignment problem. In

this application, using DAWG, the problem can be solved in O(nm0.628) average case

time and O(mn) worst case time where n and m are the lengths of the database and the

query, respectively.

In the second work, we focus on text indexes for a set of similar sequences. In the

context of genomic, these sequences are DNA of related species which are highly similar,

but hard to compress individually. One of the effective compression schemes for this

data (called delta compression) is to store the first sequence and the changes in term

of insertions and deletions between each pair of sequences. However, using this scheme,

many types of queries cannot be supported using the conventional methods. In the first

part of this work, we design a data structure to support the rank and select queries in

the delta compressed sequences. The data structure is called multi-version rank/select.

It answers the rank and select queries in any sequence in O(log log σ + logm/ log logm)

time where m is the number of changes between input sequences. Based on this result, we

propose an indexing data structure for similar sequences called multi-version FM-index

which can find a pattern P in O(|P |(logm+ log log σ)) average time for any sequence Si.

Our third work is a different approach for similar sequences. The sequences are

viii

compressed by a scheme called relative Lempel-Ziv. Given a (large) set S of strings, the

scheme represents each string in S as a concatenation of substrings from a constructed or

given reference string R. This basic scheme gives a good compression ratio when every

string in S is similar to R, but does not provide any pattern searching functionality.

Our indexing data structure offers two trade-offs between the index space and the query

time. The smaller structure stores the index in asymptotically optimal space, while the

pattern searching query takes logarithm time in term of the reference length. The faster

structure blows up the space by a small factor and pattern query takes sub-logarithmic

time.

Apart from the three main indexing data structures, some additional novel structures

and improvements to existing structures may be useful for other tasks. Some examples

include the bi-directional FM-index in the RLZ index, the multi-version rank/select, and

the k-th line cut in the multi-version FM index.

ix

x

Chapter 1

Background

1.1 Introduction

As more and more information are generated in the text format from sources like biological

research, the internet, XML database and library archive, the problem of storing and

searching within text collections becomes more and more important. A text index is a

data structure that pre-processes the text to facilitate efficient pattern searching queries.

Once a text is indexed, many string related problems can be solved efficiently. For

example, computing the number of occurrences of a string, finding the longest repeated

substring, finding repetitions in a text, searching for a square, computing the longest

common substring of a finite set of strings, on-line substring matching, and approximate

string matching [3, 56, 86, 105]. Those solutions find applications in many research areas.

However, the two most popular practical applications of text indexes are, perhaps, in

DNA sequence database and in natural language search engines where the data volume

is enormous and the performance is critical.

In this thesis, we focus on indexes that work for biological sequences. In contrast

to natural language text, these sequences do not have syntactical structure like word or

phrase. Thus, it makes word based structures such as inverted indexes [113] which is

popular in natural language search engines less suitable. Instead, we focus on the most

general type of text indexes called full-text index [88] where it is possible to search for

any substring of the text.

The early researches on full-text indexing data structures e.g. suffix tree [109], directed

acyclic word graph [15], suffix array [48, 80] were more focused on construction algorithms

1

[82, 107, 31] and query algorithms[80]. The space was measured by the big-Oh notations

in terms of memory words which hides all constant factors. However, as indexing data

structures usually need to hold a massive amount of data, the constant factors cannot be

neglected. The recent trend of data structure research has been paying more attention

on the space usage. Two important types of space measurement concepts emerged. A

succinct data structure requires the main order of space equals the theoretical optimal

of its inputs data. A compressed data structure is often measure in term of the k-order

empirical entropy of the text denoted Hk. It is the lower bound for any algorithm that

encodes each character based on a context of length k.

Consider a text of length n over an alphabet of size σ, the theoretical information for

this text is n log σ bits, while the most compact classical index, the suffix array, stores a

permutation of [1..n] which costs O(n log n) bits. When the text is long and the alphabet

is small in case of DNA sequences (where log σ is 4 and log n is at least 32), there is a

huge difference between the succinct measurement and the classical index storage.

Initiated by the work of Jacobson [61], data structures in general and text indexes

in particular have been designed using succinct and compressed measurement. Several

succinct and compressed versions of the suffix array and the suffix tree with various space-

time trade-offs were introduced. For suffix array, after observing some self repetitions

in the array, Grossi and Vitter [54] have created the first succinct suffix array that is

close to n log σ bit-space with the expense that the query time of every operation is

increased by a factor of log n. The result was further refined and developed into some fully

compressed forms [99, 75, 52], with the latest structure uses (1 + 1
ε)nHk + o(n log σ) bits,

where ε ≤ 1. Simultaneously, Ferragina and Manzini introduced a new type of indexes

[36] called FM-index which is related to suffix array, but has novel representation and

searching algorithm. This family of indexes stores a permutation of the input text (called

Burrows-Wheeler transform [17]), and uses a variety of text compression techniques

[36, 39, 77, 103] to achieve the space of nHk + o(n log σ) while theoretically having faster

pattern searching compared to suffix array of the same size. Suffix tree is a more complex

structure, therefore, the compressed suffix trees only appeared after the maturity of the

suffix array and structures for succinct tree representations. The first compressed suffix

tree proposed by Sadakane[100] uses (1 + ε)nHk + 6n + o(n) bits while slowing down

some tree operations by log n factor. Further developments [97] have reduced the space

2

to nHk + o(n) bits while the query time of every operation is increase by another factor

of log log n.

Another trend in compressed index data structure is building text indexes based

on Lempel-Ziv and grammar based compression. For example, some indexes based on

Lempel-Ziv compression are LZ78[7], LZ77[65], RLZ[27]. Indexes based on grammar

compression are SLP[22, 46], CFG[23]. Unlike the previous approach where succinct

and compression techniques are applied to existing indexing data structure to reduce

the space, this approach starts with some known text compression method, then builds

an index base on the compression. The details performance of these indexes are quite

diverse, and highly depend on the details of the base compression methods. However,

compared to compressed suffix tree and compressed suffix array, searching for pattern in

these indexes are usually more complex and slower [7], however, decompressing substrings

from these indexes are often faster.

Some other research directions in the full-text indexing data structure field includes:

indexes in external memory (for suffix array[35, 102], for suffix tree[11], for FM-index[51],

and in general [57]), parallel and distributed indexes[95], more complex queries[59],

dynamic index[94], better construction algorithms (for suffix array[92], for suffix tree in

external memory[10], for FM-index in external memory [33], for LZ78 index[5]). This list

is far from being complete, but it helps to show the great activity in the field of indexing

data structure.

Although many text indexes have been proposed so far, in bioinformatics, the demand

for innovations does not decline. The general full-text data structures like suffix tree, suffix

array are designed without assumption about the underlying sequences. In bioinformatics,

we still know very little about the details of nature sequences; however, some important

characteristics of biological sequences have been noticed. First of all, the underlying

process governing all the biological sequences is evolution. The traces of evolution are

shown in the similarity and the gradual changes between related biological sequences. For

example, the genome similarity between human beings are 99.5–99.9%, between human

and chimpanzees are 96%–98% and between human and mouse are 75–90%, depending on

how “similarity” is measured. Secondly, although the similarity between related sequences

is high, their fragments seem to be purely random. Many compression schema that look

for local regularity cannot perform well. For example, when using gzip to compress the

3

human genome, the size of the result is not significant better than storing the sequence

compactly using 2 bits per DNA character. (Note that DNA has 4 characters in total.)

As more knowledge of the biological sequence accumulated, our motivation for this

thesis is to design specialized compressed indexing data structures for biological data

and applications. First, Chapter 2 describes a compressed version of directed acyclic

word graph (DAWG). It can be seen as a member of the suffix array and suffix tree

family. Apart from being the first compressed full-functional version of its type, we also

explore its application in local alignment, a popular sequence similarity measurement in

bioinformatics. In this application, DAWG can have good the average time and have

better worst case guarantee. The second index in Chapter 3 also belongs to suffix tree

and suffix array family. However, the text targeted are similar sequences with gradual

changes. In this work, we record the changes by marking the insertions and deletions

between the sequences. Then, the indexes and its auxiliary data structures are designed

to handle the delta compressed sequences, and answer the necessary queries. The last

index in Chapter 4 is for similar sequences but based on RLZ compression, a member

of the Lempel-Ziv family. In this approach, the sequences are compressed relatively to

a reference sequence. This approach can avoid some of the shortcoming of the delta

compression method, where large chunks of DNA change locations in the genome.

1.2 Preliminaries

This section introduces notations and definitions that are used through out the thesis.

1.2.1 Strings

A alphabet is a finite total ordered set whose elements are called characters. The

conventional notation for an alphabet is Σ, and for its size is σ. An array (a.k.a. vector)

A[1..n] is an collection of n elements such that each element A[i] can be accessed in

constant time. A string (a.k.a. sequence) over an alphabet Σ is a array where elements

are member of the alphabet.

Consider a string S, let S[i..j] denote a substring from i to j of S. A prefix of a

string S is a substring S[1..i] for some index i. A suffix of a string S is substring S[i..|S|]

for some index i.

4

Consider a set of strings {S1, . . . Sn} share the same alphabet Σ, the lexicographical

order on {S1, . . . Sn} is an total order such that Si < Sj if there is an index k such that

Si[1..k] = Sj [1..k] and Si[k + 1] < Sj [k + 1].

Consider a string S[1..n], S can be stored using dn log σe bits. However, when

the string S has some regularities, it can be stored in less space. One of the popular

measurement for text regularity is the empirical entropy in [81]. The zero order empirical

entropy of string S is defined as

H0(S) = −
∑

c∈Σ,nc>0

nc
n

log
nc
n

where nc is the number of occurrences of c in S.

Then, the k-th order empirical entropy of S is defined as

Hk(S) =
∑
w∈Σk

|wS |
n

H0(wS)

where Σk is a set of length k strings, and wS is the string of characters that wS [i] is the

character that follows the i-th occurrence of w in S.

Note that nHk(S) is a lower bound for the number of bits needed to compress S using

any algorithm that encodes each character regarding only the context of k characters

before it in S. We have Hk(S) ≤ Hk−1(S) ≤ . . . ≤ H0 ≤ log n.

1.2.2 rank and select data structures

Let B[1..n] be a bit vector of length n with k ones and n− k zeros. The rank and select

data structure of B supports two operations: rankB(i) returns the number of ones in

B[1..i]; and selectB(i) returns the position in B of the ith one.

Proposition 1.1. (Pǎtraşcu [91]) There exists a data structure that presents bit vector

B in log
(
n
k

)
+ o(n) bits and supports operations rankB(i) and selectB(i) in O(1) time.

A generalized rank/select data structure for a string is defined as follows. Consider a

string S[1..n] over an alphabet of size σ, rank/select data structure for string S supports

two similar queries. The query rank(S, c, i) counts the number of occurrences of character

c in S[1..i]. The query select(S, c, i) find the i-th position of the character c in S.

5

Index Start pos. Suffix BWS

1 6 $ a
2 5 a$ b
3 4 ba$ c
4 2 bcba$ c
5 3 cba$ b
6 1 cbcba$ $

6

2

c
b
a
$

5

4

$
ba

$

a
$

c
b
a
$

3 1

a
$

c
b

(a) (b)

Figure 1.1: Suffix array and suffix tree of “cbcba”. The suffix ranges for “b” and “cb” are
(3,4) and (5,6), respectively.

Proposition 1.2. (Barbay et al. [9]) There exists a data structure that stores S in

nH0(S) + o(n)(H0(n) + 1) bits and support the operation rank in O(log log σ) time, and

operation select in O(1) time.

1.2.3 Suffix data structures

Suffix tree and suffix array are classical data structure for text indexing, numerous books

and surveys [56, 88, 108] have thoroughly covered them. Therefore, this section only

introduces the three core definitions that are essential for our works. They are structures

of suffix tree, suffix array and Burrow-Wheeler transform.

Consider any string S with a special terminating character $ which is lexicographically

smaller than all the other characters. The suffix tree TS of the string S is a tree whose

edges are labelled with strings such that every suffix of S corresponds to exactly one

path from the tree’s root to a leaf. Figure 1.1(b) shows an example suffix tree for cbcba$.

Searching for a pattern P in the string S is equivalent to finding a path from the root

of the suffix tree TS to a node of TS or a point in the edge in which the labels of the

travelled edges equals P .

For a string S with the special terminating character $, the suffix array SAS is the

array of integers specifying the starting positions of all suffixes of S sorted lexicographically.

For any string P , let st and ed be the smallest and the biggest, respectively, indexes such

that P is the prefix of suffix SAS [i] for all st ≤ i ≤ ed. Then, (st, ed) is called a suffix

range or SAS-range of P . i.e. P occurs at positions SAS [st+ 1], . . . , SAS [ed] in S. See

Fig. 1.1(a) for example. Pattern searching of P can be done using binary searches in

suffix array SAS to find the suffix range of P (as in [80]).

The Burrow-Wheeler transform [17] of S is a sequence which can be specified as

6

follows:

BWS [i] =

S[SAS [i]− 1]] if SAS [i] 6= 1

S[n] if SAS [i] = 1

For any given string P specified by its suffix range (st, ed) in SAS , operation

backward searchS(c, (st, ed)) returns the suffix range in SAS of the string P ′ = cP , where

c is any character and (st, ed) is the suffix range of P . The operation backward searchS

can be implemented as follows [36].

1 function backward searchS(c, (st, ed))

2 Let lc be the total number of characters in S that is alphabetically less than c

3 st′ = lc + rank(BWS , c, st− 1) + 1

4 ed′ = lc + rank(BWS , c, ed)

5 return (st′, ed′)

Using backward search, the pattern searching for a string P can be done by extending

one character at a time.

1.2.4 Compressed suffix structures

For a text of length n, storing its suffix array or suffix tree explicitly requires O(n log n)

bits, which is space inefficient. Several compressed variations of suffix array and suffix

tree have been proposed to address the space problem. In this section, we discuss about

three important sub-families of compressed suffix structures: compress suffix arrays,

FM-indexes and compressed suffix trees. Note that, the actual boundaries between the

sub-families are quite blur, since the typical operations of structures from one sub-family

can usually be simulated by structures from other sub-family with some time penalty.

We try to group the structures by their design influences.

First, most of the compressed suffix arrays represent data using the following frame-

work. They store a compressible function called ΨS and a sample of the original array.

The ΨS(i) is a function that returns the index j such that SAS [j] = SAS [i] + 1, if

SAS [i] + 1 ≤ n, and SAS [j] = 1 if SAS [i] = n. For any i, entry SAS [i] can be computed

by SAS [i] = SAS [Ψk(i)] − k where Ψk(i) is Ψ(Ψ(. . .Ψ(i) . . .)) k-time. An algorithm

using function ΨS to recover the original suffix array from its samples is to iteratively

apply ΨS until it finds a sampled entry. The data structures in compressed suffix array

family are different by the details of how ΨS is compressed and how the array is sampled.

7

Fig. 1.2 summarized recent compressed suffix arrays with different time-space trade-offs.

Reference Space ΨS time SAS [i] time
Sadakene[99] (1 + 1

ε)nH0(S) +O(n log log σ) + σ log σ O(1) O(logε n)

Grossi et al.[52] (1 + 1
ε)nHk(S) + 2(log e+ 1)n+ o(n) O(log σ

log logn) O(log σ logε n
log logn)

Grossi et al.[52] (1 + 1
ε)nHk(S) +O

(
n log logn

log
ε/(1+ε)
σ n

)
O(1) O(logεσ n+ log σ)

Ferragina et al.[40](∗) nHk(S) +O(n log σ log logn
logn) +O(n

logε n) O(log σ
log logn) O(log1+ε n log σ

log logn)

Figure 1.2: Some compressed suffix array data structures with different time-space
trade-offs. (∗) Structure in [40] is also an FM-index.

Second sub-family of the compressed suffix structures is the FM-index sub-family.

These indexes based on the compression of the Burrow-Wheeler transform sequence while

allowing rank and select operations. The first proposal [36] uses move-to-front transform,

then run-length compression, and a variable-length prefix code to compress the sequence.

Their index uses 5nHk(S) + o(n log σ) bits for any alphabet of size σ which is less than

log n/ log log n. Subsequently developed techniques focus on scaling the index for larger

alphabet [39, 76], improving the space bounds[40, 77], refining the technique for practical

purpose [34], and speeding up the location extraction operations [49]. For theoretical

purposes, the result from [40] supersedes all the previous implementations, therefore,

we use it as a general reference for FM-index. The index uses nHk(S) + o(n log σ) bits,

while supports the backward search operation in O(log σ/ log logn) time.

The third sub-family of compressed suffix structures is compressed suffix tree. The

operations of the structures in this sub-family are usually emulated by using suffix array

or FM-index plus two other components called tree topology and LCP array. The tree

topology records the shape of the suffix tree. For any index i > 1, the entry LCP [i]

stores the length of the longest common prefix of S[SAS [i]..n] and S[SAS [i− 1]..n], and

LCP [1] = 0. The LCP array can be used to deduce the lengths of the suffix tree branches.

The first fully functional suffix tree proposed by Sadakane [100] stores the LCP array

in 2n + o(n) bits, the tree topology in 4n + o(n) bits and an compressed suffix array.

Sadakene[100] Fischer et al.[44] Russo et al.[97]
Space (1 + 1

ε)nHk(S) + 6n+ o(n) (1 + 1
ε)nHk(S) + o(n) nHk(S) + o(n)

Child O(logε n) O(logε n) O(log n(log log n)2)
Edge label letter O(logε n) O(logε n) O(log n log log n)
Suffix link O(1) O(logε n) O(log n log log n)
Other tree nav. O(1) O(logε n) O(log n log log n)

Figure 1.3: Some compressed suffix tree data structures with different time-space trade-
offs. Note that we only list the operation time of some important operations.

8

Further works [97, 44] on auxiliary data structures reduces the space requirement for the

tree topology and the LCP array to o(n). Fig. 1.3 shows some interesting space-time

trade-offs for compressed suffix trees.

9

10

Chapter 2

Directed Acyclic Word Graph

2.1 Introduction

Among all text indexing data-structures, suffix tree [109] and suffix array [80] are the

most popular structures. Both suffix tree and suffix array index all possible suffixes of the

text. Another variant is directed acyclic word graph (DAWG) [15]. This data-structure

uses a directed acyclic graph to model all possible substrings of the text.

However, all above data-structures require O(n log n)-bit space, where n is the length

of the text. When the text is long (e.g. human genome whose length is 3 billions

basepairs), those data-structures become impractical since they consume too much

memory. Recently, due to the advance in compression methods, both suffix tree and

suffix array can be stored in only O(nHk(S)) bits [100, 62]. Whereas previous works

on DAWG data structures [15, 24, 60] focus on explicit construction of DAWG and its

variants. They not only require much memory but also cannot return the locations of

the indexed sub-string. Recently, Li et al. [73] also independently presents a DAWG by

mapping its nodes to ranges of the reversed suffix array. However, their version can only

perform forward enumerate of the nodes of the DAWG. A practical, full functional and

small data structure for DAWG is still needed.

In this paper, we propose a compressed data-structure for DAWG which requires

only O(n) bits. More precisely, it takes n(Hk(S) + 2H∗0 (TS)) + o(n) bit-space, where

Hk(S) and H∗0 (TS) is the empirical entropy of the reversed input sequence and the suffix

tree topology of the reversed sequence. Our data-structure supports navigation of the

DAWG in constant time and decodes each of the locations of the substrings represented

11

in some node in O(log n) time.

In addition, this paper also describes one problem which can be solved more efficienly

by using the DAWG than suffix tree. This application is called local alignment; the input

is a database S of total length n and a query sequence P of length m. Our aim is to find

the best local alignment between the pattern P and the database S which maximizes the

number of matches. This problem can be solved in Θ(nm) time by the Smith-Waterman

algorithm [104]. However, when the database S is known in advance, we can improve the

running time. There are two groups of methods (see [105] for a detailed survey of the

methods). One group is heuristics like Oasis[83] and CPS-tree[111] which do not provide

any bound. Second group includes Navarro’s method[87] and Lam et. al. method[70]

which can gaurantee some average time bound. Specifically, the previously proposed

solutions in [70] built suffix tree or FM-index data-structures for S. Then, the best local

alignment between P and S can be computed in O(n2m) worst case time and O(n0.628m)

expected time in random input for the edit distance function or a scoring function similar

to BLAST [2]. We showed that, by building the compressed DAWG for S instead of

suffix tree, the worst case time can be improved to O(nm) while the expected time and

space are remained the same. Note that, the worst case of [70] happens when the query is

long and occurs inside the database. That means their algorithm runs much slower when

there are many positive matches. However, the alignment is a precise and expensive

process; people usually only run it after having some hints that the pattern has potential

matches to exhaustively confirm the positive results. Thus, our worst case improvement

means the algorithm will be faster in the more meaningful scenarios.

The rest of the paper is organized as follows. In Section 2, we review existing

data-structures. Section 3 describes how to simulate the DAWG. Section 4 shows the

application of the DAWG in the local alignment problem.

2.2 Basic concepts and definitions

Let Σ be a finite alphabet and Σ∗ be the set of all strings over Σ. The empty string is

denoted by ε. If S = xyz for strings x, y, z ∈ Σ∗, then x, y, and z are denoted as prefix,

substring, and suffix, respectively, of S. For any S ∈ Σ∗, let |S| be the length of S.

12

6

2

c
b
a
$

5

4

$
ba

$

a
$

c
b
a
$

3 1

a
$

c
b

Figure 2.1: suffix tree of “cbcba”

2.2.1 Suffix tree and suffix array operations

Recall some definitions about suffix tree and suffix array from Section 1.2.3, let AS and

TS denote the suffix array and suffix tree of string S, respectively. Any substring x of

S can be represented by a pair of indexes (st, ed), called suffix range. The operation

lookup(i) returns AS [i]. Consider a suffix range (st, ed) in AS for some string P [1..m], the

operation backward-search(st, ed, c) returns another suffix range (st′, ed′) for cP [1..m].

For every node u in the suffix tree TS , the string on the path from the root to u is

called the path label of the node u, denoted as label(u).

In this work, we require the following operations on the suffix tree:

• parent(u): return the parent node of node u.

• leaf-rank(u): returns the number of leaves less than or equal to u in preorder

sequence.

• leaf-select(i): returns the leaf of the suffix tree which has rank i.

• leftmost-child(u): returns the leftmost child of the subtree rooted at u.

• rightmost-child(u): returns the rightmost child of the subtree rooted at u.

• lca(u, v): returns the lowest common ancestor of two leaves u and v.

• depth(u): returns the depth of u. (i.e. the number of nodes from u to the root

minus one).

• level-ancestor(u, d): returns the ancestor of u with depth d.

• suffix-link(u) returns a node v such that label(v) equals the string label(u) with

the first character removed.

13

Suffix tree and suffix array are closely related. If the children of each node in the

suffix tree TS are ordered lexically according to the labels of the edges, the suffixes

corresponding to the leaves of TS are ordered exactly the same as that of the suffix array

AS . Therefore, the rank-i leaf of TS is one-to-one mapped to AS [i]. For any node w in

the suffix tree TS , let u and v be the leftmost and the rightmost leaves, respectively. The

suffix range of label(w) is (leaf-rank(u), leaf-rank(v)).

In the suffix tree, some leaves hang on the tree by edges whose labels are just the

single terminal character $. These are called trivial leaves; all remaining nodes in the

tree are called non-trivial nodes. In Fig. 2.1, leaf number 6 is a trivial leaf.

2.2.2 Compressed data-structures for suffix array and suffix tree

For a text of length n, storing its suffix array or suffix tree explicitly requires O(n log n)

bits, which is space inefficient. Several compressed variations of suffix array and suffix

tree, whose sizes are in O(nHk(S)) bits, have been proposed to address the space problem.

For the compressed data structure on suffix array, Ferragina and Manzini introduced

a variant called FM-index [36] which can be stored in O(nHk(n)) bits and supports

backward-search(st, ed, c) in constant time. This result was further improved by Mäkinen,

V. and Navarro [77] to nHk(n) + o(n) bits.

For the data structures on suffix tree, using the idea of Grossi et al. [52], Sadakane

[100], and Jansson et al. [62], we can construct an O(n)-bit data-structure which supports

suffix-link(u) and all the tree operations in constant time. Given a tree T , the tree degree

entropy is defined as H∗0 (T) =
∑

i
ni
n log n

ni
where n is the number of nodes in T , ni is

the number of nodes with i children. Below three lemmas summarize the space and the

operations supported by these data-structures.

Lemma 2.1. (Jasson et al. [62]) Given a tree T of size n, there is an nH∗0 (T) + o(n)

bits data structure that supports the following operations in constant time: parent(u),

leaf rank(u), leaf select(i), leftmost child(u), rightmost child(u) and lca(u, v), depth(u)

and level-ancestor(u, d).

Lemma 2.2. (Sadakane [100]) Given a sequence S of length n, the suffix tree TS can be

stored using 4n+nHk(S) +o(n) bits and supports the operation suffix-link(u) in constant

time.

14

Lemma 2.3. (Mäkinen and Navarro [77]) Given the nHk(n) + o(n) bit FM-index of the

sequence S, for every suffix range (st, ed) of the suffix array and every character c, the

operation backward-search(st, ed, c) runs in constant time; and the operation lookup(i)

runs in O(log n) time.

Corollary 2.4. Given a sequence S of length n, let TS be the suffix tree of S. There is

a data structure that supports all the tree operations in Lemma 2.1, the suffix-link(u)

operation in Lemma 2.2, and the backward-search(st, ed, c) operation in Lemma 2.3

using n(Hk(S) + 2H∗0 (TS)) + o(n) bits.

Proof. We recombine and refine the data structures from Lemma 2.1, 2.2 and 2.3 to

obtain a data structure that supports the necessary operations. The data structure

consists of two components: (i) the suffix tree topology from Lemma 2.1 detailed in [62],

(ii) the FM-index detailed in [77]. Since the operations on tree and backward-search

were already supported by these Lemma, we will only show how to simulate suffix-link

operation using these two components.

In [100], Ψ[i] is defined as an array such that Ψ[i] = i′ if AS [i′] = AS [i] + 1 and

Ψ[i] = 0 otherwise. suffix-link(u) can be computed following this procedure: Let

x = leaf-rank(leftmost-child(u)) and y = leaf-rank(rightmost-child(u)). Let x′ = Ψ[x]

and y′ = Ψ[y]. It is proved that suffix-link(u) = lca(leaf-select(x′), leaf-select(y′)). Since,

all the tree operations are available, we need to simulate the Ψ[i] using the FM-index.

This result was actually proven in [47] (Section 3.2). Therefore, all the operations can be

supported using the suffix tree topology and the FM-index.

For the space complexity, the FM-index takes nHk(n) + o(n) bit-space. The suffix

tree topology takes 2nH∗0 (TS) + o(n), since the suffix tree of a sequence of length n can

have up to 2n nodes. The space bound therefore is nHk(n) + 2nH∗0 (TS) + o(n).

2.2.3 Directed Acyclic Word Graph

Apart from suffix tree, we can index a text S using a directed acyclic word graph

(DAWG). Prior to define the DAWG, we first define the end-set equivalent relation. Let

S = a1a2 . . . an (ai ∈ Σ) be a string in Σ∗. For any non-empty string y ∈ Σ∗, its end-set

in S is defined as end-setS(y) =
{
i | y = ai−|y|+1 . . . ai

}
. In particular, end-setS(ε) =

{0, 1, 2, . . . , n}. An end-set equivalent class is a set of substrings of S which have the

15

0,1,
2,3,4,5

1

2, 4

3, 5

2

3

4

5

a

b c

cb

c

b

b

c

a

b

bc, c

ab

abc

abcb,
bcb, cb

abcbc,
bcbc, cbc

a

b c

cb

c

b

b

c

Figure 2.2: DAWG of string “abcbc” (left: with end-set, right: with set path labels).

same end-set. For any substring x of S, we denote [x]S as the end-set equivalent class

containing the string x, i.e., [x]S = {y | y ∈ Σ∗, end-setS(x) = end-setS(y)}. Note that

[x]S = [y]S if and only if end-setS(x) = end-setS(y) for any strings x and y. Moreover,

the set of all end-set equivalent classes of S forms a partition of all substrings of S.

The DAWG DS for a string S is defined as a directed acyclic graph (V,E) such that

V is the set of all end-set equivalent classes of S and E = {([x]S , [xa]S) | x and xa are

substrings of S, end-setS(x) 6= end-setS(xa)}. Furthermore, every edge ([x]S , [xa]S) is

labeled by the character a. Denote c(u,v) as the edge label of an edge (u, v).

In the DAWG DS , [ε]S = {0, 1, . . . , n} is the only node with in-degree zero. Hence,

[ε]S is called the source node. For every path P in DS starting from the source node, let

its path label be the string obtained by concatenating all labels of the edges on P . A

DAWG DS has an important property: For every node u in DS , the set of path labels of

all paths between the source node and u equals the end-set equivalent class of u.

For example,Fig. 2.2 shows the DAWG for S = abcbc. We have end-setS(bc) =

end-setS(c) = {3, 5}. Hence, {bc, c} forms an end-set equivalent class.

The following theorem obtained from [15] states the size bound of a DAWG. Note

that the size bound is tight. The upper bounds for the number of nodes and edges are

achieved when S = abn and S = abnc respectively, for some distinct letters a, b, c ∈ Σ.

Theorem 2.5. (Blumer et al. [15]) Consider any string S of length at least 3 (i.e.

n ≥ 3). The Directed Acyclic Word Graph DS for S has at most 2n − 1 states, and

3n− 4 transition edges (regardless of the size of Σ).

16

For any string x, we denote x as the reverse sequence of x. Consider a string S, let

DS be the DAWG of S and TS be the suffix tree of S. For every non-trivial node u in

TS , let γ(u) be [label(u)]S . (Please refer to the end of Section 2.1 for the definition of

non-trivial.) The following lemma states the relationship between a DAWG and a suffix

tree.

Lemma 2.6. (Blumer et al. [15]) The function γ is a one-to-one correspondence mapping

from the non-trivial nodes of TS to the nodes of DS.

For example, for the suffix tree in Fig. 1.1(b) and the DAWG in Fig. 2.2, the internal

node of the suffix tree with path label “cb” maps to node [cb]S = [bc]S = {bc, c} in the

DAWG. In fact, every non-trivial node in the suffix tree maps to a node in the DAWG,

and vice versa. Precisely, the root of the suffix tree maps to the source node of the

DAWG, the internal node with path label “b” maps to node {“b”}, the internal node

with path label “cb” maps to node {“bc”, “c”}, leaf 5 maps to node {“a”}, leaf 4 maps to

node {“ab”}, leaf 2 maps to node {“abcb”,“bcb”,“cb”}, leaf 3 maps to node {“abc”}, and

leaf 1 maps to node {“abcbc”,“bcbc”,“cbc”}.

2.3 Simulating DAWG

Consider a sequence S of length n, this section describes an O(n)-bit data-structure for

the DAWG DS which supports the following four operations to navigate in the graph in

constant time:

• Get-Source(): returns the source node of DS ;

• Find-Child(u, c): returns the child v of u in DS s.t. (u, v) is labeled by c.

• Parent-Count(u): returns the number of parents of u in DS .

• Extract-Parent(u, i): returns the i-th parent where 1 ≤ i ≤ Parent-Count(u).

We also support two operations which help to extract the substring information of

each node. The first operation, denoted End-Set-Count(u), returns the number of

members of the end-set at node u in constant time. The second operation, denoted

Extract-End-Set(u, i), returns the i-th end point in the set in O(log n) time.

17

To support the operations, we can store the nodes and the edges of DS directly.

However, such a data-structure requires O(n log n)-bit space. Instead, this section shows

that, given the FM-index of S and the compressed topology of the suffix tree of S

(summarized in Corollary 2.4), we can simulate the DAWG DS and support all operations

efficiently with O(n) bits space.

First, we analyse the space complexity. Both the FM-index of S and the compressed

suffix tree TS can be stored in n(Hk(S) +H∗0 (TS) + o(n) bits.

Next, we describe how to represent the nodes in the DAWG DS . Lemma 2.6 implies

that each non-trivial node u in TS is one-to-one corresponding to a node γ(u) in DS .

Hence, in our simulation, the non-trivial node u in TS represents the node γ(u) in DS .

Below four subsections describe how can we support the following operations:

Get-Source(), Find-Child(u, c), Parent-Count(u), Extract-Parent(u, i), End-Set-Count(u)

and Extract-End-Point(u, i). The implementation details is shown in Listings 2.1, 2.2,

2.3 and 2.4.

1 function Get−Source() { return the root node of TS ; }

Listing 2.1: Operation Get-source: returns the source node of DS

1 function Find−Child(u, c)

2 st, ed = leftmost-child(u), rightmost-child(u);

3 st′, ed′ = backward-search(st, ed, c);

4 if ((st′, ed′) is a valid range)

5 l, r = leaf-select(st′), leaf-select(ed′);

6 return lca(l, r);

7 else return nil;

Listing 2.2: Operation Find-Child: finds the child node v of u such that the edge label

of (u v) is c

1 function Parent−Count(u)

2 if (u is the root node) return 0; /∗ no parent for source node ∗/

3 v = parent(u);

4 b = suffix-link(u);

5 if (v is the root node) /∗ The list is [b, p2, .., pk−1, v],where pi is parent∗/

6 return depth(b)− depth(v) + 1;/∗ of pi−1, p2 is parent of b, v is parent of pk−1∗/

18

7 else

8 e = suffix-link(v); /∗ The list is [b, p2, .., pk−1, e) ∗/

9 return depth(e)− depth(b); /∗ (exluding e) ∗/

10

11 function Extract−Parent(u, i)

12 b = suffix-link(u);

13 return level-ancestor(b,depth(b) + i− 1)

Listing 2.3: Operation Parent-Count and Extract-Parent: use to list parents of the node

u in DS

1 function End−Set−Count(u)

2 st, ed = leftmost-child(u), rightmost-child(u);

3 return ed− st+ 1;

4

5 function Extract−End−Point(u, i)

6 st = leftmost-child(u);

7 return n+ 1− lookup(i+ st− 1);

Listing 2.4: Operations End-Set-Count and Extract-End-Point

2.3.1 Get-Source operation

The source node in DS is [ε]S , which is represented by the root in TS . Hence, the

operation Get-Source() just returns the root in TS , which takes constant time.

2.3.2 End-Set operations

Since each node in the DAWG DS is represented directly by a node in the suffix

tree TS . Consider a non-trivial node u in TS , two operations End-Set-Count(u) and

Extract-End-Point(u, i) can be used to list the ending locations of label(u) in string S.

In fact, these ending locations can be derived from the starting location of label(u) in S.

By definition, the starting locations of label(u) in S are {AS [i] | i = st, . . . ed} where

st = leftmost child(u) and ed = rightmost child(u). Hence, the ending locations of

label(u) in S are {n+1−AS [i] | i = st, . . . , ed}. Line 2 in Listings 2.4 captures st and ed.

The size of the end-set is thus ed− st+ 1. To extract each ending location, we can use

operation Extract-End-Point(u, i). Line 7 computes AS [i+ st− 1] by calling the lookup

19

operation of the FM-index of S and reports the locations. Since the lookup operation in

FM-index takes O(log n) time, the cost of extracting each end point is O(log n) time.

2.3.3 Child operation

Consider a non-trivial node u in TS which represents the node γ(u) in DS . This section

describes the operation Find-ChildS(u, c) which returns a non-trivial node v in TS such

that γ(v) is the child of γ(u) with edge label c. Our solution is based on the following

two lemmas:

Lemma 2.1. Consider a string S, the DAWG DS, and the suffix tree TS. For any

non-trivial node u in TS, if v = Find-Child(u, c) is not nil in TS, then (γ(u), γ(v)) is an

edge in DS with edge label c.

Proof. Suppose x is the path label of u in TS . Line 2 in Listing 2.2 converts the node u to

the suffix range (st, ed) in AS which represents the same substring x. By the definition of

backward-search(st, ed, c), line 3 finds the suffix range (st′, ed′) in AS which represents

cx. Since v is not nil, (st′, ed′) is a valid range. After the computation in line 5, st′ and

ed′ are mapped back to two leaves l and r, respectively, of TS . Note that label(l) and

label(r) both share cx as the prefix. Hence, cx should be a prefix of the path label of

v = lca(l, r). In addition, since cx does not contain the terminal character $, v should be

a non-trivial node. As label(v) is at least longer than x = label(u), u and v are different

nodes in TS . By Lemma 2.6, γ(u) = [x]S and γ(v) = [xc]S are different. By the definition

of DS , (γ(u), γ(v)) = ([x]S , [xc]S) is an edge in DS with edge label c.

Lemma 2.2. For any node u in TS, if Find-child(u, c) is nil, then γ(u) will not have

any child with edge label c in DS.

Proof. By contrary, assume that there is a node γ(v) in DS such that (γ(u), γ(v)) is an

edge in DS with label c. Let x = label(u) in TS . By definition, x is one of the path labels

from the source node to γ(u) in DS . Since γ(v) is a child of γ(u) with edge label c, xc is

a substring of S. However, since backward-search(st, ed, c) does not return a valid range,

cx is not a substring of S, i.e. xc is not a substring of S, which is a contradiction.

Based on the above lemmas, given a non-trivial node u in TS which represents the

node γ(u) in DS , the algorithm Find-childS(u, c) in Listing 2.2 returns another non-trivial

node v in TS such that γ(v) is the child of γ(u) with edge label c.

20

Since backward-search(st, ed, c), lefmost-child(u), rightmost-child(u), leaf-select(i),

lca(u, v) each take O(1) time, Find-childS(u, c) can be computed in O(1) time.

2.3.4 Parent operations

Consider a non-trivial node u in TS which represents the node γ(u) in DS . This section

describes the operation Parent-Count(u) and Extract-Parent(u, i) which can be used to

list all parents of γ(u). Precisely, we present a constant time algorithm which finds two

non-trivial nodes b and e in TS where e is the ancestor of b in TS . We show that γ(p) is

a parent of γ(u) in DS if and only if node p is in the path between b and e in TS . Our

solution is based on the following lemmas.

Lemma 2.3. Consider a non-trivial node u such that u is not the root of TS, let v be

u’s parent and x = label(v) and xy = label(u). For any non-empty prefix z of y, we

have γ(u) = [(xy)]S = [(xz)]S. In fact, γ(u) = {(xz) | z is a non-empty prefix of y}.

Proof. Let {oi} be the set of starting positions where xy occurs in S. By definition,

end-setS((xy)) = {n− oi}. Consider a string xz where z is some non-empty prefix of y.

Since there is no branch between u and v in TS , xz is the prefix of all suffixes represented

by the leaves under the subtree at u. Hence, the set of starting locations of xz in S and

that of xy are exactly the same, which is {oi}. By definition, end-setS((xz)) = {n−oi+1}.

Hence, γ(u) = [(xy)]S = [(xz)]S .

Note that only xz can occur at {oi} in S for all non-empty prefix z of y. Thus,

γ(u) = {(xz) | z is a non-empty prefix of y}.

For any non-trivial node u in TS , below two lemmas states how to find the parents of

γ(u) in DS . Lemma 2.4 covers the case when u’s parent is not a root node of TS ; and

Lemma 2.5 covers the other case.

Lemma 2.4. Consider a non-trivial node u whose parent, v, is not the root node in TS.

Suppose suffix-link(u) = b and suffix-link(v) = e. For every node p in the path from b to

e (excluding e) in TS, γ(p) is a parent of γ(u) in DS.

Proof. Since v is not the root node, let ax and axy be the path labels of v and u,

respectively, in TS where a ∈ Σ and x, y ∈ Σ∗. By the definition of suffix link, we have

x = label(e) and xy = label(b). Note that a suffix link from a non-trivial node points to

another non-trivial node.

21

(Necessary condition) For any node p on the path from b to e in TS , the path label of p is

label(p) = xz where z is some non-empty prefix of y. Since p and u are two different nodes

in TS , γ(p) and γ(u) are two different nodes in DS (see Lemma 2.6). From Lemma 2.3,

γ(u) = [(axy)]S = [(axz)]S . By definition of DAWG, (γ(p), γ(u)) = ([(xz)]S , [(axz)]S) is

an edge in DS with edge label a. This implies that γ(p) is a parent of γ(u).

(Sufficient condition) Note that label(v) = ax and label(u) = axy in TS . By

Lemma 2.3, γ(u) = {(axz) | z is non-empty prefix of y}. Suppose γ(p) is parent of

γ(u) in DS . By definition of DAWG, γ(p) must be [(xz)]S for some z is non-empty prefix

of y. This implies that the path label of p in TS is xz. Thus, p is a node on the path

from b to e excluding e.

Lemma 2.5. Consider a non-trivial node u whose parent is the root node of TS. Suppose

suffix-link(u) = b. The set of parents of γ(u) in DS is {γ(p) | p is any node on the path

from b to the root in TS}.

Proof. Let v be the root node of TS . Let ax be the path label of u. We have label(b) = x.

From Lemma 2.3, γ(u) = [z]S where z is any non-empty prefix of x. Since every node p

on the path from the root to b (excluding the root) has a path label which is a non-empty

prefix of x. Similar to the argument in Lemma 2.4, we can show that γ(p) is a parent

of γ(u). In addition, the source node of DS , γ(v) = [ε]S , is also a parent of γ(u) since

γ(v) = [ε]S and γ(u) = [z]S = [a]S .

Based on the above lemmas, the algorithms in Listing 2.3 can list all parents of u in

DS . In the operation Parent-Count(u), line 6 corresponds to the case in Lemma 2.5, and

line 8-9 corresponds to the case in Lemma 2.4. In the operation Extract-Parent(u, i),

since the last node in the list is always an ancestor of the first node b = suffix-link(u), the

interested node is the i-th parent of b in TS . The operation level-ancestor (in Lemma 2.1)

is used to compute the answer.

In summary, we have the following theorem:

Theorem 2.6. Given a sequence S, there is a data structure to simulate the DAWG

DS that uses n(Hk(S) + 2H∗0 (TS)) + o(n). It supports Get-Source(), Find-Child(u, c),

Parent-Count(u), Extract-Parent(u, i), End-Set-Count(u) in O(1) time and support

Extract-End-Set(u, i) in O(log n) time.

22

2.4 Application of DAWG in Local alignment

This section studies the local alignment problem. Consider a database S of length n. For

any string P of length m, our aim is to compute the best local alignment between P and

S. By indexing the database S using an O(n)-bit FM-index data-structure, Lam et al.

[70] showed that under a scoring function similar to BLAST, the best local alignment

between any query pattern P and S can be computed using O(n0.628m) expected time

in random input and O(n2m) worst case time. Their worst case time happens when P is

long and occurs inside S.

In this work, we show that, by replacing the FM-index data-structure by the O(n)-bit

compressed DAWG, we can narrow down the gap between the worst case and the expected

case. Thus, improve the running time when there are many positive matches. Specifically,

the worst case time can be improved from O(n2m) to O(mn) while the expected running

time in random input remains the same.

2.4.1 Definitions of global, local, and meaningful alignments

Let X and Y be two strings in Σ∗. A space “−” is a special character that is not in these

two strings. An alignment A of X and Y are two equal length strings X ′ and Y ′ that

may contain spaces, such that (i) removing spaces from X ′ and Y ′ will get back X and

Y , respectively; and (ii) for any i, X ′[i] and Y ′[i] cannot be both spaces.

For every i, the pair of characters X ′[i] and Y ′[i] is called an indel if one of them

is the space character, a match if they are the same, and a mismatch otherwise. The

alignment score of an alignment A equals
∑

i δ(X
′[i], Y ′[i]), where δ is a scoring scheme

defined over the character pairs.

Let S be a string of n characters and P be a pattern of m characters. Below, we

define the global alignment problem and the local alignment problem.

• The global alignment problem is to find an alignment A between S and P which

maximizes A’s alignment score with respect to a scoring scheme δ. Such score is

denoted as global-score(S, P).

• The local alignment problem is to find an alignment A between any substring of S

and any substring of P which maximizes A’s alignment score. Such score is denoted

23

as local-score(S, P). Precisely, local-score(S, P) = max{global-score(S[h..i], P [k..j]) |

1 ≤ h ≤ i ≤ n, 1 ≤ k ≤ j ≤ m}.

In practical situations, people use alignment to find string similarity; therefore, they

are only interested in alignment which has enough matches (e.g. more than 50% of the

positions are matches). In [70], the meaningful alignment is defined as follow:

• Consider a scoring scheme δ where mismatches and indels have negative score. Let

A = (X ′, Y ′) be an alignment of two strings X and Y . A is called a meaningful

alignment if and only if the alignment scores of all the non-empty prefixes of the

aligned strings X ′ and Y ′ is greater than zero, i.e., global-score(X ′[1..i], Y ′[1..i]) > 0

for all i = 1, . . . , |X ′|. Otherwise, A is said to be meaningless.

Note that from this point, we only consider scoring scheme where mismatch and indel

have negative scores. And, we only consider local alignment score which is greater than

or equal to zero.

Consider two strings S and P , we define meaningful-score(S, P) as the best meaningful

alignment score between S and P if one exists. If it does not exist, meaningful-score(S, P)

is −∞. Authors in [70] showed the following relationship between local alignment and

meaningful alignment:

Lemma 2.1. (Lam et al. [70]) We have

local-score(S, P) = max
1≤h≤i≤n,1≤k≤j≤m

meaningful-score(S[h..i], P [k..j])

2.4.2 Local alignment using DAWG

Consider a database S and a pattern P . Let DS = (V,E) be the DAWG of S (i.e. the

DAWG of the concatenation of all strings in S separated by $). This section derives a

dynamic programming solution to compute local-score(P, S).

Recall that each node u ∈ V represents the set of path labels of all possible paths

from the source node to u. We say a string x ∈ u, if x is a path label of a path from the

source node to u. Note that these sets form a partition of all substrings in S.

First, we define a recursive formula. For every j ≤ |P |, for every node u ∈ DS ,

we denote Nj [u] = maxk≤j,y∈u meaningful-score(P [k..j], y). Below lemma states the

recursive formula for computing Nj [v].

24

Lemma 2.2. The meaningful alignment score Nj [u] defined above satisfies the following

recursive formula:

Nj [ε] = 0 ∀j = 0..m

N0[u] = −∞ ∀u ∈ V − {ε}

Nj [u] = filter

 max
(v,u)∈E

Nj−1[v] + δ(P [j], c(v,u)) (Case A)

Nj−1[u] + δ(P [j],−) (Case B)

Nj [v] + δ(−, c(v,u)) (Case C)

 (2.1)

where filter(x) = x if x > 0; and −∞, otherwise.

Proof. Let score(x, y) be the short name for meaningful-score(x, y).

Proof by induction: The base case where u = ε or j = 0 is obviously hold. Given any

topological order π = π1π2 . . . πk of the nodes of DS (note that π1 = [ε]S), assume Nj [u]

satisfies the recursive relation for all j ≤ l and u = π1, . . . , πi−1, πi except Nl[πi]. Below,

we show that the following equation is correct for j = l and u = πi, that is:

filter

 max
(v,πi)∈E

Nl−1[v] + δ(P [l], c(v,πi))

Nl−1[πi] + δ(P [l],−)

Nl[v] + δ(−, c(v,πi))

 = max
x=P [k..l],y∈πi,k≤l

score(x, y) (2.2)

where filter(x) = x if x > 0; and −∞, otherwise

We will prove both LHS ≤ RHS and LHS ≥ RHS.

(LHS ≤ RHS) Let A = Nl−1[v] + δ(P [l], c(v,πi)), B = Nl−1[πi] + δ(P [l],−) and C =

Nl[v]+δ(−, c(v,πi)). Note that filter(max(v,πi)∈E{A,B,C}) = max(v,πi)∈E{filter(A),filter(B),

filter(C)}. If any of A, B or C is not positive, after applying filter it becomes −∞. Then,

we do not need to care about that term any more.

Consider A = Nl−1[v] + δ(P [l], c(v,πi)). If A is positive, base on the inductive

assumption, we have Nl−1[v] = maxx=P [k..l−1],y∈v,k≤l−1 score(x, y). Let (X1, Y1) =

arg maxx=P [k..l−1],y∈v,k≤l−1 score(x, y). Consider a string Xa = X1 · P [l] and Ya =

25

Y1 · c(v,πi). One of the alignment of Xa and Ya can be found by taking the alignment of

X1 and Y1 and respectively adding P [l] and c(v,πi) at each end of the string. Therefore,

A ≤ score(Xa, Ya). (In fact, we can proof that A = score(Xa, Ya), but it is not

necessary.) As Xa is a substring of P ending at l and Ya is a string in πi, this means

filter(Nl−1[v] + δ(P [l], c(v,πi))) ≤ score(Xa, Ya) ≤ RHS.

Consider B = Nl−1[v] + δ(P [l],−), similar to the previous case for A, let (X2, Y2) =

arg maxx=P [k..l−1],y∈πi,k≤l−1 score(x, y), then choose Xb = X2 ·P [l] and Yb = Y2. For C =

Nl[v] + δ(−, c(v,πi)), let (X3, Y3) = arg maxx=P [k..l],y∈v,k≤l score(x, y), choose Xc = X3

and Yc = Y3 ·c(v,πi). We both have filter(B) ≤ score(Xb, Yb) and filter(C) ≤ score(Xc, Yc).

Therefore, we have max{filter(A), filter(B), filter(C)} ≤max{score(Xa, Ya), score(Xb, Yb),

score(Xc, Yc)} ≤ RHS. That implies LHS ≤ RHS.

(LHS ≥ RHS) By definition, meaningful score is either a positive number or −∞.

If RHS is −∞, this implies no meaningful alignment exists between any substring of

P ends at j and any substring of S represented by a node πi. Obviously, LHS ≥ RHS

is still correct.

If RHS is a positive number, let (X,Y) = arg maxx=P [k..l],y∈πi,k≤l score(x, y). X

should equal to a substring of P which ends at l, and Y should equal to a substring of S

represented by a node u in DS . Let (X ′, Y ′) be the best alignment of (X,Y). Let a, b

be the last character of X ′ and Y ′, respectively. There are three cases for a and b: (i)

a, b ∈ Σ, (ii) a ∈ Σ and b = −, (iii) a = − and b ∈ Σ.

In case (i), the last characters of X, Y are respectively a and b . Let Xm and Ym

be the strings obtained by removing the last character from X and Y , respectively.

Xm should equal to a substring ends at l; and Ym should equal to a path label of

a parent node of πi. In this case, we have score(Xm, Ym) ≥ score(X,Y) − δ(a, b).

As, Nl−1[v] = maxx=P [k..l−1],y∈v score(x, y), Nl−1[v] ≥ score(Xm, Ym). Hence, LHS ≥

score(Xm, Ym) + δ(a, b) ≥ score(X,Y). Similarly, we can also prove LHS ≥ score(X,Y)

in cases (ii) and (iii).

By Lemma 2.1, we have local-score(P, S) = maxj=1..|P |,u∈DS
Nj [u]. Using the recur-

sive equation in Lemma 2.2, we obtain the dynamic programming algorithm in Listing 2.5.

Below two lemmas analyse the time and space complexity of the algorithm.

Lemma 2.3. Let m = |P | and n = |T |. local-score(P, S) can be computed in O(mn)

26

1 I n i t i a l i z e N0[u] for a l l u
2 for (j = 1 to m)
3 /∗ u s i n g f o r m u l a f r o m Lemma 2.2 ∗/

4 foreach (p o s i t i v e entry Nj−1[v] and edge (v, u))
5 Update Nj [u] = max{Nj [u], Nj−1[v] + δ(P [j], c(v,u))} (Case A)
6 Update Nj [v] = max{Nj [v], Nj−1[v] + δ(P [j],−)} (Case B)
7 foreach (positive entry Nj [v] in any topo . order o f v and edge (v, u))
8 Update Nj [u] = max{Nj [u], Nj [v] + δ(−, c(v,u))} (Case C)

Listing 2.5: Complete algorithm

worst case time using O(n log n) worst case bits memory.

Proof. The number of entries in the array Nj [u] is O(mn). Note that in the recursive

formula, for each j, each edge (v, u) of the graph DS is visited once. Since there are only

O(n) nodes and edges in DS (Theorem 2.5), the worst case running time is O(mn).

For every node u, the entries Nj [u] only depend on Nj−1[u]. Therefore, after Nj [u]

has been computed, the memory for Nj−2[u] down to N0[u] can be freed. Thus, the

maximal required memory is O(n log n) bits.

The following lemma gives some analysis on the average case behaviour of the

algorithm to compute local alignment using the formula in Lemma 2.2.

Lemma 2.4. The expected running time and memory to find the meaningful alignment

using DAWG is bounded by the expected number of distinct substrings in S and substrings

in P in which meaningful alignment score is greater than zero.

Proof. Each entry Nj [u] is computed from positive entries among (Nj−1[v1],. . . ,Nj−1[vk]),

(Nj [v1],. . . , Nj [vk]) and Nj−1[u] where (v1, u), . . . , (vk, u) are edges in DS . Therefore, the

expected running time and memory is in the order of the number of positive entries in N

and the number of visited edges (v, u). Since, any node v in DS has at most |Σ| out-going

edges (one for each character in Σ). The number of visited edges is proportional to the

number of positive entries.

Consider a positive positive entry Nj [u] = max
k≤j,y∈u

meaningful-score(P [k..j], y). It is

obviously that each positive entry corresponds to distinct substring y in S and a substring

x in P in which meaningful alignment score is greater than zero.

From the above lemma, the problem of estimating the average running time becomes

the problem of estimating the number of substring pairs which have positive meaningful

score. We do not notice any direct result on this bound; however, there are a few results

27

on measuring the average number of pairs of strings which have Hamming distance within

certain bound.

For example, Baeza-Yates [8] analysed the all-against-all alignment problem (set

of strings against themselves) on suffix tree. The core of the analysis is to measure

the average number of comparisons for searching a random string over a trie allowing

errors. This yields an O(nαm log n) bound on our problem where α is a constant which

is less than one. Maaß [74] analysed the time for searching a pattern on a trie of n

random strings allowing at most D Hamming’s errors. In the case where D is less than

(σ − 1)/σ logσ n where σ = |Σ|, the average number of comparison is sub-linear (o(n)).

We can use this result to obtain a bound of sub-quadratic o(nm) on the average case

where match is 1 and mismatch is less than or equal to -1. Lam et al. [70] studied a

specific case of allowing Hamming errors where match is 1 and mismatch is -3. This

score roughly approximates the score used by BLAST. They proved that the running

time is bound by O(n0.628m). Their experiments also suggested that in scoring model

with gap penalty (gap score is -3), the expected running time is also roughly O(n0.628m).

Lemma 2.5. The expected running time to find the meaningful alignment using DAWG

is at least as good as the expected running time of BWT-SW [70]. (i.e. O(n0.628m) for

their alignment score.)

Proof. In the algorithm BWT-SW, the string S is organized in a suffix tree TS . The

alignment process computes and keeps the meaningful alignment scores between path

label of nodes of TS and substrings of the pattern string P . Note that each node of

the DAWG DS can be seen as the combination of multiple nodes of the suffix tree

TS . Therefore, each entry computed in BWT-SW can be mapped to an entry of Nj [u].

(Multiple entries in BWT-SW can be mapped to the same entry Nj [u] in our algorithm.)

The expected asymptotic running time of our algorithm is thus bounded by that of

BWT-SW.

For simplicity, the above discussion only focuses on computing the maximum alignment

score, i.e., the entry Nj [u] which is the maximum. In real-life, we may also want to

recover the regions in S containing the alignments represented by Nj [u]. In this case, the

value of Nj [u] is not enough. We need to compute two more numbers Ij,u and Lj,u such

that meaningful-score(P [Ij,u..j], S
′) = Nj [u] where S′ is a length-Lj,u substring belongs

28

to u. Then, using the operations End-Set-Count(u) and Extract-End-Point(u, i), we

can enumerate all alignments represented by Nj [u], i.e., {(P [Ij,u..j], S[q − Lj,u..q]) | q ∈

end-setS(u)}.

Ij,u and Lj,u can be computed by dynamic programming along with Nj [u]. For the

base cases, we have Ij,ε equals j and Lj,ε equals −1. Then, depend on the outcome of

Equation 2.1, Ij,u and Lj,u can be updated using the following equations:

Ij,u =

Ij−1,v if (A) happens

Ij−1,u if (B) happens

Ij,v if (C) happens

Lj,u =

Lj−1,v + 1 if (A) happens

Lj−1,u if (B) happens

Ij,v + 1 if (C) happens

For time and space complexities, note that Lj,u and Ij,u can be computed using

the same time and space complexities as Nj [u]. After that, all alignments represented

by Nj [u] can be reported using O(occ log n) time, where occ is the number of such

alignments.

29

30

Chapter 3

Multi-version FM-index

3.1 Introduction

The amazing advances in biology, chemistry and engineering have made the DNA

sequencing become cheaper and faster. It promises many more exciting discovery in

living mechanism as well as personal medicine. However, the huge amount of data

produced by sequencing technology also poses new challenges to bioinformatic research

to find efficient way to to compress the generated sequence data while still providing

basic function like substring search (a.k.a indexing).

Due to evolution, the DNA sequences of individuals in the same species and DNA

sequences of related species are highly similar. Therefore, their storage can be greatly

reduced by clever compression. However, well-established compression methods developed

during the 80’s and 90’s designed for text and media file do not solve all the storing

problem for genomic data. First, well known compression programs like zip, bzip2 often

compress data locally by dividing the data into blocks, or searching for repetitions within

some window around the current encoding point. In genomic data, this strategy is often

not very effective. At local level (e.g. a few thousand bases) the DNA sequence is very

close to uniformly random, however, at larger scale, (e.g. between two human genomes of

billions bases) the difference may be as low as 1%. Increasing the block or windows size

to some gigabytes may help to achieve better the compression, but it make it difficulty

in indexing the sequence.

Recent researches in indexing data structures have started to devote more attention

to this type of similar sequences, and proposed a few compression structures [79, 27]

31

to index the sequences. In this work, we also set out to find some solution for prob-

lem of the indexing similar sequences, but using different compression approach. An

obvious compression scheme that can effectively compress the type of sequences is delta

compression. This scheme store the first sequence and the changes between each pair

of sequences. However, using this scheme, many types of queries cannot be supported

easily.

We first model the changes in the similar sequences by keeping only the inserted and

deleted characters between each pair of sequences. Then, we design a data structure

called multi-version rank and select to support the rank and select queries in the delta

compressed sequences. Based on this result, we propose an index data structure for

similar sequences called multi-version FM-index which can find occurrences of a pattern

P for any sequence Si.

Related methods

Our approach was inspired by the persistent data structures which are popular in logical

and functional programming[89]. In this approach, data structure always preserves the

previous version of itself when it is changed. A data structure is partially persistent if all

versions can be accessed but only the newest version can be modified. The data structure

is fully persistent, if every version can be both accessed and modified. Applying this idea

into compression, we store a set of versions, but do not allow changes to them to improve

space requirement and query time. Therefore, we called our data structure multi-version

rather persistent.

There are two main branches in persistent data structure research [63]. The first

branch focuses on transforming any dynamic data structure into persistent data structure

with low space and time overhead. The second direction focuses on designing persistent

data structure for specific representation e.g. lists, search tree.

In the transformation direction, a persistent data structure for rank and select can be

construct by taking a dynamic rank and select structure, and converting it into persistent

version. The state of the art dynamic rank and select structure [50] uses nH0(S) +

o(n log σ) bits, and serves the queries and updates in t = O(log n(1 + log σ/ log logn))

time where S is a string of length n, and H0 is the zero-order entropy. Let m be the total

number of changes in the inputs, using the transformation in [26], the data structure

32

will slow down by a factor of log log(mt) ≈ log log(m log n) time, and blow up the space

by adding mt log n ≈ m log2 n bits. This transformation is not time and space efficient

compared to our proposal.

Our work on multi-version rank and select is built upon the works in specific persistent

data structure for set proposed by Dobkin and Munro[28], later improved by Overmars[90].

Section 3.4 can be seen as a generalized and improved version of Overmars’ structure[90].

The previous data structure uses O(N log2N) bits and answers query in O(logN) time,

while ours uses O(m logN) bits and answers queries in O(logm/ log logm) time where

N = n+m.

3.2 Preliminary

Notations

Consider an alphabet Σ of size σ, a string S is an array of characters from Σ. Let S[i]

denote the i-th element of S. Let S[i..j] denote a substring from i to j of S.

Let M be a matrix of size m× n. Denote M [i..i′, j..j′] as a sub-matrix of M taken

the region [i..i′] × [j..j′] from M . Denote M [i, j..j′] as sub-column-vector of M , and

M [i..i′, j] as a sub-row-vector of M .

Rank and select for sequences

Let B[1..n] be a bit vector of length n with k ones and n− k zeros. The rank and select

data structure of B supports two operations: rankB(i) returns the number of ones in

B[1..i]; and selectB(i) returns the position in B of the ith one.

Lemma 3.1. (Pǎtraşcu [91]) There exists a data structure that presents bit vector B in

log
(
n
k

)
+ o(n) bits and supports operations rankB(i) and selectB(i) in O(1) time.

A generalized rank/select data structure for a string is defined as follows. Consider a

string S[1..n] over an alphabet of size σ, rank/select data structure for string S supports

two similar queries. The query rank(S, c, i) counts the number of occurrences of character

c in S[1..i]. The query select(S, c, i) find the i-th position of the character c in S.

Lemma 3.2. (Belazzougui and Navarro [13]) There exists a structure that requires

nHk(S) + o(n log σ) bits and answers the rank and select queries in O(log log σ
log logn) time.

33

Predecessor data structures

Consider a set Y of m integers in a range from 1 to n, we are interested in few operations

on this set:

• Predecessor operation pred(Y, x) returns the smallest number smaller than or equal

to the query value x i.e. pred(Y, x) = min{y | y ∈ Y, y ≤ x}.

• Number rank operation rank(Y, x) counts the numbers of number in Y that is

smaller than or equals to x.

• Number select operation select(Y, i) returns the i-th smallest number in Y .

Although all of these operations can be implemented in constant time using the

operations on a bit vector of length n with m one, mentioned previously, this approach

requires the o(n) term which can be dominant when m� n. This subsection discusses

solutions with less space for small m.

There are a few ways to store the set Y to support select in O(1) time. For example,

the values of Y can be stored in an sorted array of n log n bits. The more advanced

methods includes Elias-Fano representation [29, 30] which uses m log(n/m) +O(m) bits.

For the pred operation, Grossi et al. [53] showed that a data structure for this

operation can be implemented using the select operation with a small space overhead.

Lemma 3.3. (Grossi et al. [53]) Given an data structure that can support select(Y, i)

in S(n) time, there exists a representation that uses additional O(m log logn) bits and

supports pred(Y, x) in O(S(n) logm/ log log n) time.

The value of this result is the set Y does not need to be explicitly stored to support

predecessor query. Since pred(Y, x) and rank(Y, x) are closely related, the structure can

be simply extended to add the rank operation.

Corollary 3.4. Given an data structure that can support select(Y, i) in S(n) time, there

exists a representation that uses additional O(m log logn) bits and supports rank(Y, x)

in O(S(n) logm/ log log n) time.

Proof. Although the data structure in [53] can be directly changed to support rank(Y, x)

operation, we use it as a black box. Given a predecessor data structure for Y , we use a

monotone minimal perfect hashing [12] which costs an extra O(m log logn) bits to map

each element of Y to its rank with constant time lookup.

34

In later sections, we use a variation of the rank operation of predecessor search called

successor rank(Y, x). It returns the rank of the smallest number that is larger than or

equals to x. This operations can be easily implemented using the traditional rank and

select operation.

3.3 Multi-version rank and select problem

Given a sequence S[1..n] over an alphabet Σ and i ≤ n+ 1, we define two edit operations

insert and delete as follows: (i) insert(S, c, i) returns a string S′ such that S′ =

S[1..i − 1]cS[i..n] where c is a character in Σ; (ii) delete(S, i) returns S′ such that

S′ = S[1..i− 1]S[i+ 1..n]. Note that another common edit operation called replace which

changes one character of a sequence by another character can be simulated by one delete

and one insert operation.

Consider a set S of m sequences {S1, S2, . . . Sm}, these sequences are called multi-

version sequences if, for i = 1, . . . ,m− 1, the sequence Si+1 can be obtained from the

sequence Si by either an insertion or a deletion operation edi. Multi-version rank and

select data structure supports two queries rank(Si, c, j) and select(Si, c, k) for all Si ∈ S.

Query rank(Si, c, j) counts the number of occurrences of character c in the substring

Si[1..j]. Query select(Si, c, k) returns the position of the k-th occurrence of character c

in Si. Our result is summarized as follows:

Let S be a sequence that equals S1 concatenates with all the inserted characters

from the editing operations. Let n be the length of S1, and m be the number of edit

operations; and σ be the size of the alphabet. Let w = Ω(log n) be the word size of the

machine.

Theorem 3.1. There exists a multi-version rank and select data structures that uses

|S|Hk(S) + 2m log(m+ n) + o(|S| log σ +m log(m+ n)) bits and answers the queries in

O(log log σ
logw + logm/ log logm) time.

From the definition, one straightforward scheme to represent the sequences is to store

S explicitly. In this way, queries rank and select can be supported efficiently. However,

this representation wastes a lot of space. For example, if the length of the sequence S1 is

n, this scheme requires about Ω(n×m log |Σ|) bits. One space economical scheme is to

store S1 and all editing operations. However, if the edit operations are stored in a trivial

35

𝒊 𝑆𝑖 Edit op.

1 ab insert(1, b)

2 bab insert(4, b)

3 babb delete(1)

4 abb insert(3, c)

5 abcb delete(4)

6 abc delete(3)

7 ab

1 2 3 4 5

1 a b
2 b a b
3 b a b b
4 a b b
5 a b c b
6 a b c
7 a b

𝐴 1 2 3 4 5

1 +1 +1
2 +1
3 +1
4 -1
5 +1
6 -1
7 -1

-1 -1

1 2 3 4 5

1 +1 +1
2 +1
3 +1
4 -1
5 +1
6 -1
7 -1

-1 -1

𝑆 b a b c b

𝑃 0 1 4 5

𝑅𝑎 𝑅𝑐 𝑅𝑏

𝐵 𝑅

Figure 3.1: (a) Sequences and edit operations (b) Alignment (c) Balance matrices

form like insert(i, j, c) and delete(i, j). It is hard to answer the query efficiently.

In our approach, the data is store in an intermediate form called alignment. The next

sub-section defines the alignment and the transformation from the input of sequences

and edit operations into the alignment form. The rest of the section describes the data

structure and the query algorithms based on the alignment.

3.3.1 Alignment

Consider an alphabet Σ and a space character − which does not appear in Σ. Given a

set of multi-version sequences S = {S1, . . . , Sm} over the alphabet Σ, an alignment of

these sequences is a matrix A that has m rows, and contains characters in Σ ∪ {−}. The

alignment A also needs to satisfy the following conditions: (1) Si equals row i of A after

removing spaces. (2) each column of the matrix A has exactly one type of non-space

characters (3) the non-space characters are consecutive in each column. (See Fig. 3.1 for

an example.)

From the definition, an alignment can be represented as a set of columns {(cj , sj , ej)}

where cj is the non-space character in column j, sj and ej are, respectively, the starting

and ending rows of character ci in the alignment. In the alignment, we call columns that

does not have space as trivial columns. An alignment for multi-version sequences S in

the column representation can be found as following:

Lemma 3.2. Consider a set of multi-version sequences S = {S1, S2, . . . Sm} with the edit

operations {edi}. Let n be |S1|. Let mi and md be the number of insertions and deletions

respectively (i.e. m = mi + md). There exists an alignment A for S that contains m

rows and n+mi columns. Furthermore, the matrix A contains between n−md and n

36

trivial columns. We can find the alignment A for S in O(n+m log(m+ n)) time.

Proof. The algorithm will incrementally build the alignment Ak of {S1, . . . , Sk} for

k = 1, . . . ,m. We represent Ak as follows. Suppose Ak has n′ columns and the i-th

column is represented as (ci, si, ei) where si is the insertion time and ei is the deletion

time. Note that, in the implementation, we set ei =∞ if it has not deleted. We represents

Ai as a modified B-tree with the i-th leaf equals (ci, si, ei). Furthermore, for each internal

node u, it maintains two sets of keys: (1) the number of leaves of every subtrees attached

to u, (2) the size of the set {(ci, si, ei) ∈ S′ | ei =∞} for every subtree S′ attached to u.

Given the two sets of keys per internal node, we can find the leaf for the i-th column of

Ak and for the column represents Sk[i] in O(log n′) time. In addition, insertion into the

B-tree also take O(log n′) time.

Initially, A1 is represented as a B-tree where the i-th leaf equals (S1[i], 1,∞) for

i = 1, . . . , |S1|. It can be build in O(|S1|) = O(n) time.

Then, we incrementally construct Ak from Ak−1 for k = 2, . . . ,m. There are two

cases depending whether it is insertion or deletion.

Case 1: edk is an insertion of a character c at position j. We first identify the leaf x

in the B-tree for Ak−1 that represents Sk−1[j]; then, we insert (c, k,∞) just before the

leaf x.

Case 2: edk is a deletion of Sk−1[j]. We first identify the leaf x = (cj , sj , ej) in the

B-tree for Ak that represents Sk−1[j]; then, we replace x by (cj , sj , k).

For both cases, it takes O(log n′) time.

Alignment representation

Storing an alignment of multi-version sequences S = {S1, . . . , Sm} in the column repre-

sentation of {(ci, si, ei)} takes 2N logm+N log σ bits where N is the number of columns

in the alignment, m is the number of changes and σ is the size of the alphabet. However,

supporting query in the plain column representation is not efficient. Instead, we represent

an alignment in the following form.

Given an alignment A[1..m, 1..N] which is represented by a set of columns {(cj , sj , ej)},

let S be the concatenation of all characters cj . Let B[1..m+ 1, 1..N] be a matrix such

that B[sj , j] is set to 1 and B[ej + 1, j] is set to -1, the other values of B are zero. (See

Fig. 3.1) Storing the alignment A is equivalent to storing the sequence S and matrix B.

37

We are interested in two operation in B: operation sum(B, i, j) returns the value of∑i
i′=1

∑j
j′=1B[i′, j′]; operation select sum(B, i, k) finds the smallest value j such that

sum(B, i, j) ≥ k. The relation between the alignment A and the matrix B is shown in

the following lemma:

Lemma 3.3. The operation sum(B, i, j) returns the number of non-space characters in

the prefix j of row i in A (i.e. A[i, 1..j]). The operations select sum(B, i, k) finds the

column of the k-th non-space character in row i of the alignment A.

Proof. For the first property, we proof it by induction on each column. Assume the

property holds for A[i, 1..j − 1]. We have sum(B, i, j) = sum(B, i, j − 1) +
∑i

i′=1B[i′, j].

Consider only column j, if A[i, j] is a non-space character, then sj ≤ i and ej ≤ i. By

the definition, we have B[sj , j] = 1, therefore
∑i

i′=1B[i′, j] = 1. If A[i, j] is a space

character, we have either sj ≤ ej < i or i < si ≤ ej . In both cases,
∑i

i′=1B[i′, j] = 0.

Therefore, sum(B, i, j) = sum(B, i, j − 1) + 1 if A[i, j] is non-space, and sum(B, i, j) =

sum(B, i, j − 1), otherwise. That concludes the induction.

The second property follows directly from the first property and the definition of

select sum. Let j = sum(B, i, k). By the definition, we have sum(B, i, j) = k and A[i, j]

is a non-space character.

Matrix B is a sparse matrix, therefore, it can be stored succinctly. It satisfies the

following properties: (1) every row except the first and the last row has only one non-zero

number, (2) each column has two non-zero numbers where number 1 is placed before

number -1. The columns of B that correspond to trivial columns of A are also called

trivial. (i.e. these columns start with 1 and end with -1.) We call these type of matrices

and its generalized form (defined later) as balance matrix. Section 3.4 details our strategy

to store balance matrix and to support queries sum and sum and select sum efficiently.

The result is summarized as follows:

Theorem 3.4. Consider a matrix B that satisfies the two conditions above, has n

trivial columns and m other columns, there exists a data structure uses m log(m+ n) +

o(m log(m + n) + n + m) bits, supports the queries sum and select sum on B using

O(logm/ log logm) time.

Proof. See Section 3.4.

38

3.3.2 Data structure for multi-version rank and select

Using the alignment representation in the previous section. We can construct data

structure for multi-version rank and select as follows:

Consider the set of multi-version sequences S, let matrix B and sequence S be the

representation of the alignment of S. Let P [0..σ] be an array such that P [0] = 0 and P [i]

is the number of characters in S which is smaller than or equal to c for any character

c ∈ Σ. For each character c ∈ Σ, let Rc be a matrix such that Rc is obtained from B by

removing all columns j such that S[j] 6= c. Let R be the concatenation of the columns of

Rc in alphabetical order of character c. (i.e. columns P [c− 1] + 1 to P [c] of R equals

Rc.) Note that, R can also be view as a column permutation of B. Therefore, R has the

same properties as B, and both the operation sum and select sum are applicable to R.

(See an example in Fig. 3.1)

The data structure for multi-version sequence rank and select problem consists of:

• General static rank and select data structure for S, using |S|Hk(S) + o(n log σ)

bits.

• Prefix sum data structure for array P , using σ log |S| bits which is o(|S|H0(S))

bits.

• Data structures for matrices B and R to support sum(A), select sum(A), sum(R)

and select sum(R) (detailed in Section 3.4). These data structure uses 2m log(m+

n) + o(m log(m+ n)) bits.

Summing up the space for all components of the data structure, we can get the space

claim in Theorem 3.1. The next subsection shows how to implement query rank(Si, i, j)

and select(Si, i, k) using constant number of operations on S, P , R and A. Since the

operations in R and A requires O(logm/ log logm) time (detailed Section 3.4). The

operations on S requires O(log log σ
log logn) time (see Section 3.2). The running time claim

in Theorem 3.1 follows.

3.3.3 Query algorithms

Note that in the data structure specification, we store only R, although, the following

proofs only uses the concept Rc. Because storing the concatenation of Rc uses less space

39

than storing multiple separate data structure Rc for each character c. (e.g. save space

for pointers, save space for vertical coordinate scaling). The following lemma shows how

to simulate operations on Rc using matrix R and array P .

Lemma 3.5. We can simulate operations on Rc by using R and P as follows:

sum(Rc, i, j) = sum(R, i, j + P [c− 1])− sum(R, i, P [c− 1])

select sum(Rc, i, k) = select sum(R, i, k + select sum(R, i, P [c− 1]))− P [c− 1]

Proof. Since Rc is concatenated in alphabetical order, therefore, the first column of Rc is

the (P [c− 1] + 1) column inside R. The j-th column of Rc is (P [c− 1] + j) column in R.

The number of non-space characters of row i in alignment A from column P [c− 1] + 1

to column P [c − 1] + j equals the RHS of the first equation. Since these columns are

mapped to the columns 1 to j of Rc, we have the first equation holds.

For the second equation, let k′ be the number of non-space characters of row R[i]

from column 1 to column P [c− 1]. The k-th non-space character of Rc[i] is the k + k′

non-space character of R. Thus, we can use select cut on R to find the k-th non-space

character on Rc[i]. However, we need to map back the result to Rc. Thus, we arrive at

the second equation.

Recall that, the operation rank(Si, c, j) counts the number of character c in Si[1..j].

Our computation of rank(Si, c, j) is based on the transformation from sequence Si to

the row i of the alignment A, and then to matrix Rc. Intuitively, it is easier to do the

rank counting in matrix Rc, since Rc contains only columns of character c. In this

approach, the problem becomes how to keep track of the parameter of position j during

the transformation. Precisely, the operation rank(Si, c, j) can be computed as follows:

Lemma 3.6. For any i = 1..m, j = 1..|Si| and c ∈ Σ:

rank(Si, c, j) = sum(Rc, i, rank(S, c, select sum(B, i, j))) (3.1)

Proof. Denote Ai as the row i of alignment A. We break down the equation into two

40

parts:

rank(Si, c, j) = rank(Ai, c, select sum(B, i, j))

rank(Ai, c, j) = sum(Rc, i, rank(S, c, j))

For the first equation, Si equalsAi after removing all spaces. Let k = select sum(B, i, j).

By definition, the k-th non-space character in Ai is the j-th character in Si. Hence,

rank(Si, c, j) = rank(Ai, c, k). The first equation follows.

For the second equation, We also have Rc is B after removing all the columns that

do not have character c. Let k = rank(S, c, j). By definition, the k-th column in Rc is

mapped to the j-th column of B. Moreover, since Rc only corresponds to non-space

character c, counting character c in Rc[i, 1..k] can be done by sum(Rc, i, k). Thus,

rank(Ai, c, j) = sum(Rc, i, k). The second equation follows. Combine the two equations

we get the lemma.

Recall that query select(Si, c, k) returns the position of the k-th occurrence of charac-

ter c in Si. Intuitively, the computational process of select operation is reversed compared

that of rank (in Eq. 3.1). We first find the column of the k-th non-space character in

matrix Rc, trace back the position of that column in matrix A, and then trace back the

position in Si. The formula to compute select is:

Lemma 3.7. For any i = 1..m, and c ∈ Σ:

select(Si, c, k) = sum(B, i, select(S, c, select sum(Rc, i, k)))

Proof. We have the following observations:

1. The position of the k-th occurrence of c in Si is mapped to column j of Rc where

j = select sum(Rc, i, k).

2. The j column in Rc is column select(S, c, j) in alignment A.

3. The j′ column in alignment A is position sum(B, i, j′) in Si.

For the first observation, since in the alignment step only space characters are inserted

to get A, the k-th occurrences of c in Si is still the k-th occurrences of c in Ai[i]. Then,

Rc is obtained by isolating all c column. The k-th occurrences of c in Si become the

41

k-th occurrence of c in Rc. Since Rc only contains c column, the column can be found

by operation select sum(Rc, i, k).

For the second observation, since the columns in Rc keep the same relative order as

those in A, the j-th column in Rc is the j-th column that has character c in A. Thus, it

is column select(S, c, j) in alignment A.

For the third observation, since Ai removing space becomes Si, and by the definition

of sum, the formula to convert is sum(B, i, j′).

3.4 Data structure for balance matrix

This section develops data structure to support operations sum and select sum on

the balance matrices defined in the previous section. Recall that, they are matrices

of {−1, 0, 1} where (1) every row except the first and the last row has one non-zero

number, (2) each column has two non-zero numbers in which number 1 is placed before

number -1. The columns that start with 1 and end with -1 are call trivial columns.

Operation sum(B, i, j) returns
∑i

i′=1

∑j
j′=1B[i′, j′]. Operation select sum(B, i, k) finds

the smallest value j such that sum(B, i, j) ≥ k.

The data structure for these matrices and select sum operation is equivalent to the

k-th cut line shooting problem which was considered by Overmars [90]. In the shooting

problem, given a set of vertical lines, the queries is to find the k-th cut between the

lines and a horizontal ray shot from some point from the left. The previous result uses

O(N log2N) bits and requires O(logN) time for query where N is the total number of

columns.

Compact matrix representation

To reduce the space and query time when there are many trivial columns, we transform

the original balance matrix into a compact form. Given a balance matrix B with the

properties above, create a matrix C such that consecutive trivial columns of B are merged

and represented by their sum; and other columns of B are kept (See Fig. 3.2(c) for the

original matrix and Fig 3.2(d) for the compact form.)

The reduction from an original balance matrix to its compact form can be summarized

in the following lemma.

42

1 2 3 4 5

1 a b
2 b a b
3 b a b b
4 a b b
5 a b c b
6 a b c
7 a b

𝐴

b a b c b

7

6

5

4

3

2

1
1 2 3 4 5

1 +1 +1
2 +1
3 +1
4 -1
5 +1
6 -1
7 -1
8 -1 -1

1 2 3 4

1 +2
2 +1
3 +1
4 -1
5 +1
6 -1
7 -1
8 -2

𝑉 1 0 1 1 1

𝐵 𝐶

Figure 3.2: (a) Alignment (b) Geometrical form (c) Balance matrix (d) Compact balance
matrix

Lemma 3.1. Given an original balance matrix B of size m× (n+m) where n is the

number of trivial columns. It can be compacted into a matrix C with of size of size m×cm

where 1/2 ≤ c ≤ 2. The operations sum and select sum on the original matrix B can

be simulated by the same operations on C using additional m log((n+m)/m) + o(n+m)

bits.

Proof. Given a balance matrix B, we use a bit vector V to mark the consecutive trivial

columns in M . Set V [j] to 0 if column j and column j + 1 of B are a trivial columns.

Let r = rank(V, 1, j), we have sum(B, i, j) = sum(C, i, r) + j − select(V, 1, r)

Let j = select sum(C, i, k), select sum(B, i, k) = select(V, 1, j)+k−sum(C, i, j)

Note that, in a balance matrix, we call the submatrix consists of the rows except the

first and the last row as the body of the matrix. Since the properties of the first row and

the body of a balance matrix are quite different, the body and the first row are usually

stored in separated components. However, the operations are still defined in the whole

matrix.

The next sub-section gives more details on storing a balance matrix with m rows and

the sum of the first row is n in m log(m+ n) + o(m log(m+ n) + n+m) bits, while two

operations can be supported in O(logm/ log logm) time.

3.4.1 Data structure for balance matrix

In this subsection, we discuss the implementation of operations sum and select sum on

a compact balance matrix C. Our approach based on two observations. First, when

the width of the matrix is small enough, the queries can be answered in constant time.

Second, large balance matrix can be hierarchically decomposed into small width matrices

43

to answer the queries. This subsection focuses on the decomposition of the large matrix

into small matrices. The results for small width matrix is summarized next, but details

are presented in Section 3.5.

Narrow balance matrix

Consider a matrix T , let m be the height of the matrix. T is called narrow matrix if and

only if the width of the matrix is less than logεm where ε is a constant less than 1/2. Given

a narrow balance matrix T , beside the two operations sum(T, i, j) and select sum(T, i, k)

are defined earilier, we also need an operation called count nzero(T, i, j) which counts

the number of non-zero numbers in T [1..i, 1...j].

Given access to a narrow balance matrix in certain format, we build auxiliary data

structures that supports the queries sum, select sum and count nzero in constant time

using only the small order number of bits of the original matrix. The format requirement

for each part of the balance matrix are:

The body of matrix T which consists of rows 2 to m− 1 is represented by an array

Y [1..m− 2] where each entry Y [r] = T [r + 1, c]× c if T [r + 1, c] is the only non-empty

entry in row r + 1. We call this representation as row position format. Note that Y [r]

is in the range [− logεm.. logεm] and hence, each element Y [r] takes only d2ε log logme

bits. Each chunk of length ρ of Y (i.e. Y [r..r + ρ− 1]) can be accessed in constant time

where ρ = O(logm/ log logm).

Let F be the first row of the matrix i.e. F = T [1, 1.. logεm]. Let P be the prefix sum

array of F i.e. P [i] =
∑i

i′=1 F [i′].

Lemma 3.2. Given access to array Y by chunk, and access to the prefix sum array P

in constant time, there is an auxiliary data structure to support the operations sum,

select sum and count nzero on the a balance matrix T in constant time that uses extra

o(m log logm) +O(logεm log log n) bits.

For a set of same size balance matrices, we have:

Corollary 3.3. Given q balance matrix balance matrices T1, . . . , Tq with the same size

[1..`] × [1.. logεm] and m = q`. Let n be the sum of the values in the first rows of

the matrices. Given access to the matrix bodies Yi and the prefix sum arrays Pi of

each matrix Ti, there exists a data structure that supports the queries in each matrix

44

1 2 3 4

1 +2

2 +1

3 +1

4 -1

5 +1

6 -1

7 -1

8 -2

+2

+1

+1

-1

+1

-1

-1

-2

1 2

+2

+1

-1

-2

3 4

+1

+1

-1

-1

+2

+1

-1

-2

+1

+1

-1

-1

𝐶 = 𝐷1

𝐷2 𝐷3
𝑆1

Figure 3.3: Example of the construction steps for p = 2. The root node is 1 and two
children nodes are 2 and 3. Matrices S1, D2, and D3 are constructed from D1 as indicated
by the arrows.

sum(Tt, i, j), select sum(Tt, i, k) and count nzero(Tt, i, j) in constant time; and uses

o(m log logm) +O(q logεm log logn) bits.

Data structure construction

Next, the decomposition of a large balance matrix to narrow balance matrices while

supporting sum and select sum is as follows.

Consider a compact balance matrix C of size m× cm where c is some constant and

1 ≤ c ≤ 2, let p = logεm for some constant ε < 1/2. The skeleton of our data structure

is a complete p-ary tree T that contains dcm/pe leaves. Intuitively, each node of the tree

hierarchically handles a submatrix of C. Each submatrix is vertically partitioned into p

smaller roughly equal width sub-matrices, each is managed by one of its children nodes.

For each node u of the tree, we store a narrow balance matrix called Su. Each column of

Su store a summary information for each child of u. (See Fig. 3.3)

To define Su precisely, we needs two intermediate concepts. First, consider a node u

in T which is the j-th node from left to right at depth d of the tree, the range of node

u is [su..eu] where su = (j − 1)ph−d+1 + 1, eu = min(jph−d+1, cm) and h is the height

of the tree. Conceptually, node u manages the submatrix consists of columns from su

to eu (i.e. C[1..m, su..eu]). Second, let’s call a row in a matrix that has zero values as

empty row. Denote Du as a balance matrix obtained by removing empty rows from

C[1..m, su..eu] except for the first and the last row.

45

The definition of Su is as follows. For each leave node l, matrix Sl equals Dl. For

each internal node u, the width of matrix Su is the number of children of node u (which

is usually p). Let node v be the j-th child of node u. Entry Su[i, j] stores the sum of the

i-row of Dv.

Space analysis

We store the set of narrow balance matrices {Su} in three separate components: (1) The

first rows of the matrices {Su} (2) the bodies of the matrices (the rows from 2 to m− 1)

and (3) the auxiliary data structures for the three operations.

For each matrix Su, the body matrices are stored explicitly. The size of matrix C

is m × (cm) where 1/2 ≤ c ≤ 2. Since the branch out of the tree is p, the height is

O(logm/ log p) which equals O(logm/ log logm). Level d of the tree has about qi = pd

matrices. The sum of the heights of these matrices in each level is m. Therefore, the

total size for storing the body matrices of Su is m logm bits.

For the first rows, we have the following property: Su[1, j] =
∑ev

j′=sv
C[1, j′] where v

is the j-th child of node u. Therefore, given the first row of C, we can represent all the

first rows of Su implicitly by storing only the first row of C. Therefore, size for storing

the first rows is m log((n+m)/m) + o(n+m).

According to Corollary 3.3, all the auxiliary data structures at level d, stored in

o(m log logm) + O(pd logεm log log n) bits. Since there are logm/ log p levels. The

total space for all levels is o(m logm) +O(m log log n) bits. Summing up all the space

requirement, we have m log(n+m) + o(n+m+m log(n+m)) bits.

Query algorithms

Lemma 3.4 shows a recursive equation for sum(Du, i, j). Since at the root of the tree T ,

we have Du = C. The operation sum(C, i, j) equals sum(Du, i, j), thus sum(C, i, j) can

can be compute recursively using Su.

Intuitively, the computation process is carried as follows. Recall that, the matrix

handled by each node is divided into smaller sub-matrices; each is managed by one of

child node. Any summation from the start to a submatrix division boundary can be

accessed immediately through Su. The summation from a division boundary to another

column can be computed by recursively call to a child node. (See an illustration in

46

𝑖

𝑗

𝑗′

𝑖′

𝐷𝑢

𝐷𝑣1 𝐷𝑣2

𝑠𝑢𝑚(𝑆𝑢, 𝑖, 𝑟 − 1)

𝐷𝑣3

𝐷𝑣[1. . 𝑖
′, 1. . 𝑗′]

𝑟 = 3

Figure 3.4: Illustration for sum query. The sum for the region [1..i, 1..j] in Du equals
the sums in the three regions in Dv1 , Dv2 and Dv3 respectively.

Fig. 3.4)

Lemma 3.4. For any node u, we have the following recursive relation:

sum(Du, i, j) =

sum(Su, i, j) if u is a leaf

sum(Su, i, r − 1) + sum(Dv, i
′, j′) otherwise

where w is the width of Dchild(u,1), r = bj/wc, j′ = j− (r− 1)w, v is r-th child of u, and

i′ = count nzero(Su, i, r)− count nzero(Su, i, r − 1).

Proof. The basis of the equation is correct, since at the leaf, there is no more matrix

division. There is no zero row in Du, therefore, Du = Su.

Assume the equation is correct up nodes in level d+ 1 of the tree, we show that it is

correct in node u in level d. The widths of the submatrices of the children u except that of

the last child are all equal. That is w in the equation. Therefore, the submatrix contains

column j belongs to the bj/wc-th children of u. Let v denote that child. The column j in

Du is j − (r − 1)w in Dv. Since Dv is obtained by removing zero-rows in the submatrix

of C. Row i in Du becomes row i′ in Dv where i′ is the number of non-zero elements

in Su[1..i, bj/wc]. Thus, sum of Dv[1..i
′, 1..j′] matches that of Du[1..i, (r − 1)w + 1..j].

Since the recursive equation holds for level l+1, Du[1..i, (r−1)w+1..j] can be computed

by the recursive term in the equation.

By definition of Su, sum(Su, i, r − 1) equals sum of Du[1..i, 1..(r − 1)w]. Therefore,

the sum of the two terms equals sum of Du[1..i, 1..j] for node u.

The query algorithm for select sum(Du, i, k) is shown in Lemma 3.5. This algorithm

shares a similar intuition to that in Lemma 3.4. It finds the submatrix division boundary

47

that approximates value k using matrix Su, then recursive into the child submatrix to

find exact column.

Lemma 3.5. Let r = select sum(Su, i, k), we have

select sum(Du, i, k) =

r if u is a leaf

w(r − 1) + select sum(Dv, i
′, k − sum(Su, i, r − 1)) otherwise

where w is the width of Cchild(u,1), v is r-th child of u, and i′ = count nzero(Su, i, r)−

count nzero(Su, i, r − 1).

Proof. The basis of the equation is similar to that of Lemma 3.4, since Du = Su for all

leaves u.

Assume the equation holds up to level d + 1. Consider node u in level d. We can

find the child submatrix r whose sum in row i is greater than or equals to k, using

select sum(Su, i, k). Let k′ be the sum of Du[1..i, 1..w(r − 1)]. Since the k-th sum lie

within the r-th submatrix, it is equals the start of the first column of Dv which is w(r−1)

plus the index of (k − k′) sum in Dv. Since the equation holds for level d+ 1, the index

of (k − k′) in Dv can be found by select sum(Dv, i
′, k − k′). Therefore, the inductive

equation holds.

3.5 Narrow balance matrix

In this section, we present the implementations of the operations sum, select sum

and count nzero in narrow matrices which defined in Section 3.4.1. First, recall some

definitions. A narrow balance matrix T [1..m, 1.. logεm] consists of two parts: the matrix

body and the first/last row. The matrix body is the sub-matrix T [2..m− 1, 1.. logεm].

Each row of the matrix body has only one non-zero number; and this number is either

1 or -1. The first row of T can contain any non-negative numbers. The sum of these

numbers in this row is n. The last row of T mirrors the values of the first row with

negative values.

In this section, we show that given access to a narrow balance matrix in row posi-

tion format, auxiliary data structures that supports the queries sum, select sum and

count nzero in constant time can be built using only the small order number of bits of

48

the original matrix.

Recal that, the row position format is specified as: The body of matrix T is represented

by an array Y [1..m− 2] where each entry Y [r] = T [r + 1, c]× c if T [r + 1, c] is the only

non-empty entry in row r + 1. Each chunk of length ρ of Y (i.e. Y [r..r + ρ− 1]) can be

accessed in constant time where ρ = O(logm/ log logm). Let F be the first row of the

matrix i.e. F = T [1, 1.. logεm]. Let P be the prefix sum array of F i.e. P [i] =
∑i

i′=1 F [i′].

Our data structure is divided into two cases based on the relation between m the

height of the matrix, and n the sum of the values in the first row. The first case is when

n = O(ma), the second case is n = Ω(ma). In the first case, n and m are in the same

order. The values that bounded by n or m can be both stored in O(logm) = O(log n)

bits. The data structure does not need for distinction between the first row and other

rows. Section 3.5.2 solves the first case using word RAM operations. In the second case,

n is significant larger than m. We use some additional structures to to reduce this case

to the first case. The details for this case is presented in Section 3.5.3.

3.5.1 Sub-word operations in word RAM machine

Word RAM machine is a simplified model of our modern computer. In this model,

computer has a memory of size n words. Each word contains w bits and w = Ω(log n).

Any word can be accessed in constant time; and arithmetic operations (e.g. plus, minus,

multiple) between two words also take constant time. Using the power of RAM model,

operations whose input and output are in O(w) bits can be computed in constant time

using pre-computed tables or arithmetic operations.

In our work, we requires a few constant time operations for small input and output.

The first group of operations handles small arrays. Consider two array A and B of length

logεm that contain integers smaller than O(log logm) bits.

• Operation madd array(A,B) returns a array C of length logεm such that C[i] =

A[i] +B[i].

• Operation msuccessor rank(A, v) returns the minimum index i such that A[i] ≥ v

where v < log2 n.

The second group of operations compute sum and count nzero on some sub-matrix

of a narrow balance matrix. Consider a narrow balance matrix T [1..m, 1.. logεm]. Let

ρ = logm/ log4 logm. Let T ′ = T [r..r + ρ − 1, 1.. logε] for some r > 1. Let Y ′ be the

49

row position format for submatrix T ′. Since Y ′ only takes O(logm/ log3 logm) bits, we

defines the following operations:

• Operation mcount(Y ′, i, k) counts the non-zero numbers in sub-matrix T ′[1..i, 1..k].

• Operation msum(Y ′, i) returns an array E[1.. logεm] such that E[k] is sum(T ′, i, k).

For convenience, we also define variant of this operation called msum(Y ′, i, k) which

returns only sum(T ′, i, k).

Lemma 3.1. All the above operations can be computed in O(1) time given some lookup

tables of size o(m) bits.

Proof. The first operation madd(A,B) can be implemented only arithmetic operations.

Since the bit length of each A and B is O(logεm log logm), which is asymptotically

smaller than logm ≤ w. Therefore, the whole array can be stored in a constant number

of words. Each element is stored in two’s complement binary format with two bits guard

for overflow. Operation add then can be perform by a normal integer addition operation.

The second operation msuccessor rank(A, v) can also be implemented without table

look-up, but it requires multiplication and some bitwise operations [45, 106]. If these

operations are not available, we can always use table look-up of o(m) bits.

Consider operation mcount(Y ′, i, k), since sub-array Y ′ takes O(logm/ log3 logm);

and each index takes O(log logm) bits. The input takes O(logm/ log logm) bits. There-

fore, the table of this operation takes O(2logm/ log logm log logm) = o(m) bits. Similarly,

the table for msum takes O(2logm/ log2 logm logm) = o(m) bits.

3.5.2 Balance matrix for case 1

This subsection shows how to implement the operations sum, select sum and count nzero

in narrow balance matrix T when n the sum of the first row is the same order as the

height of the matrix.

We need to conceptually divide the matrix T [1..m, 1.. logεm] into m
log2m

buckets; each

is a submatrix of size log2m× logεm. Let τ = log2m denote the height of each bucket.

Bucket i contains rows (i− 1)τ + 1 to iτ of T .

Each bucket is further subdivided into logm log4 logm sub-buckets, each is a sub-

matrix of size (logm/ log4 logm) × logεm. Denote ρ = logm/ log4 logm as the height

of each sub-bucket. Let ri,j denote the start row of sub-bucket j in T . i.e. ri,j =

50

(i− 1)τ + (j− 1)ρ+ 1 Fig. 3.5 demonstrates how the matrix T is partitioned into buckets

and sub-buckets.

𝑚

log𝜖 𝑚

log2𝑚 = 𝜏

…
 …

 …
.

…
 …

log𝑚

log4 log𝑚
= 𝜌

row 𝑟𝑖,𝑗

Figure 3.5: Bucket illustration

Auxiliary structures for sum and count nzero

Our data structure stores some arrays for each bucket and each sub-bucket. For each

bucket i = 1, · · · ,m/τ , we store two arrays Pi[1.. logεm] and Qi[1.. logεm] where Pi[k]

equals sum(T, ri,1 − 1, k) and Qi[k] equals the number of non-zero entries in T [1..ri,1 −

1, 1..k] for each k = 1.. logεm.

For each sub-bucket j of the bucket i, we store two arrays Rij [1.. logεm] and

Sij [1.. logεm] where Rij [k] equals sum(T, ri,j − 1, k) − Pi[k]. Sij [k] equals the differ-

ence between the number of non-zero entries in T [1..ri,j − 1, 1..k] and Qi[k]. Note that

the row position representation of the sub-bucket j of the bucket i is Y [ri,j ..ri,j+1 − 1],

which takes O(ε logm) bits.

Now, we describe how to compute sum(T, i, k) and count nzero(T, i, k) for narrow

balance matrix T . Observe that, for any i,

i = (i1 − 1)τ + (i2 − 1)ρ+ i3 (3.2)

where i1 = d iτ e, i2 = d i mod τ
ρ e, i3 = i mod ρ.

Intuitively, i1 and i2 are the bucket and sub-bucket that row i is in; i3 is relative the

index of i inside the sub-bucket. Based on the data structure, the total sum in T [1..i−

i3, 1..k] is Pi1 [k]+Ri1,i2 [k]. The sum in T [i−i3+1..i, 1..k] equals msum(Y [ri1,i2 ..ri1,i2+1−

51

1], i3, k). Hence, we can compute sum(T, i, k) in O(1) time:

sum(T, i, j) = Pi1 [k] +Ri1,i2 [k] +msum(Y [ri1,i2 ..ri1,i2+1 − 1], i3, k) (3.3)

Similarly, we can show that count nzero(T, i, k) can be computed in O(1) time using

Qi and Sij and mcount.

Auxiliary structures for select sum

For each bucket i, we store an array Di[1.. logεm− 1] and predecessor data structure Fi

(Section 3.2). Recall that Pi[k] = sum(T, ri,1− 1, k). Fi is the predecessor data structure

of set of values of Pi[1.. logεm]. The array Di is such: Di[1] = min{Pi[1], 2τ}, and for

k > 1, Di[k] =
∑k

k′=1 min{Pi[k]− Pi[k − 1], 2τ}. Intuitively, Di is a scaled down version

of Pi. If all the values of Pi are less than 2τ , Di equals Pi. Note that, each value Di[k] is

less than τ logε n = log2+εm, therefore, the whole array Di is fitted in one word RAM.

To compute select sum(T, i, v), first, we also compute the relative bucket and sub-

bucket indexes i1, i2, i3 using Equation 3.2. Next, we have the following observation:

Lemma 3.2. Given a narrow balance matrix T , for any i > r and k > r, we have:

select sum(T, i− r, v − r) ≤ select sum(T, i, v) ≤ select sum(T, i− r, v + r)

Proof. From the definition of balance matrix, we have two properties of sum: (1)

sum(T, i, j) ≤ sum(T, i, j + 1), and(2) |sum(T ′, i, j)− sum(T ′, i− r, j)| ≤ r for any

positive integer r < i.

Let j1 = select sum(T, i − r, v − r) and j2 = select sum(T, i − r, v + r). By the

definition of select sum, we have sum(T, i− r, j1) ≥ v − r and sum(T, i− r, j2) ≥ v + r.

From the properties of sum, sum(T, i, j1) ≤ sum(T, i− r, j1) + r ≤ v. Similarly,we have

sum(T, i, j2) ≥ v. Therefore, sum(T, i, j1) ≤ v ≤ sum(T, i, j2). Since, j1 ≤ j2. Thus,

j1 ≤ select sum(T, i, v) ≤ j2. The lemma follows.

The lemma shows that the value of select sum(T, i, v) can be approximated by

searching in another row. We find the lower bound l for select sum(T, i, v) using the row

ri1,1−1 (i.e. the row before the start row of bucket i1). Thus, l equals select sum(T, ri1,1−

52

1, v − (i− ri,1)). By the structure definitions, the value of l can be computed by using

the predecessor data structure Fi1 . i.e. l = successor rank(Fi1 , v − i+ ri1,1).

Next, we need to compute two intermediate arrays E[1.. logεm] and C[1.. logεm] to

account for the sum changes from row ri1,1 to row i. First, E[k] = sum(T [ri1,i2 ..i], i3, k).

It is the changes in the sub-bucket i2 in bucket i1. Second, C[k] = Di1 [k]+Ri1,i2 [k]+E[k]

where Ri1,i2 was defined previously as the array keeps sums between the start of the

bucket and the start of the sub-bucket. Both arrays are computed using table look-up.

Note that, if Pi[k] < 2τ for all k, then C[k] = sum(T, i, k); a successor search for v in

C can return the values of select sum(T, i, v). To handle the case when there are some

Pi[k] > 2τ , we scale the value of v to its relative value in array C with the guide from

the lower bound position l. i.e. v′ = v − sum(T, i, l) + C[l].

The whole computational process is summarized in the next algorithm.

0 function select sum(T, i, v)

1 Compute the indexes i1, i2, i3 as in Equation 3.2

2 l = successor rank(Fi1 , v − i+ ri,1) /∗ L o w e r bound v a l u e o f t h e a n s w e r ∗/

3 E = msum(Y [ri1,i2 ..ri1,i2+1], i3)

4 C = madd array(Di1 , Ri1,i2 , E) /∗ The sum c h a n g e s f r o m row ri,1 t o row i ∗/

5 v′ = v − sum(T, i, l) + C[l]

6 return msuccessor rank(C, v′)

Listing 3.1: select sum in narrow matrix

Space analysis

The total space for the auxiliary structure is accounted as follows. The lookup tables for

operations msum, mcount, madd array and msuccessor rank, can be stored in o(m)

bits.

For each bucket, the auxiliary data structure are arrays Pi, Qi for sum/count nzero

and, Fi, Di for select sum. Each of these structure uses O(logεm × logm) bits. We

have total m/τ = m/ log2m buckets. Therefore, the total size of these structures is

O(m/ log1−εm) = o(m) bits.

For each sub-bucket, the auxiliary structures are Ri,j and Si,j . Each of these structures

uses O(logεm × log logm) bits. There are m log4 logm/ logm sub-buckets. The total

size of all the sub-buckets is O(m log5 logm/ log1−εm) = o(m) bits.

53

Thus, the additional space (without the original matrix) is o(m).

3.5.3 Data structure case 2

This subsection solves the case 2 of the data structure when the sum of the first row is

much larger than the height of the matrix. Given a balance matrix T [1..m, 1.. logεm],

let T ′ be the body of the matrix i.e. T ′ = T [2..m − 1, 1.. logεm]. Let F be the first

row of the matrix F = T [1, 1.. logεm]. We have matrix T can be represented by two

components (T ′, F).

Query sum in T can be simulated by sum queries in T ′ and F . i.e. sum(T, i, k) =

sum(T ′, i− 1, k) +
∑k

k′=1 F [k′]. We use the auxiliary data structure in the previous sub-

section for T ′, and a prefix sum data structure for F . Similarly, query count nzero(T, i, k)

can be supported using T ′ and F . Next, we show how to support query select sum.

Supporting query select sum

To reduce this case to the previous case for select sum, we store the following data

structures:

• Predecessor data structure P (Section 3.2) for the prefix sums of the row F . (i.e.

P stores the set {
∑k

k′=1 F [k′] | k = 1.. logεm}.)

• Auxiliary structures for narrow balance matrix data structure in case (1) for

balance matrix represented by (T ′, F ′) where R′[1.. logεm] is an array such that

F ′[k] = max(F [k],m).

The algorithm for case (2) is shown next. Conceptually, we divide columns of the

matrix T into groups of base on the values of F . Two consecutive columns k and k + 1

are in the same group if F [k] ≤ m. Let k = select sum(T, i, v) be the answer that

needed to be found. Based on Lemma 3.2, we can find the group that column k falls

in by searching in the first row (shown in Line 2 of the algorithm). The query, then, is

reduced to searching for k inside the group (shown the rest of the algorithm).

1 function s e l e c t sum(T, i, v)

2 g = successor rank(P, v)

3 v′ = v − sum(T, i, g) + sum((T ′, F ′), i, g)

4 return select sum((T ′, F ′), i, v′) /∗ r e d u c e d t o c a s e (1) ∗/

54

The size of the predecessor data structure for P is O(logεm log logn). The sizes of

the auxiliary structures for (T ′, R′) and G are both o(m log logm).

Storing a set of balance matrices

In Corollary 3.3, the inputs are q matrices with the same size [1..`]× [1.. logεm] where

m = q`. Our modification for this type of input is very simple.

Both the data structure for bucket and sub-bucket are arrays and data structures

that linearly scale with input matrix height. Therefore, we can concatenate these block

data structure together for multiple matrix input. The table lookup for the word RAM

operation can be shared between all the matrices since they have the same width.

3.6 Application on multi-version FM-index

A FM-index [36] is a very popular data structure for text indexing. The FM-index uses

as much space as the compressed text of the original sequence, and can search for the

occurrences of a pattern in linear time. The core of the implementation of a FM-index is

a rank and select data structure. Therefore, in this section, we apply the multi-version

rank and select data structure in Section 3.3 to have a multi-version FM-index data

structure.

To construct an FM-index, we need two concepts: suffix array and Burrow-Wheeler

sequence as follows. Consider any sequence S with a special terminating character

$ which is lexicographically smaller than all the other characters. The suffix array

SAS is the array of integers specifying the starting positions of all suffixes of S sorted

lexicographically. Formally, SAS [1..n] is an array of integers such that S[SAS [i]..n] is

lexicographically the i-th smallest suffix of S.

Let SAS be the suffix array of S. The Burrow-Wheeler (BW) sequence [17] of S is a

sequence which can be specified as follows:

BWS [i] =

S[SAS [i]− 1]] if SAS [i] 6= 1

S[n] if SAS [i] = 1

Let CS [x] be an array of integers such that CS [x] stores the total number of characters

in BWS which lexicographically less than character x.

55

A FM-index of S is a data structure that stores array CS [x] and the rank and select

data structure for BWS . According to [36], the time required for searching a pattern P

in S using the FM-index of S is O(|P |r) where r is the time to compute rank(BWS , x, i).

Consider a multi-version sequences S = {S1, . . . , Sm} where Si+1 is different with Si

by one edit operation, a multi-version FM-index is a set of FM-indexes for each sequence

Si for i = 1..m. In short, let BWi and Ci denote the Burrow-Wheeler sequence of Si and

the array CSi , respectively. The data structure for multi-version FM-index consists of:

• Multi-version rank and select data structure for sequences {BWi}.

• A simple data structure for the set of arrays {Ci}

Instead of storing the rank and select data structure for all sequences {BWi}, we

can first compute the minimum number of insertions and deletions which converts BWi

to BWi+1. Second, using multi-version rank and select in Section 3.3 to record all the

edit operations from BWi to BWi+1 for every i. Let’s call this data structure W . Third,

store an array Z[1..m] where Z[i] counts the number of edit operations from BW1 to

BWi. Thus, we have rank(BWi, c, j) = rank(WZ[i], c, j).

For the set of arrays {Ci}, we use the following data structure: Since BWSi is a

permutation of the characters of Si; and the difference between Si and Si+1 is one edit

operation, thus, the count of characters in Si and Si+1 differs by only one. Let σ be

the size of the alphabet. Construct a balance matrix Q[1..2(m+ 1), 1..σ] to record the

change in {Ci}. Row 1 of Q is exactly the same as row C1. Set Q[i + 1, x] to 1 if the

number of character x in BWi is one more than that in BWi+1. Set Q[i+ 1, x] to -1 if

the number of character x in BWi is one less than that in BWi+1. The upper half of Q

(i.e. Q[m+ 1..2m, 1..σ]) is set to mirror the lower half so that we have a balance matrix.

We have Ci[x] equals sum(Q, i, x) (See Section 3.4.1 for details on balance matrix).

To estimate the complexity of this multi-version FM-index data structure, we need

to count the number of edit operations between each pair of BWi+1 and BWi. This has

been studied in [72]:

Lemma 3.1. (Leonard et al. [72]) The average number of elements in BWi+1 reordered

compared to BWi is at most equal to Lavg, the average length of the longest common

prefix between S[SAS [i]..n] and S[SAS [i+ 1]..n] for i = 1..n− 1.

56

Although in the worse case Lavg can be in O(n), when string S is random generated

by a Markov model of order one, Fayolle and Ward [32] proved that Lavg is about

log n/H1(S) + c where c is a constant and H1(S) is the first order empirical entropy

of S. In addition, by experiments [72] suggested that Lavg is roughly log n in random

generated texts, natural-language texts, and biological sequences.

From here, we can summarize our result for multi-version FM-index as follows. Given

the multi-version sequences S, let S be a sequence that equals S1 concatenates with all

the inserted characters from the editing operations of S. Let n = |S|. Let z be the total

number of changes between BWi+1 and BWi for i = 1..m− 1.

Lemma 3.2. There exists a data structure for multi-version FM-index that uses |S|Hk(S)+

O(z log(z + n)) + o(|S| log σ) bits. The data structure can search for the occurrences of a

pattern P in O(|P | log z/ log log z) time. On the average case, z equals O(m log n), the

data structures uses |S|Hk(S) +O(m log2(m+ n)) + o(|S| log σ) bits.

Proof. From Theorem 3.1 the size of the multi-version rank and select is (nHk(S) +

2z(log z + log n))(1 + o(1)) + o(n log σ) bits. From Section 3.4.1, the data structure for

set of arrays {Ci} uses (σ log n+m log σ)(1 + o(1)) bits.

57

58

Chapter 4

RLZ index for similar sequences

4.1 Introduction

There is an increasing need for indexing methods that can store collections of similar

strings (or repetitive text) compactly while supporting fast pattern searching queries.

For example, in genomic applications, the sequencing of individual genomes is becoming

a feasible task. The “1000 Genomes Project” [1], aimed at characterizing common human

genetic variations, has already sequenced the partial genomes of a large number of persons

from various populations. Aligning a read from a sample to multiple human genomes

has been proven to be useful for identifying polymorphisms [101]. In the near future,

researchers will face the problem of storing those individual (and highly similar) genomic

sequences compactly and indexing them efficiently. As another example, Wikipedia

documents are modified and snapshots are taken every day to remember older versions

of the data. Typically, changes between versions are small. Hence, fast indexing methods

for compressed similar texts may allow people to search archived versions of Wikipedia

documents quickly. The above applications motivate the following general task:

The string set self-indexing problem: Given a set of strings S = {S1, . . . , St},

construct a data structure that can subsequently report all exact occurrences in S of any

query pattern without using S.

This paper is concerned with the case where the given strings are similar. Before

stating our new results, we survey some existing data compression methods and com-

pressed indexes that are suitable for sets of similar sequences in the next two subsections.

Throughout the paper, we use the terms “string” and “sequence” synonymously.

59

4.1.1 Similar text compression methods

To compress a single string S of length n, methods that are guaranteed to achieve the

empirical k-order entropy nHk(S) are often used. However, this entropy measurement

may not be a good bound for repetitive texts whose repeats are longer than k. For

example, the storage based on entropy bound of the text SS (where |S| � k) is 2nHk(S)

bits. On the other hand, one can easily encode the text in nHk(S) +O(log n) bits. Thus,

there are methods that achieve the empirical k-order entropy, yet perform poorly for

repetitive texts [103]. As a consequence, compression methods have been designed for

specific types of repetitive texts in biology. For example, GenCompress [20] compresses

a text considering approximate repeats. Christley et al. [21] and Kuruppu et al. [67]

compressed DNA sequences with respect to a reference sequence. BioCompress [55],

XM [18], and COMRAD [66] are other repetitive compressors designed specifically for

DNA. Alternative approaches include methods based on grammar compression (for

example, Re-pair [71] was one of the first effective grammar-based compression methods)

and LZ77 compression [112] for general repetitive texts. Cfact [93] and Offlines [4]

greedily replace duplicate text with shorter codes.

The compression methods above can store repetitive texts compactly, but do not

allow random access to the compressed text directly. Previous work has addressed this

issue. Kreft and Navarro [64] provided the first efficient random access operations for

the LZ77 method. Bille et al. [14] built additional data structures on top of an existing

grammar-based compression scheme to allow random access of any region with only

logarithmic extra time per query.

4.1.2 Compressed indexes for similar text

Although the above compression schemes can compress similar sequences, they do not

allow us to search for the occurrences of an arbitrary pattern quickly. Below, we survey

some specialized data structures for indexing repetitive texts. In a pioneering paper

of Mäkinen et al. [79], a repetitive text is defined as a collection of strings of total

length N , where the strings are assumed to be highly similar, each string length is

approximately n, and the strings share an alphabet of size σ. They employed run-

length encoding to reduce the redundancy of a suffix array structure. Their approach

shrinks the total index size greatly, but the space of the index is still proportional to

60

Base compression method Popular in Effective(∗) Search time(∗∗) Reference

LZ78 GIF image No linear [6, 38, 96]

BWT-transform bzip2 No linear [79]

LZ77 zip Yes quadratic [65]

Grammar based Yes quadratic [22, 46]

Restricted structure Yes quadratic [58]

RLZ Yes linear this result

Figure 4.1: Summary of the compressed indexing structures. (∗): Effective for similar
sequences. (∗∗): The search time is expressed in terms of the pattern length.

the number of strings. In another paper, Huang et al. [58] assumed that every string

contains at most m′ point mutations with respect to a reference string. They designed

a space-efficient data structure of size O(n log σ + m′ logm′) bits to encode all such

strings. Although the resulting data structure is small, their approach cannot index

certain other types of similar strings such as genome rearrangements, formed by swapping

substrings in genomic sequences, efficiently. (When only a few such rearrangements

have occurred, long substrings of the genomic sequences will be preserved; they just

occur in a different order.) Kreft and Navarro [65] built a self-index based on LZ77

compression. If the text of length N can be compressed using m LZ77 phrases, their

data structure is of size 2m logN + m logm + 5m log σ + O(m) + o(N) bits, but the

query time is O(`2h+ (`+ occ) logN), i.e., quadratic in the pattern length `, and also

dependent on h the maximal number of layers of overlapped phrases which is only

bounded by m. In another line of research, Claude and Navarro [22] proposed a self-index

for grammar-based compression methods. It uses O(r log r) + r logN bits, where r is

the number of rules generated by their grammar compression, and the resulting query

time is quadratic (O((`2 + h(`+ occ)) log r)). Using another technique for constructing

a grammar from the LZ77 phrasing, Gagie et al. [46] obtained a data structure of size

2r log r+O(m(log n+ logm log logm)) and query time O(`2 + (`+ occ) log logN). Some

results for LZ78 compression and FM-index were given in [6, 38, 96]. They have good

query time but require O(NHk) bit-space in the worst case. They may not be good

enough to index a repetitive text in practice [103] or in theory [98]. In summary, existing

indexes for a set of similar strings either require: (1) a lot of space, (2) the text to have

some special structure, or (3) quadratic query time (for a summary, see the table in

Fig. 4.1).

61

4.1.3 Our results

Our main contribution is a compressed static indexing data structure with two alternative

space-time trade-offs. The smaller alternative can store a set of strings S relatively to a

reference string R in asymptotically optimal space. The larger alternative improves the

query time at the expense of using more space. The results are summarized as follows:

Theorem 4.1. Given a reference string R of length n over an alphabet Σ of size

σ = O(loga n) for some constant a and a set of strings S = {S1, . . . , St} over Σ, let m

be the smallest possible number of substrings of R (a.k.a. factors) to represent S. All

exact occurrences of any query pattern P of length ` can be reported using either of the

following alternatives. Their complexity specifications are:

(a)
(
2 + 1

ε

)
nHk(R) + O(n) + O(m log n) bits and O(` logε n + occ · (logεσ n + logm

logn))

query time;

(b)
(
2 + 1

ε

)
nHk(R) +O(n) +O(m log n log log n) bits and O(` log log n+ occ · (logεσ n+

logm
logn)) query time,

where occ is the number of occurrences of P , k is any positive integer less than logσ n,

and ε ≤ 1 is a constant. For both alternatives, the data structure can be constructed in

O(
∑t

i=1 |Si|+ (n+m) log(n+m)) time.

Our compression scheme is based on a variant of the relative Lempel-Ziv (RLZ)

compression scheme from [67]. It represents each Si ∈ S as a concatenation of substrings

of R (referred to as factors) obtained from the LZ77-like factorization of R. See Fig. 4.2

for an example. Experiments on large scale genomic data in [67] have shown that

this method yields good compression ratios for repetitive texts even when parts of the

sequence are rearranged.

In this result, we assume that the reference R is given. In case where R is not

available, we can apply the method of Kuruppu et al. [68] to find a suitable one. We also

assume the alphabet size σ is in polylogarithmic of the word length (i.e. σ = O(loga n)

for some constant a). For larger alphabets, e.g. σ = Ω(nα), the query time needs an

additional term of O(` log σ/ log log n + occ · log σ) and the space needs an additional

term of O(n log σ log log n/ log n) = o(n log σ).

Both alternatives in Theorem 4.1 use the same pattern searching algorithm. The

algorithm considers two cases: Case 1, where the pattern P is a substring of a single

62

factor; and Case 2, where P crosses at least one boundary between two factors. (See

Fig. 4.4.) For case 2, the pattern is partitioned into two parts: left and right. The left

part ends at the end of the first factor, while the right part begins at the start of the

second factor. For each possible partition of the pattern, the left part and right part are

searched independently and then joined together by an appropriate 2D range query data

structure. However, to avoid the quadratic pattern search time, we use multiple tricks to

reuse results between the searches in each partition.

We remark that recently, Gagie et al. [46] independently proposed a similar method

to index a set of sequences. Their space complexity is O(nHk(R) + n + m(log n +

logm log logm)) bits, and the query time is O((` + occ) logε n), where ε > 0. Thus,

compared to the method in our Theorem 4.1 (a), their method always uses more space

while having similar time. Compared to that in Theorem 4.1 (b), theirs is slower while

having asymptotically comparable space. Also note that in their method, the reference

sequence is restricted. It must be one of the sequences in S (otherwise false occurrences

may be reported).

The paper is organized as follows. Section 4.2 defines the notation used throughout

the paper and outlines the framework of our new data structures. Section 4.3 describes

some auxiliary data structures used in our construction. These data structures are

known in the literature; however, we also present some improvements which may be

of independent interest. Section 4.3.4 presents a new data structure for answering a

restricted type of 2D range queries. Sections 4.4 – 4.7 describe further technical details

of our main data structure.

4.2 Data structure framework

4.2.1 The relative Lempel-Ziv (RLZ) compression scheme

Let R be a reference sequence of length n over an alphabet Σ and let S = {S1, . . . , St}

be a given set of strings over Σ. Each sequence Si ∈ S is compressed based on R by

relative Lempel-Ziv (RLZ) compression [67]. Precisely, given two strings S and R, where

R contains all the symbols in S, the Lempel-Ziv factorization (or parsing) of S relative

to R, denoted by LZ(S|R), is a way to express S as a concatenation of substrings of the

form S = w0w1w2 . . . wz such that: (1) w0 is an empty string; and (2) wi for i > 0 is

63

a non-empty substring of S and wi is the longest prefix of S[(|w0..wi−1|+ 1)..|S|] that

occurs in R. Each substring wi is called a factor (or phrase), and can be represented by

a pair of numbers (pi, li), where pi is a starting position of wi in R and li denotes the

length of wi.

LZ(S|R) was suggested in [67]. The algorithm, which runs in linear time, is sum-

marized in Fig. 4.3. By definition, the decomposition guarantees that no factor can be

expanded any further to the right. Furthermore, the RLZ compression scheme has the

following property:

Lemma 4.1. LZ(S|R) represents S using the smallest possible number of factors.

Proof. Consider the algorithm to decompose a string into RLZ factors in Fig. 4.3. Let

distR(S) denote the minimal number of factors of R to represent S. We prove the property

by induction. First, any string S of length 1 has a decomposition using distR(S) = 1

factor of R.

Next, by induction, for any string X of length less than `, we assume X can be

constructed using distR(X) factors of R. Now, consider a string S of length ` and

assume the algorithm reports S = S1 . . . Sk. To obtain a contradiction, suppose the

R = ACGTGATAG

S1 = TGATAGACG = TGATAG, ACG = 8 2
S2 = GAGTACTA = GA, GT, AC, TA = 5 6 1 7
S3 = GTACGT = GT, ACGT = 6 3
S4 = AGGA = AG, GA = 4 5

(a)

T [..] Factor Pos. inR
1 AC 1..2
2 ACG 1..3
3 ACGT 1..4
4 AG 8..9
5 GA 5..6
6 GT 3..4
7 TA 7..8
8 TGATAG 4..9

(b)

T [..] Factor (rev.) Pos. in R
1 GA 5..6
2 TA 7..8
3 AC 1..2
4 AG 8..9
5 TGATAG 4..9
6 ACG 1..3
7 GT 3..4
8 ACGT 1..4

(c)

Figure 4.2: (a) A reference string R and a set of strings S = {S1, S2, S3, S4} decomposed
into the smallest possible number of factors from R. (b) The array T [1..8] (to be defined
in Section 4.2) consists of the distinct factors sorted in lexicographical order. (c) The
array T [1..8].

64

Input: A string S and the BWT of R
Output: A decomposition of S, i.e., S1 . . . Sk

1: i = 1; k = 1:
2: while i ≤ |S| do
3: By backward search on R, identify the longest prefix Sk = S[i..j] of S[i..|S|] such that

Sk is a substring of R.
4: k = k + 1; i = j + 1;
5: end while
6: Report S1 . . . Sk

Figure 4.3: Algorithm to decompose a string into RLZ factors

optimal decomposition is S′1 . . . S
′
k′ where k′ < k. Since the algorithm always finds the

longest string, we know that |S1| ≥ |S′1|. Note that for S[|S1|+ 1..`], the algorithm will

decompose it into S2 . . . Sk, which consists of k − 1 factors. The induction hypothesis

states that distR(S[|S1|+ 1..`]) = k− 1. As S[|S′1|+ 1..`] is longer than S[|S1|+ 1..`]), we

have distR(S[|S′1|+ 1..`]) ≥ distR(S[|S1|+ 1..`]). Hence, k′ − 1 = distR(S[|S′1|+ 1..`]) ≥

distR(S[|S1|+ 1..`]) = k − 1. Contradiction.

For every Si ∈ S, denote the Lempel-Ziv factorization of each Si relative to R by

Si = Si1Si2 . . . Sici . Define m =
∑t

i=1 ci. By Lemma 1, m is in fact the smallest possible

number of factors to represent S. Next, take all the s distinct factors that appear in

the factorizations for S and let T [1..s] be an array containing these factors sorted in

lexicographical order (see Fig. 4.2 (b)). Note that s ≤ min{n2,m}. Our data structure

stores T [1..s] in O(s log n) bits by encoding each T [j] by its starting and ending positions

in the reference string R, and the set S in O(m log s) = O(m log n) bits by representing

each Si ∈ S as a list of indices from T [1..s] (see Fig. 4.2 (a)).

Let F [1..m] be the lexicographically sorted array of all non-empty suffixes in S that

start with a factor; i.e., each element F [y] is of the form SipSi(p+1) . . . Sici , and is called

a factor suffix from here on. See Fig. 4.12 (a) for an example. Importantly, our data

structure does not store F [1..m] explicitly. For any string x, x denotes its reverse. Let

T [1..s] be an array of all reversed distinct factors Sij sorted lexicographically. By using

the relative Lempel-Ziv decomposition, each sequence Si can be viewed as a new sequence

S′i based on the alphabet of all the distinct factors in T [1..s] (see Fig. 4.2).

4.2.2 Pattern searching

To find the occurrences of a query pattern P in S, we follow the basic strategy outlined

in Section 4.1.3. Suppose P is a query pattern of length `. Each occurrence of P in

65

S1, . . . , St belongs to one of the following two main cases; see Fig. 4.4:

• Case 1: P lies completely inside one factor, denoted by Sip.

• Case 2: P is not a substring of a single factor, i.e., P = XSip . . . SiqY , where X

is a suffix of Si(p−1) and Y is a prefix of Si(q+1).

(Observe that the case P = XY is an instance of case 2.) To locate all occurrences

of P , our data structure uses a number of auxiliary data structures (explained in

subsection 4.2.3), to report all occurrences of P in S according to case 1 and case 2

separately. Let occ1 and occ2 be the number of occurrences of P as in case 1 and case 2,

respectively.

Si p
Si

P

Si p Si p+1 Si q

P

Si

X Y

Figure 4.4: When P occurs in string Si, there are two possibilities, referred to as case 1
and case 2. In case 1 (shown on the left), P is contained inside a single factor Sip. In case 2
(shown on the right), P stretches across two or more factors Si(p−1), Sip, . . . , Si(q+1).

Case 1: [P occurs inside a factor] Since all the factors are substrings of the reference

R, the pattern is first searched for in the reference. Then, the factors that cover an

occurrence of the pattern in the previous step are reported as the result. This case takes

O(`+ occ1 logε n) time, as discussed in detail in Section 4.4.

Case 2: [P is not a substring of a single factor] As illustrated in Fig. 4.4, in this case,

every occurrence of P can be divided into two parts: the left part (P [1..j] matches

some suffix of a factor), and the right part (P [j + 1..`] matches a factor suffix). To

find the occurrences of this case, we try to match all the (` + 1) possible partitions

(P [1..j], P [j + 1..`]) of the pattern. For each partition, the left parts are matched against

the set of reversed factors in T . The successful matches are represented by a range in T .

The right parts are matched against the set of factor suffixes in F . The results are also

represented by a range in F . Then, the successful matches of the left part P [1..j] and

right part P [j + 1..`] are combined and validated using a 2D-range query data structure.

(See Fig. 4.5 for an example.)

66

4.2.3 Overview of our main data structure

The data structure for case 1 is called I(T) and defined in Section 4.4 to find all occur-

rences of P in O(`+ occ1 logε n) time; and uses 2n+ o(n) +O(s log n) bits (Theorem 4.1).

The data structures that facilitate the searching for case 2 are more complicated and

consist of three components: (i) X (T) to match the left parts; (ii) Y(F, T) to match

the right parts; and (iii) M to report the correct combinations of the left parts and

right parts. Further technical details of X (T), Y(F, T), and M are given in Sections 4.5,

4.6, and 4.3.4, respectively. Note that each of the two alternatives in Theorem 4.1 uses

the same components for (i) and (ii). Their space and time trade-off result from using

different versions of (iii). The usage of each component is summarized as follows:

(i) First, X (T) in Section 4.5 uses O(s log n) + o(n) bits space. It finds all occurrences

of prefixes of P that are equal to a suffix of a factor Si(p−1) in O(` log log n) time.

More precisely, X (T) returns, for every j, the maximal range stj ..edj in T such

that P [1..j] is a prefix of every element in T [stj], . . . , T [edj].

(ii) Second, Y(F, T) in Section 4.6 uses (2+1/ε)nHk(R)+2.55n+o(n log σ)+O(m log n)

bits space. It finds all occurrences of suffixes of P that are equal to a prefix of a factor

suffix in F , i.e., Sip . . . SiqY , where Y is a prefix of Si(q+1), in O(`(log σ/ log log n+

log log n)) time. More precisely, Y(F, T) returns, for every j, the maximal range

st′j ..ed
′
j such that P [(j + 1)..`] is a prefix of every element in F [st′j], . . . , F [ed′j].

(iii) Third, we encode all combinations of Si(p−1) and Sip . . . SiqY as follows: Define

M to be a binary (s × m)-matrix where M [x, y] = 1 if and only if T [x] is the

preceding factor of the suffix F [y], i.e., F [y] = SipSi(p+1) . . . Sici and Si(p−1) = T [x]

is the x-th lexicographically smallest in T . Note that each column of the matrix M

contains exactly one 1. (See Fig. 4.5)

Lemma 4.2. All case 2 occurrences of P can be found by listing the entries equal to 1

in the rectangles [stj , edj]× [st′j , ed
′
j] in M , for all j.

Proof. (→) Consider an occurrence of case 2 of P in Si, that is, Si[s..e] = P and Si[a..t]

is a factor and a ≤ s < t < e. Let T [p] be the entry in T that represents the factor Si[a..t].

We have Si[t + 1..|Si|] is a factor suffix. Let F [p′] be the entry in F that represents

Si[t+ 1..|Si|]. By the definition of the matrix M , there is an entry 1 in M [p, p′]. Consider

67

j = (t− s+ 1), we have P [1..j] = Si[a..s] is a suffix of T [p], and therefore, stj ≤ p ≤ edj .

Similarly, P [j..|P |] is prefix of F [p′], and therefore, st′j ≤ p′ ≤ ed′j . Therefore, the

occurrence Si[s..e] = P implies a number 1 in the specified rectangle.

(←) Consider a number 1 in the region [stj , edj] × [st′j , ed
′
j]. The position of the

occurrence can be found as follows. Let (i′, j′) be the position of the number 1. Let

Si[p..|Si|] be the factor suffix of F [j′]. We have P [j + 1..|P |] = Si[p..p+ |P | − j] Since

T [i′] is the previous factor of F [j′], Si[p− j..p− 1] = P [1..j]. Therefore, P occurs in Si

from position p− j to position |P |.

For each pattern P of length `, we may need up to ` queries in the matrix M to find all

the results. (See Fig. 4.12 (b) for an example.) Section 4.3 gives two alternative 2D range

query data structuresM that support the operation query 2d(M, [st, ed], [st′, ed′]) on M

for finding these entries: If M is of size O(m log s log log s) bits, all entries equal to 1

can be found in O((1 + occ) log log s) time for each query, and if M is of size O(m log s)

bits, the query takes O((1 + occ) · logε s) time.

1 1 1 1

1

1

1

1

1 1

$

GA

TA

AC

AG

TGATAG

ACG

GT

ACGT

A
C

-T
A

A
C

G

A
C

G
T

A
G

-G
A

G
A

-G
T-

A
C

-T
A

G
A

G
T-

A
C

-T
A

G
T-

A
C

G
T

TA

TG
A

TA
G

-A
C

G

Figure 4.5: Each row represents the string T [i] in reverse; each column corresponds to a
factor suffix F [i] (with dashes to mark factor boundaries). The locations of the number
“1” in the matrix mark the factor in the row preceding the suffix in the column. Consider
an example pattern “AGTA”. There are 5 possible partitions of the pattern: “-AGTA”,
“A-GTA”, “AG-TA”, “AGT-A” and “AGTA-”. Using the index of the sequences in Fig. 4.2,
the big shaded box is a 2D query for “A-GTA” and the small shaded box is a 2D query
for “AG-TA”.

As a final step, we need a data structure to decode all occurrences of case 1 and 2

to find their actual locations in S. This simple data structure, called D, is used to

convert indices of F to their exact locations in S. It requires O(m log n) bits, and

O(logm/log n+ log log n) time for decoding each occurrence. The details are presented

in Section 4.7.

68

Note that the data structure is designed as a static database. Once the reference

sequence is given, the input strings can be factorized in linear time using the algorithm

in Section 4.2.1 i.e., O(N) where N is the total length of the input. The construction

algorithms for X , Y and I are not complicated. The internal components can be directly

constructed based on their definitions using only constant number of sort and scan

operations on some arrays. All the external components (Section 4.3) can be built in

O(m logm) time. The whole data structure can be constructed in O(N + (n+m) log(n+

m)) time.

The total space equals the sum of the spaces of all components, namely: arrays T

and T ; data structures: I(T), X (T), Y(F, T), M and D. (Note that the FM-indexes of

R although counted only inside Y(F, T), it is shared with I(T) and X (T) for looking

up values in suffix array.) Putting everything together, the total space requirement is

(2 + 1/ε)nHk(R)+5.55n+O(m log n) bits, while all occurrences of P in S can be found in

O(`(log σ/ log log n+logε n) +occ · (logεσ n+ logm
logn)) time; or (2 + 1/ε)nHk(R) + 5.55(n) +

O(m log n log log n) bits and O(`(log σ/ log log n+ log logn) + occ · (logεσ n+ logm
logn)) time.

When σ is in Ω(logO(1) n), the term log σ/ log logn becomes O(1). We thus obtain

Theorem 4.1 above.

4.3 Some useful auxiliary data structures

4.3.1 rank and select and integer data structures from the literature

Let B[1..n] be a bit vector of length n with k ones and n − k zeros. The rank and

select data structure supports two operations: rankB(i) returns the number of ones in

B[1..i]; and selectB(i) returns the position in B of the ith one. Given an array A[1..n] of

non-negative integers, where each element is at most m, we are interested in the following

operations: max indexA(i, j) returns arg maxk∈i..j A[k], and range queryA(i, j, v) returns

the set {k ∈ i..j : A[k] ≥ v}. We also need one more operation for the case when

A[1..n] is sorted in non-decreasing order, called successor indexA(v), which returns the

smallest index i such that A[i] ≥ v. The data structure for this operation is called the

y-fast trie [110]. The complexities of some existing data structures supporting the above

operations are listed in the table in Fig 4.6.

69

Operation Extra space Time Reference Remark

rankB(i), selectB(i) log
(
n
k

)
+ o(n) O(1) [91]

max indexA(i, j) 2n+ o(n) O(1) [43]
range queryA(i, j, v) O(n logm) O(1 + occ) [85], p. 660
successor indexA(v) O(n logm) O(log logm) [110] A is sorted

Figure 4.6: The time and space complexities to support the operations defined above.

4.3.2 Suffix array and FM-index

Consider any string R with a special terminating character $ which is lexicographically

smaller than all the other characters. The suffix array SAR is the array of integers

specifying the starting positions of all suffixes of R sorted lexicographically. For any

string P , let st and ed be the smallest and the biggest, respectively, indexes such that P

is the prefix of suffix SAR[i] for all st ≤ i ≤ ed. Then, (st, ed) is called a suffix range or

SAR-range of P . i.e. P occurs at SAR[st+ 1], . . . , SAR[ed] in R. For any given string P

specified by its suffix range (st, ed) in SAR, an FM-index of R supports the following

operations: lookupR(i) returns the value of SAR[i]; ΨR(i) returns the index j such that

SAR[j] = SAR[i] + 1; and backward searchR(c, (st, ed)) returns the suffix range in SAR

of the string cP , where c is any character and (st, ed) is the suffix range of P .

Lemma 4.1. Given any string R of length n over an alphabet of size σ, the FM-index

of R uses nHk(R) + O(n log σ log log n/ log n) bits and supports backward searchR in

O(log σ/ log logn) time and ΨR in O(1) time (where k < logσ n). Given additional

(1/ε)nHk(R) + 2(log e+ 1)n+ o(n) bits, lookupR can be supported in O(logεσ n+ log σ)

time.

Proof. The FM-index, that uses nHk(R)+O(n log σ log log n/ log n) bits and supports the

operations backward searchR and ΨR within the specified time, is described in [37, 78, 88].

[52] showed how to support ΨR and lookupR using (1+1/ε)nHk(R)+2(log e+1)n+o(n)

bits. If we store the FM-index and the data structure in [52] separately, it takes

(2 + 1/ε)nHk(R) +O(n) bits. Since these two data structures have some overlap, we can

reduce the space when storing both of them by nHk(R) bits as follows:

Let Σi be an alphabet, such that for any character c ∈ Σi, c = a1a2 . . . a2i , where

aj ∈ Σ. Let Ri be the sequence using the alphabet Σi, such that Ri[j] = R[2i × j]R[2i ×

j + 1] . . . R[2i × j + 2i − 1]. Let Ψi be the Ψ function for sequence Ri.

In [52], a recursive data structure of (1 + 1/ε) level is stored to compute the value of

SAR. Let h′ = log logσ n and h = log logn, they store Ψi for i = 0, h′ε, 2h′ε, . . . h′ and

70

SARh . However, since ΨR = Ψ0, and ΨR is provided by the normal FM-index, we don’t

need additional space for Ψ0. That saves nHk(R) bits.

In the FM-index above, the compression technique is only effective for moderate size

alphabet (i.e. σ = O(loga n) for some constant a). When the alphabet is larger (e.g.

σ = O(nα)), the sequence becomes more like a permutation of distinct numbers. The

second term in the space complexity can surpass the main nHk(R) term; and Hk(R)

grows to its log n upper bound. Moreover, the running time with log σ is no longer a

small number. A general FM-index is a FM-index extended to alphabets of unbounded

size. It is not compressed, but its query time is only log log σ. The next lemma is our

simple extension of the normal FM-index to the general FM-index case, obtained by

applying the result from [47] and some additional arrays:

Lemma 4.2. Given any string S of length m over an alphabet of size s, there exists a

general FM-index of S that uses m log s+ o(m log s) bits and supports backward searchS

in O(log log s) time and ΨS in O(1) time. Using an additional m log s+ o(m log s) bits,

lookupS can be supported in O(logm/ log s) time.

Proof. The original data structure for the FM-index uses m log s+ o(m log s) bits space

and support backward searchS and ΨS as described in Sections 3.1 and 3.2 of [47]. We

now explain how to support lookupS using the stated space and time complexity.

Define Ψ1
S(i) = ΨS(i) and Ψk

S(i) = ΨS(Ψk−1
S (i)) for k > 1. Then, we have,

SAS [Ψk
S(i)] = SAS [i] + k. Let t = logm/ log s. Use the additional bits to store:

• A succinct bit vector B[1..m] such that B[i] = 1 if and only if SAS [i] mod t ≡ 0.

• An array of integers V [1..m/t] such that V [i] = SAS [selectB(i)].

Since SAS [1..m] contains all values from 1 to m, there exists a value i′ such that SAS [i′]

mod t ≡ 0 and SAS [i]−SAS [i′] < t. From the definitions of B and ΨS , we have B[i′] = 1

and i′ = Ψk
S(i) and k < t. To find i′, iteratively compute Ψk

S(i) until B[Ψk
S(i)] is 1; this

enumeration takes at most O(t) time. The value of SAS [i′] can be looked up from V .

Then, SAS [i] = SAS [i′]− k. Therefore, the value of SAS [i] takes O(logm/ log s) time to

compute.

For the extra space complexity, the bit vector B uses O(m) bits. The array V uses

m · log s/(logm/ log s) ≤ m log s bits. In total, we use 2m log s + o(m log s) additional

bits.

71

4.3.3 Bi-directional FM-index

Recall that, given a suffix array SAR, a pattern P can always be represented by an SA-

range (st, ed). The traditional FM-index can only extend the search pattern to the left by

one character using backward search (i.e. given SA-range of P , backward search returns

the SA-range of cP). However, computing the value of array A[1..|P |] in Section 4.6

requires us to modify the search pattern at both the left end and the right end. A trivial

solution is to use a heavier data structure called the suffix tree. However, even using the

existing compressed suffix tree [41, 100], the modification at one end of the pattern will

take O(log n) time, which is too much for our requirement in Theorem 4.1 (b).

Therefore, we use a data structure called bi-directional FM-index which allows us to

extend and delete one character at either end of the pattern in O(log σ/ log log n) time

(where σ is the size of the alphabet).

Consider a sequence R over an alphabet Σ of size σ, the suffix array SAR, and the

suffix array of the reversed sequence SAR. Given a string X, we let st(X) and ed(X) be

the start and the end of the suffix range of X in SAR, respectively. Similarly, st(X) and

ed(X) denote the start and the end of the suffix range of X in SAR, respectively. Given

a pattern P [1..`], let rR be the suffix range of P in SAR, i.e., rR = (st(P), ed(P)). Let

rR = (st(P), ed(P)). Let c be any character in Σ. The bi-directional FM-index is a data

structure supporting the following four operations:

• forward search(rR, rR, c): returns the new suffix range of pattern Pc in SAR, and

the suffix range of Pc in SAR.

• backward search(rR, rR, c): returns the suffix ranges of cP and cP in SAR and

SAR, respectively.

• delete back(rR, rR): returns the suffix range of P [2..`] in SAR, and the suffix range

of P [2..`] in SAR.

• delete front(rR, rR): returns the suffix ranges of P [1..`−1] and P [1..`− 1] in SAR

and SAR, respectively.

In other words, the operation forward search extends the searching pattern by one

character to the right, while the operation backward search extends it one character to

72

the left. The operation delete back deletes the leftmost character from the searching

pattern, the delete front deletes the rightmost one.

To implement the bi-directional FM-index, we use: the BWT of R, the BWT of R,

the topology of the suffix tree of R, the topology of the suffix tree of R. (Note that the

topology of each tree can be stored in 2.55n + o(n) bits each according to [42].) The

operations forward search and backward search have been considered before:

Lemma 4.3. (Lam et al. [69]) Using the FM-index of R and the FM-index of R, we

can compute operation forward search and operation backward search.

We will now present how to implement the operation delete back. For delete front,

sinceR andR are symmetric by a string reversal operation, we can implement delete front

by a similar procedure but swapping the roles of R and R.

Formally, the problem of computing delete back is: given st(cX), ed(cX) st(cX) and

ed(cX), compute the values of: st(X), ed(X), st(X) and ed(X). First, st(X) and ed(X)

can be computed using the following lemma:

Lemma 4.4. Given st(cX) and ed(cX), the values of st(X) and ed(X) can be computed

using the suffix link of R in O(1) time.

Proof. Computing the suffix range of P [2..`] in SAR from that of P [1..`] is identical to

computing the suffix link in the compressed suffix tree [42, 100]. The operation can be

done in constant time if the topology of the suffix tree and the function ΨR are given.

Here ΨR is the inverse of the backward search of the FM-index, and can be computed in

constant time (See Lemma 4.2).

Then, the values of st(X) and ed(X) can be computed using the following Lemma:

Lemma 4.5. st(X) and ed(X) can be computed by using the following equations:

st(X) = st(cX)−
∑

a<c [ed(aX)− st(aX) + 1]

ed(X) = ed(cX) +
∑

z>c [ed(zX)− st(zX) + 1]

Proof. As cX = Xc, X is prefix of cX. Note that (st(cX), ed(cX)) is the suffix range of

cX in SAR. Therefore, st(X) ≤ st(cX) ≤ ed(cX) ≤ ed(X).

Let ∆st = st(cX)− st(X). Because c is the last character of Xc, hence, ∆st equals

the number of occurrences of substrings Xa in R for all character a in Σ and a < c.

73

Thus, ∆st equals the number of occurrences of aX in R for all a < c. Note that the

number of occurrences of aX in R is [ed(aX)− st(aX) + 1]. That is, st(X)− st(cX) =∑
a<c [ed(aX)− st(aX) + 1].

Similarly, let ∆ed = ed(X)−ed(cX). ∆ed equals the number of occurrences of zX in R

for all character z and z > c. We obtain ed(X)− ed(cX) =
∑

c<z [ed(zX)− st(zX) + 1].

From Lemma 4.4 and Lemma 4.5, we can compute delete front. delete back follows

similarly. To summarize, we have the following theorem:

Theorem 4.6. The bi-directional FM-index can be implemented using the BWT of R,

the BWT of R, and the topologies of the two suffix trees of R and R. It supports all of

the four operations in O(log σ/ log logn+ 1) time, and uses (2 + 1/ε)nHk(S) +O(n) bits.

Proof. From Lemma 4.3, we can do forward search and backward search. From Lemma 4.4,

we can compute st(X) and ed(X). From the equations in Lemma 4.5, we can compute

st(X) and ed(X) using the following procedure. For each character a, we compute

(st(aX), ed(aX)) = backward search((st(X), ed(X)), a). Then, we substitute the values

on the right-hand side of the equations. Since each operation backward search takes

O(log σ/ log log n+ 1) time, we can complete the operation delete back in O(σ log σ
log logn + 1)

time.

Note that if we use the wavelet tree in [16] as a component of the BWT (as in [78]),

the whole term
∑

a<c[ed(aX) − st(aX) + 1] and
∑

c<z[ed(zX) − st(zX) + 1] can be

computed in O(log σ/ log log n+ 1) time, because characters in the alphabet are stored in

leaves of the wavelet tree in alphabetic order. By a single traversal from the root of the

wavelet tree to the leaf for c, we can compute the total frequency of characters smaller

than c. This improvement also applies to the forward search and backward search

operations by Lam et al. [69] in Lemma 4.3.

The space requirement can be proven by adding up all the requirement of each

component.

4.3.4 A new data structure for a special case of 2D range queries

We now describe the 2D range query data structure mentioned in Section 4.2 for case 2.

This data structure, called M, helps to combine the results of X (T) and Y(F, T) to

74

form the final answers for case 2. Let M be a binary (s × m)-matrix. We define

M [x, y] = 1 if T [x] is the preceding factor of the factor suffix F [y]. The operation

query 2d(M, [a1, a2], [b1, b2]) reports all points in the rectangle [a1, a2] × [b1, b2] in M

whose values are 1. Here, [a1, a2] and [b1, b2] specify consecutive rows and consecutive

columns of M , respectively. The next lemma summarizes known results for general

binary matrices:

Lemma 4.7 ([19]). Let M be a given binary matrix of size m×m with n 1s. M can be

stored while supporting query 2d(M, [a1, a2], [b1, b2]) as follows:

1. O(n log1+εm) bits and O(log logm+ occ) query time.

2. O(n logm) bits and O((1 + occ) logεm) query time.

where ε > 0 is a constant and occ is the number of 1s inside the specified rectangle.

A proof of Lemma 4.7 was given by [19]. In this section, we improve the time for 2D

range queries when M has a special form, namely when every column of M [1..s, 1..m]

contains exactly one 1. The corollary is as follows.

Corollary 4.8. Let M be a given binary matrix of size s × m, where s ≤ m and

every column contains exactly one entry equal to 1. We can store M while supporting

query 2d(M, [a1, a2], [b1, b2]) within the following space and time complexities:

1. O(m log s log log s) bits and O((1 + occ) log log s) query time; or, alternatively,

2. O(m log s) bits and O((1 + occ) logε s) query time,

where ε > 0 is a constant and occ is the number of 1s in the specified rectangle.

Proof. Suppose we have access to any data structure for storing general binary matrices of

size (s×m) that uses O(m·α(m)) bits space and supports query 2d(M, [a1, a2], [b1, b2]) in

O(β(m) + γ(m)occ)) time, where α, β, and γ are polylogarithmic functions (e.g. logkm),

and α(m) is in Ω(logm), and s ≤ m. Then we can construct another data structure for

the special case in which each column has exactly one 1 that uses O(m · α(s)) bits and

with O(β(s) + γ(s)occ) query time.

Let M be a binary matrix of size (s×m) in which each column has exactly one 1

and s ≤ m. We partition M into κ = m
s2

vertical blocks of size s× s2 arranged from left

75

to right. For ` = 1, 2, . . . , κ, define st` = 1 + s2(`− 1) and ed` = s2`, and let block ` be

the submatrix M [1..s, s`..e`]. Any query 2d(P, [a1, a2], [b1, b2]) can be classified into one

of two types: (i) st` ≤ b1 ≤ b2 ≤ ed` for some ` = 1, . . . , κ; and (ii) otherwise.

For (i), the query rectangle lies within a single block and we just use either data

structure from Lemma 4.7 for M [1..s, st`..ed`] for ` = 1, . . . , κ. Since every block has

s2 ones, the total space needed to support queries of type (i) in O(β(s) + γ(s)occ) time

is O(κs2α(s2)) = O(mα(s)) bits.

To handle queries of type (ii), we store
(
s
2

)
rank and select data structures for(

s
2

)
bit vectors Bij [1..κ], defined as follows. For 1 ≤ i ≤ j ≤ s and 1 ≤ ` ≤ κ,

let Bij [`] = 1 if and only if there exists some M [p, q] = 1 where i ≤ p ≤ j and

1 + s2

m (`− 1) ≤ q ≤ s2

m `. By Section 4.3.1, the total space to store the rank and select

data structures is O
((
s
2

)
κ
)

= O(m) bits. Furthermore, for each 1 ≤ ` ≤ κ, we store

a list L` of the s2 ones in M [1..s, st`..ed`] in sorted order according to their column

numbers. We also store s pointers Ptr`[1..s], where Ptr`[i] points to the first entry in

the list L` whose column number is at least i. All lists L` and Ptr` can be stored in

O(s2κ log s) = O(m log s) bits.

Using Bij [`], L`, and Ptr`, we answer query 2d(M, [a1, a2], [b1, b2]) as follows. Let

stimin and edimax be the smallest sti and the biggest edi such that both of them lie in

the interval b1..b2. Then the answer to the query equals the union of:

(1) query 2d(M, [a1, a2], [b1, stimin − 1]);

(2) query 2d(M, [a1, a2], [stimin , edimax]); and

(3) query 2d(M, [a1, a2], [edimax , b2]).

Now, (1) and (3) can be computed in O(β(s) +γ(s)occ) time by querying in inside blocks

(case (i) using data structure in Lemma 4.7). For (2), we use the rank and select data

structure for Ba1a2 to find all entries Ba1a2 [j] = 1 for imin ≤ j ≤ imax, and for each

such j, we report all points in Lj within Ptrj [a1] and Ptrj [a2 + 1]. The running time is

O(1 + occ) time.

In conclusion, we can build a data structure of size O(mα(s)) bits that supports

the operation query 2d(M, [a1, a2], [b1, b2]) on M in O(β(s) + γ(s)occ)) time. Combining

this result and Lemma 4.7, we have Corollary 4.8.

76

4.4 The data structure I(T) for case 1

Recall from Section 4.2 that the array T [1..s] stores the s distinct factors of R that

occur in the factorizations of S in lexicographical order. Here, we define a data structure

named I(T) and apply it to locate all occurrences of a query pattern P that lie entirely

inside single factors in T [1..s] (case 1 in Section 4.2). The main result of this section is

summarized in the following theorem:

Theorem 4.1. The data structure I(T) uses 2n+o(n)+O(s log n) bits. Given the suffix

range st..ed of a query pattern P in SAR, it reports all occurrences of P inside factors

stored in T [1..s] using O(occ1(logε n+ log σ)) time, where occ1 is the number of answers.

A naive solution is to concatenate all the factors in T [1..s] and then build a suffix

tree or an FM-index, but the space used by such an approach would be proportional to

the total size of S. Instead, we formulate the problem as a variant of an interval cover

problem. Each factor will be represented as an interval on the reference sequence R. The

pattern P is first searched in the reference R, then the factors that cover the locations

that P occurs at are reported.

Note that we cannot simply enumerate all the occurrences of P in R to find the

covering factors. This is because we assume that the reference R may be independent of

the sequences S, and there may be occurrences of P in R but not in S (we call these

occurrences false positives). The number of false positives of P in R can be O(n). If we

enumerate them, the search time cannot be bounded by ` and occ1.

To avoid checking the false positive occurrences of the pattern, we impose an order on

the occurrences of P in R. Each location in R is implicitly annotated with the length of

the longest factor that covers over it. The searching algorithm prioritizes the occurrences

of P in R with longer covers. It stops when the longest possible cover factor is shorter

than the pattern length. In this way, we can ensure that the false positive occurrences

are not enumerated.

We need the following definitions: for each i ∈ {1, 2, . . . , s}, define spi and epi as

the starting and ending positions of the factor T [i] inside the reference string R, i.e.,

T [i] = R[spi..epi]. We say that any factor T [i] covers a position p if spi ≤ p ≤ epi. Also,

factor T [i] is to the left of factor T [j] if either: (1) spi < spj ; or (2) spi = spj and

epi < epj . Let G[1..s] be an array of indices such that G[i] = j if T [j] is the i-th leftmost

77

factor. To be able to convert between indices, we define Is[j] = spG[i] and Ie[j] = epG[i].

Note that Is[1] is the starting position of the leftmost factor and that the values of Is[1..s]

are non-decreasing.

Next, for every p ∈ {1, 2, . . . , n}, define D[p] = maxj=1..s{Ie[j] − p + 1 : Is[j] ≤ p}.

Intuitively, D[p] measures the distance from position p to the rightmost ending position

of all factors that cover p. We have the following observation. Let {pi} be the set of

positions of the occurrences of pattern P in R. For any such pj , if D[pj] > ` (where

` is the pattern length), the occurrence pj of P is covered by at least one factor. (In

other words, position pj is a true positive occurrence of pattern P .) Therefore, if the

{pi} is sorted by the values of D[pi], the true positive and false positive occurrences can

be separated easily.

However, since the occurrences of P in R are already sorted by the order in the suffix

array SAR, we need some additional conceptual structures to remember the D[pi]-order.

Let D′[1..n] be an array such that D′[p] = D[SAR[p]]. (For an example, see Fig. 4.7 (a).)

D′[p] tells us the length of the longest interval whose starting position equals SAR[p].

Hence, D and D′ can be used to filter all false positive occurrences according to the next

lemma:

Lemma 4.2. For any index p and length a, there exists a factor T [j] that covers all

positions from SAR[p] to (SAR[p] + `− 1) in R if and only if D′[p] ≥ `.

Proof. (Necessary condition) If T [j] covers SAR[p], then D[SAR[p]] ≥ |T [j]|. We also

have that T [j] covers (SAR[p] + a− 1); therefore, |T [j]| ≥ a. That means D[SAR[p]] ≥ a.

By the definition of D′, we have D′[p] ≥ a.

(Sufficient condition) Follows directly from the definitions of D and D′.

Now, we describe the new data structure I(T). It consists of:

• The array G[1..s], using s log n bits;

• A successor data structure (see Section 4.3) for Is, using s log n+ o(n) bits;

• A range maximum data structure (see Section 4.3) for Ie, using 2s+ o(s) bits; and

• A range maximum data structure for D′, using 2n+ o(n) bits.

Note that we do not explicitly store the arrays D[1..n], D′[1..n], Is[1..s], and Ie[1..s].

Lemma 4.3 shows how to recover the values of D[p] and D′[p] for any position p ∈

78

{1, 2, . . . , n} from the data structure I(T). Also, Is[i] and Ie[i] can be computed in O(1)

time given G[i] and T .

A C G T G A T A G

D 4 3 2 6 5 4 3 2 1

SAR 1 8 6 2 9 5 3 7 4

D’ 4 2 4 3 1 5 2 3 6

1

1

1

3

4

5

7

8

2

3

4

4

9

6

8

9

Is Ie
1

2

3

6

8

5

7

4

G A C G T G A T A G

SAR
1 8 6 2 9 5 3 7 4

B 1 1 0 0 0 1 1 1 1

 {2,3,4} {2} {2} {2} {2} {5}

L[1]

L[2]
L[3]
L[4]
L[5]
L[6]

1

2

3

4

5

6

7

8

T id

2

3

4

4

9

6

8

8

len

0

0

1

1

1

1

1

1

C

(a) (b)

Figure 4.7: (a) The factors (displayed as grey bars) from the example in Fig. 4.2 listed in
left-to-right order, and the arrays G, Is, Ie, D, and D′ that define the data structure I(T)
in Section 4.4. (b) The same factors ordered lexicographically from top to bottom, and
the arrays B,C, and Γ that define the data structure X (T) in Section 4.5.

Lemma 4.3. Given the data structures I(T) and the FM-index of R, for any positions

p and q in R, we can:

(i) Compute D[p] in O(1) time;

(ii) Compute D′[p] in O(logεσ n+ log σ) time; and

(ii) Report all factors that cover positions p..q in O(1 + occ) time.

Proof. For (i), using the successor data structure for Is, we can identify the maximum y

such that Is[y] ≤ p in O(1) time. Using the range maximum data structure for Ie, we can

identify an index v such that Ie[v] = maxj≤y Ie[j] in O(1) time. Then, D[p] = Ie[v]−p+1.

For (ii), SAR[p] can be computed in O(logε n+ log σ) time by Lemma 4.1 in Section 4.3,

so D′[p] = D[SAR[p]] can be computed in the same time.

For (iii), it is obvious that all the factors that cover both p and q need to start at a

position less than or equal to p. Among them, the factors ending at q or to the right of q

are those that need to be reported. Formally, the set of answers is {T [G[i]] : Is[i] ≤ p

and q ≤ Ie[i]}.

This is the 2-sided range query problem. We first find the maximum index y such

that Is[y] ≤ p. Since Is is non-decreasing, the problem becomes reporting every value

i such that i ≤ y and q ≤ Ie[i]. This problem can be handled by the maximum data

structure (Section 4.3.1) for Ie .

79

Algorithm Search Pattern(st, ed)

Input: The data structure I(T), the FM-index of R and the suffix range st..ed of the
pattern P in SAR.
Output: Every factor T [j] in which P occurs.

1: Compute q = max indexD′(st, ed)
2: if D′[q] ≥ ` then
3: Report all factors that cover SAR[q]..(SAR[q] + `− 1) using Lemma 4.3
4: Search Pattern(st, q − 1)
5: Search Pattern(q + 1, ed)
6: end if

Figure 4.8: Algorithm for computing all occurrences of P in T [1..s].

Based on I(T) and the suffix range for the query pattern P , Algorithm Search Pattern

in Fig. 4.8 finds all occurrences of P in factors from T [1..s]. Basically, it checks the

occurrences {pi} of P in R based on the order of D[pi] from bigger to smaller, and stops

when D[pi] < `.

In Fig. 4.8, the value pi is implicitly represented by SAR[q] i.e. pi = SAR[q]. Let

st..ed be the suffix range of P in SAR. In line 1, the algorithm finds an index q from

the range st ≤ q ≤ ed, such that D[SAR[q]] has the biggest value. The condition

D′[q] ≥ |P |, in line 2, guarantees that SAR[q] and SAR[q] + ` − 1 are covered by at

least one factor (where ` is the length of the pattern). Since st ≤ q ≤ ed, it holds that

R[SAR[q]..(SAR[q] + `− 1)] is an occurrence of P in R. Then, the line 3 of the algorithm

reports every T [j] that contains P by using Lemma 4.3. Finally, the algorithm recursively

finds smaller values from its sub-ranges in line 4 and line 5.

4.5 The data structure X (T) and X (T) for case 2

We now turn our attention to case 2 in Section 4.2 (see Fig. 4.4 (b)). This section gives

the details of two symmetry data structures X (T) and X (T). For any given pattern P ,

X (T) (X (T)) locates every occurrence of a suffix (prefix) of P that equals a prefix (suffix)

of a factor of S. (See Fig. 4.9.). Data structure X (T) is used to find the left part of the

pattern in our searching algorithm outlined in Section 4.2.2. Data structure X (T) is

used as a component in the data structure Y(F, T) to find the right part in Section 4.6.

To simplify the presentation, we only describe X (T) below.

Our solution considers every non-empty suffix of P as a separate query pattern

80

P

Si

Figure 4.9: Data structures used in case 2

for X (T). For each suffix Q, we assume that Q is specified by the corresponding suffix

range stQ..edQ in the suffix array SAR for the reference string R, along with the length

of Q. Since T [1..s] stores all distinct factors Sij in lexicographically sorted order, all

occurrences of Q in S can be represented as a range p..q in T such that Q is a prefix of

every element in T [p], . . . , T [q]. The theorem and corollary below summarize the data

structures X (T) and X (T).

Theorem 4.1. The data structure X (T) uses O(s log n)+o(n) bits. For any suffix range

st..ed in SAR of a query pattern P , it can report the maximal range p..q such that P is

a prefix of all T [j], where p ≤ j ≤ q, in O(log log n) time.

Corollary 4.2. The data structure X (T) uses O(s log n) + o(n) bits. For any suffix

range st..ed in SAR of a query pattern P , it can report the maximal range p..q such that

P is a prefix of all T [j], where p ≤ j ≤ q, in O(log log n) time.

A simple solution for this problem is to build a trie of all the factors of S. However,

such a data structure requires too much space. In this section, we observe a mapping

between the lexicographically sorted order of the factors (stored in the array T [1..s]) and

the suffix array of reference sequence in Lemma 4.3. Based on this mapping, to find if

one pattern is a prefix of any factor, we search for the pattern in the reference suffix

array SAR, and then calculate the mapping using Lemma 4.4 in O(log logn) time to

extract all factors.

To start, we need some efficient way to check if the query pattern P is a prefix of

any specified factor T [j]. Since the factor T [j] is a substring of R, let stj ..edj denote the

corresponding suffix range of T [j] in SAR. The next lemma says how their suffix ranges

are related:

Lemma 4.3. Suppose stP ..edP is the suffix range of P in SAR. P is a prefix of T [j] if

and only if either: (1) stP < stj ≤ edP ; or (2) stP = stj and |T [j]| ≥ |P |.

81

Proof. We use the following property of the suffix array: Given a suffix array SAR,

consider two strings x and y such that |x| < |y|. Let stx and edx be the suffix range

of x in SAR. Let sty and edy be the suffix range of y. If x is prefix of y, then

stx ≤ sty ≤ edy ≤ edx. Otherwise, (stx, edx) and (sty, edy) are disjoint.

(→) By the property of the suffix array, if P is prefix of T [j], then the suffix range of

T [j] is inside the suffix range of P in SAR. That is stP ≤ stj ≤ edj ≤ edP . In addition,

since P is prefix of T [j], we have |P | ≤ |T [j]|. That means condition (1) or (2) is correct.

(←) If condition (1) is true, i.e. stP < stj ≤ edP , then edj ≤ edP . (Otherwise it

will violate the property of the suffix array.) Since P is equals the share prefixes of

all R[SAR[stP]..n] . . . R[SAR[edP]..n] and T [j] is the share prefix of R[SAR[stj]..n] . . .

R[SAR[edj]..n]. Since the range of T [j] is strictly inside the range of T [j], the length of

P is strictly less than the length of T [j]. Therefore, P is a proper prefix of T [j].

If condition (2) is true, we have stP = stj . Thus, either P is prefix of T [j] or T [j] is

prefix of P . However, we also have |T [j]| ≥ P ; therefore, P is a prefix of T [j].

For every i = 1, . . . , n, define Γ(i) = {|T [j]| : stj = i and stj ..edj is the suffix range

of T [j] in SAR}. In other words, Γ(i) is the set of lengths of factors whose suffix ranges

start at i in SAR. We use Γ(i) to map a suffix range in SAR to a range of factors in T

according to:

Lemma 4.4. Suppose stP ..edP is the suffix range of P in SAR. Then, p..q is the range

in T [1..s] such that P is a prefix of all T [j] where p ≤ j ≤ q, where p = 1+
∑stP−1

i=1 |Γ(i)|+

|{x ∈ Γ(stP) : x < |P |}| and q =
∑edP

i=1 |Γ(i)|.

Proof. By the definition of Γ(i), for every T [j] such that 1 +
∑stP−1

i=1 |Γ(i)| ≤ j ≤∑edP
i=1 |Γ(i)|, we have stP ≤ stj ≤ edP . If stP < stj ≤ edP , condition (1) in Lemma 4.3

holds. Otherwise, stP = stj . However, p = 1 +
∑stP−1

i=1 |Γ(i)|+ |{x ∈ Γ(stP) : x < |P |}|.

All the T [j]’s with length less than |P | are not included; therefore, condition (2) in

Lemma 4.3 holds.

Now, we present the data-structure X (T) based on Lemma 4.4. First, let B[1..n] be a

bit vector such that B[i] = 1 if Γ(i) is non-empty, and B[i] = 0 otherwise. Next, suppose

Γ(i) is the r-th non-empty set, and let L[r] be a y-fast trie [110] for Γ(i) (see Section 4.3).

Let C[1..s] be a bit vector such that C [
∑r

i=1 |Γ(i)|] = 1, and 0 otherwise. See Fig. 4.7 (b).

The data structure X (T) consists of three parts: (i) The rank data structure for the

82

bit vector B[1..n] (s log n+ o(n) bits); (ii) The select data structure for the bit vector

C[1..s] (s log n+ o(n) bits); and (iii) The y-fast trie data structure L[r] for Γ(i) if Γ(i) is

the r-th non-empty set (O(s log n) bits). In total, X (T) requires O(s log n) + o(n) bits.

Note that, for any `, we have

∑`
i=1 |Γ(i)| = selectC(rankB(`))

|{x ∈ Γ(`) : x < c}| = successor index(L[rankB(`)], c)

Using X (T), they can be computed in O(log log n) time. Hence, the values of p and q in

Lemma 4.4 can be computed in O(log log n) time. Theorem 4.1 follows.

4.6 The data structure Y(F, T) for case 2

This section outlines our solution for finding the occurrences for the right part of the

pattern. For each suffix P [i..`] for 1 ≤ i ≤ ` of the pattern P , we need to check if P [i..`]

is the prefix of some factor suffix in S (see Fig. 4.2.2 in Section 4.2.2).

Solving this problem is not too complicated. Since any factor suffix has a unique

RLZ factorization; given one pattern P ′, we can factorize the pattern using the reference,

i.e., RLZ(P ′|R); then, match all the factorizations generated from the pattern with

those sequences of S. However, in this problem, all the suffixes P [i..`] needs to be

matched against S. If we treat each suffix as an independent query pattern, it would

take O(`2) time to answer all the queries. In this section, we present our approach to

reuse the factorization and matching information between the suffixes to speed up the

whole process. Briefly, each suffix of P is represented by a suffix range in the factor suffix

array F . We factorize the suffixes of the pattern and match them with the database

sequences in one run from right to left using dynamic programming.

To be precise, we build a data structure Y(F, T) which for any pattern P of length `

can compute the range of P [i..`] in F for all 1 ≤ i ≤ `, i.e., the range st..ed in F where

P [i..`] is a prefix of F [st], . . . , F [ed]. Let Q[i] denote the range for each i. The following

theorem summarizes the main result:

Theorem 4.1. The data structure Y(F, T) uses O(n) + (2 + 1/ε)nHk(R) + o(n log σ) +

O(m log n) bits. It can find all suffix ranges of F that match some suffix of a query

83

pattern P of length ` in O(`(log σ/ log log n+ log log n)) time.

Si p Si q

P

Si

X Y

P

Si

X Y

Figure 4.10: Two sub-cases

First, there are two sub-cases for our pattern in this section (see Fig. 4.10): (1) the

whole suffix P [i..`] is a prefix of some factors; and (2) suffix P [i..`] contains at least

one factor inside and a tail which is a prefix of some factors. Solving the first sub-case

is straightforward (since we can use data structure X (T) in Section 4.5). The second

sub-case can be simplified based on the observation that the matched factors are unique.

The properties of the two sub-cases are summarized in the following lemma:

Lemma 4.2. For any F [i′], define the head of F [i′] to be the first factor of F [i′]. For

any 1 ≤ i ≤ `, if P [i..`] is prefix of F [st], . . . , F [ed], then P and st..ed satisfy either one

of the following properties:

• (1) P [i..`] is the prefix of the heads of all factor suffixes F [st], . . . , F [ed].

• (2) The heads of all F [st], . . . , F [ed] are prefix of P [i..`]. In fact, these heads are

the same; and equal P [i..j] where j is the biggest index such that P [i..j] is a factor

of S.

Proof. Denote P [i..`] by Pi for short. Assume Pi is the prefix of two factor suffix F [x]

and F [y]. Let X = T [x′] and Y = T [y′] are the head of F [x] and F [y] respectively.

Because x and y are symmetrical, without loss of generality, we just consider two cases

|X| = |Y | and |X| < |Y |. Assume |X| < |Y |, we have the following sub-cases: (a) X is

prefix of Y and Y is prefix of Pi. (b) X is prefix of Pi and Pi is prefix of Y . (c) Pi is

prefix of both X and Y .

We will prove that sub-cases (a) and (b) cannot be true. Therefore, only sub-case (c)

or |X| = |Y | happens which leads to only cases (1) and (2) of the Lemma.

In both sub-cases (a) and (b), factor X is a prefix of Y . Let c be the character in

position (|X|+ 1) of F [x]. Due to the maximal property of the encoding in Section 4.2.1,

X · c does not occurs in the reference R. But, Y must have some occurrence in R;

therefore, the character at position (|X|+ 1) of F [x] is different from the character at

84

the same position of F [y]. However, Pi matches the position (|X|+ 1) of both F [x] and

F [y] in these sub-cases, and therefore, it is a contradiction.

Lemma 4.2 gives an important property of maximally factored suffixes. Namely, if a

pattern matches the prefixes of two factor suffixes, the list of factors in the two prefixes

are identical, except for the last factor whose prefix matches a suffix of the pattern. In

other words, the factorization of P [i..`] only depends on the factorization of one other

suffix P [i+ a..`] (for some value a that can be computed). From this observation, we

obtain the following.

Let S be the concatenation of the factorizations of all strings in S, and let B be a

general FM-index of S (Section 4.3) that supports backward searchS(T [i], (st, ed)). The

array Q[i] can be computed as follows. Define A[i] = P [i..j], where j is the largest index

such that P [i..j] is a factor of S, if one exists, and nil otherwise. Let Y [i] be the range

st..ed in F such that P [i..`] is the prefix of all the heads of factor suffixes F [st]..F [ed], if

one exists, and nil otherwise.

Informally, each entry Y [i] store the result of the sub-case (1). Each entry A[i] of

array A stores the trace of a possible factorization for suffix P [i..`]. Then, array Q[1..`]

can be computed by dynamic programming based on the following equation:

Q[i] =

Y [i] if Y [i] 6= nil

backward searchS(A[i], Q[i+ |A[i]|]) if Y [i] = nil & A[i] 6= nil

nil otherwise

(4.1)

By Equation (4.1), Q[1..`] can be computed in three steps:

(a) Compute A[i] for i = 1 to `;

(b) Compute Y [i] for i = ` to 1; and

(c) Compute Q[i] for i = ` to 1.

Next, we present the data structure Y(F, T) and discuss steps (a)–(c). The data

structure Y(F, T) consists of:

• The bi-directional BWT (see Section 4.3.3).

• The data structure X (T) (see Section 4.5).

85

• The select data structure for a bit-vector V [1..m], defined by V [i] = 1 if the head

of F [i] differs from the head of F [i+ 1], and V [i] = 0 otherwise.

• The general FM-index B of S.

First, we discuss step (a). Fig. 4.11 gives the algorithm to compute A[1..`]. Lemma 4.3

presents the correctness of the time complexity of the algorithm.

Lemma 4.3. We can compute all A[1..`] in O(`(log σ/ log logn+ log log n)) time.

Proof. We apply the bi-directional FM-index (see Section 4.3.3) to compute A[1..`], as

shown in Fig. 4.11:

The inner loop (lines 4–7) of the algorithm extends the search sequence to the maximal

length. The outer loop (lines 3–11) assigns a value to A[i] and deletes the first character

to move to the next position. To check any factor in X (T) takes O(log log n) time. The

alphabet is of constant size, so the time for every forward search and delete back oper-

ation is O(log σ/ log log n). Thus, each A[i] is obtained in O(log σ/ log logn+ log logn)

time.

1: Let rR and rR be suffix ranges of the empty string ε in SAR and SAR.
2: j = 1
3: for i = 1 to |P | do
4: while j ≤ |P | and the last forward search succeeded do
5: rR, rR = forward search(rR, rR, P [j])
6: j = j + 1
7: end while
8: if rR is a factor according to X (T) then let A[i] = the factor found by X (T)
9: else let A[i] = nil

10: rR, rR = delete back(rR, rR)
11: end for

Figure 4.11: Algorithm to fill in the array A[1..|P |].

In step (b), we compute Y [1..`] in two phases. The first phase computes another

array Y ′[1..`], defined as follows: Y ′[i] is the range st′..ed′ in T such that P [i..`] is

the prefix of T [st′], . . . , T [ed′]. By using the X (T) data structure from Section 4.5, we

can obtain Y ′[1..`]. Then, given Y ′[1..`], the second phase computes Y [1..`] with the

select data structure for V as follows: Y [i] = (selectV (st − 1) + 1, selectV (ed)), where

(st, ed) = Y ′[i]. Finally, in step (c), we apply Equation (4.1) to compute Q[1..`]. The

total running time is therefore O(`(log σ/ log logn+ log log n)).

The data structure X (T) uses O(s log n) = O(m log n) bits. The bi-directional BWT

uses (2 + 1/ε)nHk(R) + O(n) bits. The general FM-index B requires O(m log s) =

86

O(m log n) bits. The select data structure on bit-vector V is implemented using O(m)

bits. Thus, Theorem 4.1 follows.

Suf. id Seg. suffix V BWT
F [1] 1 7 1 6
F [2] 2 1 8
F [3] 3 1 6
F [4] 4 5 1 $
F [5] 5 6 1 7 1 $
F [6] 5 0 4
F [7] 6 1 7 1 5
F [8] 6 3 0 $
F [9] 7 1 1
F [10] 8 2 1 $

(a)

F [1]F [2]F [3]F [4]F [5]F [6]F [7]F [8]F [9]F [10]
$ $ 1 1 1 1

T [1] T [5] 1

T [2] T [7]

T [3] T [1] 1

T [4] T [4] 1

T [5] T [8] 1

T [6] T [2]

T [7] T [6] 1 1

T [8] T [3]

(b)
Figure 4.12: (a) The array F [1..m] consists of the factor suffixes SipSi(p+1) . . . Sici ,
encoded as indices of T [1..s]. Also shown in the table is a bit vector V and BWT-values,
defined in Section 4.6. (b) For each factor suffix F [j], column j in M indicates which of
the factors that precede F [j] in S. To search for the pattern P = AGTA, we need to do
two 2D range queries in M : one with st = 1, ed = 2, st′ = 7, ed′ = 8 since A is a suffix
of T [5] and T [7] (i.e., a prefix in T [1..2]) and GTA is a prefix in F [7..8], and another one
with st = 4, ed = 4, st′ = 9, ed′ = 9 since AG is a suffix of T [4] (i.e., a prefix in T [4])
and TA is a prefix in F [9].

4.7 Decoding the occurrence locations

Recall that given strings S = {S1, S2, . . . St}, we decompose each Si into factors. The

substring from the start of a factor to the end of the string is called factor suffix. One

factor may occur at multiple locations of the set of strings S, but every factor suffix has

a unique location in S. All the distinct factors are represented in the array T [1..s]. The

sorted order of the factor suffixes is represented in the array F [1..m].

The result of case 1 of our algorithm is a set of factors such that P is a substring of

them. Since each factor in this set can have multiple locations in S, the first problem

reports, for an index p of T , all the locations in S that factor T [p] occurs at.

The result of case 2 is a set of factor suffixes represented in F such that a suffix of P

is the prefix of these factor suffixes. The second problem reports, for an index p of F ,

the unique location in S that the factor suffix F [p] occurs at. We design a pipeline with

3 phases to resolve cases 1 and 2.

• Phase (I): Given an index p of T , return a set of indices {p′} such that T [p] equals

the first factor of each F [p′].

• Phase (II) computes relative locations in S for a factor suffix in F :

87

Given an index p of F , return i, j such that F [p] starts at Sij in S.

• Phase (III) converts the relative locations in S to the exact location in S:

Given i, j, return 1 +
∑j−1

q=1 |Siq|, i.e., the starting location of Sij in the input string

Si.

To obtain the results for case 1, we apply all 3 phases. For case 2, we only apply

phases (II) and (III).

Phase (I) can be done using the Y(F, T) data structure in O(1 + occ) time. Phase (II)

can be done by decoding the general FM-index with Y(F, T) in O(1 + occ · logm/ log s)

time.

Phase (III) is described next. The idea is to compute the position of Sij in the string

that is the concatenation of S1, . . . , St and then convert it to the position in Si. Let

L[1..s] be an array storing the lengths of all factors in the order of occurrences in the

concatenated string, that is, the length of factor Sij is stored in entry L[
∑i−1

i′=1 ci′ + j].

Let C[0..s] be a bit vector where C[0] is set to 1, and C
[∑i

i′=1 ci′
]

are set to 1 for all

i = 1, . . . , N where ci′ is the number of factors in Si′ . (Thus, C encodes the indices in L

of heads of factors.)

To implement phase (III), we store: the prefix sum data structure for L and the select

data structure for C. The location of Sij in Si is obtained as follows. First, compute

s = selectC(i). Then, the value of 1 +
∑j−1

q=1 |Siq| is given by 1 + prefix sumL(s + j −

1)− prefix sumL(s).

Lemma 4.1. Phase (III) runs in O(occ · log log n) time and uses O(m log n) bits.

Proof. The array L has m elements and the sum of all of them is at most mn. Based

on [25], the space for the prefix sum data structure of L is O(m log(mn/m)) +O(m) =

O(m log n) bits. Because the length of C is at most m, the select data structure for C

uses at most O(m) bits. Therefore, the total size of this data structure is O(m log n)

bits.

The prefix sumL operation in L takes O(log logn) time, and the selectC operation

in C takes O(1) time.

88

89

90

Chapter 5

Conclusions

Due to the recent improvement in sequencing throughput, indexing data structures

are becoming an essential tool for DNA sequence analysis. In this thesis, we study a

few compressed indexing data structures in regard to sequence similarity in biological

sequences. The first work is a data structure with application in sequence alignment.

The succeeding works explore compressed structures for storing similar sequences with

fast pattern searching. The detail technical contributions are summarized as follows.

Our first contribution is to introduce the first full-functional compressed version of

directed acyclic word graph (DAWG). In this work, by observing a close relationship

between DAWG and existing compressed data structures namely suffix tree and FM-

index, we developed algorithms to emulate operations on DAWG using components of

the existing structures. The structure uses nHk(S) + 2nH∗0 (TS) + o(n) bits and supports

the DAWG operations in at most O(log n) time. In addition, we also applied our DAWG

data structure to speed up the computation of local alignment, a key biological sequence

similarity measurement method. Precisely, we develops an algorithm to compute the

meaningful alignment between a query and a database sequence indexed by DAWG.

Compared to previous works, this method improves the running time when the query

has many matches with the database sequence. That leads to an improvement in the

worst case bound while keeping the good average case bound in the random input case.

Our second contribution is the introduction of two new data structures for a set of

similar sequences called multi-version rank/select and multi-version FM-index. These

data structures models the changes between the sequences by storing only the inserted and

deleted characters between each pair of sequences. This scheme is an effective compression

91

when the sequences are long, and each sequence is hard to compress. The multi-version

rank/select data structure requires |S|Hk(S) + 2m(logm+ log n) + o(n log σ+m(logm+

log n)) bits, and answers the rank/select queries in O(log log σ + logm/ log logm) time

where m is the number of changes, σ is the size of the alphabet, and S is a sequence

that consists of the characters from the first sequence and the inserted characters. The

multi-version FM-index uses |S|Hk(S) +O(m log2(m+ n)) + o(n log σ) bits, and finds

pattern P in O(|P |(log log σ + logm)) time.

Our third contribution is a novel indexing data structure for RLZ compression

scheme for a set of similar sequences. Consider a set of similar sequences S, and a

reference sequence R of length n over a moderate alphabet of size σ. Let m be the

smallest possible number of substrings of R to represent S. The data structure takes(
2 + 1

ε

)
nHk(R) +O(n) +O(m log n) bits. All exact occurrences of any query pattern P

of length ` can be reported within O(` logε n+ occ · (logεσ n+ logm
logn)) time where occ is the

number of occurrences of P , and ε ≤ 1 is a constant. Using additional O(m log n log logn)

bits, the query time can be reduce to O(` log logn+ occ · (logεσ n+ logm
logn)).

Beside the specific contributions mentioned above, we also improves some existing

data structures and proposes new supporting structures for the design of the main indexes.

In section 3.4, we present a succinct version of the k-th line cut data structure. This data

structure is used to store a set of vertical lines and supports a query that finds the k-th

cut of these lines with a horizontal ray. For the regular case, we improve the space by a

factor of log n and query time by a factor of log log n; and for certain inputs, the bound

can be further reduced. In Section 4.3, we improve the bi-directional FM-index which is

used in DNA short read mapping [69] and RNA structure patterns searching [84]. We add

new operations and improve query time of existing operations from O(σ log σ/ log logn)

to O(log σ/ log logn). Section 4.3 also provides an improvement for a restricted type of

2D range query data structure when the input is asymmetry.

For future directions, there are a number of interesting questions regarding similar-

ity measurement and indexes for this type of data. First, as discussed in Chapter 4,

the empirical entropy measurement Hk which often uses for benchmarking traditional

compressed structures cannot reflect accurately the amount of redundancy in similar

sequences. Currently, each model of similarity gives rise to a different measurement and

representation method. For example, in this thesis, we work on delta compression for

92

insertions/deletions and RLZ compression. However, the indexes based on different com-

pressions are hard to compare. Therefore, more research is needed to better understand

and unify the concept of sequence similarity. Secondly, future works are required to

explore the space-time trade-off of the indexing data structure and new operations and

of the current indexes. For example, the current bounds for pattern searching in RLZ

index is very close to linear of the pattern length. However, we still do not know whether

it is possible to reduce the searching time without scarifying too much space. Besides,

multi-version FM-index and multi-version rank/select can be extend to handle sequences

with relationship that forming a evolutionary tree. Last but not least, this thesis consists

of mostly theoretical results; we wish to further work on some simplified but practical

implementations of these results.

93

94

Bibliography

[1] The 1000 Genomes Project Consortium. A map of human genome variation from
population-scale sequencing. Nature, 467(7319):1061–1073, 2010.

[2] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local
alignment search tool. Journal of molecular biology, 215(3):403–410, 1990.

[3] A. Apostolico. The myriad virtues of subword trees. 1985.

[4] A. Apostolico and S. Lonardi. Compression of biological sequences by greedy
off-line textual substitution. In DCC, pages 143–152, 2000.

[5] D. Arroyuelo and G. Navarro. Space-efficient construction of lempel-ziv compressed
text indexes. Information and Computation, 209(7):1070–1102, 2011.

[6] D. Arroyuelo, G. Navarro, and K. Sadakane. Reducing the space requirement of
LZ-index. In CPM, volume 4009 of LNCS, pages 318–329, 2006.

[7] D. Arroyuelo, G. Navarro, and K. Sadakane. Stronger lempel-ziv based compressed
text indexing. Algorithmica, 62(1-2):54–101, 2012.

[8] R.A. Baeza-Yates and G.H. Gonnet. A fast algorithm on average for all-against-all
sequence matching. In In Proc. of SPIRE’99, 1999.

[9] J. Barbay, T. Gagie, G. Navarro, and Y. Nekrich. Alphabet partitioning for
compressed rank/select and applications. Algorithms and Computation, 6507:315–
326, 2010.

[10] M. Barsky, U. Stege, and A. Thomo. A survey of practical algorithms for suffix tree
construction in external memory. Software: Practice and Experience, 40(11):965–
988, 2010.

[11] M. Barsky, U. Stege, and A. Thomo. Suffix trees for inputs larger than main
memory. Information Systems, 36(3):644–654, 2011.

[12] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. Monotone minimal perfect
hashing: searching a sorted table with O(1) accesses. In Proceedings of the twentieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’09, pages 785–794,
Philadelphia, PA, USA, 2009. Society for Industrial and Applied Mathematics.

[13] D. Belazzougui and G. Navarro. New lower and upper bounds for representing
sequences. In ESA, pages 181–192, 2012.

[14] P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R. Satti, and O. Weimann.
Random access to grammar-compressed strings. In SODA, pages 373–389, 2011.

[15] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, MT Chen, and J. Seiferas.
The smallest automaton recognizing the subwords of a text. TCS, 40:31–55, 1985.

95

[16] P. Bose, M. He, A. Maheshwari, and P. Morin. Succinct orthogonal range search
structures on a grid with applications to text indexing. In WADS, volume 5664 of
LNCS, pages 98–109, 2009.

[17] M. Burrows and D.J. Wheeler. A block-sorting lossless data compression algorithm.
Technical report, 1994.

[18] M. D. Cao, T. I. Dix, L. Allison, and C. Mears. A simple statistical algorithm for
biological sequence compression. In DCC, pages 43–52, 2007.

[19] T. M. Chan, K. G. Larsen, and M. Pătraşcu. Orthogonal range searching on the
RAM, revisited. In SoCG, pages 1–10, 2011.

[20] X. Chen, S. Kwong, and M. Li. A compression algorithm for DNA sequences and
its applications in genome comparison. In RECOMB, page 107, 2000.

[21] S. Christley, Y. Lu, C. Li, and X. Xie. Human genomes as email attachments.
Bioinformatics, 25(2):274–275, 2009.

[22] F. Claude and G. Navarro. Self-indexed text compression using straight-line
programs. In MFCS, volume 5734 of LNCS, pages 235–246, 2009.

[23] F. Claude and G. Navarro. Improved grammar-based compressed indexes. CoRR,
abs/1110.4493, 2011.

[24] M. Crochemore and R. Vérin. On compact directed acyclic word graphs. LNCS,
1261:192–211, 1997.

[25] O. Delpratt, N. Rahman, and R. Raman. Compressed prefix sums. In SOFSEM,
2007.

[26] Paul F. Dietz. Fully persistent arrays. In Proceedings of the Workshop on Algorithms
and Data Structures, WADS ’89, pages 67–74, London, UK, UK, 1989. Springer-
Verlag.

[27] Huy Hoang Do, Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung. Fast
relative Lempel-Ziv self-index for similar sequences. In FAW-AAIM, pages 291–302,
2012.

[28] D.P. Dobkin and J.I. Munro. Efficient uses of the past. In Foundations of Computer
Science, 1980., 21st Annual Symposium on, pages 200–206. IEEE, 1980.

[29] P. Elias. Efficient storage and retrieval by content and address of static files. J.
ACM, 21(2):246–260, April 1974.

[30] R.M. Fano. On the number of bits required to implement an associative memory.
Massachusetts Institute of Technology, Project MAC, 1971.

[31] M. Farach-Colton, P. Ferragina, and S. Muthukrishnan. On the sorting-complexity
of suffix tree construction. Journal of the ACM (JACM), 47(6):987–1011, 2000.

[32] J. Fayolle and M.D. Ward. Analysis of the average depth in a suffix tree under a
markov model. In International Conference on Analysis of Algorithms DMTCS
proc. AD, volume 95, page 104, 2005.

[33] P. Ferragina, T. Gagie, and G. Manzini. Lightweight data indexing and compression
in external memory. LATIN 2010: Theoretical Informatics, 6034:697–710, 2010.

96

[34] P. Ferragina, R. González, G. Navarro, and R. Venturini. Compressed text indexes:
From theory to practice. Journal of Experimental Algorithmics (JEA), 13:12, 2009.

[35] P. Ferragina and R. Grossi. The string B-tree: a new data structure for string
search in external memory and its applications. Journal of the ACM (JACM),
46(2):236–280, 1999.

[36] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
FOCS, page 390, 2000.

[37] P. Ferragina and G. Manzini. Compression boosting in optimal linear time using
the Burrows-Wheeler Transform. In SODA, pages 655–663, 2004.

[38] P. Ferragina and G. Manzini. Indexing compressed text. J. ACM, 52(4):552–581,
July 2005.

[39] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. An alphabet-friendly
FM-index. In SPIRE, pages 150–160, 2004.

[40] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representations
of sequences and full-text indexes. ACM Trans. Algorithms, 3(2):20, May 2007.

[41] J. Fischer. Wee LCP. Inf. Proc. Lett., 110:317–320, 2010.

[42] J. Fischer. Combined data structure for previous-and next-smaller-values. Theoret-
ical Computer Science, 412:2451–2456, 2011.

[43] J. Fischer and V. Heun. A new succinct representation of RMQ-information and
improvements in the enhanced suffix array. In ESCAPE, volume 4614 of LNCS,
pages 459–470, 2007.

[44] J. Fischer, V. Mäkinen, and G. Navarro. Faster entropy-bounded compressed suffix
trees. Theoretical Computer Science, 410(51):5354–5364, 2009.

[45] M. L. Fredman and D. E. Willard. Blasting through the information theoretic barrier
with fusion trees. In Proceedings of the twenty-second annual ACM symposium on
Theory of computing, STOC ’90, pages 1–7. ACM, 1990.

[46] T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, and S. Puglisi. A faster
grammar-based self-index. Language and Automata Theory and Applications,
7183:240–251, 2012.

[47] A. Golynski, J. I. Munro, and S. S. Rao. Rank/select operations on large alphabets:
a tool for text indexing. In SODA, pages 368–373, 2006.

[48] G.H. Gonnet, R.A. Baeza-Yates, and T. Snider. New indices for text: Pat trees
and pat arrays. Information retrieval: data structures and algorithms, pages 66–82,
1992.

[49] R. González and G. Navarro. Compressed text indexes with fast locate. In
Combinatorial Pattern Matching, pages 216–227. Springer, 2007.

[50] R. González and G. Navarro. Improved dynamic rank-select entropy-bound struc-
tures. LATIN 2008: Theoretical Informatics, 374-386:374–386, 2008.

[51] R. González and G. Navarro. A compressed text index on secondary memory.
Journal of Combinatorial Mathematics and Combinatorial Computing, 71, 2009.

97

[52] R. Grossi, A. Gupta, and J.S. Vitter. High-order entropy-compressed text indexes.
In ACM-SIAM, pages 841–850, 2003.

[53] R. Grossi, A. Orlandi, R. Raman, and S. S. Rao. More haste, less waste: Lowering
the redundancy in fully indexable dictionaries. In STACS, pages 517–528, 2009.

[54] R. Grossi and J.S. Vitter. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. In Proc. of the thirty-second annual ACM
symposium on Theory of computing, pages 397–406. ACM, 2000.

[55] S. Grumbach and F. Tahi. Compression of DNA sequences. In DCC, pages 340–350,
1993.

[56] D. Gusfield. Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press, 1997.

[57] W.K. Hon, R. Shah, and J.S. Vitter. Compression, indexing, and retrieval for
massive string data. In Proceedings of the 21st annual conference on Combinatorial
pattern matching, CPM’10, pages 260–274. Springer-Verlag, 2010.

[58] S. Huang, T. W. Lam, W.-K. Sung, S.-L. Tam, and S.-M. Yiu. Indexing similar
DNA sequences. In AAIM, volume 6124 of LNCS, pages 180–190, 2010.

[59] Trinh N. D. Huynh, Hon W.K., Lam T.W., and Sung W.K. Approximate string
matching using compressed suffix arrays. In In Proceedings of Symposium on
Combinatorial Pattern Matching, pages 434–444, 2004.

[60] S. Inenaga and M. Takeda. Sparse compact directed acyclic word graphs. In Proc.
Prague Stringology Conf, pages 197–211, 2006.

[61] G. Jacobson. Space-efficient static trees and graphs. In Proceedings of the 30th
Annual Symposium on Foundations of Computer Science, SFCS ’89, pages 549–554.
IEEE Computer Society, 1989.

[62] J. Jansson, K. Sadakane, and W.K. Sung. Ultra-succinct representation of ordered
trees. In ACM-SIAM, 2007.

[63] Haim Kaplan. Persistent data structures. In In Handbook on Data Structures and
Applications, Crc Press 2001, Dinesh Mehta and Sartaj Sahni (Editors) Boroujerdi,
A., And Moret, B.M.E., “Persistency In Computational Geometry” Proc. 7th
Canadian Conf. Comp. Geometry, Quebec, pages 241–246, 1995.

[64] S. Kreft and G. Navarro. LZ77-like compression with fast random access. In DCC,
pages 239–248, 2010.

[65] S. Kreft and G. Navarro. Self-indexing based on LZ77. In CPM, volume 6661,
pages 41–54, 2011.

[66] S. Kuruppu, B. Beresford-Smith, T. Conway, and J. Zobel. Repetition-based
compression of large DNA datasets. Poster at RECOMB, 2009.

[67] S. Kuruppu, S. J. Puglisi, and J. Zobel. Relative Lempel-Ziv compression of
genomes for large-scale storage and retrieval. In SPIRE, volume 6393 of LNCS,
pages 201–206, 2010.

[68] S. Kuruppu, S. J. Puglisi, and J. Zobel. Reference sequence construction for relative
compression of genomes. In SPIRE, volume 7024 of LNCS, pages 420–425, 2011.

98

[69] T. W. Lam, R. Li, A. Tam, S. Wong, E. Wu, and S. M. Yiu. High throughput
short read alignment via bi-directional BWT. In BIBM, pages 31–36. IEEE, 2009.

[70] T. W. Lam, W. K. Sung, S. L. Tam, C. K. Wong, and S. M. Yiu. Compressed
indexing and local alignment of DNA. Bioinformatics, 24(6):791–797, Mar 2008.

[71] N.J. Larsson and A. Moffat. Offline dictionary-based compression. In DCC, pages
296–305, 1999.

[72] M. Léonard, L. Mouchard, and M. Salson. On the number of elements to reorder
when updating a suffix array. Journal of Discrete Algorithms, 11:87–99, 2011.

[73] H. Li and R. Durbin. Fast and accurate long-read alignment with burrows-wheeler
transform. Bioinformatics, 26(5):589, 2010.

[74] M.G. Maaß. Average-case analysis of approximate trie search. Algorithmica,
46(3):469–491, 2006.

[75] V. Mäkinen and G. Navarro. Compressed compact suffix arrays. In CPM, pages
420–433, 2004.

[76] V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length encoding.
In Combinatorial Pattern Matching, pages 121–137. Springer, 2005.

[77] V. Mäkinen and G. Navarro. Implicit compression boosting with applications
to self-indexing. In String Processing and Information Retrieval, pages 229–241.
Springer, 2007.

[78] V. Mäkinen and G. Navarro. Implicit compression boosting with applications to
self-indexing. In SPIRE, volume 4726 of LNCS, pages 229–241, 2007.

[79] V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki. Storage and retrieval of highly
repetitive sequence collections. Journal of Computational Biology, 17(3):281–308,
2010.

[80] U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
In Proc. of ACM-SIAM. SIAM, 1990.

[81] G. Manzini. An analysis of the Burrows-Wheeler transform. J. ACM, 48(3):407–430,
May 2001.

[82] E.M. McCreight. A space-economical suffix tree construction algorithm. Journal
of the ACM (JACM), 23(2):262–272, 1976.

[83] C. Meek, J.M. Patel, and S. Kasetty. Oasis: An online and accurate technique for
local-alignment searches on biological sequences. In Proc. of the 29th Intl. VLDB
conference-Volume 29, page 921, 2003.

[84] F. Meyer, S. Kurtz, R. Backofen, S. Will, and M. Beckstette. Structator: fast index-
based search for rna sequence-structure patterns. BMC bioinformatics, 12(1):214,
2011.

[85] S. Muthukrishnan. Efficient algorithms for document retrieval problems. In SODA,
pages 657–666, 2002.

[86] G. Navarro. A guided tour to approximate string matching. CSUR, 33:88, 2001.

99

[87] G. Navarro and R. Baeza-Yates. A hybrid indexing method for approximate string
matching. Journal of Discrete Algorithms, 1:205–239, 2000.

[88] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing
Surveys, 39(1), 2007.

[89] C. Okasaki. Purely Functional Data Structures. PhD thesis, Princeton University,
1996.

[90] M. H. Overmars. Searching in the past, I, II. Technical report, University of
Utrecht Technical Reports, 1981.

[91] M. Pătraşcu. Succincter. In FOCS, pages 305–313, 2008.

[92] S.J. Puglisi, W.F. Smyth, and A.H. Turpin. A taxonomy of suffix array construction
algorithms. ACM Computing Surveys (CSUR), 39(2):4, 2007.

[93] E. Rivals, J.-P. Delahaye, M. Dauchet, and O. Delgrange. A guaranteed compression
scheme for repetitive DNA sequences. In DCC, page 453, 1996.

[94] L. Russo, G. Navarro, and A. Oliveira. Dynamic fully-compressed suffix trees.
In Paolo Ferragina and Gad Landau, editors, Combinatorial Pattern Matching,
volume 5029 of Lecture Notes in Computer Science, pages 191–203. Springer, 2008.

[95] L. Russo, G. Navarro, and A. Oliveira. Parallel and distributed compressed indexes.
In Combinatorial Pattern Matching, pages 348–360. Springer, 2010.

[96] L. M. S. Russo and A. L. Oliveira. A compressed self-index using a Ziv-Lempel
dictionary. In SPIRE, volume 4209 of LNCS, pages 163–180, 2006.

[97] Lúıs M. S. Russo, G. Navarro, and Arlindo L. Oliveira. Fully compressed suffix
trees. ACM Transactions on Algorithms, 7(4):53, 2011.

[98] W. Rytter. Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theoretical Computer Science, 302:211–222, 2003.

[99] K. Sadakane. New text indexing functionalities of the compressed suffix arrays. J.
Algorithms, 48(2):294–313, 2003.

[100] K. Sadakane. Compressed suffix trees with full functionality. Theory of Computing
Systems, 41:589–607, 2007.

[101] K. Schneeberger, J. Hagmann, S. Ossowski, N. Warthmann, S. Gesing,
O. Kohlbacher, and D. Weigel. Simultaneous alignment of short reads against
multiple genomes. Genome Biology, 10:1–12, 2009.

[102] R. Sinha, S. Puglisi, A. Moffat, and A. Turpin. Improving suffix array locality
for fast pattern matching on disk. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pages 661–672. ACM, 2008.

[103] J. Sirén, N. Välimäki, V. Mäkinen, and G. Navarro. Run-length compressed indexes
are superior for highly repetitive sequence collections. In SPIRE, volume 5280 of
LNCS, pages 164–175, 2008.

[104] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences.
J Mol Biol, 147:195–197, 1981.

100

[105] Wing-Kin Sung. Indexed approximate string matching. In Encyclopedia of Algo-
rithms. Springer, 2008.

[106] M. Thorup. On AC0 implementations of fusion trees and atomic heaps. In Proc.
of the 14th ACM-SIAM sym. on Discrete algorithms, SODA ’03, pages 699–707.
SIAM, 2003.

[107] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260,
1995.

[108] M. Vyverman, B. De Baets, V. Fack, and P. Dawyndt. Prospects and limitations
of full-text index structures in genome analysis. Nucleic acids research, 40, 2012.

[109] P. Weiner. Linear pattern matching algorithms. In IEEE SWAT, 1973.

[110] D. E. Willard. Log-logarithmic worst-case range queries are possible in space Θ(N).
Information Processing Letters, 17(2):81–84, 1983.

[111] S.S. Wong, W.K. Sung, and L. Wong. CPS-tree: A compact partitioned suffix tree
for disk-based indexing on large genome sequences. In ICDE, 2007.

[112] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory, 23(3):337–343, 1977.

[113] J. Zobel and A. Moffat. Inverted files for text search engines. ACM Comput. Surv.,
38(2), July 2006.

101

	Background
	Introduction
	Preliminaries
	Strings
	rank and select data structures
	Suffix data structures
	Compressed suffix structures

	Directed Acyclic Word Graph
	Introduction
	Basic concepts and definitions
	Suffix tree and suffix array operations
	Compressed data-structures for suffix array and suffix tree
	Directed Acyclic Word Graph

	Simulating DAWG
	Get-Source operation
	End-Set operations
	Child operation
	Parent operations

	Application of DAWG in Local alignment
	Definitions of global, local, and meaningful alignments
	Local alignment using DAWG

	Multi-version FM-index
	Introduction
	Preliminary
	Multi-version rank and select problem
	Alignment
	Data structure for multi-version rank and select
	Query algorithms

	Data structure for balance matrix
	Data structure for balance matrix

	Narrow balance matrix
	Sub-word operations in word RAM machine
	Balance matrix for case 1
	Data structure case 2

	Application on multi-version FM-index

	RLZ index for similar sequences
	Introduction
	Similar text compression methods
	Compressed indexes for similar text
	Our results

	Data structure framework
	The relative Lempel-Ziv (RLZ) compression scheme
	Pattern searching
	Overview of our main data structure

	Some useful auxiliary data structures
	rank and select and integer data structures from the literature
	Suffix array and FM-index
	Bi-directional FM-index
	A new data structure for a special case of 2D range queries

	The data structure I(T) for case 1
	The data structure X(T) and X(T) for case 2
	The data structure Y(F,T) for case 2
	Decoding the occurrence locations

	Conclusions

