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Summary

Biochemical processes in the cell are mostly facilitated by (bio)catalysts commonly

known as the enzymes. They have remarkable catalytic properties that enable a vast

variety of chemical reaction to occur at high rates and specificity. There are currently

two biomolecules that are known to act as enzymes in the cell; the protein and the RNA.

The enzymatic property of these two are achieved by their ability to fold into a huge

number of possible shape and structure.

RNA can act as a messenger which passes the information from DNA to protein.

However, some RNA do not code for protein—collectively these are called the non-

coding RNA. They instead catalyze cellular reactions much like proteins do. The base

of RNA’s catalytic ability is that RNA could self hybridize and form myriads of possible

structure. Such structural RNA can be seen in the ribosome, the organelle responsible

of translating the genetic code in the messenger RNA into proteins. Non-coding RNA

are also involved in many other important cell processes, mostly related to gene tran-

scription and translation processes, like mRNA splicing, gene expression regulation and

chromosomal regulation.

The protein is the cellular workhorse. They function as enzymes, provide structural

support, involved in cellular defense, transport biomolecules into and out of the cell,

and, regulate the production of themselves or other proteins. In order to accomplish

these functions, proteins often works together with another protein or RNA by forming

a complex.

One interesting question that would arise is how do protein and RNA recognize their

correct interaction partners? Based on our current understanding, they recognize a pat-

tern, a motif, on the surface of its partner which it can specifically recognize and bind

to. To bind those patterns, the protein or the RNA itself would have a conserved re-

gion dedicated for the recognition. We call these conserved patterns which are involved

in the interaction between two biomolecules as the interaction motif. These patterns

mostly form complementarily shaped surface areas within the two biomolecules. More

often than not, the surface would also have complementary charge/chemical proper-

ties; ensuring strong and highly specific binding. From evolutionary point of view, the
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interaction motif would be under pressure to be conserved so long as the interaction

they mediate is crucial to the organism’s survival. Such conservation would mean, given

enough data, one should be able to design a computational technique to recognize these

patterns. This thesis presents a study on the interaction motifs underlying the interac-

tion of RNA and protein with their partners and proposes several methods to discover

them.

For RNA, it is known that the structure/shape of the RNA is generally more con-

served than the sequence. One important example is the transfer RNA (tRNA) that

exists in virtually all living organisms. All tRNA unfailingly exhibit the clover-leaf

shaped structure while some of them have a low overall RNA sequence similarity (less

than 50% similarity). One way to describe the structure of RNA is by describing the

RNA’s set of base pairings, that is, its secondary structure. We present an algorithm

to infer RNA secondary structure of an RNA sequence given a known structure. We

improved the current best method in terms of computational time and space complexity.

These improvements are important as more non-coding RNA transcripts from different

organisms will be sequenced by the most recent second generation nucleic acid sequenc-

ing technology. The space complexity improvement is also important because a group of

longer non-coding RNA has also been identified. At the same time, the number of refer-

ence RNA structures in the Structural Database like the Protein Data Bank is steadily

increasing over the years and we expect more structures will be available soon given the

importance of the non-coding RNA.

On protein interaction motifs, many protein-protein interactions are known to be

mediated by the binding of two large globular domain interfaces (domain-domain inter-

actions). However, there also exists a class of transient interactions typically involving

the binding of a protein domain to a short stretch (3 to 20) of amino acid residues which

is usually characterized by a simple sequence pattern, i.e. a short linear motif (SLiM).

SLiMs are involved in important cellular processes like the signaling pathways, protein

transport and post translational modifications.

We designed two programs, D-STAR and D-SLIMMER, to mine SLiMs from the

current protein-protein interaction (PPI) data. Both programs are based on the con-

cept of correlated motif, which basically state that a pair of (interaction) motif that

enables interaction would have a significantly higher number of interaction between the
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proteins containing them. We show that our correlated motif approach, which is in-

teraction based, is more suitable for mining SLiMs from the PPI data. D-STAR was

the pioneer program which used the correlated motif concept to find SLiMs from PPI

data. We showed that D-STAR is capable to find real biologically relevant SLiMs from

the SH3 domain and TGFβ PPI data. We further improved D-STAR by designing D-

SLIMMER. D-SLIMMER uses a mix of non-linear (protein domain) and linear (SLiM)

interaction motif as correlated motifs. This important difference enables D-SLIMMER

to outperform D-STAR and other programs like MotifCluster and SLIDER.

D-SLIMMER also proposes two possible novel SLiMs related to the Sir2 and SET

domain respectively. The first SLiM is a acetylated lysine (K) motif, AK.V.I (K must

be acetylated for recognition) which is correlated with a family of deacetylase proteins,

Sir2. The second is a target of the SET methyltransferase family, SK.KK..H (the bold

K is the methylation target). Both SLiMs have important implications in Histone mod-

ification and chromosomal regulation in general and we present supporting literature

and structural evidences to show that the novel SLiMs are biologically viable. Given

the significant growth of the protein-protein interaction data in the recent years, we

expect that D-SLIMMER and other programs in this line would be of high importance

for mining more SLiMs from the PPI data.

We designed another method, SLiMDiet, which collects all possible de-novo SLiMs

from the structural data in the PDB database. We characterized 452 distinct SLiMs from

the Protein Data Bank (PDB), of which 155 are validated by either literature validations

or over-representation in high throughput PPI data. We further observed that the

lacklustre coverage of existing computational SLiM detection methods could be due to

the common assumption that most SLiMs occur outside globular domain regions. 198 of

452 SLiM that we reported are actually found on domain-domain interface; some of them

are implicated in autoimmune and neurodegenerative diseases. We suggest that these

SLiMs would be useful for designing inhibitors against the pathogenic protein complexes

underlying these diseases. Our findings show that 3D structure-based SLiM detection

algorithms can strongly complement current sequence-based SLiM mining approaches

by providing a more complete coverage on the SLiMs on domain-domain interaction

interfaces. Further experimental works would be needed to validate the correctness of

D-SLIMMER’s and SLiMDiet’s predicted SLiMs and we leave these as future works.
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Chapter 1

Introduction

All cells on this earth share a strikingly similar set of biomolecules which are the building

blocks of the process we called life. All known organisms use macromolecules like the

deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and proteins for their functioning.

They also require the use of a group of simpler, yet essential, molecules like sugars, lipid,

water, ions and some other organic compounds.

The central dogma of the Molecular Biology stated that DNA stores the genetic

information of the organism which, by a process called transcription, is transferred

into a messenger RNA and exported out of the cell’s nucleus into the cytoplasm. The

messenger RNA is then translated into its corresponding protein [12, 13]. The proteins

constitute an overwhelming majority of the working machinery that runs the cell. Years

of studies in the field have revealed a much more detailed and complicated view of the

cell’s processes. While the dogma still stands true, recent studies have elucidated that

the entities in the dogma have highly complex behaviors and functions. Most of these

emerging complexities originate from the interaction between these entities.

1.1 RNA and Protein: The two catalysts of the living cell

Almost all processes in the cell involve one or more protein(s) while some other involve

both the protein and RNA. These proteins and RNA interact with each other and form

functional complexes. They either stay complexed to remain functional (we call them

obligate complexes) or they dissociate back into their individual form after accomplishing

a certain task (called the transient complexes). An example of an RNA-protein obligate
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complex would be the ribosomal complex which contain both folded RNA and proteins.

On the other hand, a transient RNA-protein complex can be seen in the process called

aminoacylation where the aminoacyl transferase enzyme attaches a specific amino acid

to a particular tRNA based on the tRNA’s specific codon. Once the amino acid is

attached to the 3’ of the tRNA, this enzyme-RNA complex dissociates and the enzyme

finds another tRNA to work on.

On the protein side, obligate complexes can be seen in proteins that consist of mul-

tiple (possibly the same) protein chains. Each chain adopts a specific three dimensional

structure (the protein’s tertiary structure) and these individual structures are then ar-

ranged in a specific spatial configuration to form the fully functional proteins (the qua-

ternary structure). For obligate complexes, the protein must stay in its complexed form

to remain functional. Protein transient complexes, on the other hand, is ubiquitous in

processes like the signal transduction where specific pair of proteins take turns to inter-

act in a short period of time to pass specific cell signals across a cascade of interacting

proteins.

1.2 Interaction motif

One important factor that enables interactions to occur simultaneously in the confined

space within a cell is that these interactions are highly specific. To accomplish this,

there must be some way for the proteins/RNA to recognize their interaction partner.

Studies had shown that each biomolecule maintains certain patterns (commonly

named ’motifs’ in the field of Bioinformatics) that are necessary for its interaction with

its partner. These motifs are preserved throughout the evolution as long as the inter-

action is crucial for survival. Such motifs can be embedded inside the sequence of the

biomolecule (sequence motif) or the motif is embedded in the three dimensional shape of

the biomolecule (structural motif). Strictly speaking, there is no actual sequence motif.

All interaction between biomolecules take place in a 3D space hence a sequence motif in

a biomolecule is merely a type of 3D structural motif whose elements are localized to a

short consecutive region in the biomolecule’s sequence.

We propose the term ’interaction motif’ to define a general class of biomolecular

motif that is conserved for a specific purpose of maintaining one or more functional
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interaction(s) between the biomolecule and its interaction partners. This thesis aims to

study two instances of interaction motifs, one is found within the RNA and another in

the proteins.

1. The RNA structure is found to have stronger implication on the function of the

RNA as compared to its sequence content [14]. One way of representing the

structure of RNA is using its secondary structure. We consider the use of RNA

secondary structure as an interaction motif and propose an efficient algorithm

to infer the secondary structure of an unknown RNA sequence given a known

template secondary structure.

2. The second type of motif studied is one class of protein’s interaction motif called

the Short Linear Motifs (SLiMs). This type of motif is a short sequence motif

in proteins whose length is generally less than 20 amino acids. We design three

different methods to mine SLiMs, two of them from the protein-protein interaction

data and one from the protein structural data.

1.3 RNA Secondary Structure

RNA is a biopolymer of nucleotides Adenine (A), Cytosine (C), Guanine (G) and Uracil

(U). These nucleotides can form specific pairwise hydrogen bonds where A would pair

with U and C would pair with G. Furthermore, U can also pair with G, forming a wobble

pair [15]. In the cell, DNA are mostly found in pairs of complimentary sequences; each

pair forms a double helix. On the other hand, RNA are found as shorter single strands

for most of their function in the cells. Single stranded RNA adopts a specific folding;

achieved by specific base pairing between its own nucleotides.

Thanks to its ability to form different structures, RNA can function as catalysts and

regulators in nucleic acid processing in addition to its commonly known intermediary

role in DNA transcription and translation process. Collectively, they are called the non-

coding RNA (ncRNA). A study by Carninci et al showed that the number non-coding

RNA transcripts in human is estimated to be around 35000 which is of the same order

as the number of genes in human [16].

Non-coding RNA are mostly recognized by their structure rather than their nu-
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cleotide sequence [14]. This implies that sometime the sequence similarity of non-coding

RNA of similar function can be quite low yet they still adopt similar structure and per-

form similar function. In a sense, the folding pattern of an RNA sequence is a stronger

determinant of its interaction specificity with its partners. A simple comparison of all

known tRNA sequences (whose length, on average, is around 80 nucleotides (nt)) of hu-

man revealed that the sequence similarity of different tRNAs can be lower than 50% yet

the tRNAs invariably exhibit the tRNA L-shaped signature structure and all of them are

viable in their interaction with the mRNA and ribosome. To model RNA’s folding, one

can start with the RNA’s secondary structure. The latter is a listing of the nucleotide

sequence of the RNA and the base pairings that is found in the folded structure of the

RNA.

1.3.1 Current approaches on finding RNA secondary structure

As mentioned earlier, the secondary structure arises from the complimentary pairing

between the bases within the RNA sequence. Currently, few methodologies can resolve

the structure of an RNA sequence. Experimentally, the most reliable technique is to

solve the 3D coordinates of the RNA sequence in question through X-ray crystallography

or NMR spectroscopy. Most other methodologies are based on computational prediction.

There are basically two different approaches to predict the RNA secondary structure.

The first one, called the free energy approach, is based on searching for the most stable

RNA folding configuration i.e. one that has the lowest free energy. The assumption is

that the correct RNA structure would have the lowest free energy. A few prominent

example of this approach is the Minimum Free Energy Algorithm by Zuker [17–19] and

the Partition Function Algorithm by McCaskill [20].

The second approach is the Comparative approach which are further separated into

two subclasses. One uses multiple sequence alignment of related RNA sequences and

infers the secondary structure of the group based on the conservation pattern in the mul-

tiple alignment. Representatives of this subclass include Maximum Weighted Matching

(MWM) [21–23] and Stochastic Context Free Grammars (SCFGs) [24–26].

Another subclass of the comparative approach uses an existing RNA secondary struc-

ture as a template and infers the structure of another RNA sequence. Some methods
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in this line use the Arc-annotated sequence to model the RNA secondary structure.

Briefly, an arc-annotated sequence is a string with additional information indicating re-

lated pairwise positions within the string. In such model, the string would represent the

RNA’s nucleic acid sequence and the arc annotation represents the base pairing. Bafna

et al studied the problem and come up with an algorithm with O(n2m2+nm3) time and

O(n2m2) space complexity [27]. The algorithm was subsequently implemented in the

FASTR program [28] and was shown to be capable of efficiently and reliably inferring

the secondary structures of a large number of non-coding RNA in the bacterial and

archaeal genomes [28–30]. The algorithm performance was improved in [8] to O(nm3)

time and O(nm2) space.

1.3.2 Our contribution

We designed an algorithm to infer the secondary structure motif of an RNA sequence

given a known RNA structure template (i.e our method belongs to the second subclass

of the Comparative approach). This line of approach would be able to bypass the initial

alignment problem of the other subclass since we have a valid RNA structure to start

with. Our survey on the available RNA structures in the PDB database [31] shows

that there has been a steady rise in the number of resolved RNA structures over the

years. We expect that the number would increase further given the recent popularity

and importance of the non-coding RNA.

Our main contribution is on the theoretical complexity of the algorithm. Compared

with the best algorithm by Zhang [8] (running in O(nm3) time and O(nm2) space),

we improved both the asymptotic time and space complexity of the existing algorithms

by an order of magnitude. Effectively, our algorithm runs in O(n2m + nm2) time and

O(nm + m2) space. These improvements are important since many biological results

reported to date are based on the FASTR program (which is based on the O(n2m2 +

nm3) time and O(n2m2) space algorithm). By improving the time and space efficiency,

we could infer the secondary structure inference of longer RNA sequences and also

increase the throughput of computing the secondary structures of a larger number of

RNA sequences.
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1.4 Protein-Protein Interaction Motif

Interaction motifs in proteins can be of two different types. One is a non-linear, struc-

tural motif which is known as the protein domain. A protein domain is an independent

protein fold that is conserved in many different proteins. As interaction motif, a protein

domain is capable to interact with another protein domain. More recently, it is found

that protein domains can recognize a second type of interaction motif, called short lin-

ear motif (SLiM) on another protein [32–37]. The listing of all known SLiMs to date

could be found in databases like ELM [1] and MiniMotif (MnM) [2, 38]. Some existing

experimental methods to find SLiMs are site-directed mutagenesis and phage display.

These are tedious and expensive methods to apply on the whole protein interaction data

of a single organism (called the interactome). Thus it would be beneficial to have a high

confidence set of SLiMs to reduce the number of validations. To this end, a number of

computational prediction have been designed.

1.4.1 Existing computational methods on SLiM mining

As SLiMs are interaction-enabler entities, we expect them to be enriched in interacting

proteins. This observation becomes the basis of the majority of the computational

methods to mine for SLiMs. However, the main challenge of computing SLiMs lies on

its length and motif degeneracy [34]. Their length is around 3–20 residues and the

degeneracy implies that the conserved positions in these SLiMs can be quite few.

There are in general three approaches on computing the SLiMs in silico. The first

approach mines motifs from a given set of related protein sequences. The relation

among the sequences maybe established by prior biological knowledge like: sharing

similar function, similar localization to a certain cell compartment, and sharing of in-

teraction partners. Methods in this line, for example DILIMOT [39], SLiMDisc [40] and

SLiMFinder [41,42], use statistical analysis on the significance of each of their predicted

SLiM. Often, they require a dataset that is, in a sense, compact enough such that a good

number of the sequences actually have the SLiM. When there are too many spurious

sequences, the signal of the SLiM could be too weak to be detected from the noise.

The second approach is to mine SLiMs that are over-represented in the available

protein interaction data. The difference between this approach and the previous one is
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that, instead of insisting statistical significance on the motif occurrence, the approach

try to compute the statistical significance of the co-occurrence of the SLiM within a

protein with another motif in its interacting partner. The methods in this class have

two subclasses:

1. Methods finding bicliques [43] or quasi-bicliques [44] in the PPI network. These

methods fall into the class of interaction driven approach [4](where the methods

start with finding dense bipartite network structure and then mine motifs from

the proteins within the structure).

2. Methods finding SLiMs which are found within a statistically significant number

of interactions e.g D-STAR [45], MotifCluster [3] and SLIDER [4]. They are

categorized under the motif driven approaches (the methods starts from motifs and

compute the statistical significance their co-occurrence in interacting proteins).

The third approach is mining SLiMs from the available protein complex data. As

opposed to mining statistically significant motif, which may not directly translate into

biologically significant ones, given a 3D structure, we can be sure to find our target

SLiMs only from the interaction interfaces of proteins. While there have been quite a

few methods which compute and characterize domain-domain interface in the structural

data like SCOPPI [46] and SCOWLP [47], we only found one method, D-MIST [48],

which specifically target SLiMs within the interfaces.

1.4.2 Our contributions

D-STAR. We designed the first interacting-motif based program, D-STAR [45], to find

SLiMs directly from the PPI data. We showed that the interaction signal of the real

SLiMs is better than the occurrence signal using two biological datasets, the SH3 and

the TGFβ protein interaction data. More recently, D-STAR has been used in another

work to study TF-TF interaction [49]. As D-STAR was found to be less scalable to han-

dle full genomic PPI data, it was further improved by some recently published programs

like MotifCluster [3] and SLIDER [4].

D-SLIMMER. We found a significant limitation in the current interaction motif ap-

proaches. All interaction motif programs (D-STAR, MotifCluster and SLIDER) assume
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that both the interaction motifs are linear. However, based on our structural studies

(which we will discuss next), this requirement may be too strict. When a domain recog-

nizes a SLiM, the surface that binds to the SLiM is mostly constituted by residues that

are not consecutive in the domain’s sequence. Thus, we designed a new algorithm, D-

SLiMMER, which is specifically designed to find SLiMs that are recognized by certain

protein domains. The critical difference of D-SLIMMER and the existing interaction

motif based programs is that it computes the interaction density of the protein domain

and the SLiM. Specifically, D-SLIMMER finds interaction motif pairs which consist of

a non-linear motif (a protein domain) and a linear one (a SLiM).

We collected 34 reference SLiMs (taken from ELM [1] and MiniMotif database [2,38])

known to interact with 16 reference domains. For each domain, we generate two PPI

dataset, one from the BioGRID database [50] and another one from the Human Protein

Reference Database (HPRD) [9]. We show that D-SLIMMER significantly outperform

the existing programs by finding twice as many experimental SLiMs (15 SLiMs, 6 of

which are found in both datasets) from the PPI compared to the best performing pro-

gram, MotifCluster (7 SLiMs, 2 of which are found in both datasets).

We further reported two candidate novel SLiMs that is related to the Sir2 and SET

domains. The first SLiM AK.V.I is associated with the Sir2 domain which is involved

in repression of gene transcription in the telomeres, DNA repair process, cell cycle pro-

gression, chromosomal stability and cell aging [51]. One instance of our SLiM has been

experimentally verified and the SLiM also satisfies the residue preference of Sir2 as men-

tioned in [52]. The second SLiM is SK.KK..H which is associated with the SET domain.

The SET domain belongs to a family of methyl transferase enzymes which add methyl

to specific lysine (K) residues in its target proteins. Protein methylation is an impor-

tant step in epigenetic regulation of the cell e.g. the formation of Heterochromatin, X

chromosome inactivation, and other transcriptional regulatory process [53].

SLiMDiet. We present another result in which we looked into the available 3D struc-

tural data to mine for linear motif to complement our sequence based SLiM mining

methodologies. In this setup, we computed and aligned all possible linear stretch of

amino acids which are recognized by the same protein domain. Our program, named

SLiMDiet, uses a pairwise interaction interface similarity algorithm which is tailored
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specifically for Domain-SLiM interfaces. We showed that the clusters which resulted

from the use of our similarity algorithm was more accurate than those produced by the

existing algorithm.

Our method found a list of 41 literature validated SLiMs, 61 SLiMs with peptide

experiment validation and 61 high confidence novel linear motifs which are enriched in

the current high throughput sequence interaction data. SLiMDiet covers significantly

more literature SLiMs when compared to D-MIST [48]. A careful study on a few cases

further reveals biologically significant novel motifs. We also study whether the coverage

of the current PPI dataset is uniform over all known protein domains. We found that

there are a sizable number of well validated domain-SLiM interaction that is under

represented in the high throughput data, presumably because they are not amenable

to the protein interaction detection protocol. This shows that structure based SLiM

prediction is an important complement to the current sequence based SLiM mining

methods. SLiMs produced by our method would also serve as validators (since they

are all based on existing 3D structures) of predicted SLiMs from the sequence based

approaches.

1.5 Thesis organization

This thesis is organized as follows. We first provide some background information on

RNA secondary structure and protein Short Linear Motifs (SLiMs) in chapter 2. We

discuss on our results on the RNA secondary structure prediction in chapter 3. Chapter

4 would provide a description on our first PPI SLiM mining algorithms, D-STAR. The

theoretical concept and notation of the correlated motif approach are discussed. Chapter

5 is dedicated to D-SLIMMER which outperforms the accuracy of the other existing PPI

SLiM mining approaches. The SLiMDiet algorithm and its biologically significant SLiMs

are described in chapter 6. Finally, chapter 7 concludes this thesis with summary of our

results and discussion on the possible avenues for future works.
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Chapter 2

Background

This chapter aims to provide some background information on the two biomolecules that

we study in this thesis, the RNA and the Proteins. We touch on the chemical building

blocks of these molecules and how they form an ordered pattern to be recognized for

interaction with one another.

2.1 RNA: Ribonucleic acid

RNA is known to be the template with which the information on the DNA sequence of

an organism is translated into the proteins. These RNA are known as the messenger

RNA (mRNA) which are copied from a gene (a region in DNA encoding a protein’s

sequence). The process is known as the transcription of DNA. The mRNA transcripts

are then exported out of the nucleus into the cytoplasm for protein production. This

process, called the translation of the mRNA, is done by a specialized organelle (a specific

subunit with a specific function in a cell) called the ribosomes.

RNA is another member of the nucleic acids which is, like DNA, a biopolymer

consisting of nucleotides. However, RNA molecules have several differences from the

DNA:

1. It contains a ribose sugar as opposed to deoxyribose sugar in DNA. This results in

an additional hydroxyl at the sugar’s 2’ which makes RNA less stable by its being

more prone to hydrolysis and its ability to cleave the backbone.

2. RNA does not use the nucleotide Thymine, instead it uses the uracil base (the un-
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Figure 2.1: The structure of RNA and its nitrogen bases

methylated version of the thymine) which can pair with both adenine and guanine

(called the wobble pair [15]) .

3. RNA is found as shorter single strands for most of its function in the cells (as

opposed to long DNA double helix). Most of the time, RNA adopts a specific

folding much like proteins.

An illustration of the RNA nucleotide pairings, the chemical structure its sugar

and phosphate backbone is shown in Figure 2.1. RNA can form secondary structures,

by specific base pairing between its own nucleotides, forming stems (the region that

is paired in the folded RNA) and loops (the region that is unpaired). Based on their

positions, loops are further divided into hairpins, bulges, internal loop and multi loop.

These secondary structures can be seen in Figure 2.2. When unpaired bases from one

loop is paired to the bases on another loop, they form the tertiary structures shown in

Figure 2.3.

2.1.1 The non-coding RNA

RNA’s function is not limited to passing information from the DNA into the protein.

In fact, some RNA do not code for proteins but functions as enzymes and regulators in

many cell processes. This functionality comes from to RNA’s ability to adopt different

structures and its chemically more active nature [54]. This class of RNA is similarly
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Figure 2.2: The secondary structure of RNA. This figure is adapted from Molecular Biology of

the Cell 4th Ed. Copyright c⃝ 2002, Bruce Alberts, Alexander Johnson, Julian Lewis, Martin

Raff, Keith Roberts, and Peter Walter; Copyright c⃝ 1983, 1989, 1994, Bruce Alberts, Dennis

Bray, Julian Lewis, Martin Raff, Keith Roberts, and James D. Watson

Figure 2.3: The tertiary structure of RNA. This figure is adapted from Molecular Biology of

the Cell 4th Ed. Copyright c⃝ 2002, Bruce Alberts, Alexander Johnson, Julian Lewis, Martin

Raff, Keith Roberts, and Peter Walter; Copyright c⃝ 1983, 1989, 1994, Bruce Alberts, Dennis

Bray, Julian Lewis, Martin Raff, Keith Roberts, and James D. Watson

transcribed from the DNA of the organism yet it lacks of any apparent open reading

frame (ORF) thus incapable of producing functional proteins. Collectively, they are
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Figure 2.4: The secondary and tertiary structure of the transfer RNA (tRNA). The clover-

like secondary structure is conserved in all domains of life. Some of the nucleotides are post-

processed into a non-canonical nucleotides (T stands for Ribothymidine, ψ for pseudouridine

and the nucleotides with an ’m’ sign are methylated in their ribose sugar). These figures are

taken from the Wikimedia Commons.

called the non-coding RNA (ncRNA) and they have been found ubiquitously in all three

domains of life (bacteria, archaea, and eukarya).

There are already many well studied ncRNA: the ribosomal RNA (rRNA) and trans-

fer RNA (tRNA) which are involved in the protein translation machinery of the cell, the

small nuclear RNA (snRNA) which splice off the introns from nascent messenger RNA

into their mature form, and several others with important and specific regulatory roles

(reviewed in [55]). More recently, other classes of small ncRNA such as microRNAs

(miRNAs), CD box snoRNAs, small interfering RNAs (siRNAs), and small temporal

RNAs (stRNAs) have been characterized based on transcription analysis and computa-

tional screening [56–62]. More detailed information on these newer non coding RNA are

covered in excellent reviews like [63,64].

The number non-coding mRNA transcripts in human is estimated to be of the same

order as the number of genes [16]. Such vast expanse of RNA functionalities give a strong

support to an existing hypothesis that the earliest forms of life relied on RNA both to

carry genetic information and to catalyze biochemical reactions-an RNA world [65,66].
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A B

Figure 2.5: Two examples of non-coding RNA secondary structure motifs. (A) The secondary

structure of ATPC RNA motif conserved in certain cyanobacteria (RFAM ID:RF01067). We

can see from the coloring that the sequence conservation of this structure is rather weak. (B)

The structure of invasion gene associated RNA (also known as InvR). This is a small non-coding

RNA involved in regulating one of the major outer cell membrane porin proteins in Salmonella

species (RFAM ID:RF01384). The figures are taken from the RFAM database [6].

2.1.2 RNA Secondary Structure in non-coding RNA

RNA often works with proteins to form a complex called the ribonucleoproteins (RNP)

with a few exception like tRNA. Mostly, the RNA is used as the recognizing agent

and the RNP usually targets other nucleic acid molecules (e.g DNA, RNA). In the

ribosome, rRNA are bound by protein and make up the catalytic site. One part of the

rRNA recognizes the sequence preceding the first codon to be translated in the mRNA,

the latter is known as the Shine-Dalgarno box consisting of the sequence AGGAGG in

prokaryotes [67]. A similar sequence in eukaryotes is named the Kozak box [68].

It has been suggested that catalytic RNA are mostly recognized by their shape as

opposed to their sequence content. This implies that sometime the sequence similarity

of these RNA of similar function can be quite low yet they still adopt similar struc-

ture. In a sense, the folding pattern of the RNA sequence is the determinant of its
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interaction specificity with its partners. Such pattern can be captured by the RNA

secondary structure which details all base pairings in an RNA structure. Indeed, a lot

of non-coding RNA are found to have conserved secondary structures—yet have weaker

sequence conservation. Figure 2.4 and 2.5 depicts the tRNA structure and some known

RNA secondary structure listed in the RFAM database [6] respectively. Note that some

part of the secondary structure are not very conserved (indicated by the base’s color-

ing). Given the limited current knowledge on non-coding RNA and given the strong

conservation on these non-coding RNA’s structures, we would need efficient methods

for identifying RNA secondary structures given their sequence.

2.1.3 Current RNA secondary structure data

We propose a method which uses a template secondary structure to infer the secondary

structure of another RNA sequence. Hence, we would need to show that there are

enough such secondary structure to begin with. The best source of templates would

be the 3D structures of RNA stored in the PDB database. Currently there are 1744

RNA structures (818 are RNA only structures (based on PDB statistics [31]) and 926

are protein-RNA complex structures [69]). The number of just 3 years ago in 2007

was 1142 RNA structures, of which 615 are RNA only [31] and 527 are protein-RNA

structures [70], averaging about 200 new RNA structures per year. Another source

of secondary structures would be the RFAM database [6]. It contains the multiple

sequence alignment and the covariance profiles (constructed using the first subclass of

the comparative approach) of many structural RNA (including non-coding RNA). The

number of RNA families in the RFAM database is 1446. These two sources provide a

significant amount of known secondary structures that can be used for our proposed

method in the next chapter.

2.2 The proteins

Almost all function in the cells are performed by proteins. The catalyzing of various bio-

chemical reactions, the scaffolding that gives shape and mechanical strength to the cell,

the signaling process within and between the cell(s), the cascade of immune responses,

the process underlying cell adhesion and the regulation of the cell cycle are but a few
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of the essential tasks of proteins within the living cell. Proteins make up half the dry

weight of an Escherichia coli cell, whereas other macromolecules such as DNA and RNA

make up only 3% and 20%, respectively [71].

Proteins are biopolymers consisting of amino acids. There are twenty common amino

acids that are used universally by all organisms known on earth. They are Alanine (A),

Cysteine (C), Aspartate (D), Glutamate (E), Phenylalanine (F), Glycine (G), Histidine

(H), Isoleucine (I), Lysine (K), Leucine (L), Methionine (M), Asparagine (N), Proline

(P), Glutamine (Q), Arginine (R), Serine (S), Threonine (T), Valine (V), Tryptophan

(W), and Tyrosine (Y). Sometimes cysteine is found with a selenium atom, forming the

amino acid Selenocysteine (U). Different amino acids share the same backbone atoms

with one another and have different side chain atoms. (the diagram of different side

chains and the general structure of an amino acid are given in Figure 2.6).

Amino acids are linked together by a peptide bond to form functional protein chains.

These chains are also able to form local secondary structures which arise from the hy-

drogen bonding between the backbone atoms in the chain. The most commonly known

secondary structures for protein are the alpha helix and the beta sheet. These structures,

in turn, form a tertiary structure; a process which is driven by the long range residue

interactions like the hydrogen bonding, hydrophobic and electrostatic interactions. Cys-

teine residues can also form a covalent bond between their sulphur atoms—called the

disulfide bridge. The tertiary structure is fixed given a certain amino acid sequence

in the protein chain (the primary structure of the protein) and a set of environmental

parameter (like the pH and the ionic conditions). Several protein tertiary structures

can also combine together to form the quaternary structure, which is the functional

complexed form of the protein (also referred to as the biological unit of the protein).

The primary, secondary, tertiary and quaternary structures of a protein are illustrated

in Figure 2.7.

Proteins are modular by nature. A functional protein tertiary structure may con-

sist of two or more functional subunits. These subunits are sequentially conserved in

many different proteins and are capable to fold into specific independent structures.

Collectively, they are known as the protein domains. There exist quite a few databases

which list a set of known protein domains like PFAM [72], InterPro [73], PROSITE [74]

and PRODOM [75], which are derived from protein sequence data. Another group
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Figure 2.6: (A) The 20 side chains of the known amino acids. (B) The diagram illustrates the

atomic configuration of an amino acid. The same backbone atoms are used in all amino acids

and the R part is where the different side chains are attached. These figures are taken from the

Wikimedia Commons.

of databases list protein domains which are derived from the increasingly larger pro-

tein structural data in the Protein Data Bank. Examples of the latter databases are

SCOP [76] and CATH [77].

2.2.1 Protein-Protein Interaction Motif

Protein interaction plays an essential role in a vast number of known biological pro-

cesses. It is responsible in the formation of functional protein complexes (the quater-

nary structure), signal transduction, cell regulation and immune response processes.

The interaction partners of proteins are very diverse: (1) transcription factor proteins

can bind specific DNA sequences to activate or repress transcription activity of a gene,

(2) enzymes catalyzes reactions involving sugars, lipids and inorganic metal ions, (3)

protein cooperate with RNA with certain sequence and structure to form the Ribonu-

cleoprotein complexes. It was proposed that protein interaction is based on the lock

and key mechanism where the shape and the charges of the interaction interface of the
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Figure 2.7: The illustrations of protein’s primary, secondary, tertiary and quaternary structures.

This figure is taken from the Wikimedia Commons.

proteins complement each other’s [78]. Later, the mechanism is proposed to be a more

flexible induced fit between the lock and the key [79]. That is to say, the shape of the

interaction interface could change, upon binding, to accommodate each other. By our

definition, these ’locks’ and ’keys’ are interaction motifs.

From the strength of the interaction, protein interaction can be a permanent inter-

action seen in the binding of different subunits of a functional protein complex (termed

as obligate interaction). With its relatively high binding affinity, this type of interac-

tion usually lasts throughout the protein’s lifetime. The second type of interaction is

a temporary, mostly of lower affinity, interaction (termed transient interaction) which

forms and breaks in a cascade of biochemical reactions in the cell seen commonly in the

cellular signal transduction [80,81]
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A B

Figure 2.8: (A) A domain-domain interface and (B) a domain-SLiM interface. We can see

that the SLiM (shown in sticks) is in an extended linear conformation while the domain surface

”wraps” around it. We also observe that the size of the interface is significantly larger for

domain-domain as compared to domain-SLiM interface. This figure is generated by PyMOL [7].

Based on the interaction motifs, there are two general types of protein interaction:

1. Interaction between two structural, non-linear (e.g. the protein domains) interac-

tion motifs on the protein and,

2. Interaction between a non-linear interaction motif with a linear peptide interaction

motif commonly known as the Short Linear Motifs (SLiMs).

Domain-domain interaction have been shown to be an important factor in protein-

protein interactions. A number of studies had shown that domain-domain interactions

are evolutionarily conserved among different species [82, 83]. Indeed, there are many

protein-protein interaction prediction algorithm which are trained on the domain com-

position of the interacting proteins in the dataset [84–86]. Domain-domain interaction

has also been used in protein complex study and predictions [87]. Based on the domain-

domain interaction in the PPI data, Ng. et. al. created the InterDom database and

provided a useful tool for predicting pairwise protein interaction and protein complex

formation [88]. Some researchers mined the domain-domain interactions directly from

the PDB structural database [31]; the databases in this line are iPFAM [89], 3DID [90],

SCOPPI [46] and SCOWLP [47].
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2.2.2 Protein Short Linear Motifs (SLiMs)

As mentioned, domain-domain interaction is not the whole picture of protein-protein

interaction. There is another class of interaction where one of the interaction motif is

a short linear stretch of peptide. This type of interaction motif is called protein Short

Linear Motifs (SLiMs). Processes like cell signaling, post translational modification and

protein transport are found to be dependent on SLiM recognition and binding [34,36,37].

Many SLiMs are recognized by a specialized protein domain; for example, the SH2, WW,

14-3-3, FHA, and PDZ domain [32–35].

Most domain-SLiM interaction are found to form transient complexes because of

their smaller interaction interfaces [91]. Figure 2.8 gives a picture that contrasts a

domain-domain interaction interface against a domain-SLiM interaction one. The small

binding areas on the SLiMs also make them better candidates for intervention by small

molecules [35]. This makes finding SLiMs important for drug discovery as many domain-

SLiM interactions have been implicated in disease pathways. For instance, the proline-

rich motifs and glutamine-rich motifs have been linked to Alzheimer’s disease, Muscular

Dystrophy [92] and Huntington’s disease [93]. Recently, Marti et. al. reported that the

short linear sequence motif R.L.[QE] played a key role in the pathogenesis of malaria

[94, 95]. One example of a SLiM based drug is the cancer drug candidate compound

Nutilin-3, which disrupts the p53-MDM2 complex by mimicking a peptide in p53, thus

freeing p53 to respond to DNA damage [96, 97]. A few other similar examples can be

found in an excellent review by Vagner et al [98].

Experimental methods that are available for finding SLiMs are, for example, the site-

directed mutagenesis and the phage display. One can also perform experiments to solve

the 3D structure of a protein domain and a peptide containing a SLiM. However, we

note that these techniques are all low-throughput in nature and also pretty expensive.

The listing of all experimental SLiMs to date could be found in ELM [1] and MiniMotif

(MnM) database [2, 38]. Their number is around 500 based on the older ELM [1] and

Minimotif 1.0 [2] listing. The newer Minimotif 2.0 database reported to contain 5089

protein-SliMs interactions [38]—the database separately records interactions between

different proteins against the same SLiM (no number of distinct SLiMs recorded is

indicated). Unfortunately, we can only query against these SLiMs but not list them all.
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SLiMs are expected to be enriched in pair of interacting proteins since they enable

some of them. Thus, most computational methods mine SLiMs based on their over-

representation in the PPI data. The main challenge of computing SLiMs lies on its

length and motif degeneracy [34]. They can be as short as 3 amino acid residues and

rarely exceed 20 residues and these motifs have even fewer conserved positions within

them. (one SLiM recognized by the SH2 is Y.N. (Y is phosphorylated)—a length 4

SLiM with only two defined positions). We propose to find SLiMs from the PPI using

an interaction based approach—which scores a candidate SLiM based on the density of

the interaction network between the SLiM and its partners.

Another approach would be to mine SLiMs directly from the structural data; a logical

extension of finding domain-domain interaction in the structural data. Up to date, we

only found D-MIST to attempt this approach [48]. However, we observe that it relies

too little on the structural data and depends too much on the (sequential) PPI data (it

uses just one domain-SLiM structural template and enrich it using the PPI data). By

doing so, it suffers from the limitations of the current PPI data and we show that we

can outperform D-MIST by finding structural SLiMs that are inherently hard to mine

from the PPI data (details in chapter 6).

2.2.3 The availability of the PPI and Protein Structural Data

PPI data have been continuously increasing over the years; starting around year 2004.

The number of known interaction was below 5000 before 2004 and jumps to around 20000

in the early 2004. From then on, the number increases until it reaches ∼ 150000 known

interactions today [99]. More interactions are identified in high throughput experiments

(59.8%) as opposed to low throughput ones (40.2%) [50] and we expect that this would be

the norm in the future. On the structural side, the number of protein complexes solved

to date is 64353. There has been a yearly addition of 6000 structures, in average, since

2005 [31]. This wealth of data would be a good source of structural mining algorithms

like SLiMDiet (chapter 6).
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Chapter 3

Discovering Interacting Motifs in

RNA: Predicting the RNA

Secondary Structure

3.1 Introduction

Earlier, we have shown that RNA secondary structure prediction is important for de-

termining the structure of an RNA which in turn determines the functionality and

interaction of the RNA with its partners. We also briefly described the two classes of

computational methods for predicting RNA secondary structure: the Energy Minimiza-

tion and Comparative methods.

The (free) energy minimization of the RNA structure is based on some empirical

thermodynamics study on short RNA sequences [100]. The approach assumes that the

free energy of the base pairing and the loop structures within the RNA secondary struc-

tures are additive and the correct RNA structure would be the one with the minimum

free energy. A few prominent example of this approach is the Minimum Free Energy

Algorithm by Nussinov and Jacobson [101] and by Zuker et al [17–19,102]. Another ex-

ample is the Partition Function Algorithm by McCaskill [20]. As the energy parameters

and additivity assumption are approximations at best, the resulting lowest energy struc-

tures may not really be the actual folded structures. Thus, several recent approaches

tried to report several (good) structures that is within a range of free-energy values from
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the lowest [103].

The comparative methods are based on the assumption that: (1) Base pairing is the

main stabilizing force of the RNA folding; they have to be conserved for the RNA to

keep its folding configuration and, (2) furthermore, the base composition of the unpaired

RNA sequence is also important for the RNA’s interaction with its target (this inter-

action requirement cannot be easily modeled into the free energy approaches). These

conservation pressures result in specific base and base-pairing retention over the course

of the evolution. Hence, by comparing a few related RNA sequences, one can, in theory,

observe such conservation and infer their secondary structure. Based on this, algorithms

to align and compare RNA sequences and secondary structures were designed. The com-

parative approach is currently the best way to predict RNA structures [104,105].

This approach is further divided into two subclasses. The first one takes a number

of RNA sequences that are expected to share a similar structure and build a multiple se-

quence alignment from them. Based on the conservation pattern in the multiple sequence

alignment, we can compute the consensus secondary structure among the sequences. A

few examples of this subclass are the Mutual Information based algorithms [21–23] and

the Stochastic Context Free Grammar (SCFG) based algorithms [24–26]. Since there

is an evolutionary pressure to keep the base pairings in some positions, these positions

would have detectable covariations which is indicative of complimentary base pairing.

The Mutual Information based approach would utilize this observation to find base pair-

ing regions within an alignment of RNA sequences. The SCFG approach is a natural

extension of the Hidden Markov Model (HMM) used to model protein or nucleic acid

sequences. The algorithms would start from an initial alignment of RNA sequence and

its predicted consensus structure to align and predict the structure of another RNA

sequence whose structure is unknown. Like the HMM, SCFG-based algorithms rely on

a seed alignment and progressively add new sequence into the alignment.

Methods in this subclass would require a good initial alignment and this is usually

done by finding a few homolog of the target RNA (using a sequence homology program

like BLAST [106]). However, this method may give rise to an initial alignment that is

too conserved sequentially which, when learned by the model, would fail to recognize

remote structural homologs (those RNA with similar structure but low overall sequence

similarity). Moreover, when the number of homologous sequences is not large enough,
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the accuracy can be low.

When the structure of one RNA is known, the secondary structure of another sim-

ilar RNA sequence can be predicted through structural inference [8, 27]. Consider two

sequences S1 and S2 of length n and m, respectively. Assuming that the secondary

structure of S1 is known, this method infers the secondary structure of S2 by aligning

S1 and S2. This inference approach is the second subclass of the comparative approach.

The formal definition of the problem is given in Section 3.2.1. Bafna et al [27] propose

a dynamic programming solution to this problem and solve it using O(n2m2 + nm3)

time and O(n2m2) space. Bafna et al had implemented the algorithm in the FASTR

program [28]. and showed that the inference approach is capable to efficiently and reli-

ably infer structures of a large number of non-coding RNA in the bacterial and archaeal

genomes [28–30]. Since all of these results are built on the FASTR program, one could

significantly improve the efficiency and extend the usability of these programs to longer

sequences by improving the algorithm’s complexity. Zhang [8] was the first to report an

algorithm that runs in O(nm3) time and O(nm2) space.

In this work, we further improve the running time to min{O(nm2+n2m), O(nm2 log n),

O(nm3)} and at the same time bring down the space requirement to min {O(m2 +

mn), O(m2 log n + n)}. Our algorithmic improvement in the running time stems from

a dynamic programming sparsification technique. We observe that the entries in every

row in the dynamic programming tables are monotonically increasing, enabling us to

fill in a smaller number of entries in the tables without losing any information. We also

present a new recursive dynamic programming algorithm that gives a better worst-case

space requirement for the case of computing only the score of the optimal alignment of

S1 and S2. Finally, by incorporating the latter into an algorithm similar to Hirschberg’s

traceback [107] together with a simple compression method, we can recover the optimal

inferred structure from the table within the stated reduced space complexity.

3.2 Existing Method

3.2.1 Preliminaries

In our algorithm, we represent an RNA sequence and its secondary structure information

using the arc-annotated sequence [108]. Let [a..b] represents a discrete interval bounded
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by the integers a and b where a ≤ b. When a = b, the interval can be written as [a].

Consider a sequence S over a fixed alphabet Σ = {A,C,G,U}. We define S[i] to be the

ith character in S and S[i..j] to be the substring of S in positions between i and j (inclu-

sive). For any x ∈ Σ, let Complement(x) be the complementary base(s) of x according

to the Watson-Crick or Wobble (G-U) base pairing. Therefore, Complement(A) = {U},

Complement(C) = {G}, Complement(U) = {A,G}, and Complement(G) is {C,U}.

An unordered pair of positions (i, j), where i < j, indicates that S[i] and S[j] form a base

pair in the RNA structure. Such a pair is called an arc. For RNA sequences, we require

that, for any (i, j), S[j] ∈ Complement(S[i]) and vice versa. A set P of arcs is called an

arc-annotation, and the pair (S, P ) is called an arc-annotated sequence. Arc-annotated

sequences are well-studied [8,108–114] and are commonly used in computational biology

to represent the structure of RNA and protein sequences.

Since we are considering RNA secondary structures, we assume that the RNA se-

quences we are dealing with do not have any pseudoknots. The corresponding type of

arc-annotation for RNA structures without pseudoknots is the nested arc-annotation

[109, 112–114] where, for any two arcs, either one is within the other, or they are com-

pletely disjoint (∀(i1, j1), (i2, j2) ∈ P, i1 ∈ [i2..j2] ⇔ j1 ∈ [i2..j2]). For any arc u ∈ P ,

we denote ul and ur to be the left and the right endpoints of u, respectively. The size

of an arc u is denoted by |u| = ur − ul + 1. We say that position i is free if i is not an

endpoint of any arc in P . A position i is covered by an arc u if ul < i < ur and there

exists no other arc u′ such that ul < u′l < i < u′r < ur. The set of all positions covered

by u is called the arc cover of u, denoted by C(u).

Consider two arc-annotated sequences (S1, P1) and (S2, P2). Let |S1| = n and |S2| =

m where S2 is the plain sequence whose arc-annotation P2 is to be inferred. Given

two arc-annotated sequences, we can define the similarity of the sequences by aligning

the bases and the arcs in them. We need to define a scoring function for each type of

alignment. Let χ be the function to score the alignment of unpaired bases in the two

sequences where, for a, b ∈ {A,C,G,U,⊔} (’⊔’ denotes a blank character),

χ(a, b) =

 β if a = b, a ̸= ⊔, b ̸= ⊔

0 otherwise

For any pair of position (u1, u2) in S1 and (v1, v2) in S2, let δ be a scoring function for
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arc alignment whose value is defined as:

δ((S1[u1], S1[u2]), (S2[v1], S2[v2])) =



−∞ if S1[u1] /∈ Complement(S1[u2]) or

S2[v1] /∈ Complement(S2[v2]),

α1 if S1[u1] = S2[v1] and S1[u2] = S2[v2],

α2 if S1[u1] = S2[v1] and S1[u2] ̸= S2[v2] or

S1[u1] ̸= S2[v1] and S1[u2] = S2[v2],

α3 if S1[u1] ̸= S2[v1] and S1[u2] ̸= S2[v2].

β, α1, α2 and α3 are positive integer constants. Usually the parameters are set

so that β < α3 < α2 < α1 which reflects that an arc alignment (α1, α2 or α3) takes

precedence over a single base alignment (β). Moreover, an arc alignment with exactly

the same base pairs should score higher (α1) since both the bases and their arcs are

aligned. One can also have constraints on the arc width, for example, when |u| or |v| is

less than some minimum arc width parameter, we can define δ = −∞. Now given the

definition of the arc annotation and the scoring functions, we formally state our problem

as follows.

The common substructure of two arc-annotated sequences (S1, P1) and (S2, P2) is

defined as the alignment between S1 and S2 where free positions in S1 are aligned to

free positions in S2 and (both endpoints of ) arcs in P1 are aligned to (both endpoints

of) arcs in P2. The common substructure score is the weighted sum of all bases’ and

arcs’ individual alignment scores. The Weighted Largest Common Substructure(WLCS)

score is then defined as the maximum common substructure score among all possible

common substructures. The problem we address in this paper is: Given a nested arc-

annotated sequence (S1, P1) and a plain sequence S2, infer the nested arc-annotation P2

for S2 that maximizes their WLCS score.

3.2.2 Algorithm Description

This section reviews Zhang’s algorithm (presented in [8]) for inferring the RNA sec-

ondary structure P2 for S2 that maximizes the WLCS score between (S1, P1) and

(S2, P2). Recall that |S1| = n and |S2| = m. Let DP(i,i′)[j, j
′], where 1 ≤ i ≤ i′ ≤ n and

1 ≤ j ≤ j′ ≤ m, denote the optimal WLCS score between (S1[i..i
′], P1) and (S2[j..j

′], P2)
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among all possible P2. Note that DP(i,i′)[j, j
′] = 0 whenever i > i′ or j > j′. Zhang pre-

sented an algorithm to computeDP(1,n)[1,m] that runs in O(nm3) time and uses O(nm2)

space based on a two-step dynamic programming. Below are the three equations used

to compute the two steps of the algorithm. Please refer to [8] for the correctness proofs.

Lemma 3.2.1 (Lemma 4 in [8]) If i′ is free,

DP(i,i′)[j, j
′] = max


DP(i,i′−1)[j, j

′ − 1] + χ(S1[i
′], S2[j

′]),

DP(i,i′−1)[j, j
′] + χ(S1[i

′],⊔),

DP(i,i′)[j, j
′ − 1] + χ(⊔, S2[j′]).

Lemma 3.2.2 (Lemma 5 in [8]) For any arc u ∈ P1 and i < ul,

DP(i,ur)[j, j
′] = max

j−1≤j′′≤j′
{DP(i,ul−1)[j, j

′′] +DP(ul,ur)[j
′′ + 1, j′]}.

Lemma 3.2.3 (Lemma 3 in [8]) For any arc u ∈ P1,

DP(ul,ur)[j, j
′] = max



DP(ul+1,ur−1)[j+1, j′ − 1] + δ((S1[ul], S1[ur]), (S2[j], S2[j
′])),

DP(ul+1,ur−1)[j, j
′],

DP(ul,ur)[j + 1, j′],

DP(ul,ur)[j, j
′ − 1].

Below we define three operations over the whole table DP(i,i′), namely, EXTEND,

MERGE, and ARC-MATCH.

Definition 1 If i′ is free then given the table DP(i,i′−1), DP(i,i′) can be computed by us-

ing Lemma 3.2.1. We define the computation of DP(i,i′) from DP(i,i′−1) as the operation

EXTEND(DP(i,i′−1)).

Definition 2 Consider any arc s. The operation MERGE(DP(i,sl−1), DP(sl,sr)) is de-

fined to be the computation of the table DP(i,sr) given DP(i,sl−1) and DP(sl,sr) using

Lemma 3.2.2.
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Definition 3 Consider any arc s. The operation ARC-MATCH(DP(sl+1,sr−1)) is de-

fined to be the computation of the table DP(sl,sr) given DP(sl+1,sr−1) using Lemma 3.2.3.

Figure 3.1 describes the procedure WLCS(S1, P1, S2) that computes DP(1,n)[j, j
′] for

all 1 ≤ j ≤ j′ ≤ m. It is actually the algorithm in [8] expressed in terms of our defined

operations on the DP tables. Given DP(1,n)[j, j
′] and all its intermediary DP tables, an

optimal alignment can then be retrieved via the standard traceback procedure.

The time and space complexity of WLCS(S1, P1, S2) is analyzed by computing the

contributions of the operations EXTEND, ARC-MATCH, and MERGE separately. First

we analyze the time complexity of the algorithm. An EXTEND operation involves com-

puting DP(i,i′)[j, j
′] from DP(i,i′−1)[j, j

′] for all 1 ≤ j ≤ j′ ≤ m. Since there are O(m2)

(j, j′) pairs to compute, each EXTEND operation takes O(m2) time. Next, because

EXTEND is applied only on free positions, whose number is bounded by O(n), the

total cost for all EXTEND operations is O(nm2). The analysis for the ARC-MATCH

operation is similar to the one for EXTEND above except that ARC-MATCH is in-

voked only on arcs whose cardinality is also bounded by O(n) (since we assumed nested

arc-annotation). Thus, it also takes O(nm2) time for all ARC-MATCH calls. Each

call to MERGE requires computing the maximum DP(i,i′)[j, j
′] by summing the values

DP(i,i′′)[j, j
′′] and DP(i′′+1,i′)[j

′′+1, j′] where i′′ is fixed and j′′ is chosen from the range

[j..j′]. In the worst case, one would require O(m) time to compute DP(i,i′)[j, j
′] for a

particular (j, j′). This yields O(m3) time for a MERGE operation. Observing that the

algorithm only invokes MERGE on arcs, the total contribution of MERGE is O(nm3).

In total, the running time of the algorithm is O(nm3).

It is straightforward to see that EXTEND(DP(i,i′−1)) requires O(m2) space as we

only need O(m2) space to store both DP(i,i′−1) and the resulting DP(i,i′). The same

argument also applies to ARC-MATCH and MERGE (as for MERGE, we need space

for three DP tables instead of two). But since [8] uses the standard traceback for

inferring the secondary structure of the sequence S2, one must store all intermediary

DP tables computed by WLCS(S1, P1, S2). The size of the latter is bounded by O(nm2)

as the number of free positions and arcs are both bounded by O(n) and each DP table

contains O(m2) entries.
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WLCS(S1, P1, S2)

For every arc u ∈ P1 from the leftmost to the rightmost,

Step 1 : Compute DP(ul+1,ur−1) as follows.

For every i ∈ C(u) in increasing order,

• if i is free, compute DP(ul+1,i) by EXTEND(DP(ul+1,i−1)).

• if i = vl,

– recursively compute DP(vl,vr).

– compute DP(ul+1,vr) by MERGE(DP(ul+1,vl−1), DP(vl,vr)).

– i ← vr + 1

Step 2 : Compute DP(ul,ur) by ARC-MATCH(DP(ul+1,ur−1)).

Figure 3.1: The algorithm from [8] described in terms of EXTEND, MERGE and ARC-MATCH

operations

3.3 Our Algorithm’s Description and Analysis

3.3.1 Running Time Improvement through Sparsification on the Dy-

namic Programming

The previous section shows that the bottleneck of the computation of the WLCS score

is in the procedure MERGE. Here, we describe how to speed up the computation of

MERGE by taking advantage of the properties of DP(i,i′).

Observation 1 For any i ≤ i′, DP(i,i′) satisfies the following properties.

1. In every row j of DP(i,i′), the entries are monotonically increasing, i.e., DP(i,i′)[j, j
′] ≤

DP(i,i′)[j, j
′ + 1].

2. In every column j′ of DP(i,i′), the entries are monotonically decreasing, i.e., DP(i,i′)[j, j
′] ≥

DP(i,i′)[j + 1, j′].

The above observation motivates the following definition.

Definition 4 [115] For every row j of DP(i,i′), a position j∗ satisfying j ≤ j∗ ≤ m is

called a row interval point if DP(i,i′)[j, j
∗ − 1] < DP(i,i′)[j, j

∗]. (See Figure 3.2)
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Definition 5 The set of row interval points j∗ in the jth row of DP(i,i′) that satisfy

j∗ ≤ j′ is denoted by RowIP(i,i;j,j′).

Lemma 3.3.1 For every j′′ ∈ [j..j′], there exists a j∗ ∈ RowIP(i,i′;j,j′) such that DP(i,i′)

[j, j∗] = DP(i,i′)[j, j
′′] and j∗ ≤ j′′.

Proof. We know that the entries in any row of DP(i,i′) are monotonically increas-

ing. Hence each new distinct entry will be greater than the entry preceding it. By its

definition, RowIP(i,i′;j,j′) covers all distinct entries in the interval [j..j′].

Lemma 3.3.2 Let α = max{β, α1, α2, α3}. Then |RowIP(i,i′;j,j′)| ≤ min{α(i′ − i +

1), (j′ − j + 1)}.

Proof. Since the row interval points are distinct, |RowIP(i,i′;j,j′)| is clearly bounded

above by j′ − j + 1. Moreover, as we assume integer scores, the number of distinct

interval points is also bounded above by the highest score possible from aligning S1[i..i
′]

with S2[j..j
′], which is equal to min{α(i′− i+1), α(j′−j+1)}. By combining the terms,

the lemma follows.

In [8], for every (j, j′) pair where j ≤ j′, the procedure MERGE(DP(i,ul−1), DP(ul,ur))

tries every possible j′′ ∈ [(j − 1)..j′] to compute the one that maximizes the sum

DP(i,ul−1)[j, j
′′] +DP(ul,ur)[j

′′ + 1, j′]. (3.1)

Given Lemma 3.3.2, we can see that there are at most (min{α(i′ − i+ 1), (m− j + 1)})

row interval points in any row j of DP(i,i′). The following lemma implies that it is

unnecessary to consider all j′′ ∈ [(j − 1)..j′] to find the maximum of (3.1).

Lemma 3.3.3 The equation from Lemma 3.2.2 can be computed using the following

equation

DP(i,ur)[j, j
′] = max

j∗∈
{
RowIP(i,ul−1;j,j′)∪{j−1}

}{DP(i,ul−1)[j, j
∗] +DP(ul,ur)[j

∗ + 1, j′]}.

Proof. Let us separate the range [(j − 1)..j′] into [(j − 1)..(j − 1)] and [j..j′]. The

lemma can be proven if we can show that, for every j′′ ∈ [j..j′], there exists a j∗ ∈

RowIP(i,ul−1;j,j′) such that DP(i,ul−1)[j, j
′′] + DP(ul,ur)[j

′′ + 1, j′] ≤ DP(i,ul−1)[j, j
∗] +
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DP(ul,ur)[j
∗ + 1, j′]. Note that, by Lemma 3.3.1, for each j′′ ∈ [j..j′], there exists a

j∗ ∈ RowIP(i,ul−1;j,j′) such that DP(i,ul−1)[j, j
∗] = DP(i,ul−1)[j, j

′′] and j∗ ≤ j′′ ≤ j′. It

follows that,

DP(i,ul−1)[j, j
′′] +DP(ul,ur)[j

′′ + 1, j′] = DP(i,ul−1)[j, j
∗] +DP(ul,ur)[j

′′ + 1, j′]

≤ DP(i,ul−1)[j, j
∗] +DP(ul,ur)[j

∗ + 1, j′]

since by Observation 1(2), we know that DP(ul,ur)[j
∗ + 1, j′] ≥ DP(ul,ur)[j

′′ + 1, j′].

Lemma 3.3.3 speeds up the computation time ofDP(i,ur)[j, j
′] by considering only dis-

tinct values for theDP(i,ul−1)[j, j
∗] terms (by choosing j∗ from the set of RowIP(i,ul−1;j,j′).

We can still further improve the time complexity of MERGE by also considering only

distinct values of DP(ul,ur)[j
∗ + 1, j′] given a particular choice of j∗.

Let us start with the following definitions.

Definition 6 Let us define the set

S(i,i′,i′′;j,j′) =
{
j∗ ∈ RowIP(i,i′;j,j′) ∪ {j − 1} | j′ ∈ RowIP(i′+1,i′′;j∗+1,j′) ∪ {j∗}

}
,

S′
(i,i′,i′′;j,j′) =

{
RowIP(i,i′;j,j′) ∪ {j − 1}

}
− S(i,i′,i′′;j,j′),

Based on the set S and S′ above, we define the following tables,

P(i,i′,i′′)[j, j
′] =


max

j∗∈S(i,i′,i′′;j,j′)
{DP(i,i′)[j, j

∗] +DP(i′+1,i′′)[j
∗ + 1, j′]} if S(i,i′,i′′;j,j′) ̸= ∅,

0 otherwise

P ′
(i,i′,i′′)[j, j

′] =


max

j∗∈S′
(i,i′,i′′;j,j′)

{DP(i,i′)[j, j
∗] +DP(i′+1,i′′)[j

∗ + 1, j′]} if S′
(i,i′,i′′;j,j′) ̸= ∅,

0 otherwise

The set S(i,i′,i′′;j,j′) is actually a subset of the set RowIP(i,i′;j,j′) ∪{j − 1} where for

each of its element j∗, j′ is in the set RowIP(i′+1,i′′;j∗+1,j′) ∪ {j∗}. Figure 3.2 illustrates

the definition of the set S(i,i′,i′′;j,j′).

Given Definition 6 above, we can rewrite the equation in Lemma 3.3.3 into

DP(i,ur)[j, j
′] = max{P(i,ul−1,ur)[j, j

′], P ′
(i,ul−1,ur)

[j, j′]}

In the following lemma, we claim that we only need to compute the value ofDP(i,ul−1)[j, j
∗]+

DP(ul,ur)[j
∗+1, j′] over j∗ ∈ S(i,ul−1,ur;j,j′) instead of the whole RowIP(i,ul−1;j,j′) for each
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Figure 3.2: Illustration of the set S. The distinct scores in each row are highlighted in grey.

From the figure we can see that RowIP(i,i′;2,8) = {2, 3, 5, 6, 7, 8} (j=2, j′=8). Then, as defined,

we have S(i,i′,i′′;2,8) = {3, 5, 6, 7, 8} since j′=8 and, ∀j∗ ∈ {3, 5, 6, 7}, 8 ∈ RowIP(i′+1,i′′;j∗+1,8).

j′ ∈ [j..m].

Lemma 3.3.4 When P(i,ul−1,ur)[j, j
′] ≤ P ′

(i,ul−1,ur)
[j, j′], we have DP(i,ur)[j, j

′] =

DP(i,ur)[j, j
′ − 1].

Proof. Given P(i,ul−1,ur)[j, j
′] ≤ P ′

(i,ul−1,ur)
[j, j′], we haveDP(i,ur)[j, j

′] = P ′
(i,ul−1,ur)

[j, j′].

To prove this lemma we shall show thatDP(i,ur)[j, j
′−1] ≤ P ′

(i,ul−1,ur)
[j, j′] and P ′

(i,ul−1,ur)

[j, j′] ≤ DP(i,ur)[j, j
′ − 1]. The first one is trivial since, by Observation 1(1), DP(i,ur)

[j, j′−1] ≤ DP(i,ur)[j, j
′] = P ′

(i,ul−1,ur)
[j, j′]. Next we need to show that P ′

(i,ul−1,ur)
[j, j′] ≤

DP(i,ur)[j, j
′ − 1]. By its definition, ∀j∗ ∈ S′

(i,ul−1,ur;j,j′)
, we have j∗ < j′ and j′ /∈

RowIP(ul,ur;j∗+1,j′). It follows that ∀j∗ ∈ S′
(i,ul−1,ur;j,j′)

, we have DP(ul,ur)[j
∗ + 1, j′] =

DP(ul,ur)[j
∗ + 1, j′ − 1].

We further observe that

• RowIP(i,ul−1;j,j′−1)=RowIP(i,ul−1;j,j′) −{j′},

• S′
(i,ul−1,ur;j,j′)

⊆RowIP(i,ul−1;j,j′) and,

• j′ /∈ S′
(i,ul−1,ur;j,j′)

,

33



MERGE(DP(i,ul−1), DP(ul,ur))

1 Compute RowIP(i,ul−1;j,m) from DP(i,ul−1) for j = 1 · · ·m

2 Compute RowIP(ul,ur;j,m) as above

3 Set P(i,ul−1,ur)[j, j
′] = 0 for 1 ≤ j ≤ j′ ≤ m

4 for j = 1 · · ·m

5 for j∗ ∈ RowIP(i,ul−1;j,m) ∪ {j − 1}

6 for j′ ∈ RowIP(ul,ur;j∗+1,m) ∪ {j∗}

7 P(i,ul−1,ur)[j, j
′] = max{P(i,ul−1,ur)[j, j

′], DP(i,ul−1)[j, j
∗]+DP(ul,ur)[j

∗+1, j′]}

endfor

endfor

8 for j′ = j · · ·m

9 DP(i,ur)[j, j
′] = max{P(i,ul−1,ur)[j, j

′], DP(i,ur)[j, j
′ − 1]}

endfor

endfor

Figure 3.3: The pseudocode for the new MERGE operation

Thus, we can conclude that S′
(i,ul−1,ur;j,j′)

⊆ RowIP(i,ul−1;j,j′−1).

It follows that max
j∗∈S′

(i,ul−1,ur ;j,j′)
DP(i,ul−1)[j, j

∗]+DP(ul,ur)[j
∗+1, j′] ≤ max

j∗∈RowIP(i,ul−1;j,j′−1)

DP(i,ul−1)[j, j
∗] +DP(ul,ur)[j

∗ + 1, j′ − 1]. Hence, P ′
(i,ul−1,ur)

[j, j′] ≤ DP(i,i′)[j, j
′ − 1].

Corollary 3.3.5 We can compute the value of DP(i,ur)[j, j
′] in Lemma 3.2.2 using the

following equation

DP(i,ur)[j, j
′] = max{P(i,ul−1,ur)[j, j

′], DP(i,ur)[j, j
′ − 1]}.

The following lemma analyzes the complexity of the new MERGE operation.

Lemma 3.3.6 The complexity of the new MERGE operation is in O(min{α(ul−i),m}·

min{α|u|,m} ·m) +O(m2) time and O(m2) space.

Proof. By Corollary 3.3.5, we can compute DP(i,ur)[j, j
′] in constant time given

that we have already computed the value of P(i,ul−1,ur)[j, j
′]. A straightforward way to

compute P(i,ul−1,ur)[j, j
′] is, for a particular j′, compute the set S(i,ul−1,ur;j,j′) and use
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it to compute the former based on Definition 6. This would take O(min{α(ul − i), (j′ −

j)}.min{α(ur − ul), (j′ − j)}) time. Taking all possible j and j′, the running time will

be in O(min{α(ul − i), (j′ − j)}.min{α(ur − ul), (j′ − j)}m2), which is unacceptable.

To avoid the need of computing S(i,ul−1,ur;j,j′), we reverse the computational or-

dering of j∗ and j′. Instead of computing the values of j∗ for each j′; for each j∗ ∈

RowIP(i,ul−1;j,m) ∪ {j − 1}, we get the j′ ∈ RowIP(ul,ur;j∗+1,m) ∪ {j∗} and, for all

such j′, update the value of P(i,ul−1,ur)[j, j
′] whenever DP(i,ul−1)[j, j

∗]+DP(ul,ur)[j
∗+

1, j′] > P(i,ul−1,ur)[j, j
′]. Effectively, for each j′ ∈ RowIP(ul,ur;j∗+1,j′) for some j∗ ∈

RowIP(i,ul−1;j,j′), the updating will compute the maximum value of DP(i,ul−1)[j, j
∗]+

DP(ul,ur)[j
∗+1, j′] over all possible j∗. Note that we have to initialize the values in the

table P(i,ul−1,ur) to zero beforehand.

The number of such (j∗, j′) pair is bounded by |RowIP(i,ul−1;j,j′)|·|RowIP(ul,ur;j∗+1,m)|

which is less than min{α(ul − i),m} · min{α|u|,m}. For each (j∗, j′) pair, the sum

DP(i,i′)[j, j
∗] + DP(i′+1,i′′)[j

∗ + 1, j′] will only be computed once taking constant time.

As there are m rows in P(i,ul−1,ur), its time complexity will then be in O(min{α(ul −

i),m} ·min{α|u|,m} ·m).

The size of P(i,ul−1,ur) is clearly in O(m2). Once we have computed P(i,ul−1,ur), we

can compute the whole table of DP(i,ur) in O(m2) time and space. By combining the

complexity of the computation of both P(i,ul−1,ur) and DP(i,ur), the lemma follows.

A MERGE operation can then be computed using the pseudocode in Figure 3.3.

Complexity Analysis of the Improved MERGE Operation

As the sparsification technique only optimized the MERGE operations, the computa-

tional resources required by all EXTEND and ARC-MATCH operations remain the

same as in Zhang’s algorithm (Figure 3.1), i.e., O(nm2) for both time and space.

The previous section shows that each of the new MERGE(DP(i,ul−1), DP(ul,ur)) oper-

ations requires O(min{α(ul− i),m} ·min{α|u|,m} ·m)+O(m2) time and O(m2) space.

We now consider the total time complexity of all MERGE operations. Let us start

with some definitions to assist the analysis. The following is with respect to a nested

arc-annotated structure.

Definition 7 An arc u is a parent of an arc v (denoted by Parent(v)) if ul < vl <
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Figure 3.4: The core-path CP (c1) is the ordered set {c1, c2, c3}

vr < ur and there is no arc w such that ul < wl < vl < vr < wr < ur. Conversely,

v is referred to as the child of the arc u. The set of children of an arc u is denoted by

Children(u).

Definition 8 A terminal-arc is defined to be an arc that has no child. A core-arc, with

respect to an arc u, is a child of u that has the biggest size (arbitrarily breaking ties).

The latter is denoted as core-arc(u). All other children of u are named the side-arcs and

form the set side-arcs(u).

Definition 9 For any arc u ∈ P1, the core-path CP (u) is an ordered set of core-arcs

{c1, c2, . . . , cℓ}, where c1 = u and for any ci, ci+1 is core-arc(ci) (refer to Figure 3.4).

Lemma 3.3.7 For any arc u ∈ P1, the time required by the MERGE operations on

all of its children in Children(u) is in min{O(α(|u| − |c|)xum) + O(|Children(u)|m2),

O(|Children(u)|m3)} where c is the core-arc of u and xu = min{α|u|,m}.

Proof. The first observation is that MERGE only takes place when we encounter an

arc as we try to extend the current DP table. Thus, the time required for applying

MERGE on all arcs in Children(u) is (by Lemma 3.3.6)

∑
u′∈Children(u)

{
O(min{α(u′l − ul),m} ·min{α|u′|,m} ·m) +O(m2)

}
.

The sum of the second term, O(m2), yields O(|Children(u)|m2) while the sum of the

first term (O(min{α(u′l−ul),m} ·min{α|u′|,m} ·m)) gives several possible cases. When

both min{α(u′l − ul),m} = m and min{α|u′|,m} = m, the first term is equal to O(m3).

Summing over all children of u gives O(|Children(u)|m3).

Otherwise, let xu = min{α|u|,m}. We need to show that the summation of the

first term is equal to O(α(|u| − |c|)xum). It is easy to show that O(min{α(u′l − ul),m} ·
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min{α|u′|,m}·m) is bounded above byO(α|u′|xum). Summing the value over Children(u)

only gives the bound of O(α|u|xum). To have a tighter bound, we separately consider

the following cases;

1. The case when |c| ≤ |u|
2 . For this case, |u| − |c| > |u|

2 . Hence, 2(|u| − |c|) > |u| and

we have O(α|u|xum) = O(α(|u| − |c|)xum).

2. When |c| > |u|
2 , applying MERGE on DP(ul+1,cl−1) and DP(cl,cr) will take at

most O(α(|u| − |c|)xum) time since min{(cl − ul),m} ≤ min{(|u| − |c|),m} and

min{|c|,m} ≤ xu. The remaining MERGE operations on the side-arcs will require

at most O(α(|u| − |c|)xum) time too since their total size is bounded by |u| − |c|.

Hence, in this case, the total time required is also bounded by O(α(|u|− |c|)xum).

Lemma 3.3.8 The time required by all MERGE operations during the execution of

WLCS(S1, P1, S2) is in min{O(α2n2m+ nm2), O(αnm2 log n), O(nm3)}.

Proof. For convenience of notation, let us include an imaginary arc r = (0, n+1)

into P1. Since the string S1 is indexed from 1 to n, S1[0] and S1[n + 1] are undefined

and hence r will never be matched to any position in S2. Note that r is the outermost

arc and |r| = O(n). Next, we define the set Arc(y), where y ∈ P1, to be the set

{u ∈ P1|yl < ul < ur < yr}, that is, the set of all arcs in P1 whose span is within [yl..yr].

Finally, based on Lemma 3.3.7, the time complexity T (y) of all MERGE operations

during the computation of WLCS(S1[yl..yr], P1, P2) can be computed by

T (y) =
∑

u∈Arc(y)
c=core-arc(u)

min
{
O(α(|u|−|c|)xum)+O(|Children(u)|m2), O(|Children(u)|m3)

}
.

(3.2)

=
∑

u∈CP (y)

s∈side-arcs(u)

T (s) +

∑
u∈CP (y)

c=core-arc(u)

min
{
O(α(|u|−|c|)xum)+O(|Children(u)|m2), O(|Children(u)|m3)

}
.

(3.3)
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where xu = min{α|u|,m}. We can derive (3.3) from (3.2) using the fact that

Arc(y) = CP (y) ∪

 ∪
u∈CP (y)

s∈side-arcs(u)

Arc(s)

 .

Next we need to examine the following possible values of min
{
O(α(|u|−|c|)xum)+O(|Children(u)|m2),

O(|Children(u)|m3)
}
.

1. min
{
O(α(|u|−|c|)xum)+O(|Children(u)|m2), O(|Children(u)|m3)

}
= O(α(|u|−

|c|)xum)+O(|Children(u)|m2). For this case we have

T (y) =
∑

u∈CP (y)

s∈side-arcs(u)

T (s) +
∑

u∈CP (y)
c=core-arc(u)

O(α(|u|−|c|)xum)+
∑

u∈CP (y)

O(|Children(u)|m2).

≤
∑

u∈CP (y)

s∈side-arcs(u)

T (s) +
∑

u∈CP (y)
c=core-arc(u)

O(α(|u|−|c|)xym)+
∑

u∈CP (y)

O(|Children(u)|m2).

(3.4)

=
∑

u∈CP (y)

s∈side-arcs(u)

T (s)+O(α|y|xym)+
∑

u∈CP (y)

O(|Children(u)|m2). (3.5)

We derive (3.5) from (3.4) by summing the telescoping series
∑

u∈CP (y)
c=core-arc(u)

O(α(|u|−

|c|)xym). Next, depending on xy,

(a) xy = α|y|

T (y) =
∑

u∈CP (y)

s∈side-arcs(u)

T (s)+O(α2|y|2m)+
∑

u∈CP (y)

O(|Children(u)|m2).

Since |s| ≤ |y|
2 ,

∑
s |s| < |y| and the combination of the

∑
u∈CP (y)O(|Children(u)|)

in the whole recurrence tree is bounded above by the total number of arcs

in y which is O(|y|), the recurrence yields a decreasing geometric series that

sums up to O(α2|y|2m) +O(|y|m2) time complexity.

(b) xy = m

T (y) =
∑

u∈CP (y)

s∈side-arcs(u)

T (s)+O(α|y|m2)+
∑

u∈CP (y)

O(|Children(u)|m2).

As |s| ≤ |y|
2 , the depth of recursion tree for the recurrence above is at most

O(log |y|). And since
∑

s |s| < |y|, each level in the recursion tree will require

less than O(α|y|m2) time. Thus, in total, the time complexity of this case is

O(α|y|m2 log |y|)
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2. min
{
O(α(|u|−|c|)xum)+O(|Children(u)|m2), O(|Children(u)|m3)

}
= O(|Children(u)|m3).

In this case,

T (y)=
∑

u∈CP (y)

s∈side-arcs(u)

T (s) +
∑

u∈CP (y)

O(|Children(u)|m3). (3.6)

which, by the bound on number of arcs under y, yields T (y) = O(|y|m3).

When y = r, that is, |y| = O(n), we conclude that T (r) = min{O(α2n2m + nm2),

O(αnm2 log n), O(nm3)}.

Lemma 3.3.9 Using the new MERGE operation, WLCS(S1, P1, S2) runs in min{O(α2n2m+

nm2), O(αnm2 log n), O(nm3)} time and O(nm2) space.

Proof. As explained earlier, the operations EXTEND and ARC-MATCH both

require O(nm2) time while the time complexity of MERGE is min{O(α2n2m + nm2),

O(αnm2 log n), O(nm3)} by Lemma 3.3.8. Combining them will yield the time com-

plexity stated in the lemma.

For the space complexity, assuming standard traceback, we have shown that EX-

TEND and ARC-MATCH operations will need O(nm2) space. A single MERGE oper-

ation will need O(m2) space as proven in Lemma 3.3.6. As MERGE is only applied on

arcs, the total number of tables resulting from all MERGE operations is at most O(n).

The lemma thus follows.

3.3.2 Using Less Space in the Computation of the WLCS Score

In some cases, one is only interested to find the WLCS score. In this case, one would

naturally expect a more space-efficient version of the WLCS routine as it is unnecessary

to store old DP tables for traceback. Let us name such procedure as the score-only

WLCS(S1, P1, S2). It turns out that, using the original algorithm of Zhang [8], the

space complexity is still bounded by Ω(nm2) which is shown by the following lemma.

Lemma 3.3.10 Using the original algorithm in [8] combined with the newly improved

MERGE operation, the score-only WLCS(S1, P1, S2) requires Ω(nm
2) space in the worst

case.
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Figure 3.5: An example of arc-annotation on which the algorithm in [8] requires Ω(nm2) space

to compute the score-only WLCS(S1, P1, S2). Note that the post-ordering forces the algorithm

to compute the DPs for all the leaves before the internal nodes.

Proof. To compute the score-only WLCS(S1, P1, S2), we only have to provide

the space to perform the DP table operations, namely EXTEND, ARC-MATCH and

MERGE and keep only the most current tables. As explained in Section 3.2.2, computing

DP(i,i′) =EXTEND(DP(i,i′−1)) only requires O(m2) space provided that DP(i,i′−1) is

already available when EXTEND is invoked. This condition is true for EXTEND and

ARC-MATCH as we always compute DP(i,i′−1) before DP(i,i′) and DP(ul+1,ur−1) before

DP(ul,ur).

But this is not quite the same for MERGE operations. As described in [8], the routine

WLCS(S1, P1, P2) computes the DP tables according to the post-order of the nodes in

the tree representing the sequence with the secondary structure. Given the post-order,

whenever we execute MERGE (DP(i,i′−1), DP(i′,i′′)), we would have computed DP(i,i′−1)

but not DP(i′,i′′). While computing the latter, one must temporarily store DP(i,i′−1) in

order to be able to finish the execution of the MERGE operation later. Note that the

same kind of event could also take place during the computation of DP(i′,i′′). In the case

of a skewed tree (see Figure 3.5), the number of temporarily stored DP tables can reach

Ω(n)(around n
3 ). Hence, Ω(nm

2) space is required.

Space Complexity Improvement using Recursive DP on the Core Paths

This subsection will introduce a more-space efficient algorithm WLCSr(S1, P1, S2) that

computes the WLCS score using a carefully designed recursive dynamic programming

algorithm. This improved algorithm guarantees that each MERGE operation is applied

only to side-arcs where, by definition, the size of each side arc is at most half of the size
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of its parent.

WLCSr(S1, S2) first finds the largest arc u in [1..n] and processes every core-arc

c ∈ CP (u) from the innermost to the outermost. As a special case, for the innermost

core-arc t ∈ CP (u) (which is a terminal arc), DP(tl,tr) can be computed without the

MERGE operation. For the remaining core-arcs c, DP(cl,cr) will be computed using

a two-partition computation. Let c′ be core-arc(c) for an arc c. Due to the bottom-

up ordering, DP(c′l,c
′
r)

is computed before DP(cl,cr). We first compute the value of

DP(cl+1,c′l−1) (the LEFT Part phase) using EXTEND and MERGE operations. Given

DP(cl+1,c′l−1), we proceed to compute DP(c′l,cr−1)(the RIGHT Part phase). In both

phases, whenever we encounter a side-arc s, we first compute DP(sl,sr) by recursively

calling WLCSr(S1[sl..sr], P1, S2). Then we apply MERGE to combine DP(sl,sr) into

the currently computed DP table. Having completed the computation of both phases,

we apply MERGE on DP(cl+1,c′l−1) and DP(c′l,cr−1) to compute DP(cl+1,cr−1) Finally,

DP(cl,cr) is obtained by ARC-MATCH(DP(cl+1,cr−1)).

If (1, n) ∈ P1, then the largest arc u must be (1, n) and we are done. Otherwise, we

need to compute DP(1,n) using the same two-part computation technique: first compute

DP(1,ul−1), followed byDP(ul,n), and then obtainDP(1,n) by MERGE(DP(1,ul−1), DP(ul,n)).

Lemma 3.3.11 Computing WLCSr(S1, P1,S2) requires min{O(α2n2m+nm2), O(αnm2 log n),

O(nm3)} time.

Proof. As EXTEND and ARC-MATCH are still applied on free positions and arcs

in S1, respectively, the running time complexity of both operations are still the same as

the one in Lemma 3.3.9 which are both in O(nm2).

Note that MERGE is now invoked on all arcs that belong to the set side-arc(u) for

some arc u ∈ P1 and on the merging of the LEFT part and the RIGHT part of all

non-terminal arcs. Lemma 3.3.6 has showed that MERGE(DP(i,ul−1), DP(ul,ur)) takes

O(min{α(ul− i),m} ·min{α|u|,m} ·m)+O(m2) time to compute. Include an imaginary

arc r = (0, n + 1) into P1. Defining T (u) (u ∈ P1) as the total time complexity of

MERGE during the computation of WLCSr(S1[ul..ur], P1, P2), we can compute the total

time complexity of all MERGE invocation in WLCSr(S1, P1, S2) by

∗The time needed to compute DP(sl,sr) of side-arc s recursively and applying MERGE(DP(i,sl−1),

DP(sl,sr)).
†The time needed to compute the merging of the tables computed by the two partition computation
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T (r) =
∑

s∈side-arc(c)
c∈CP (r)

(
T (s) +O(min{α(|c| − |s|),m} ·min{α|s|,m} ·m) +O(m2)

)
∗ +

∑
c′=core-arc(c)

c∈CP (r)

(
O(min{α(c′l − cl),m} ·min{α(cr − c′l),m} ·m) +O(m2)

)
† (3.7)

≤
∑

s∈side-arc(c)
c∈CP (r)

T (s) +
∑

s∈side-arc(c)
c∈CP (r)

O(min{αn,m} ·min{α|s|,m} ·m) +

∑
c′=core-arc(c)

c∈CP (r)

O(min{α(c′l − cl),m} ·min{αn,m} ·m) +

∑
s∈side-arc(c)

c∈CP (r)

O(m2) +
∑

c′=core-arc(c)
c∈CP (r)

O(m2). (3.8)

= min{O(α2n2m+ nm2), O(αnm2 log n), O(nm3)}. (3.9)

To obtain (3.9) from (3.8), we make use the following facts

1.
∑

s∈side-arc(c)
c∈CP (r)

|s| =
∑

c′=core-arc(c)
c∈CP (r)

(c′l−cl) = O(n) since, in all recursion level, all side-

arcs s ∈ side-arc(c), where c ∈ CP (r), and the ranges [cl..c
′
l] are non-overlapping.

Hence, the sums of the term
∑

s∈side-arc(c)
c∈CP (r)

O(min{αn,m} · min{α|s|,m} ·m) and∑
c∈CP (r)

c′=core-arc(c)
O(min{α(c′l − cl),m} · min{αn,m} ·m) in all recursion level would

both be bounded by min{O(α2n2m), O(αnm2 log n), O(nm3)} (following a similar

proof as in Lemma 3.3.8).

2. We can see that
∑

s∈side-arc(c)
c∈CP (r)

m2 +
∑

c′=core-arc(c)
c∈CP (r)

m2 =
∑

c∈CP (r)|Children(c)|m2.

Summing the term
∑

c∈CP (r)|Children(c)|m2 over all recursion level will yield the

bound of O(nm2).

Lemma 3.3.12 WLCSr(S1, P1, S2) uses min{O(m2 log n), O(m2+αmn)}+O(n) space.

Proof.

Referring back to Lemma 3.3.10, we only need O(m2) to store the information needed

to accomplish all EXTEND and ARC-MATCH operations. As for the MERGE op-

erations, when there is no recursive call involved (the execution of MERGE on the

LEFT and RIGHT parts), the space requirement is also in O(m2). In the recursive

i.e. MERGE(DP(cl,c
′
l
−1), DP(c′

l
,cr)).
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call, we now have managed to enforce a new computational ordering instead of using

the original post-order (Lemma 3.3.10). Using the ordering given by the core-path in

the annotation tree, Lemma 3.3.11 had shown that the latter guarantees O(log n) re-

cursion level. Hence the number of temporarily stored DP (i, sl − 1) (s is a side-arc)

during the recursive call to compute DP(sl,sr) will not exceed O(log n) as well. Stor-

ing only the row interval points takes O(min{α(sl − i)m,m2}) space (by Lemma 3.3.2)

(with O(m2) time overhead for computing the set RowIP from/to the DP table). When

O(min{α(sl − i)m,m2}) = O(m2), the space complexity is O(m2 log n). For the other

case, we further claim that the space required is smaller than O(αnm) since, in each re-

cursion level x, we only storeDP(ix,slx−1) where all of the intervals [ix..slx−1] are disjoint.

Hence,
∑

xO(α(slx − ix)m) ≤ O(αnm). Combining the two cases along with the space

complexity of EXTEND, ARC-MATCH, we have min{O(m2 log n), O(m2 +αmn)}. Fi-

nally, we add the space needed to store S1,S2 and P1 which is in O(n+m). The lemma

follows.

3.3.3 Tackling Both the Time and Space Complexity Bound: a Hirschberg-

like Traceback Algorithm

The previous section presents an algorithm WLCSr(S1, P1, S2) to compute the WLCS

score in min{O(α2n2m + nm2), O(αnm2 log n), O(nm3)} time and min{O(m2 log n +

n), O(m2+αmn)} space. Following the idea of Hirschberg in [107], this section presents

an algorithm that computes the optimal WLCS alignment between (S1, P1) and (S2, P2)

among all possible P2 within the same time and space complexity. The outline of the

algorithm is as follows.

1. Divide S1 into a constant number of non-overlapping regions S11, S12, ..S1c.

2. For each region S1i, find the region S2i in S2 such that the optimal WLCS align-

ment will align S1i to S2i.

3. Recursively compute the optimal WLCS alignments between S1i and S2i for i =

1, 2, .., c.

To do the first step, since S1 is arc-annotated, we divide S1 in such a way that we do

not break any arc in P1. The solution is to divide S1 into inner and outer regions so that,
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Figure 3.6: The recursion on the partitioned continuous region by Lemma 3.3.14.

for any particular arc, both of its endpoints are in the same region. Given two points i1

and i2, 1 ≤ i1 ≤ i2 ≤ n, the inner region with respect to i1 and i2 is S1[i1..i2] and the

outer region is the concatenation of S1[1..(i1−1)] and S1[(i2+1)..n] (see Figure 3.6). The

latter is also referred as a gapped region since it has a discontinuous interval (S1[i1..i2]

is removed). Let ⋆ be a special character that represents the gap in the sequence such

that the gapped region can be written as S1[1..(i1 − 1)] ⋆ S1[(i2 + 1)..n]. If a region has

no gap in it, we say it is continuous. We shall show that we can bound the size of each

region by ϕn for some constant ϕ, 0 < ϕ < 1.

Lemma 3.3.13 Given a nested arc-annotated sequence S1 of length n, we can compute

two positions i1 and i2, 1 ≤ i1 ≤ i2 ≤ n in O(n) time and space, such that i1 and i2

satisfy

1. n
3 ≤ i2 − i1 + 1 ≤ 2n

3 ,

2. i1 and i2 are covered by the same arc u, or both are not covered by any arc,

3. i1 is either a free position or the left endpoint of some arc u′ ∈ Children(u)

4. i2 is either a free position or the right endpoint of some arc u′′ ∈ Children(u).

Proof. Define an imaginary arc r = (0, n+1). Find a pair of core-arcs c, c′ ∈ CP (r)

such that c′ = core-arc(c), |c′| ≤ 2n
3 and |c| > 2n

3 (c could be r). When c is a terminal

arc, i1 and i2 can be computed directly by choosing any two positions with distance at

least n
3 and at most 2n

3 in [cl..cr].

Otherwise, if n
3 ≤ |c

′| ≤ 2n
3 , then we can use c′l and c

′
r as i1 and i2 (they are both

covered by the core-arc c, i1 is a left endpoint, and i2 is a right endpoint). Else if
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|c′| < n
3 , we first set i1 and i2 to c′l and c′r and increase the range [i1..i2] by either

increasing i2 or decreasing i1. Let us consider the case of increasing i2. Suppose i2 + 1

is a free position, then we can increase i2 by 1. Else if i2 + 1 is a left endpoint of some

side-arc s ∈ side-arc(c), then setting i2 = sr will increase i2 by |s|. Since |s| < |c′| < n
3 ,

we guarantee that |s|+ |c′| < 2n
3 .

Within this level of granularity, we can always extend the range [i1..i2] until we have

n
3 ≤ i2 − i1 + 1 ≤ 2n

3 . At the same time, we will satisfy the remaining constraints since

i2 are chosen only from C(c) and i2 is never the left endpoint of any arc. The case

of decreasing i1 can be proven similarly. The time required by the steps above is at

most O(|CP (r)|) + O(|c|) = O(n) since finding c and c′ takes O(|CP (r)|), finding i1

and i2 takes O(|c|) time and both O(|CP (r)|) and O(|c|) are at most in O(n). All these

operations can be performed in O(n) space since we only need to store S1 and P1.

Lemma 3.3.14 We can always partition a continuous region into 2 non-overlapping

subregions, where one of them is continuous and the other is gapped, in O(n) time and

space. Every subregion’s size is at most 2
3 of the original region.

Proof. The proof of this lemma follows directly from Lemma 3.3.13.

Definition 10 Let the ancestors of an arc u be defined as the ordered set A(u) =

{u1, u2, u3, ..uℓ} where u1 = u and ui+1 = Parent(ui). Let the least common ances-

tor of the arcs u and v, denoted by LCA(u, v), be the arc w ∈ A(u) ∩A(v) where |w| is

minimal.

Lemma 3.3.15 We can always partition a gapped region into at most 4 non-overlapping

subregions in O(n) time and space. Every subregion’s size is at most 2
3 of the original

region.

Proof. Let S1[i1..i2] be a gapped region. First, as in Lemma 3.3.14, we compute

the points i′1 and i′2 such that (i2−i1+1)
3 ≤ i′2 − i′1 + 1 ≤ 2(i2−i1+1)

3 . Having computed

such i′1 and i′2, we can guarantee that the size of (i2− i1+1)− (i′2− i′1+1) ≤ 2(i2−i1+1)
3 .

Let c and c′ be the core-arcs where c′ = core-arc(c) and cl < i′1 ≤ c′l < c′r ≤ i′2 < cr.

Further, let the position of the special gap character ’⋆’ in S1[i1..i2] be denoted by g.

Based several possible position of g with respect to i′1, i
′
2 and c; we have the following

possible cases:
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• i′1 ≤ g ≤ i′2. We have two gapped subproblems, S1[i
′
1..i

′
2] with g in it and S1[i1..(i

′
1−

1)] ⋆ S1[(i
′
2 + 1)..i2].

• cl < g < i′1 or i′2 < g < cr. We will have one continuous region and two gapped

regions. It is quite clear that the continuous region is S1[i
′
1..i

′
2]. As for the gapped

region, let us first consider the case where cl < g < i′1. If g ∈ C(c), that is, g is

a free position covered by c, then we have the gapped region S1[g..(i
′
1 − 1)] and

S1[i1..(g−1)]⋆S1[(i
′
2+1)..i2]. Else, if g is covered by some arc s, that is g ∈ C(s),

we find the ancestor of s that is a child of c. The latter is the arc s′ such that

s′ ∈
(
A(s)∩Children(c)

)
. Then the first gapped region will be S1[s

′
l..(i

′
1−1)] and

the second will be S1[i1..(s
′
l − 1)] ⋆ S1[(i

′
2 +1)..i2]. The case where i′2 < g < cr can

be handled similarly.

• g < cl or g > cr. In this case, we will have one continuous region, S1[i
′
1..i

′
2]. In

addition, we have three gapped regions. Suppose g < cl. Let s be the arc that

covers the position g. Let c′′ = LCA(s, c). It is clear that c′′ is a core-arc too.

Next, let c′′′ = core-arc(c′′) and s′ be the arc in A(s)∩Children(c′′). Now, we can

readily define the gapped subproblems to compute in the next recursion. They are

S1[c
′′′
l ..(i

′
1−1)]⋆S1[(i

′
2+1)..c′′′r ], S1[s

′
l..(c

′′′
l −1)] and S1[i1..(s

′
l−1)]⋆S1[(c

′′′
r +1)..i2].

Again, the case where g > cr can be computed in the same fashion. Figure 3.7

illustrates the partitioning of S1 in the case of g > cr.

The running time of this case is still bounded by O(n) since finding i′1,i
′
2, and the

LCA of any two arcs requires at most O(n) and they are executed in constant number

of times. For the space requirement, again we will only need O(n) space to store S1 and

P1.

From Lemmas 3.3.14 and 3.3.15, we can conclude that the computational complexity

of the first step of our new algorithm is O(n). After dividing S1 into at most 4 subregions,

where each is denoted by S1i for i ≤ 4, we now need to compute the regions S2i in S2

to which the subregions S1i is aligned by the optimal WLCS alignment. To do that,

we will compute the positions in S2 where the boundaries of each region are aligned to.

We shall first show that we can compute such an alignment for one single position p in

S1. By definition, DP(i,i′)[j, j
′] is the WLCS score produced by the optimal alignment

between S1[i..i
′] and S2[j..j

′]. Now, for each entry DP(i,i′)[j, j
′] in the table DP(i,i′)
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Figure 3.7: The figure describes the partitioning of S1 for the case where g > cr. For the sake
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where i ≤ p ≤ i′, we compute the position q, j ≤ q ≤ j′, such that either p is aligned to

q or p is aligned to ’⊔’ and [i..p− 1] is aligned to [j..q]. We store such positions in a two

dimensional table Ap
(i,i′) which is defined as follows,

Definition 11 For i ≤ p ≤ i′ and j ≤ q ≤ j′, we define

Ap
(i,i′)[j, j

′] =


q if p is aligned to q by DP(i,i′)[j, j

′],

−q if p is aligned to ⊔ and [i..p−1] is aligned to [j..q] by DP(i,i′)[j, j
′],

0 if DP(i,i′)[j, j
′] does not align [i..p] to any position in S2[j..j

′].

During the computation of WLCS, the only time we will align a position p with some

position q in S2 is when we apply either χ(S1[p], S2[q]) (when p is free), δ((S1[p], ..), (S2[q], ..)),

or δ((.., S1[p]), (.., S2[q])) (when p is an arc endpoint).

Lemma 3.3.16 If p is free, then, for all 1 ≤ j ≤ j′ ≤ m, we have

Ap
(i,p)[j, j

′]=


j′ DP(i,p)[j, j

′] = DP(i,p−1)[j, j
′−1]+χ(S1[p], S2[j′]),

−j′ DP(i,p)[j, j
′] = DP(i,p−1)[j, j

′]+χ(S1[p],⊔),

Ap
(i,p)[j, j

′−1] DP(i,p)[j, j
′] = DP(i,p)[j, j

′−1]+χ(⊔, S2[j′]).

Proof. The first case in the recurrence is quite obvious since the optimal score

DP(i,p)[j, j
′] is obtained by adding DP(i,p−1)[j, j

′−1] with the score of aligning p with j′

(by applying χ(S1[p], S2[j
′])). As for the second case, we know that p is aligned to ⊔ and

the alignment between S1[i..p] and S2[j..q] is actually the alignment corresponding to

the score DP(i,p−1)[j, j
′]. By Definition 11, we have Ap

(i,p)[j, j
′] = −j′. Lastly, since the

current j′ is not included in the alignment, we must find the alignment of p in S2[j..j
′−1].
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The case when p is not free (ARC-MATCH operation) can be handled similarly. Fi-

nally, for the case of MERGE operation and the case where i < p < i′, Ap
(i,i′)[j, j

′]

is equal to Ap
(i′′,i′′′)[j

′, j′′] where we have i ≤ i′′ ≤ p ≤ i′′′ ≤ i′ and DP(i,i′)[j, j
′] =

DP(i′′,i′′′)[j
′′, j′′′]+X for X equals to some (probably empty) term that does not involve

p (e.g the χ(S1[i
′], S2[j

′]), δ((S1[i], S1[i
′]), (S2[j], S2[j

′]), or DP(i′′′+1,i′)[j
′′′ + 1, j′]).

Lemma 3.3.17 Given any position p, 1≤ p≤ n, we can compute the position q, 1≤

q ≤m, such that the optimal alignment between (S1, P1) and S2 aligns either S1[1..p]

to S2[1..q] or S1[1..p − 1] to S2[1..q], within the same time and space complexity of the

score-only WLCSr(S1, P1, S2).

Proof. Observe that the operation to compute the entry Ap
(i,i′)[j, j

′] can be done

right after the computation of one particular DP(i,i′)[j, j
′]. Next, the recurrences above

show that Ap
(i,i′)[j, j

′] can be computed in constant time. Hence computing Ap
(1,n)[1,m]

yields the same time complexity as computingDP(1,n)[1,m] which is the time complexity

of WLCSr.

As we only need to compute the value Ap
(1,n)[1,m] for each position p, we do not

have to store all of the intermediary tables Ap
(i,i′). Instead, as in the case of the score-

only WLCSr(S1, P1, S2), we only store those needed in the computation of the current

Ap
(i,i′)[j, j

′]. Consider the EXTEND operation. In computingDP(i,p) = EXTEND(DP(i,p−1)),

we need to store DP(i,p−1). Correspondingly, computing Ap
(i,p)[j, j

′] only requires the val-

ues in Ap
(i,p−1). This also applies on the ARC-MATCH and MERGE operations.

Since, at any point of time, we only need the entries Ap
(i,i′)[j, j

′] from a constant

number of (i, i′) pairs (one pair for EXTEND and ARC-MATCH, two pairs for MERGE),

we only need to store a constant number of such tables. Hence, the space needed by the

Ap
(i,i′) table is also O(m2).

Lemma 3.3.17 had shown that finding the alignment of a single point can be done

within the same time and space complexity of the score-only WLCSr(S1, P1, S2). There-

fore, as the number of points to compute is at most a constant, the complexity of the

second step of our algorithm is equal to the score-only WLCSr(S1, P1, S2)’s.

While applying the third step of our new algorithm (the recursive call) on the con-

tinuous region is straightforward, the gapped region needs a bit of extra care. In this

case, ⋆ in S1i must be aligned to ⋆ in S2i because they represent the subregion pair(s)
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computed in the other recursive call(s). To implement such constraint, we add into the

base scoring function the following cases: χ(⋆, ⋆) = 0 and χ(⋆, x) = χ(x, ⋆) = −∞ for

x ∈ {A,C,G,U,⊔}.

Lemma 3.3.18 Our new algorithm can recover the optimal WLCS alignment in

min{O(α2n2m + nm2), O(αnm2 log n), O(nm3)} time and min{O(m2 log n) , O(m2 +

αmn)}+O(n) space.

Proof. Let T (n,m) be the time complexity of the new algorithm. Let Ri denote the

ith region in S1 on which the algorithm is recursively applied. Along with each region

Ri, define R
′
i to be the region in S2 it is aligned to. We have earlier shown that the

time complexity of the first and second step of our algorithm is in min{O(α2n2m +

nm2), O(αnm2 log n), O(nm3)}, hence we can formulate the recurrence

T (n,m) =
∑
i

T (|Ri|, |R′
i|) + min{O(α2n2m+ nm2), O(αnm2 log n), O(nm3)}.

where i ≤ 4,
∑

i |Ri| = n,
∑

i |R′
i| = m and |Ri| ≤ 2

3n. By inspection, we can see that the

time complexity is still bounded by min{O(α2n2m+ nm2), O(αnm2 log n), O(nm3)}.

As for the space complexity, we define S(n,m) to denote the space requirement of

the algorithm. Each time after the second step of our algorithm, we must store the

alignments computed in the latter. This requires a dedicated O(n) space that can be

accessed from all recursive calls. Observe that the space used by the current recursive

call can be reused in the next one as we only need to store the alignments of the regions

in the current computation. Therefore,

S(n,m) = max{max
i
S(|Ri|, |R′

i|),min{O(m2 log n), O(m2 + αmn)}+O(n)}.

Again, by inspection, we show that the complexity of S(n,m) = min{O(m2 log n),

O(m2 + αmn)}+O(n). The lemma thus follows.

3.4 Conclusion

Suppose we are given two homologous RNA sequences S1 and S2 where S1 has a known

structure. This paper studies the problem of inferring the structure of S2 such that the

WLCS score between the two structures is maximized. In the case of positive integer
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scoring, we designed an algorithm using dynamic programming sparsification technique

that gives better time and space complexity than the brute-force approach.

Our techniques presented in this paper can be applied to the longest arc-preserving

common subsequence problem (LAPCS) (see, e.g., [108, 110, 112]). Assuming similar

scoring scheme (with the arc matching case removed, as the plain sequence would

have no arc), we can also solve the LAPCS(nested, plain) problem in min{O(nm2 +

n2m), O(nm2 log n), O(nm3)} time and min{O(m2 + mn), O(m2 log n + n)}, thus im-

proving the currently best known time and space complexity bounds for this problem

(O(nm3) and O(nm2), respectively [112]). Our algorithm would improve the speed and

scalability of existing programs like FASTR which in turn enable them to tackle larger

RNA and more data at a given time.

3.5 List of publication

1) Jansson J, Ng S K, Sung W K and Hugo W. A Faster and More Space-Efficient

Algorithm for Inferring Arc-Annotations of RNA Sequences Through Alignment. Initial

publication at WABI 2004, full version is published at Algorithmica, 223–245, 2006.
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Chapter 4

Discovering Interaction Motifs

from Protein-Protein Interaction

Data: D-STAR

4.1 Introduction

Some important biological processes, such as the signaling pathways, require protein-

protein interactions that are designed for fast response to stimuli. These interactions

are usually transient, easily formed and disrupted, and specific. These transient inter-

actions typically involve the binding of a protein to a short stretch (3 to 20) of amino

acid residues which is usually characterized by a simple sequence pattern, i.e. a short

linear motif (SLiM). These are short, functional regions on the proteins that conform

to particular sequence patterns; a well-known example is the set of peptides expressing

a P..P consensus (where . represent any arbitrary amino acid) that bind SH3 protein

domains [116,117].

SLiMs are discovered by biological experiments, such as site-directed mutagenesis

and phage display, which are laborious and expensive. Since SLiMs are entities enabling

protein interaction and given the availability of more protein-protein interaction data,

many researcher start to study on different ways of finding SLiMs from the PPI. Given a

set of protein-protein interaction data, binding motifs can be discovered computationally

as follows: (i) group protein sequences that interact with the same protein, and (ii)
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for each set of protein sequences grouped, extract the motifs using motif discovery

algorithms like MEME [118], Gibbs Sampler [119], PRATT [120] and TEIRESIAS [121].

For example, to computationally detect any possible motif binds by protein Crk, we

could input protein sequences interacting with Crk to motif discovery programs. The

underlying assumption is that if Crk binds its interaction partners through a SLiM,

it should be over-represented in the partners. For ease of discussion, we denote such

approach as One-To-Many (OTM) since we start with one protein to derive a group of

multiple proteins associated with it for motif extraction.

The OTM approach is effective only when the protein we start with have enough

number of interacting partners for motif extraction. In reality, many proteins have

limited interacting partners [122]. This means that for many of the proteins, the signals

from the few and short motif instances would be too weak for detection by the existing

motif discovery algorithms. The scenario is actually worse when we further consider

the high noise levels in interaction data [123] and the inherent heterogeneity of protein

interactions—not all the real interacting partners of a protein necessarily carry the same

binding motif.

Sometimes, it is possible to use some common feature of a protein groups to increase

the number of its partners for motif extraction. For example, if individual copies of

the SH3 domain bind limited protein partners, we could pool all sequences that bind

any SH3 domain proteins to increase the P..P motif’s instances for its discovery. We

denote this approach as the Many-to-Many (MTM) approach since we derived a set of

sequences for motif extraction from another set of sequences (protein group). Reiss and

Schwikowski adopted an MTM-based method with a modified Gibbs sampling algorithm

to enhance motif finding on proteins with limited binding partners and successfully

extracted more motifs than the OTM-based approaches [124]. In another work, Neduva

et. al. complement the OTM approach with MTM approach to find novel linear motif

from protein interaction data [39].

Both OTM and MTM approaches are occurrence based i.e. they rely on the significant

occurrences of the SLiMs to mine them. However, this may be problematic when the

interaction partners contain some naturally similar short regions like those found in a

protein domain or region of low complexity. A high occurrence of a SLiM within such

regions may have nothing to do with interactions since the occurrences are caused by
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Figure 4.1: A depiction of our approach for finding correlated motifs. The dotted lines indicates

the interactions between the proteins.

homology. This is the reason why OTM and MTM approaches would mask out the

domain region and regions of low complexity (as done in [39]).

In this work, we present another approach to mine SLiMs from the PPI data. We

propose that, in order to enable an interaction, both interacting proteins should have a

conserved motif associated with each other (we defined these earlier as the interaction

motifs). The interaction motifs describes specific regions within related pairs of inter-

acting proteins that directly or indirectly enable the interaction between the two. We

are interested in the case where the interacting motifs are SLiMs. The SLiMs either

bind directly or interact indirectly with each other (by being a part of a domain that

binds the other SLiM). This is reasonable because, for modular interaction domains, it

is often the subregions, rather than the entire domains, that are involved in mediating

protein-protein interactions.

Formally, suppose a set of protein-protein interactions occurs between proteins con-

taining the SLiM X and proteins containing the SLiM Y . Our approach will simul-

taneously find both motifs X and Y directly from the PPI data. The algorithm is

based on the intuition that if a set of interactions were indeed mediated by X and Y ,

those proteins containing X and Y would have significantly more interaction as opposed

to random. We termed X and Y as a correlated motif. The term ”correlated” indi-

cates that the motif pair may not necessarily be directly binding each other but their

co-occurrences in interacting sequences are significant. Our new approach offers the

53



following advantages:

1. In contrast to both OTM and MTM’s occurrence based approach, our approach is

interaction density based since we target over representation of interaction between

two candidate motif pairs. This difference is important because the motifs in a

motif pair may not by itself have significant occurrences but together they have

significant co-occurrence in interacting proteins.

2. Like the MTM approach, it increases the number of motif instances for detection.

3. By finding pairs of correlated motifs in the interaction data instead of single motifs

in protein sequence data, our approach is more stringent and hence more resilient

against noise since it is less likely for two spurious noise-induced motifs to co-

occur in the interaction data more frequently than the true ones. This affords our

program to do away with domain/low complexity masking while still retaining its

accuracy (shown in the Result section).

To model the SLiMs, we adopted the (l, d)-motif model which had been used fre-

quently to model motifs in biological sequences thanks to its simplicity [125–130]. In

the (l, d)-motif model, the actual motif and motif instances are strings of length l and

each instance differs by no more than d mismatches from the actual motif. Thus any

two motif instances would have at most 2d mismatches. Consequently, a set of very

similar substrings can be modeled as a (l, d) motif with a small d while a more diverse

substring set need to be modeled with a larger d. We then formulated our approach as

an (l, d)-motif pair finding problem, and presented an exact algorithm, D-MOTIF, as

well as its approximation algorithm, D-STAR to solve the problem.

Our benchmark analysis shows that D-STAR’s performance is comparable to D-

MOTIF’s with a substantially shorter running time. Thus, in evaluation experiments, we

compare only D-STAR with other existing algorithms so that we can run extensive tests

on both simulated and real biological datasets. The results confirm that the correlated

motif approach is more robust than OTM and MTM in extracting motifs from sparse

but noisy interaction data.

Evaluation on real biological datasets further demonstrates that our D-STAR al-

gorithm is able to extract correlated motifs that are biologically relevant. On a SH3
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domain interaction dataset [116], D-STAR extracted P..P.[KR] and G..P.NY as corre-

lated motifs; the two motifs were subsequently validated to actual interacting interfaces

in the structural data of SH3 domain and its ligand (see Figure 4.10). P..P.[KR] is known

as the SH3 binding motif class 2 (as defined in the ELM [1]). D-STAR also extracted

the SLiM [KR]..P..P, the SH3 binding motif class 1, that was not detected by any ex-

isting algorithms tested in this study(see Figure 4.4.2 and Table 4.4.2). Application of

D-STAR on the TGFβ signaling pathway [131] extracted correlated motifs that mapped

to putative phosphorylation sites and kinase subregions in proteins respectively. Our

results are published in [45].

4.2 Related works

There are existing works [84,132–134] that also find over-represented pairs of co-occurring

sequence patterns from protein-protein interaction data, but most focused on discovering

interaction correlations between existing protein domains like those in Pfam, InterPro

and Prosite. These methods are also geared towards finding novel interactions, not novel

motifs.

For SLiMS, currently only about 200 SLiMs out of some few thousands that possi-

bly exist [34] have been listed in public databases (e.g ELM [1]). The correlated motif

approach outlined in this work is a de-novo motif finding method which can poten-

tially discover novel motifs as well as their correlations from the increasingly abundant

protein interaction data. Our algorithms can also be applied on biological pathways

or protein networks directly to detect the most significant co-occurring motif pairs in

these pathways. Such functionality is important for studying pathways known to be

mediated by recurring domains and motifs, such as those found in the various signaling

pathways [91,135].

4.3 Methods

4.3.1 Preliminaries

Let s = a1a2a3..an be a length-n protein sequence defined over the alphabet Σ of 20

amino acids, and s[u, v] as the substring of the string s starting at position u up to
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position v. When the substring’s length l is fixed, we simply write s[u] for s[u, u+ l−1].

We will call such a substring the l-substring at position u.

The (l, d)-motif finding problem

The definition of (l, d)-motif was originally proposed in [125] to model motifs in bio-

logical sequences. Consider a set S = {s1, s2, s3..., st} of t protein sequences of length

n. A length-l pattern p is an (l, d)-motif in S′ ⊆ S if all sequences si ∈ S′ have

at least one l-substring si[u] which differs from p by at most d mismatches. Such

si[u]’s are termed as the instances of p. In their work, Pevzner et. al. [125] com-

puted for the (l, d)-motif p that has at least one instance in each sequence in S. In

our work, it is important to find motifs from a significantly large subset S′ of S since,

in some case, there is no guarantee that every input sequence would contain an in-

stance of the motif. In other words, for a given (l, d)-motif p, let Sd(p) be {s ∈ P |

s contains an l-substring of distance at most d from s}. Given the minimum number of

instance threshold kn, we then define the general (l, d)-motif finding problem as finding

all (l, d)-motif p in S such that |Sd(p)| ≥ kn.

The (l, d)-motif pair finding problem

We extend the problem of finding (l, d)-motifs in a set of sequences into one for finding

motif pairs in a set of sequence pairs for mining interaction motifs in a set of protein-

protein interactions. Given a protein interaction dataset I ⊆ S × S of size m over the

set of proteins S where for any (si, sj) ∈ I we have i ≤ j, we want to find a pair of

(l, d)-motifs which is over-represented in I. That is, we want to find an (l, d)-motif pair

(X,Y ) that have the following characteristics:

(1) Let I(X,Y ) be the set of interactions between Sd(x) and Sd(y), namely, I(x,y) =

I ∩ (Sd(x) × Sd(y)). We require that |I(x,y)| ≥ ki for a minimum number of

interaction threshold ki.

(2) Let S ′d(x) be a subset of Sd(x) containing sequences that interact with those in

Sd(y). Similarly, let S ′d(y) be a subset of Sd(y) with interacting sequences with

Sd(x). We also require that |S ′d(x)|, |S ′d(y)| ≥ kn.
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We call this problem the (l, d)-motif pair finding problem. For every (si, sj) ∈ I(x,y),

we want find (si[u], sj [v]) which are instances of X and Y . Biologically, (si[u], sj [v])

may correspond to the functional regions in the proteins si and sj that mediate their

interaction.

Scoring function

It is likely for many (l, d)-motif pairs (x, y) to exist within a given interaction dataset I

over the set of proteins S. We define here a scoring function to rank them systematically.

Let O(SX ,SY ) be the observed number of interactions between two protein sets SX

and SY containing the motifs X and Y respectively. Let E(SX ,SY ) be the expected

number of interactions between SX and SY . We estimate E(SX ,SY ) based on the

assumption that interactions occur at random. Since the probability of any interaction

occurring between two random proteins in S is |I|
(|S|

2 )
, we have

E(SX ,SY ) =
|I|(|S|
2

) [|SX ||SY | − (
|SX ∩ SY |

2

)
− |SX ∩ SY |

]
where the term in the brackets computes the total number of interactions possible be-

tween the proteins in SX and SY . Based on the idea of chi-square statistic, we formulate

the following function χ to score a given pair of (x, y)-motif containing protein sets SX

and SY as

χ(SX ,SY ) =
[O(SX ,SY )− E(SX ,SY )]

2

E(SX ,SY )

4.3.2 Methods

For illustration, we will first give an exact algorithm D-MOTIF to find co-occurring

motifs in I. Then, we will present our approximation algorithm, D-STAR, that can offer

significant speed-up at the cost of slight accuracy degradation. The use of D-STAR for

scaling up is necessary for dealing with the large input datasets in practice.

D-MOTIF algorithm

The basic idea of the exact algorithm is to enumerate all possible (l, d)-motif pairs and

then check if they have enough instances to satisfy the minimum size threshold kn and

ki. Note that any (l, d)-motif pair must be of hamming distance d from some (l, d)-motif

57



D-MOTIF-BASIC

1 for (si, sj) ∈ I

2 for (si[u], sj [v]) ∈ (si, sj)

3 for (p, p′) ∈ Xsi[u]
×Xsj [v]

4 Compute Sd(p) and Sd(p
′)

5 I(p,p′) = I ∩ (Sd(p)× Sd(p
′))

6 Compute S′

d
(p) and S′

d
(p′)

7 if |I(p,p′)| ≥ ki and |S′

d
(p)|, |S′

d
(p′)| ≥ kn

8 Store (p, p′) sorted by χ(Sd(p),Sd(p
′)) in list L.

Figure 4.2: The D-MOTIF-BASIC algorithm.

pair instance. Given a string p of length l, we define Xp to be all strings p′ of length l

with hamming distances at most d from p. The algorithm named D-MOTIF-BASIC in

Figure 4.3.2 describes the most straightforward brute force approach on the problem.

Observe that the instances of any (l, d)-motif X would be of distance 2d from one

another. Pevzner et. al. [125] described a method to compute all instances of an (l, d)-

motif by transforming the problem into finding cliques in a t-partite graph G. In this

graph, all l-substrings in all si ∈ S are the nodes and any two of them will be connected

by an edge if (a) they originate from distinct proteins and (b) they are at most 2d apart.

Thus, finding the (l, d)-motifs having at least kn instances is equivalent to finding cliques

of size at least kn in G, which is an NP-hard problem.

We attempt to reduce the complexity of the problem by assuming that kn ≥ 3 and

try to find all cliques of size 3 first. In other words, we first find three l-substrings,

(si[u], sj [v], sk[w]), from distinct sequences si, sj , and sk and then only try those candi-

date (l, d)-motifs p ∈ Xsi[u] ∩Xsj [v] ∩Xsk[w]. For convenience, we call the string triplet

(si[u], sj [v], sk[w]) a triangle within si, sj , and sk and we denote the set intersection

Xsi[u] ∩Xsj [v] ∩Xsk[w] by X(si[u],sj [v],sk[w]).

In the case of interaction data, we have to find all interaction triplets (si, si′), (sj , sj′),

(sk, sk′) and compute the triangles from (si, sj , sk) and (si′ , sj′ , sk′). But as interaction

is commutative (at least in our current consideration) i.e. (si, sj) is equivalent to (sj , si),

we also have to consider the latter configuration when we choose the interaction triplets.

As such, we let Id be the set of ordered pair which contains both ⟨si, sj⟩ and ⟨sj , si⟩ for

each (si, sj) ∈ I. The algorithm can then start by choosing the ordered pair triplets
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D-MOTIF

1 for 〈si, si′ 〉, 〈sj , sj′ 〉, 〈sk, sk′ 〉 ∈ Id where i 6= j 6= k and i′ 6= j′ 6= k′

2 for (si[u], sj [v], sk[w]) ∈ (si, sj , sk)

3 Compute and store X(si[u],sj [v],sk[w]) in Tl

4 for (si′ [u
′], sj′ [v

′], sk′ [w′]) ∈ (si′ , sj′ , sk′ )

5 Compute and store X(si′ [u
′],sj′ [v

′],sk′ [w′]) in Tr

6 for (Xl, Xr) ∈ Tl × Tr

7 for (p, p′) ∈ Xl ×Xr

8 Compute Sd(p) and Sd(p
′)

9 I(p,p′) = I ∩ (Sd(p)× Sd(p
′))

10 Compute S′

d
(p) and S′

d
(p′)

11 if |I(p,p′)| ≥ ki and |S′

d
(p)|, |S′

d
(p′)| ≥ kn

12 Store (p, p′) sorted by χ(Sd(p),Sd(p
′)) in list L.

Figure 4.3: The D-MOTIF algorithm.

from Id(|Id| ≈ 2m). The complete listing of the algorithm, D-MOTIF, is presented in

Figure 4.3.

In practice, D-MOTIF runs much faster when compared to the straightforward brute

force algorithm(which we have also implemented as a benchmark). However, the memory

requirement of D-MOTIF could be much larger than the latter as we have to store the

sets X for the different triangles in the set Tl and Tr to avoid redundant computations.

When d is large relative to l, there would be a lot of candidate (l, d)-motifs to check

given a triangle. When the number of triangles is also large, even D-MOTIF would

soon run at a crawling speed. In view of that, we propose the following approximation

algorithm, D-STAR. Before we start, let us define the (l, d)-star pair finding problem

and show how it approximates for the (l, d)-motif pair finding problem.

The (l, d)-star pair finding problem

For any given pair of l-substrings (si[u], sj [v]) from some interaction (si, sj), there may be

an exponential (with respect to d) number of possible (l, d)-motifs (x, y) which is within

distance d. Hence, even after speeding-up the algorithm with filtering, D-MOTIF can

only handle relatively small-sized problems. In our proposed algorithm D-STAR, we will

aim to find only the instances of a motif pair (x, y) instead of finding the motif (x, y)

themselves since they may not even occur in S.
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D-STAR

1 for (si, sj) ∈ I

2 for 〈sk, s`〉 ∈ Id − 〈si, sj〉

3 Perform a pairwise sequence comparison to find all positions in

si which has a neighbor of distance 2d in sk. Let the positions

be P1 = {u1, u2, ..ug}.

4 Do the same for sj and s` and get the list of positions in sj which

is P2 = {v1, v2, ..vh}.

5 if P1 6= ∅

6 for all u ∈ P1 add sk into L[u]

7 if P2 6= ∅

8 for all v ∈ P2 add s` into R[v]

9 for (u, v) ∈ P1 × P2,

10 Add 〈sk, s`〉 into I[u, v].

11 for (u, v) whose |S′

2d(si[u])|,|S
′

2d(sj [v])| ≥ kn and |I(si[u],sj [v])| ≥ ki.

12 Compute χ(S2d(si[u]),S
′

2d(sj [v])) and put the (l, d)-star

(S′

2d(si[u]),S
′

2d(sj [v])) into the sorted list L.

Figure 4.4: The D-STAR algorithm.

D-STAR algorithm

Recall that given an (l, d)-motif X, any two instances of X, Xi and Xj , would be at

most 2d apart. Hence, if we manage to get one instance Xi of X, all the other instances

of X would surely be in S2d(xi). In the context of interaction data, we first get all

l-substring pairs (si[u], sj [v]) from each interacting proteins (si, sj) ∈ I. Next, we find

those (si[u], sj [v]) that satisfy two conditions (1) There are more than ki interactions

between S2d(si[u]) and S2d(sj [v]). (2) Let the set of the interactions be denoted similarly

by I(si[u],sj [v]), and we require that both |S ′2d(si[u])|, |S ′2d(sj [v])| ≥ kn. The pair of protein

set (S ′2d(si[u]),S ′2d(sj [v])) is denoted as an (l, d)-star pair. Our simulation experiments

indicate that D-STAR yields a good approximation of the exact solution while being

much more efficient when the dataset is large. The complete listing of the algorithm is

in Figure 4.3.2.

Time complexity

The loop in line 1 takes O(m) time. The next loop in line 2 takes another O(m)

time. Both pairwise sequence comparisons in step 3 and 4 require O(n2) time. Each

time, the number of position pairs (u, v) in P1 × P2 could also reach O(n2). Updating
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Figure 4.5: Comparison of running time between D-MOTIF and D-STAR We observe that the

running time of D-MOTIF increases rapidly as the input data grows and also as the (l, d)-motif

gets weaker. Experiments were run on a x86 Pentium 4 1.6GHz machine with 512MB of memory.

(l, d)
D-MOTIF D-STAR

Spec Sens Spec Sens
(6, 1) 99.69% 100% 95.16% 99.1%
(7, 1) 100% 100% 99.89% 100%
(8, 1) 100% 100% 100% 100%

Figure 4.6: Comparison on specificity and sensitivity between D-MOTIF and D-STAR. This

table shows that D-STAR runs orders of magnitude faster than D-MOTIF while sacrificing a

small amount of accuracy in terms of sensitivity and specificity.

I(si[u],sj [v]), S ′2d(si[u]), S ′2d(sj [v]), can all be done in constant time with a lookup table

(one could save space using hash-sets, but the updating will take amortized constant time

instead). The loop in line 11 would require at most O(n2) time for all entries [u, v], each

requiring at most O(t) time to build (S2d(si[u]),S2d(sj [v])), from (S ′2d(si[u]),S ′2d(sj [v]))

for computing the chi-square score. Therefore, in the worst case, D-STAR would run in

O(m2n2 +mtn2). We also need to be mindful that the memory requirement to store

the matrix and arrays is max{O(mn2), O(tn)}.
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Comparison between D-MOTIF and D-STAR

First, we investigate the effect of data size on the performance of our two approaches.

We ran our evaluation on 5 different datasets containing artificial interaction sets I of

size ranging from 10 to 150 (note that for some weaker motifs, we did not evaluate up

to size 150 as the running time of the D-MOTIF became too slow to be measured). In

each interaction set, the protein sequences in all interaction are distinct; in other words,

|S| = 2|I|. We also planted the (l, d)-motif pair in only half of the interactions in I to

effect a fixed ϵ = 0.50 on all datasets.

Evaluation was performed here by checking if the planted motifs were reported as the

best motif by the motif finding algorithm. Table 4.3.2 shows the average result over 10

datapoints (I = 10, 20, ..100) in each of the 5 evaluation datasets. Figure 4.3.2 displays

the running time of both algorithms on different data size averaged over the 5 datasets.

We use an x86 Pentium 4M 1.6GHz machine with 512MB of memory for running the

comparison. We observed that when the (l, d)-motifs get less specific and kn is small, the

planted motifs could be masked out by other signals present in the protein sequences.

This happened in one of the datapoints of (6, 1)-motifs with |I| = 10, in which D-STAR

failed to have 100% sensitivity rate.

Overall, it is clear that D-STAR performs only slightly worse than D-MOTIF while

the running time of D-STAR is much better than D-MOTIF for larger datasets. The

running time of D-MOTIF is also highly influenced by the strength/specificity of the

(l, d)-motif. As compared to D-STAR, the running time of D-MOTIF increases much

more rapidly when the motif gets less specific. For example, for |I| = 100, the running

time of D-MOTIF on (8, 1), (7, 1), (6, 1) motifs are 797.4 s, 1930.7 s and 17385.2 s,

respectively. For the same datapoints, D-STAR only required 253 s, 266.5 s, and 306.1

s, respectively. Indeed, this observation was further confirmed when we tried D-MOTIF

on our real biological dataset later—it was still running after 10 hours while D-STAR

terminates in less than 20 minutes.

4.4 Results and discussion

In the following discussion, we compared our algorithms (D-STAR and D-MOTIF)

against the existing algorithms, run in either OTM or MTM mode. This is because, to
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our knowledge, there is no existing algorithm based on our approach. Recall that in the

(l, d)-motif model, the motif (a consensus string) and its instances are strings of length

l and each instance differs by no more than d mismatches from the actual motif. The

l and d are two parameters to the algorithms. Users can either input specific l and d

into the algorithms or input a range of values for l and d instead. In the latter, the

algorithms will extract the different (l, d)-motif pairs and output them, ranked based

on their significance. At the same time, user must provide two additional parameters ki

and kn for more directed search: ki specifies the minimum number of interactions that

(l, d)-motif pairs must co-occur in while kn dictate the minimum of interacting proteins

that must express each of the (l, d) motif.

In short, our algorithms tries to cluster the interaction data into groups of interaction

which express some statistically significant (l, d)-motif pair; it look for pairs of similar

substring set (defined by the (l, d) motif model) occurring across pairs of interacting

proteins, and rank them based on their co-occurrence statistical significance. The exact

algorithm D-MOTIF would find all possible motif pairs which satisfy the threshold given

while D-STAR would allow a bit of inaccuracy for the sake of speed. We performed

a preliminary experiment on D-MOTIF and D-STAR to compare their accuracy and

efficiency, and found out that D-MOTIF is only modestly more accurate than D-STAR

while running several orders of magnitude slower than the latter. The details of the

comparison can be found in the Methods section. For efficiency, we therefore only ran

D-STAR in our following evaluation experiments.

4.4.1 Artificial data with planted (l, d)-motifs

We evaluate the robustness of D-STAR against noise in input data using simulated data

with planted (l, d)-motifs. Another goal of the study is to investigate the performance of

D-STAR when dealing with problems involving weak motifs. This will provide insights

to the user on how the latter influences D-STAR’s accuracy.

Simulation setup

We follow the simulation setup devised in [125], where the authors planted well-defined

artificial (l, d)-motifs into random sequences to create artificial datasets for evaluation.

Here, we create sequences with planted (l, d)-motifs and then pair them up to generate
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artificial interaction datasets. For each pair of (l, d)-motifs (x, y), five instances of motif

X and five instances of motif Y are inserted into ten randomly selected protein sequences.

To simulate the real scenarios as close as possible, the motifs were planted in randomly

selected yeast (Saccharomyces cerevisiae) protein sequences instead of random sequences.

Let us denote the five sequences with planted motif X as sequence set PX , and the five

sequences with planted motif Y as sequence set PY . We set |PX | = |PY | = 5 in our

current simulations.

We simulate the real protein interactions by pairing every sequences in PX to N

sequences in PY , and vice versa. A spurious interaction is modeled by pairing a protein

in PX(PY , resp.) with a random yeast protein not in PY (PX , resp.). Given that a protein

interacts with an average of 5.8 other proteins (interaction statistics in DIP [136]),

and that the high throughput yeast two-hybrid technique is known to have at least

50% error [123], we would expect at most 2.9 true interactions per protein. Being

conservative, we set N = 2 here. Let ϵ be the noise level defined as the fraction of the

spurious interactions within all interactions that belong to one particular protein. We

investigate the performance of the algorithms with ϵ = 0.50 as well as ϵ = 0.60. For

instance, when N = 2 and ϵ = 0.50, the proteins in PX and PY will be involved in (on

average) 4 interactions; two of which would be spurious.

The algorithms and parameter settings

We applied D-STAR, as well as other known motif extraction algorithms such as MEME

and Gibbs Sampler to see whether they can extract instances of both planted motifs

amongst its motif pairs with the highest scores from the noisy input datasets. We also

implemented an algorithm, S-STAR, to find single (l, d)-motifs in subsets of protein

sequences based on the well-established SP-STAR algorithm [125]. We ran MEME,

Gibbs Sampler and S-STAR using the MTM approach since N = 2 is too low for an

OTM-based approach to detect the motifs. We assume that all the algorithms using the

MTM-approach will be ran only on the proteins that interact with those in PY when

trying to find motif X (and vice versa for Y ). The average of the two cases is the

reported performance. Note that this effectively provides the existing algorithms with

prior knowledge on the underlying groupings of the protein sequences; the knowledge of

sequence groups PX and PY .
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To search for the set of planted (l, d)-motifs, we set the parameters for the various

algorithms as follows. For MEME, the parameters are: Mode = ZOOPS (option in

MEME when not every input sequences are guaranteed to contain a motif of interest)

and Motif Width = l. For Gibb Sampler, the parameters are: Mode = Motif Sampler

(option in Gibbs Sampler when not all input sequences are guaranteed to contain a

motif of interest), Motif Width = l and Expected Motif Occurrence = 5. For D-STAR

and S-STAR, being (l, d)-motif searching algorithms, the first two parameters are l and

d. We set the minimum number of motif occurrences in the sequences, kn = 5. For

D-STAR, the minimum number of interactions between the instances of the correlated

motifs, ki is also set to 5 as well.

Evaluation metrics

We evaluate the relative performance of the algorithms using the following metrics:

Specificity =
TPX + TPY

TPX + TPY + FPX + FPY

Sensitivity =
TPX + TPY

TPX + TPY + FNX + FNY

F-Measure =
(2× Specificity× Sensitivity)

(Specificity + Sensitivity)

where TPX(TPY , resp.) is the number of correctly recovered planted motifs X(Y ,

resp.) FNX(FNY , resp.) is the number of instances of the planted motif X(Y , resp.)

the algorithm fails to recover. Lastly, FPX(FPY , resp.) is the number of spurious motifs

included by the algorithm as a candidate instance of X(Y , resp.).

Results

We applied D-STAR and all the other algorithms on numerous sets of simulated inter-

action data with different planted (l, d)-motifs, namely the (8, 1), (7, 1), (9, 2), (6, 1) and

(8, 2)-motifs (listed in decreasing order of motif strength). For each combination of motif

and ϵ value, we generated 10 random datasets and compute the average performance of

the algorithms in discovering correct motif. Our results showed that that MEME and

Gibbs Sampler performed quite poorly. Even for a relatively strong (8, 1)-motif, MEME

can only achieve F-Measures of 0.49 and 0.35 for ϵ = 0.50 and 0.60, respectively (As for

Gibbs Sampler, the F-Measures were 0.58 and 0.29 respectively). However, since both
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Figure 4.7: Comparison between D-STAR and S-STAR(A variant of SP-STAR) in extracting

planted (l, d)-motifs. The motifs are arranged on the x-axis in decreasing order of motif strength.

The number of planted motif instances in each dataset is 5 and the datapoint is the average over

10 runs.

of these algorithms used different motif models, they may not be optimized to search

for (l, d)-motifs. Instead, we will compare their relative performance on real biological

data later. An noteworthy observation, however, is increased noise in input data can

drastically decrease the performances of the algorithms.

Not surprisingly, both D-STAR and S-STAR attained very high average F-Measure

of 0.99 for relatively stronger (8, 1) and (7, 1)−motifs on all values of ϵ (data not shown).

Figure 4.4.1 shows the comparison of F-Measures of D-STAR and S-STAR on the weaker

(9, 2), (6, 1) and (8, 2) motifs. Observe that D-STAR performed consistently better than

S-STAR on all the cases, and furthermore, the performance margins were higher when

there were more noise in the data. This study validates that even without having the

prior knowledge of the motifs contained in the interaction data, D-STAR is able to

handle noise much better than the other algorithms. This is of practical importance

since real interaction data are often highly noisy data containing many interactions

between unknown domains and/or motifs.

4.4.2 Biological data

In this section, we apply our algorithm on two biologically significant datasets: SH3

domain interaction data and TGFβ signaling pathway data. We show that our approach
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Algorithm PxxP PxxPx[KR] [KR]xxPxxP
D-STAR 1st 1st 8th

S-STAR 1st - -
MEME 1st - -
GIBBS 3rd 3rd -

Figure 4.8: Rank of sequence segment sets or sequence segment pair sets output by the various

algorithms that express various known binding motifs of SH3 domains. ”-” denote the biological

motif is not expressed within the top 50 sequence segment sets.

can better discover real biological motifs than the other methods.

SH3 domain interaction data

SH3 domains are conserved amino acid segments (of length ≈ 60 amino acids) found

across multiple proteins. Through various biological experiments, SH3 domains have

been determined to bind short sequence segments expressing the general motif P..P [116].

The interactions between SH3 proteins and the P..P motif mirror our motif pair (X,Y )

(in this case, one of the motifs should correspond to parts of SH3 domain). For evalu-

ation, we use the same dataset derived by Tong et. al. to find the interacting partners

of SH3 domain proteins [116]. This dataset, which we called SH3-[PxxP]-Tong, was

downloaded from BIND online database. It consists of 233 protein-protein interactions

among 146 yeast proteins of which 23 are SH3 domain proteins (as determined using

HMMER program from Pfam). We will first assess whether the known SH3 binding

motifs can be extracted among the top motifs by each algorithm. Next, we investigate

the biological relevance of the correlated motifs extracted by D-STAR.

The algorithms and parameters

We ran D-STAR on the SH3-[P..P]-Tong dataset multiple times with different combi-

nations of l = 6, 7, 8, d = 1 and kn = ki = 5. The outputs from the different runs

were then systematically ranked using their χ-scores. Note again that in the case of our

D-STAR algorithm, the motifs were mined without having to separate the SH3 domain

proteins and the non-SH3 domain proteins, unlike the other MTM motif extraction

methods which require such prior knowledge. For comparison, we also attempted to
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extract the P..P-like motifs with MEME (ZOOPS mode, Motif Width = 4 − 9), Gibbs

Sampler (Motif Sampler mode, Motif Width = 4− 8, Expected Motif Number ≥ 5) and

SP-STAR (l = 6, 7, 8, d = 1 and Minimum Motif Number=5) from the 130 sequences in

the dataset that bind to any SH3 proteins (the MTM approach).

Validation

Without the luxury of experimentally validating the motifs extracted, it is hard to

determine the accuracy of the various algorithms correctly. However, we reasoned that

a good algorithm should at least extract most of the known motifs. In other words,

when applying D-STAR on the interaction data of SH3 proteins, we should expect it to

extract some P..P-like motifs on one side and another motif that occurs consistently in

SH3 domains on the other side. We consider here the well-known SH3-binding motifs

P..P, P..P.[RK] and [RK]..P..P. For each of these three motifs, we check whether it was

“expressed” within the top 50 motifs reported (we assume that usually user would not

check beyond this number). We define a set of protein sequence segments reported by

an algorithm to be expressing a motif if at least 50% of the sequence segments match

the pattern.

Results

Table 1 shows the results for D-STAR, S-STAR, MEME, and Gibbs Sampler. The

generic P..P motif was extracted among the top outputs by all algorithms. However,

only our D-STAR algorithm managed to extract both P..P.[KR] and [KR]..P..P motifs

(within the top 50 motifs output of each algorithm). In fact, only two instances of the

P..P.[KR] motif are found in the segments extracted within the top 50 sets of segments

extracted by MEME. No [KR]..P..P motif instance was extracted. To be sure, we re-

ran MEME on the same 130 sequences with more specific motif lengths = 6-7 (instead

of motif length = 4-9) but to no avail. This confirmed that MEME with the MTM

approach has indeed missed out the more specific variants. As for S-STAR, the limited

instances of the P..P.[KR] and [KR]..P..P motifs extracted were overwhelmed by the

more general P..P motif. D-STAR, despite having no access to prior grouping knowledge

unlike the other algorithms, was the only algorithm that was able to extract the specific

SH3-binding motifs.
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Figure 4.9: The P..P, P..P.[KR] and [KR]..P..P motifs and their associated motifs extracted by

D-STAR. Lines between the sequence segments denote interaction between their parent proteins.

The result is found from multiple runs of D-STAR with different combination of motif width

l = 6, 7, 8, distance d = 1 and ki = kn = 5. We then rank all the outputs from the different runs

by their χ-score.
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One might argue that since the MTM-algorithms were applied on the set of all

SH3-binding sequences which contained either of the motifs P..P.[KR] and [KR]..P..P, it

may be unsurprising that only the general P..P motif was extracted instead of the more

specific motifs. The OTM approach may be more suitable for extracting the specific

motifs since it does not consider the SH3-binding sequences in a “wholesale” manner as

the MTM approach. As such, we applied MEME, Gibbs Sampler and S-STAR on the

interacting protein partners of each individual SH3 protein in the SH3-[PxxP] dataset.

In total, the OTM approach can be applied on the 22 SH3 proteins that bind more

than 1 protein sequence. We used the same parameters used in the MTM approach for

each algorithm except that the Minimum Motif Occurrence= 2. We deemed a motif

to be extracted successfully if more than 50% of a segment set within the top 50 sets

extracted expressed the motif and that 50% should comprise of at least 2 instances.

For MEME, P..P motif was extracted for 3 SH3 proteins (Abp1,Rvs167,Bzz1) and

P..P.[KR] motif was extracted for 2 other SH3 proteins (Ysc84,Myo3). Gibbs Sampler ex-

tracted the P..P and P..P.[KR] motifs for 1(Sho1) and 2 SH3 proteins (Yfr024c,Ysc84)

respectively. Finally, for S-STAR, the P..P motif was extracted for 8 SH3 proteins

(Fus1,Bbc1,Rvs167,Hse1,Bzz1,Myo3,Hof1,Nyo5) and the P..P.[KR] motif was extracted

for 2 other SH3 proteins (Yfr024c,Ysc84). Again, all the algorithms failed to extract

[KR]..P..P motif within the top 50 output for any of the SH3 proteins. In comparison,

D-STAR extracted the specific P..P.[KR] and [KR]..P..P for more SH3 proteins (Figure

4.4.2).

Since D-STAR extracts correlated motifs, it is interesting to further analyze the

extracted associated sequence segments of the three proline-rich motifs as shown in

Figure 4.4.2. We were intrigued to discovered that all associated sequence segments

extracted together with P..P, P..P.[RK] and [RK]..P..P by D-STAR were found within

SH3 domains. In addition, we also discovered that all associated sequence segments of

the three proline-rich motifs expressed a P.NY general consensus. Specifically, D-STAR

extracted G..P.NY as the associated motif of P..P.[KR] motif. A further check into

the PDB structure 1AVZ of an experimentally determined interaction between an SH3

protein and a protein expressing a P..P.[KR] motif reveals that the sequence segment

in SH3 domain expressing the G..P.NY motif indeed forms a binding interface with the

segment expressing the P..P.[RK] motif (Figure 4.10). Hence, in this particular case,
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Figure 4.10: Evidence from PDB structural data - SH3 domain vs P..P.R. The figure illustrates

the 3D structure of a SH3 domain of FYN tyrosine kinase (PDB ID: 1AVZ) bound to with another

protein. The sequence segments that express the P..P.R motif and G..P.NY motif (detected by

D-STAR in this work) are highlighted in dark blue and orange respectively. The two segments

correspond to actual interacting subsequences.

D-STAR has extracted correlated motifs that actually are binding motifs.

TGFβ signaling pathway

Next, we applied D-STAR on the interaction network of TGFβ signaling pathway that

was derived using LUMIER [131]—an automated high-throughput protein interaction

detection technology that can detect phosphorylation-dependent interactions. Note that

the original experiment was not specifically geared toward detecting interactions of any

particular protein domain or motif. Hence, unlike the SH3-P..P dataset, it is not im-

mediately apparent whether any relevant motif pairs can be found in the interaction

network. We applied D-STAR on this interaction dataset to see whether we can extract

any interesting motif pairs. The dataset was retrieved from BIND database and consists

of 446 interactions among 214 proteins. D-STAR was applied on the dataset with the

same parameters used for SH3-P..P dataset. As we do not know what to expect as

correct answer, we focused on validating the top motif pair extracted.

Interestingly, D-STAR extracted a motif pair, with general consensus patterns [TA]E

[LI]Y[NQ]T and GKT[CIS][ILT][IL] (see Figure 4.11), from 87 unique interactions as our

top output. For ease of discussion, let us denote the motif pair as (X,Y ). First, we
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Proteins Position Segment Proteins Position Segment

GI:4502431 244 TEIYQT GI:11024714 9 GKTITL

GI:40254649 248 TELYNT GI:11024714 85 GKTITL

GI:4501895 248 TELYNT GI:11024714 161 GKTITL

GI:6678323 245 AEIYQT GI:11641237 20 GKTSII

GI:4759226 245 AEIYQT GI:11967981 30 GKSSLA

GI:4885457 191 TETYST GI:11967981 62 GATSLK

GI:13786127 73 SKRSLL

GI:13786129 44 GKTCLT

GI:16445426 149 GDTSLS

GI:19526471 85 GKTSRR

GI:19923750 33 GKTSFL

GI:21389385 17 GKTSLA

GI:22027525 769 SKTSIL

GI:30520350 27 GKTTIL

GI:34147073 199 LKNSLL

GI:41149704 277 GKRSTL

GI:41327767 32 GKTSLL

GI:4505571 262 GKRSRL

GI:4506713 9 GKTITL

GI:4506713 111 GKISRL

GI:4507449 28 GKTTFL

GI:4507761 9 GKTITL

GI:4757770 15 GKTSLL

GI:5031817 577 GCTSLK

GI:51036601 24 GKTSLI

GI:56243590 904 QKTPLL

GI:7656900 28 GKTSLL

GI:10835049 16 GKTCLL

GI:10864013 118 WKTALL

GI:12849714 113 QYTSLL

GI:13786127 47 GDTSFL

GI:16903164 32 GKTCLL

GI:16903164 65 GKQHLL

GI:21361884 17 GKSCLL

GI:22003858 176 GNTMLL

GI:22027525 280 EVTSLL

GI:22218619 357 GQGSLL

GI:24111250 290 NKTDLL

GI:24586657 784 GLLSLL

GI:30039692 363 GGGSLL

GI:31543537 63 GKTCLI

GI:4502741 272 GKDLLL

GI:4505451 47 GETCLL

GI:4505487 92 YGTSLL

GI:4506363 19 GKTCLI

GI:4506381 14 GKTCLL

GI:46249393 14 GKTCLL

GI:47717139 87 GKTMLN

GI:9966809 15 GKTAIL

GI:9966861 23 GKTNLL

The green-highlighted proteins are the 

proteins with real Kinase domains according 

to HMMER (5/6)

The red-highlighted proteins are the proteins 

with the phosphorylation sites as predicted 

by PhophoFinder (27/50)

Kinase Protein Set Phophorylation Motifs Set

Figure 4.11: The best motif pair found in TGFβ. The highlighted proteins on the left belongs

to the Kinase domain while those on the right contain the Kinase phosphorylation motifs (as

checked by another program PhosphoMotif Finder [9])

.

verified that (X,Y ) is not likely to occur by chance as the estimated probability (p-

value) of getting the motif pair with the same interaction set size is less than 0.001

(by testing the motif pair on 1000 randomly generated interaction data with the same

network topology and sequences). Hence, we conjectured that the motif pair is a possible
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Protein GI Position String Site Motif Type

GI:11024714 9 GKTITL KTIT [R/K]xx[pS/pT] PKC Kinase motif

GI:11024714 85 GKTITL KTIT [R/K]xx[pS/pT] PKC Kinase motif

GI:11024714 161 GKTITL KTIT [R/K]xx[pS/pT] PKC Kinase motif

GI:11024714 9 GKTITL KTIT Kxx[pS/pT] PKA Kinase motif

GI:11024714 85 GKTITL KTIT Kxx[pS/pT] PKA Kinase motif

GI:11024714 161 GKTITL KTIT Kxx[pS/pT] PKA Kinase motif

GI:11641237 20 GKTSII KTS [R/K]x[pS/pT] PKC and PKA Kinase motif

GI:11967981 62 GATSLK SLK [pS/pT]x[R/K] PKC and PKA Kinase motif

GI:11967981 30 GKSSLA KSS [R/K]x[pS/pT] PKC and PKA Kinase motif

GI:13786127 73 SKRSLL SKR [pS/pT]x[R/K] PKC and PKA Kinase motif

GI:13786127 73 SKRSLL SKRS [pS/pT]xx[S/T/Y] CK2 Kinase motif

GI:13786127 73 SKRSLL SKRS [pS/pT]xxS CK1 Kinase motif

GI:13786127 73 SKRSLL KRS [R/K]x[pS/pT] PKC and PKA Kinase motif

GI:13786127 73 SKRSLL SKRS pSxx[E/pS/pT] CK2 and Casein Kinase motif

GI:13786129 44 GKTCLT TCLT [pS/pT]xx[S/T/Y] CK2 Kinase motif

GI:13786129 44 GKTCLT KTCLT Kxxx[pS/pT] PKA Kinase motif

GI:16445426 149 GDTSLS TSLS [pS/pT]xx[S/T/Y] CK2 Kinase motif

GI:16445426 149 GDTSLS TSLS [pS/pT]xxS CK1 Kinase motif

GI:19526471 85 GKTSRR TSR [pS/pT]x[R/K] PKC and PKA Kinase motif

GI:19526471 85 GKTSRR KTS [R/K]x[pS/pT] PKC and PKA Kinase motif

GI:19526471 85 GKTSRR KTSRR [R/K]x[pS/pT]x[R/K] PKC Kinase motif

GI:19923750 33 GKTSFL KTS [R/K]x[pS/pT] PKC and PKA Kinase motif

GI:21389385 17 GKTSLA KTS [R/K]x[pS/pT] PKC and PKA Kinase motif

GI:22027525 769 SKTSIL SKTS [pS/pT]xx[S/T/Y] CK2 Kinase motif

GI:22027525 769 SKTSIL SKTS [pS/pT]xxS CK1 Kinase motif

GI:22027525 769 SKTSIL KTS [R/K]x[pS/pT] PKC and PKA Kinase motif

GI:22027525 769 SKTSIL SKTS pSxx[E/pS/pT] CK2 and Casein Kinase motif

GI:30520350 27 GKTTIL KTT [R/K]x[pS/pT] PKC and PKA Kinase motif

GI:34147073 199 LKNSLL KNS [R/K]x[pS/pT] PKC and PKA Kinase motif

GI:41149704 277 GKRSTL KRST [R/K][R/K]x[pS/pT] PKA Kinase motif

GI:41149704 277 GKRSTL KRST [R/K][R/x]x[pS/pT] PAKs phosphorylation motif

GI:41149704 277 GKRSTL KRS [R/K]x[pS/pT] PKC and PKA Kinase motif

GI:41149704 277 GKRSTL KRST [R/K]xx[pS/pT] PKC Kinase motif

GI:41149704 277 GKRSTL KRST Kxx[pS/pT] PKA Kinase motif

GI:41327767 32 GKTSLL KTS [R/K]x[pS/pT] PKC Kinase motif

GI:4505571 262 GKRSRL KRS [R/K]x[pS/pT] PKC and PKA Kinase motif

GI:4506713 111 GKISRL KIS [R/K]x[pS/pT] PKC and PKA Kinase motif

GI:4506713 9 GKTITL KTIT [R/K]xx[pS/pT] PKC Kinase motif

GI:4506713 9 GKTITL KTIT Kxx[pS/pT] PKA Kinase motif

GI:4507449 28 GKTTFL KTT [R/K]x[pS/pT] PKC and PKA Kinase motif

GI:4507761 9 GKTITL KTIT [R/K]xx[pS/pT] PKC Kinase motif

GI:4507761 9 GKTITL KTIT Kxx[pS/pT] PKA Kinase motif

GI:4757770 15 GKTSLL KTS [R/K]x[pS/pT] PKC and PKA Kinase motif

GI:5031817 577 GCTSLK SLK [pS/pT]x[R/K] PKC and PKA Kinase motif

GI:51036601 24 GKTSLI KTS [R/K]x[pS/pT] PKC and PKA Kinase motif

GI:56243590 904 QKTPLL TP [pS/pT]P Proline-directed Kinase motif

GI:56243590 904 QKTPLL KTP [R/K][pS/pT]P Growth-associated histone HI Kinase motif

GI:7656900 28 GKTSLL KTS [R/K]x[pS/pT] PKC and PKA Kinase motif

Figure 4.12: The list of motifs of the phosphorylation sites that are over-represented in the

segment set with the general pattern GKT[CIS][ILT][IL].

key interaction mechanism in the TGFβ signaling pathway.

We also found that the sequence segment set of motif Y is enriched in known kinase

phosphorylation motifs (27 sites in 50 segments, based on result from PhosphoMotif

Finder [9]—see Figure 4.12). To determine the significance of finding 27 sites in the

segment sets, we generate 1000 segments sets, each containing 50 segments randomly
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Motif Expected Observed Odd-Ratio
[R/K]x[S/T] 3.15 17 5.40
Kxx[S/T] 1.22 6 4.92

Figure 4.13: The odd-ratio of known Kinase phosphorylation motifs found in D-STAR’s motif

pair. As the motifs are degenerate, we compared their actual number of occurrence with their

expected random occurrence within any random segment set of the same size preserving the

same amino acid distribution as the whole dataset’s.

selected from the same protein set. We found out that none of them contain at least 27

segments with the phosphorylation motifs, implying an estimated p-value < 0.001.

We listed the over-represented phosphorylation motifs in Table 4.13. Further analy-

sis also showed that 5 out of 6 associated sequence segments of motif X were also found

within kinase protein domains (determined using HMMER from Pfam [72]). Such bi-

ological characterization of our extracted motif pair (X,Y ) with X as kinase motifs

and Y as phosphorylation motifs is indeed in concurrence with the fact that signalling

pathways are typically regulated by kinases through protein phosphorylation. This fur-

ther indicates that our method have extracted a biologically feasible motif pair from the

TGFβ interaction dataset.

We also investigated whether such kinase phosphorylation motifs may also be ex-

tracted using the OTM approach. For each kinase protein found in Y by D-STAR, we

submitted their binding partners to MEME (ZOOPS mode, Motif Width = 4−8), Gibbs

Sampler (Motif Sampler mode, Motif Width = 4− 8, Expected Motif Number ≥ 2) and

S-STAR (l = 6, 7, 8, d = 1 and kn = 5). We found that over-represented phosphorylation

motifs can be found within the top 10 output segment sets for only 2 out of the 5 kinase

proteins by all MEME, Gibbs Sampler and S-STAR (based on result from PhosphoMotif

Finder).

4.5 Conclusions

Discovery of novel binding motifs acting as interaction switches for biological circuits

can lead to invaluable insights for important applications such as drug discovery, as

various short binding motifs have been found to be associated with disease pathways.
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However, such motifs have also been known to be hard to find both experimentally and

computationally [34].

The recently available protein-protein interaction data present a rich data source to

aid in such important discoveries through motif discovery algorithms. The efforts can

be hindered by sparse and noisy nature of existing protein interaction data, as well as

the inadequacy of current biological knowledge. In this paper, we have proposed a novel

approach of mining correlated de−novomotifs from interaction data. We formulated our

approach as an (l, d)-motif pair finding problem for which we gave an exact algorithm,

D-MOTIF, as well as its approximation algorithm, D-STAR. The approach is more

robust in extracting motifs from noisy interaction data. Of course, since D-STAR is

devised for finding linear sequence motifs, it would fail if one of the correlated motifs is a

structural one. However, it may still be used to identify short conserved sequence regions

that formed parts of such structural motifs. Given that existing protein structural

data is still very limited when compared to available protein-protein interaction data,

short conserved sequence regions identified by D-STAR could facilitate further biological

experiments like mutagenesis studies.

While we have presented an approximation algorithm D-STAR to speed up the

extraction of motif pairs from interaction data, more work will need to be done in order

to scale up the approach to handle genome-wide interaction data or the larger DNA-

protein interaction data. Also, as real biological motifs can be of varying lengths, we

will also need to extend our current approach to discover binding motifs that are not of

any predefined lengths. We leave these as future works.

4.6 List of publication

1) Tan S H, Hugo W, Sung W K, Ng S K. A correlated motif approach for finding short

linear motifs from protein interaction networks. BMC Bioinformatics, 7:502, 2006.
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Chapter 5

Discovering Interaction Motifs

from Protein-Protein Interaction

Data: D-SLIMMER

5.1 Introduction

We have shown in the earlier chapter that our interaction based method, D-STAR [45],

performed better in finding SLiMs in the PPI data than existing motif occurrence based

methods like MEME [118] (used by DILIMOT [39]) and Gibbs Sampler [119]. As D-

STAR was found to be less scalable to handle full genomic PPI data, it was further

improved by some recently published programs like MotifCluster [3] and SLIDER [4].

Despite these improvements, we observe that the current interaction motif approaches

have a few limitations:

1. All interaction motif approaches to date have been targeting interacting pairs of

SLiMs—these algorithms assume that the interaction can be explained by the

presence of a pair of SLiMs. However, our structural study (presented in the next

chapter) [137] shows that domain-SLiM interfaces are mostly consist of a cavity

on the domain holding the SLiM in it. Most of the time, this cavity is non-linear.

This observation was also mentioned by one of the reviewer of D-STAR.

2. The observation does not completely invalidate the results of D-STAR, MotifClus-

ter and SLIDER since there are real domain-SLiM instances where both sides of
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the interface are linear. However, it does reveal their limitation. Specifically, cur-

rent programs would require that the protein domain that interacts with a SLiM

also contains another conserved SLiM within it. This constraint is satisfied by

the examples presented by D-STAR, most notably the signature SLiM G..P.NY

of the SH3 domain. However, as we shall show later, this constraint limits the

coverage of these methods.

Hence we designed a new interaction motif based approach which computes the

interaction density between a non-linear motif, a protein domain, with a SLiM. The

program, called D-SLIMMER (stands for Domain-SLiM MinER), somehow resembles

the many-to-many (MTM) approach of DILIMOT described in the previous section be-

cause it collects the interaction partners of a protein domain for SLiM mining. However,

it has one important difference: the score of the SLiMs are based on interaction-density

as opposed to occurrence frequency. We also implemented rigorous statistical and ho-

mology filtering to ensure that the SLiMs are not mere random or homology artifacts.

To validate the effectiveness of D-SLIMMER, we checked if it can find real SLiMs

from currently available PPI data. We also would like to know if it performs any better

than the existing programs. To this end, we collected a reference set of experimen-

tally verified SLiMs along with their recognition domain from the ELM and MiniMotif

database [1, 2, 38]. Our benchmark contains 16 reference domains which are known to

interact with a total of 34 different SLiMs (some of the domain recognize a few classes

of SLiMs). For each benchmark domain, we generate two PPI datasets, one from the

BioGRID database [50] and another one from the Human Protein Reference Database

(HPRD) [9]. We then run D-SLIMMER, SLIDER, MotifCluster and the latest occur-

rence based program, SLiMFinder, on the PPI data of the reference domains to see if

the programs can find the SLiMs associated with the reference domains. D-STAR was

not included in the comparison because of its scalability issue on some of the domain’s

PPI.

D-SLIMMER managed to mine significantly more reference SLiMs compared to the

other three methods. It manages to find 15 out of the 34 reference SLiMs where 6 of

them are found in both BIOGRID and HPRD datasets; giving a total of 21 validated

cases. The next best method, MotifCluster only managed to find 7 of them (2 are found
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in both datasets, giving a total of 9 valid cases). SLIDER and SLiMFinder both find

two validated cases. We also show that, in PPI data, the real SLiM’s interaction density

signal is stronger than its occurrence signal. Hence, we propose that interaction based

approach would be more suitable in PPI SLiM mining.

We also proposed two novel SLiMs, found by D-SLIMMER on the PPI data of the

Sir2 (PFAM ID: PF02146) and SET domain (PFAM ID: PF00856). Sir2 domain is found

in a family of protein deacetylase which targets acetylated lysines (K). The protein

family is involved in repression of gene transcription, DNA repair process, cell cycle

progression, chromosomal stability and cell aging [51]. Our predicted SLiM AK.V.I

agrees with the hydrophobic residue preferences for the -1 (A) and +2 (V) positions

w.r.t the acetylated K (K in bold) [52]. We also reported occurrences of this SLiM in

Glyceraldehyde-3-phosphate dehydrogenase (GPDH) proteins. There are currently no

literature studying about any interaction between Sir2 and GPDH. Interestingly, such

interaction is found in two different high throughput PPI experiments involving the

Sir2 and GPDH proteins in two different species, fruit fly (D. melanogaster) and the

baker’s yeast (S. cereviseae). We further confirmed that the AK.V.I SLiM is strongly

preserved in multiple species’ GPDH proteins and, using 3D modeling, we show that the

SLiM is located on the surface of the proteins hence accessible for recognition. Thus, we

propose that Sir2–GPDH interaction to be real and it is mediated by the Sir2–AK.V.I

domain-SLiM interaction.

D-SLIMMER also identified another SLiM SK.KK..H which is associated with the

SET domain. The domain appears in a family of methyltransferase enzymes—enzymes

that transfer methyl moieties to a lysine residue in its target protein. Methylation is an

important process in epigenetic regulation of the cell e.g. the formation of Heterochro-

matin and X chromosome inactivation [53]. There is currently no literature mentioning

about this SLiM but there exists a few PDB structures showing one instance of SET

domain binding a similar peptide KRHRKVLRD (PDB ID:3f9w). We observe that the

positions in bold within the peptide shares a similar chemical property with the residues

in our predicted SLiM (K, R and H are all positively charged protein and also have

similar sizes). Using the program FoldX [5], we show that the SLiM SK.KK..H includes

three important recognition positions for SET binding. We observe that, in addition to

correctly predicting the Km residue (the 3rd K residue in the SLiM), D-SLIMMER is
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also able to give good predictions for positions -1 and -3. The lysine residue (binding

energy -12.47 kcal/mol) in the SLiM’s position -1 gives a slightly better predicted bind-

ing energy than the original arginine (-12.28 kcal/mol) in the peptide. In position -3,

the predicted lysine is the 5th best residue for that position where the original arginine

was ranked second. For pos -4 and +3, the differences in the binding energies among

all residues were very small (less than 1 kcal/mol), hence we propose that these two

positions have weak preference towards any residue. In all, we have found three impor-

tant binding residues in D-SLIMMER’s SK.KK..H among its five predicted ones. We

also showed that the instance of the SK.KK..H SLiM in one of SET domain’s partner

falls within an exposed linker region (based on the structures PDB ID:2vxb and 2vxc).

These supporting evidences imply that the SLiM is accessible for recognition and thus

is biologically viable.

5.2 Materials and Methods

D-SLIMMER starts with a set of non-homologous PPI data I (involving the protein

set P ) and a target domain D. It first finds PD, the set of proteins in P with domain

D, and builds P ′
D, the set of the interaction partners of PD. D-SLIMMER then mines

candidate SLiMs from P ′
D and retains those that are statistically significant. Finally,

D-SLIMMER scores the density of the interactions between each candidate SLiMs and

the domain D, and ranks them based on their scores.

D-SLIMMER, in a sense, combines both the occurrence significance and interaction

density to find the domain-SLiM association given a PPI. This means that the occurrence

of both the domain and the SLiM must be statistically significant and the interaction

between them must be significantly more than expected by random. However, the final

score of a domain-SLiM pair is based on its interaction density; D-SLIMMER uses the

motif’s occurrence significance value only as a filter to prune random motif occurrences.

5.2.1 Preliminaries

A protein sequence p of length |p| is a string defined over the alphabet of the 20 amino

acid residues Σ = {A,C,D,E, F,G,H, I,K,L,M,N, P,Q,R, S, T, V,W, Y }. Given a

protein sequence p = a0a1a2...a|p|−1, we define p[i, j] (where i ≤ j) to be the substring
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of p starting at position i and ending at position j, that is, p[i, j] = aiai+1...aj . For

simplicity, p[i, i] is written as p[i]. A protein-protein interaction data I is defined over

the set of unordered pairs of protein sequence (pi, pj) ∈ P ×P . Given I, for any protein

set Px, its set of all interaction partners is defined by the set P ′
x = { p′i| (pi, p′i) ∈ I}.

Two protein sequences are defined as non-homologous when they have less than 70%

sequence similarity between them. Given a protein set P , the homology clustering C over

P is defined as a set of clusters C(P ) = {c0, c1, ....c(|C|−1)|} where (1) each homologous

cluster ci contains proteins in P that are at least 70% similar to each other and, (2) for

any two proteins pi ∈ ci and pj ∈ cj where ci ̸= cj , we have pi and pj share less than 70%

sequence similarity. Given P , we use the CD-HIT program version 4.0 [138] to generate

the homology clustering. The number of homologous clusters in P is defined as |C(P )|.

The non-homologous PPI data I is formed by retaining only one interaction for

interactions involving protein pairs that come from the same pair of homologous clusters.

That is to say, given two pairs of interacting protein (pi, pj) and (pk, pl), we remove one

of them if either

1. pi is 70% similar to pk and pj is 70% similar to pl or,

2. pi is 70% similar to pl and pj is 70% similar to pk.

5.2.2 Data preparation

We collected the sets of non-homologous PPIs from the BIOGRID [50] release 2.0.58

and HPRD [9] database release July, 2010. Each protein in the PPI is identified by its

UniProt ID [11] and we identify the PFAM domains [72] in each protein based on the

mapping provided in the INTERPRO database release 23.1 [73].

5.2.3 SLiM mining

We are using TEIRESIAS [121] as our primary SLiM mining algorithm to find SLiMs

from P ′
D—the set of interaction partners of PD. TEIRESIAS uses the (L,W ) protein

motif, which is represented by a string over the alphabet Σ ∪ {.} (’.’ is the wildcard

character). There is no restriction over the length of an (L,W )-motif M but for any

substring M ′[i, i+W −1] of length W in M , if M ′ starts with a non-wildcard character,

then M ′ have to contain at least L non-wildcard characters. The definition ensures that
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the longest stretch of wildcard characters in an (L,W )-motif is bounded by W − L.

Given a protein p, an (L,W )-motif M is said to occur in p if and only if there exists a

substring p[i, j] such that j − i+ 1 = |M | and for every non-wildcard position k in M ,

p[i+ k] =M [k].

(L,W )-motif can be regarded as the extension of the fixed length wildcard (l, d)-

motif used in MotifCluster [3] and SLIDER [4]— a wildcard (l, d)-motif is a string over

the alphabet Σ ∪ {.} with length l and exactly d wildcard character. In this work,

we used L = 4 and W = 8. Given L and W , TEIRESIAS reports all (L,W )-motifs

whose number of occurrences are bigger than certain threshold. We set the threshold

as follows. Given P ′
D and an (L,W )-motif M , let PDM = {p ∈ P ′

D | M occurs in p}.

We require |C(PDM )| ≥ δ where δ = max
{

|C(P ′
D)|

40 , 5
}
. The occurrence cutoff δ is set

such that any (L,W ) motifs with exactly 4 non wildcard characters would have at most

0.05 probability of occurring δ times or more in a random non-homologous set of 200

proteins with average length of 500 residues and uniform amino acid frequencies (this is

somehow a crude threshold for the first step of TEIRESIAS and we will further filter off

the SLiMs that are not significant using a better background model in the next step).

The non-homology constraint ensures that the number of occurrence of an (L,W )-motif

M are significant yet homology-independent. We use the default values for TEIRESIAS’

other parameters.

5.2.4 SLiM filtering

SLiMFinder masks the low complexity region in a protein by removing any region whose

5 out of 8 consecutive residue is comprised of one type of amino acid [41]. The reason is

that many low complexity regions harbor biologically functional binding sites. There are

well studied domains, like SH3, WW and Profilin, which binds to a stretch of multiple

proline residues (called poly-Proline or, in short, polyP) [135, 139]. Another promi-

nent example is the poly-Glutamine (polyQ) stretch in the Huntingtin protein whose

expansion is implicated in the onset of the Huntington disease [140]. The same polyQ

tract in the Ataxin-3 protein is also implicated in the development of Spinocerebellar

Ataxia Type 3, another severe neuro-degenerative diseases [141]. Mutations on a poly-

Alanine stretch (polyA) in the Aristaless-related homeobox protein is implicated in the
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X-chromosome linked mental retardation [142, 143]. These important sites would have

been removed by the low-complexity region masking.

Instead of removing low complexity regions, we decided to remove only those SLiMs

whose occurrences are not statistically significant. That is to say, SLiMs occurring in

low-complexity regions can be accepted when their occurrences are statistically signifi-

cant. Given C(P ′
D) and C(PDM ), we want to compute the probability of M occurring

|C(PDM )| times in random, non-homologous protein set of |C(P ′
D)| proteins with an

average length ℓ. We denote this probability by P(M, |C(P ′
D)|, |C(PDM )|, ℓ) and we

will only accept M when P(M, |C(P ′
D)|, |C(PDM )|, ℓ) ≤ 0.05 (at most 0.05 probability

of accepting M when it occurs by random). Such M are called statistically significant

(L,W )-motifs.

To compute P, we first constructed a background protein set from all 11040 non-

homologous proteins in the BIOGRID PPI dataset (with average length ℓ = 549). We

use the 3rd order Markov chain [144] to model a SLiM M ’s background occurrence

probability. To do this, we compute the counts of all 4-mers over the alphabet Σ ∪ {.}

(the 20 amino acids symbol plus the ’.’ wildcard symbol—totaling 21 symbols) in the

11040 non-homologous background protein set. Then we compute the followings,

1. The probability of a single 4-mer X0X1X2X3 (Xi ∈ Σ ∪ {.}) is

P(X0X1X2X3) =
Count of X0X1X2X3

Total 4-mer count

2. The (conditional) probability of a single 4-mer X0X1X2X3 given its 3-mer prefix

X0X1X2 (Xi ∈ Σ) is

Pcond(X0X1X2X3) =
P(X0X1X2X3)

P(X0X1X2.)
(’.’ is the wildcard character)

3. Given an (L,W )-motif M of length |M |. We see that there is |M | − 3 consecutive

4-mers in M . Let Mi denote the 4-mer that starts at the ith position in M where

i = 0..(|M | − 4). The probability of M based on the background model would

then be

P(M) = P(M0)

|M |−4∏
i=1

Pcond(Mi)
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4. Let S be a random sequence of length l produced by the background model. The

probability of an (L,W )-motif M to occur in S at least once would be

P1+(M, ℓ) = 1− (1−P(M))ℓ−|M |+1

5. Given a set of random proteins P containing m proteins of length ℓ each, the

probability of an (L,W )-motif M to occur in at least n proteins would be the sum

of binomial probabilities

P(M,m,n, ℓ) =
m∑
i=n

(
m

i

)
P1+(M, ℓ)i(1− P1+(M, ℓ))m−i

5.2.5 Domain-SLiM interaction density scoring: the chi-square func-

tion

For each statistically significant (L,W )-motifM , we first compute all proteins that con-

tain M in the whole protein dataset P (the set PM ). Then, we compute the interaction

between the proteins in PD and PM . We define the set as I(PD, PM ) = I ∩ (PD × PM ).

To compute the significance of |I(PD, PM )| given the size of PD and PM , we assume

a background interaction distribution which has a uniform density of interaction over

the whole PPI. This means that we expect the density of the subgraph induced by PD

and PM is the same as the whole PPI’s density. When the actual density is much higher,

we assume that D and M are densely interacting. Given a PPI I with P proteins, the

density of the interaction between two protein sets X and Y (X ⊆ P and Y ⊆ P ) is

ρ(X,Y, I) = |I(X,Y )|/MaxInt(X,Y )

where MaxInt(X,Y ) equals the maximum number of interaction between the two pro-

tein sets X and Y assuming they form a complete bipartite graph, i.e.

MaxInt(X,Y ) = |X||Y | −
(
|X ∩ Y |

2

)
− (|X ∩ Y |)

Given the above definitions, we score the significance of the interaction density be-

tween the set X and Y by

χ(X,Y, P, I) =


MaxInt(X,Y )

(ρ(X,Y, I)− ρ(P, P, I))2

ρ(P, P, I)
ρ(X,Y, I) ≥ ρ(P, P, I)

0 otherwise

The function above is equivalent to the chi-square function used by D-STAR [45] (as

explained in [4]). Given I, P , a domain D and a statistically significant (L,W )-motifM

in P ′
D, the chi-square score of the domain-SLiM pair (D,M) would be χ(PD, PM , P, I).
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5.2.6 Redundant SLiMs removal.

We then try to remove SLiMs whose PPI set overlaps significantly with each other.

Given domain D, we compute the chi-square score of all statistically significant (L,W )

motif M that is found in P ′
D. These motifs are then ordered in a non-increasing manner

based on their χ-score. We then remove any (L,W )-motif M with rank RM when there

exists another M ′ whose rank RM ′ < RM and
|I(PD,PM )∩I(PD,PM′ )|

|I(PD,PM )| ≥ 0.75 (more than

75% of I(PD, PM ) is also in I(PD, PM ′)). When this happen, we say that the motif M

is subsumed by M ′ and we remove M from the reported SLiMs. The rationale is: (1)

since M ′ have higher rank, it must have denser interaction with D compared to M and,

(2) since I(PD, PM ′) also contains 75% of the interactions in I(PD, PM ), we assume that

these interactions are better explained by the domain-SLiM pair (D,M ′).

5.3 Results and Discussion

5.3.1 Scoring Function Analysis: Occurrence Frequency vs. Interac-

tion Density signal

This subsection is going to present an empirical study on the (theoretical) baseline per-

formance of different types of scoring functions in the problem of mining SLiM from high

throughput PPI data. Up to now, there are two major approaches in finding domain

associated SLiMs within PPI data. The first one attempts to find statistically signifi-

cant occurrences of potential linear motifs in the domain’s partner proteins. Methods

in this line include DILIMOT [39], SLiMDisc [40] and SLiMFinder [41]. The underly-

ing assumption is that the correct SLiM associated with a domain should occur in the

partner proteins at a statistically significant frequency. The other approach is the inter-

action motif approach which assumes that the correct SLiM associated with a domain

should have a statistically significant number of interactions with proteins containing

the domain.

While each approach may provably be correct in theory, there has been no in-depth

study on their suitability in the context of mining SLiMs from high throughput PPI data.

In particular, from a data mining point of view, we ask: which signal is more prominent;

the occurrence signal or the interaction density signal? D-STAR had shown that the
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occurrence based approach (Gibbs Sampler [119], MEME [118] and SP-STAR [125])

performed worse than D-STAR in the synthetic data experiments and two biological

data (SH3 and TGFβ) [45]. In SLIDER’s paper, Boyen et al found that many of the

SLiMs with high interaction support are not those with the highest occurrence signal [4].

However, these results are rather anecdotal—they are based only on a few cases.

Benchmark Domains and SLiMs

We shall now study the performances of these two major approaches using known exper-

imental SLiMs from ELM [1] and MiniMotif [2] as benchmarks. From the literature, we

collected 34 known experimentally verified SLiMs of domains 14-3-3, Alpha adaptinC2,

Arm, BIR, BRCT, Cyclin N, Dynein light, FHA, Hormone recep, MATH, PID, Pkinase,

Pkinase Tyr, SH2, SH3 1, and WW (see Table 5.1). We collected the non-homologous

PPI data corresponding to each domain as described in Methods section.

Comparison Setup

In brief, we use two scoring functions representing the two approaches to score and rank

a set of motif patterns. These motifs are computed from the interaction partners of a

domain (to be precise, a set of protein containing the domain). Next, we checked these

motifs for occurrences of the experimentally verified SLiM associated with the domain.

Finally, we find out which scoring function consistently gives better ranks to motifs

containing the known SLiM across all domains that we study.

To perform a reliable comparison, we ensure two things. Firstly, the set of motif

patterns to be scored by different scoring must be the same so that we can directly

compare their ranks. Thus, we make use of the wildcard (8, 4)-motif used in SLIDER [4]

and MotifCluster [3]. Given l and d, there are exactly
(
l
d

)
20l−d possible wildcard (l, d)-

motifs and they are not substrings of one another. (this is not the case when using

TEIRESIAS’ (L,W )-motif since TEIRESIAS concatenate the SLiMs into longer ones).

We use the same minimum occurrence criteria as in Section 5.2.3 (δ = max{ |C(P ′
D)|

40 , 5}).

This cutoff is meant to avoid considering very small cases, which could easily have very

high density, but are not statistically significant. The subset of wildcard (8, 4)-motif

satisfying the cutoff criteria are named as frequent wildcard (8, 4)-motifs. Since the

experimental SLiMs are defined using a regular expression, we define that the SLiM
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Table 5.1: The benchmark domains and their corresponding experimentally derived SLiMs

along with their literature reference. A reference prefix ’ELM’ means that the SLiM is taken

from the Eukaryotic Linear Motif database [1] and ’MnM’ mean that the SLiM is listed in the

Mini Motif database [2]. SLiMs occurring in both databases are identified by their ELM ID.

Domain Name Domain ID Reference SLiM Reference ID

14-3-3 PF00244

R.[∧P][ST][∧P]P ELM:LIG 14-3-3 1

R..[∧P][ST][IVLM] ELM:LIG 14-3-3 2

[RHK][STALV].[ST].[PESRDIF] ELM:LIG 14-3-3 3

Alpha adaptinC2 PF02883
[DE][DES][DEGAS]F[SGAD][DEAP][LVIMFD] ELM:LIG AP GAE 1

[WFY]G[PDE][WFYLM] MnM:PBMAP200005B

Arm PF00514 K[KR].[KR] MnM:PRMNLS00001A

BIR PF00653 A[VIT]P[FYVI] MnM:PBMAIP00001A

BRCT PF00533
S..F ELM:LIG BRCT BRCA1 1

S..F.K ELM:LIG BRCT BRCA1 2

Cyclin N PF00134 [RK].L.{0,1}[FYLIVMP] ELM:LIG CYCLIN 1

Dynein light PF01221 [∧P].[KR].TQT ELM:LIG Dynein DLC8 1

FHA PF00498

T..[ILV] ELM:LIG FHA 1

T..[DE] ELM:LIG FHA 2

T..[SA] MnM:PBMFHA00002A

Hormone recep PF00104 [∧P]L[∧P][∧P]LL[∧P] ELM:LIG NRBOX

MATH PF00917
[PSAT].[QE]E ELM:LIG TRAF2 1

[PA][∧P][∧FYWIL]S[∧P] ELM:LIG USP7 1

PID PF00640 NP.Y ELM:LIG PTB 1

Pkinase PF00069

[RK]..S[VI] ELM:MOD PK 1

R.R..[ST] ELM:MOD PKB 1

[KR].{0,2}[KR].{0,2}[KR].{2,4}[ILVM].[ILVF] ELM:LIG MAPK 1

Pkinase Tyr PF07714 [IVL]Y.{1,5}[PF] MnM:PPSXXY00008A

SH2 PF00017

Y[QDEVAIL][DENPYHI][IPVGAHS] ELM:LIG SH2 SRC

Y.N ELM:LIG SH2 GRB2

Y[IV].[VILP] ELM: LIG SH2 PTP2

Y..M MnM:PBMSH200001C

SH3 1
PF00018

P..P MnM:PBMSH300001A

[RKY]..P..P ELM:LIG SH3 1

P..P.[RK] ELM:LIG SH3 2

P...PR MnM:PBMSH300011A

WW PF00397

PP.Y ELM: LIG WW 1

PPLP ELM:LIG WW 2

PPR ELM:LIG WW 3

[ST]P ELM:LIG WW 4
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occurs within a wildcard (l, d)-motif M when there is a substring in M which correctly

match the reference SLiM’s regular expression.

Secondly, we need to use simple and straightforward scoring functions and do away

with any filtering and optimizations to ascertain that we only compare these functions’

capability. We define two different baseline scoring functions:

Scrocc(D,M) = P(M, |C(P ′
D)|, |C(PDM )|, 549)

ScrInt(D,M) =
|I(PD, PM )|
|PD||PM |

The Scrocc(D,M) function is exactly the same P function used by D-SLIMMER to

compute the statistical significance of (L,W )-motifs in Section 5.2.4. On the other hand,

ScrInt(D,M) computes the density of the interactions observed between the domain D

and a motif M .

The comparison is then performed as follows,

1. Given a PPI data I and a domain D, we would score each frequent wildcard

(8, 4)-motif M within the set of all partner proteins of D, P ′
D proteins in ID using

the functions Scrocc(D,M) and ScrInt(D,M); each of these function producing a

separate ranking for the frequent wildcard (8, 4)-motifs.

2. Next, from each scoring function’s ranked frequent wildcard (8, 4)-motif list, we

use the domain D’s reference SLiM S to find the highest ranked (8, 4)-motif M

containing S.

3. We also sum up the ranks of the best 10 frequent wildcard (8, 4)-motifs with the

SLiM S to see if the SLiM instances are always highly ranked. We only take the

best 10 to avoid including spurious occurrences with very bad ranks (this happens

when S is very weakly defined like SH2’s Y..M, FHA’s T..[DE], etc). When there

are less than 10 frequent wildcard (8,4)-motifs with S we will report the sum of

all ranks that is found.

Comparison results

Out of 34 reference SLiMs, we can only found 25 (involving 11 domains) having at least

one SLiM instance within their lists of frequent wildcard (8, 4)-motifs The remaining 9
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Table 5.2: The comparison between occurrence based (Scrocc) and interaction density based

scoring function (Scrint). They are used to rank wildcard (8, 4)-motifs [3, 4] found in the PPI

data of domains with known SLiMs from ELM [1] or MiniMotif [2]. The rank of the first (8, 4)-

motif with the SLiM is listed in the ”Best” column and the sum of the best 10 ranks are in the

”Best 10” column.

Domain Ref. SLiM Dataset
Scrocc ScrInt Scrocc ScrInt

Best Best Best 10 Best 10

14-3-3

R.[∧P][ST][∧P]P
BIOGRID 2367 2235 50189 29250

HPRD 302 95 29462 10000

R..[∧P][ST][IVLM]
BIOGRID 941 920 59526 44161

HPRD 2463 1573 129789 100122

[RHK][STALV].[ST].[PESRDIF]
BIOGRID 116 2235 126575 112599

HPRD 16 365 151735 42047

Arm K[KR].[KR]
BIOGRID 95 3717 91684 132208

HPRD 2129 29962 139685 389898

BRCT

S..F
BIOGRID 1239 123 72294 10188

HPRD 5797 35 184710 15143

S..F.K
BIOGRID 32150 12818 237658 104278

HPRD 76771 6550 550305 150437

Cyclin N [RK].L.{0,1}[FYLIVMP]
BIOGRID 921 153 17483 10683

HPRD 741 477 14062 17524

FHA

T..[ILV]
BIOGRID 623 146 30241 4736

HPRD 860 105 21315 5677

T..[DE]
BIOGRID 742 111 19936 5373

HPRD 1484 420 25740 10169

T..[SA]
BIOGRID 110 244 5963 11638

HPRD 50 204 7942 12319

MATH

[PSAT].[QE]E
BIOGRID 1568 243 54520 57757

HPRD 362 594 19380 28494

[PA][∧P][∧FYWIL]S[∧P]
BIOGRID 20 103 1659 7515

HPRD 21 413 2522 12006

PID NP.Y HPRD 33553 2 706979 4522

Pkinase

[RK]..S[VI]
BIOGRID 5623 229 5623 229

HPRD 20824 2023 62726 26592

R.R..[ST]
BIOGRID 5345 2223 61108 47907

HPRD 4790 494 90484 56892

SH2
Y..M

BIOGRID 4736 3 14043 9

HPRD 10503 2 45222 80

Y.N HPRD 8564 1627 126225 23650

SH3 1

P..P
BIOGRID 327 5 6157 130

HPRD 3 577 457 7744

[RKY]..P..P
BIOGRID 4043 8 180423 689

HPRD 658 704 114782 13241

P..P.[KR]
BIOGRID 8237 5 156275 2403

HPRD 566 692 144583 10072

P...PR
BIOGRID 8237 65 73796 1117

HPRD 1893 798 152753 13863

WW

PP.Y
BIOGRID 10713 39 284265 3136

HPRD 6278 0 290822 266

PPLP
BIOGRID 62823 42847 62823 42847

HPRD 44404 4221 44404 4221

PPR BIOGRID 935 3088 170813 127661

[ST]P
BIOGRID 234 200 21207 6175

HPRD 88 91 4467 2543

Num. of time dominating 14 33 10 37
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SLiMs do not appear within any of frequent wildcard (8, 4)-motifs and hence was not

ranked. 22 out of these 25 SLiMs are found in both BIOGRID and HPRD PPI dataset.

Two SLiMs (PID’s NP.Y and SH2’s Y.N) are found only in HPRD and one (WW’s

PPR) is found only in BIOGRID. In total, there are 47 distinct datasets in which the

reference SLiMs are found and ranked.

For 33 out of 47 cases (70.21%), ScoreInt(D,M) outperforms Scoreocc(D,M) when

we check the best rank in which the reference SLiMs occur. The result is more pro-

nounced when we check the combined ranks of the best 10 frequent wildcard (8, 4)-motifs

with the reference SLiM. In this comparison, ScoreInt(D,M) again performed better

for the sum of best 10 ranks in 37 datasets (78.7%) while Scoreocc(D,M) are better

only in 10 of them.

Hence, we conclude that the interaction density signal is better than occurrence

signal for mining real life, biologically relevant SLiMs from PPI data. This does not

mean that occurrence based method will be useless; it does mean that approaches in

this line would have to deal with more false positives and hence need more rigorous

filtering—sometime to the extent of losing real motifs (as we would see in the next

subsection’s results). Moreover, the relatively poor ranks reported by both functions

for most of the datasets indicates that we still have to do more thoughtful filtering to

further refine the ranking of the correct motifs.

5.3.2 Comparative Study between D-SLIMMER and Existing Meth-

ods

This section presents the comparison between D-SLIMMER and three existing SLiM

finding programs: MotifCluster [3], SLIDER [4] and SlimFinder [41]. The programs are

run on PPI datasets of the reference domains in table 5.1. The datasets are prepared

as described in the previous subsection. For each reference SLiM, we check if the SLiM

occurs in any of the best 50 motifs reported by each method. This rank cutoff value of

50 is arbitrarily chosen as an estimate of the number of validations that could feasibly

be done on the list of predicted SLiMs given by a program.
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Program parameters

• D-SLIMMER is run by setting the TEIRESIAS (L,W )-motif parameter to our

default (4, 8). Other parameters are chosen as described in the Methods section.

• MotifCluster is run using l = 8, d = 4 and numSeed = 5000. For each domain

D, we provided MotifCluster with the D’s PPI— the subset of the whole genome

PPI which involved D. We could not pass the whole PPI I because MotifCluster

would generate all possible motif pairs (including those not related to D; poten-

tially causing MotifCluster to report poor ranking for the correct motifs of most

benchmark domains). Because MotifCluster reports motif pairs in its output, say

the motif pair is (M1,M2), when the reference SLiM M occurs in M1, we require

that 75% of the proteins with the motif M2 also contains the benchmark domain

of M . If the motif pair (M1,M2) satisfies this requirement, then we report M1’s

rank.

• SLIDER is also run with l = 8 and d = 4. SLIDER does not require number of

seed to try but instead require a maximum wall time for the program to terminate.

We set this to 6 hours. We also pass SLIDER only the domain PPI set for each

benchmark domain D for the same reason as MotifCluster. Since SLIDER also

reports motif pairs, we apply the same requirement for a motif pair (M1,M2) to

qualify as a valid instance of SLiM M .

• SLiMFinder is the newest occurrence based program available (which are shown

to have better performance compared to SLiMDisc and DILIMOT). To run it,

we provide the protein sequences of the target proteins in ID, that is the set

{P ′
i |(Pi, P

′
i ) ∈ ID}. SLiMFinder does not require any motif parameter, and we

only need to set the maximum time it runs—which is set to 24 hours (SLiMFinder

requires significantly more time in running the filtering step and we ensure it has

ample time to run all of its subroutines correctly).

When a SLiM reported by any program contains a regular expression match of one

experimental SLiM listed in Table 5.1, we say that the experimental SLiM occurs in the

program’s SLiM and that the program’s SLiM contains the experimental SLiM.
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Table 5.3: The performance comparison between D-SLIMMER, MotifCluster, SLIDER and

SLiMFinder. This table lists the best rank of the each method’s SLiMs containing the reference

SLiM of each domain. “–” is listed when the method reports no SLiM containing the reference

SLiM within its best 50 SLiMs.

Domain Ref. SLiM Dataset
D-SLIMMER MotifCluster SLIDER SLiMFinder

Rank Rank Rank Rank

14-3-3
R.[∧P][ST][∧P]P HPRD 6 - - -

[RHK][STALV].[ST].[PESRDIF] HPRD 1 - - -

Arm K[KR].[KR] BIOGRID 7 - 1 -

Cyclin N [RK].L.{0,1}[FYLIVMP] HPRD 16 - - -

FHA

T..[DE] HPRD 44 6 - -

T..[SA]
BIOGRID 9 - - -

HPRD 4 - - -

MATH [PA][∧P][∧FYWIL]S[∧P]
BIOGRID 14 - - -

HPRD - 7 - -

PID NP.Y HPRD 4 - - -

SH3 1

P..P
BIOGRID 1 2 - -

HPRD 2 14 46 4

[RKY]..P..P
BIOGRID 12 2 - -

HPRD 10 - - -

P..P.[RK]
BIOGRID 10 38 - -

HPRD 2 - - -

P...PR
BIOGRID 19 - - -

HPRD 4 - - -

WW

PP.Y
BIOGRID 3 - - 3

HPRD 1 1 - -

PPLP HPRD 46 - - -

[ST]P
BIOGRID - 4 - -

HPRD 50 43 - -

Comparison results

The comparison result is listed in Table 5.3. The first observation from the table is that

D-SLIMMER managed to mine significantly more SLiMs which contain the reference

SLiMs compared to the other methods. We manage to find 15 out of the 34 reference

SLiMs where 6 of them are found in both BIOGRID and HPRD datasets; giving a total

of 21 validated cases. The next best method, MotifCluster only managed to find 7 of
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them (2 are found in both datasets, giving a total of 9 valid cases). Both SLIDER and

SLiMFinder can only find two cases each. We also note that when only the best 10 or

20 motifs of each method are reported, D-SLIMMER will still report roughly two times

more motifs containing the experimental SLiMs compared to the second best method,

MotifCluster.

There are five cases where D-SLIMMER performs worse than the other methods.

First, for the SLiM of MATH domain, D-SLIMMER failed to find it in the HPRD

dataset while MotifCluster managed to report one, the SLiM SP..SS, at rank 7. The

same SP..SS motif is also found by D-SLIMMER but it is scored much lower. We observe

that SP..SS also occur frequently in other proteins that is not listed to be interacting

with MATH domain. Moreover, within the BIOGRID dataset, D-SLIMMER found an

instance of this domain’s SLiM (rank 14) while MotifCluster found none.

In the second case, SH3 1’s reference SLiM [RKY]..P..P (SH3 class 1 motif), is found

in the BIOGRID dataset at rank 12 by D-SLIMMER compared to MotifCluster’s rank

2. Interestingly, MotifCluster fail to find any instance of the same SLiM in the HPRD

dataset while D-SLIMMER found one at a similar rank 10. Furthermore, MotifCluster

can only find an instance of the SLiM P..P.[RK] (SH3 class 2 motif) in rank 38 while

D-SLIMMER reports one in rank 10 in the BIOGRID dataset. In the HPRD dataset,

MotifCluster also fail to find any instance of P..P.[RK]. Earlier study indicates that

P..P.[RK] based interaction should be more prevalent in SH3-based interaction because

around 25% of SH3 domain would not bind R.PP..P peptides (which is a subclass of

SH3 class 1 motif) [145]. On the other hand, P..P.[RK] are almost universally bound by

all SH3 domains. We note that D-SLIMMER reports higher rank for P..P.[KR] in both

datasets. Furthermore, D-SLIMMER also found the other variant of the class 2 motif,

P...PR [146] while none other methods did. Hence, we suggest that D-SLIMMER’s SH3

result is more complete and, at the same time, in good agreement with the literature.

D-SLIMMER also reported a lower rank (rank 7) for the instance of Arm domain’s

K[KR].[KR] motif as compared to SLIDER’s (rank 1). When we examined the SLiM

reported by SLIDER, E..KK.K, we noticed that the same SLiM is also listed in D-

SLIMMER result albeit with a much lower score (again because E..KK.K occurs fre-

quently in proteins that are not listed to be interacting with Arm domain). D-SLIMMER

instead reported a similar, more specific, motif E.K.K..KK.K. Finally for FHA’s T..[DE]
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motif and WW’s [ST]P, MotifCluster outperformed D-SLIMMER.

The comparison results indicate that whenever there exists a region on the reference

domain that can be represented by a linear motif, the interaction motif based methods

like SLIDER and MotifCluster can actually perform better than D-SLIMMER, especially

when the reference SLiM is inherently weaker like FHA’s and WW class 4 (the motif

on the domain side provided stronger specificity). However, based on the number of

SLiMs they covered, these cases seem not to be the norm and hence we suggest that

our structural-linear interaction motif approach is more suitable to mine SLiMs from

PPI dataset. D-SLIMMER’s better performance can also be the result of using a better

background model since, by design, D-SLIMMER can make use of the global PPI as a

background while targeting specific domain-SLiM pair.

5.3.3 Novel SLiMs with peptide and literature supports

We now show that D-SLIMMER is capable to predict biologically meaningful novel

SLiMs. ”Novel” in our definition is that there is no formally defined SLiM for the

domain yet. Because of our limited capability in doing wet-lab validation, we focus

on finding novel SLiMs with domain-peptide structure supports. A domain-peptide

structural support is a PDB 3D structure which shows that the domain can bind with

one single instance of the SLiM. Although this kind of anecdotal evidence is by no

means complete, it nevertheless provides an evidence that the proposed novel SLiM is

biologically feasible.

Candidate Novel SLiM for the Sir2 domain (PF02146)

The Silent information regulator 2 (Sir2) proteins, or Sirtuins, is a family of protein

deacetylases that depends on the NAD (Nicotine Adenine Dinucleotides). These proteins

are involved in repression of gene transcription in the telomeres, DNA repair process,

cell cycle progression, chromosomal stability and cell aging [51].

As a family of deacetylase enzymes, Sir2 recognizes acetylated lysine residues (in

short, acetyllysine or Kac) and catalyzes the removal of the acetyl moiety. Initially, Sir2

is thought not to be substrate specific, as the contacts made between the Sir2 protein and

the target substrate’s residues flanking the acetyllysine are main-chain based [147,148].

More recently, Cosgrove et al had showed that certain Sir2 proteins have preferences to
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Figure 5.1: The domain-SLiM protein set pair between Sir2 domain (PF02146) and the SLiM

AK.V.I. The SLiM proteins are followed by the position(s) on which the SLiM occurred and the

substring that contains the SLiM. The interactions between the proteins are separated between

their source species (yeast and fruit fly).

bind specific residues at pos -1 and +2 with respect to the acetyllysine at pos 0 [52].

In their paper, they reported the crystal structure of Sir2tm, the Sir2 homologue in

Thermatoga maritima, with several known target peptide like the Histone 3 acetyllysine

115 (H3K115ac), Histone 4 acetyllysine 79 (H4K79ac), and the p53 acetyllysine 382

(p53K382ac).

Our D-SLIMMER program reported a novel SLiM AK.V.I for Sir2 domain in our

BIOGRID dataset. The motif is found in a domain-SLiM pair with 5 Sir2 proteins and

8 SLiM proteins There are a total of 9 interactions among them, one of which (between

Yeast Sir2 and Yeast H3K115ac) was confirmed in-vitro [52]. The domain proteins

and their partners are as depicted in Fig. 5.1. We also note that AK.V.I includes all

important positions for substrate recognition as reported in [52], namely the acetyllysine

position (occupied by residue K), the -1 (A) and +2 (V) positions. Alanine at the -1

position has also been found in several bonafide acetylated Sir2 target like H4K77ac

(peptide sequence: AKacRKTV) and H4K16ac (AKacRHRK) [52]. Position +2 is

involved in hydrophobic interactions with phenylalanine 162 and valine 193 of the Sir2tm

protein [52] and our SLiM correctly requires a hydrophobic, aliphatic residue valine (V)

in this position. In some cases, the position +2 is occupied by a lysine (K) residue

(like in H4K77ac (AKacRKTV)) which is not exactly a hydrophobic residue. However,

lysine’s side chain have a large hydrophobic portion and Cosgrove et al suggested that

it could compensate for the required hydrophobic interaction [52].
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Table 5.4: The list of Glyceraldehyde-3-phosphate dehydrogenase proteins for structural mod-

eling of P07487 and P00359.

ProteinID UniprotID Description Species

P07487 P07487 Glyceraldehyde-3-phosphate dehydrogenase 2 D. melanogaster

P00359 P00359 Glyceraldehyde-3-phosphate dehydrogenase 3 S. cerevisiae

3H9E:A O14556 Glyceraldehyde-3-phosphate dehydrogenase, testis-specific H. sapiens

2VYN:A P0A9B2 Glyceraldehyde-3-phosphate dehydrogenase A E. coli

2I5P:O P84998 Glyceraldehyde-3-phosphate dehydrogenase 1 K. marxianus

2YYY:A Q58546 Glyceraldehyde-3-phosphate dehydrogenase M. jannaschii

1A7K:A Q27890 Glyceraldehyde-3-phosphate dehydrogenase, glycosomal L. mexicana

1GD1:O P00362 Glyceraldehyde-3-phosphate dehydrogenase B. stearothermophilus

There is so far no report on the importance of the +4 position but we note that this

position is also frequently occupied by an aliphatic residue or a lysine residue, which

shares the same property as our reported isoleucine (I) residue in our SLiM. Examples

of the +4 position are: AKacRVTI in H3K115ac, AKacRKTV in H4K77ac, AKacRHRK

in H4K16ac, NKacKSTI in H2BK82ac and KKacLMFK in p53K382ac.

From Fig. 5.1, we observe that some of the interaction partner of the Sir2 proteins

have never been characterized in detail. They are all found by the high throughput

method like the affinity capture or yeast two hybrid and hence we could not verify if

the SLiM is actually one of the binding interfaces between these pairs. Interestingly,

we found Sir2—Glyceraldehyde-3-phosphate dehydrogenase interaction on both yeast

(S.cerevisae) and fly (D. melanogaster) using two different high throughput PPI detec-

tion methods; affinity-capture (Yeast) and two-hybrid (fly) (as reported in the BioGRID

database [50]).

First we check if the SLiM is located in the surface of GPDH and hence accessible

for recognition. To this end, we collected several PDB structures of Glyceraldehyde-

3-phosphate dehydrogenase and retrieved their sequences. The proteins and their ID

are listed in Table 5.4. Next, we use the multiple sequence alignment software Mus-

cle version 3.8.31 [10], to generate the multiple sequence alignment of the sequences of

P07487 and P00359 along with those with available structures. Based on the align-

ment, we infer the position of our SLiM instances in P07487 and P00359 using existing

Glyceraldehyde-3-phosphate dehydrogenase structures as templates. Fig. 5.2 shows two
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The lysine (K) residue in 

the AK.V.I region (SLiM 

is colored in red) isis colored in red) is
exposed and accessible.

Figure 5.2: The location of AK.V.I instances in Glyceraldehyde-3-phosphate dehydrogenase

proteins.(Left) The detailed portion of the PDB structure 2I5P containing the AKKVVI se-

quence. The circled position is the predicted acetyllysine position and it is pointing outward the

protein. (Right up) The dimer complex of Glyceraldehyde-3-phosphate dehydrogenase protein

in K. marxianus (Right below) The tetrameric complex of Glyceraldehyde-3-phosphate dehydro-

genase in E. coli. Note that the SLiM containing region are all located at the outer peripheries

of both the dimeric and tetrameric complexes.

of such template (PDB ID:2I5P (A,B) and 2VYN (C)). The regions with the SLiM in-

stance are highlighted in red. We can see in Fig. 5.2 (A, B, C) that the SLiM is located

at the outer periphery of the protein in both the dimer (B) and tetramer complexes (C).

Detailed portion of the dimer complex in (A) shows that the K position of the AK.V.I

SLiM is pointing out and thus accessible for recognition by other protein. In (D), we

show a portion of the multiple sequence alignment which contains the SLiM instances.

We can also find our predicted SLiM in 6 out of the 8 PDB structures in the alignment,

and one similar instance (VKAILQ in 2YYY chain A (Uniprot ID:Q58546)).
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sp|P00359|G3P3_YEAST      ...DGKKIA--TYQERD-PANLPWGSSNVDIAIDSTGVFKELDTAQKHIDAGAKKVVITAPSS...

sp|P07487|G3P2_DROME      ...NGQKIT--VFSERD-PANINWASAGAEYIVESTGVFTTIDKASTHLKGGAKKVIISAPSA...

1  UniRef50_P15115    ...NGKEII--VKAERN-PENLAWGEIGVDIVVESTGRFTKREDAAKHLEAGAKKVIISAPAK...

2  UniRef50_P00358    ...DGHKIA--TFQERD-PANLPWASLNIDIAIDSTGVFKELDTAQKHIDAGAKKVVITAPSS...

3 U iR f50 P04406 NGNPIT IFQERD PSKIKWGDAGAEYVVESTGVFTTMEKAGAHLQGGAKRVIISAPSA3 UniRef50_P04406           ...NGNPIT--IFQERD-PSKIKWGDAGAEYVVESTGVFTTMEKAGAHLQGGAKRVIISAPSA...

4  UniRef50_O83816     ...GGHRIKCVCGRGLK-PSQLPWKDLGIEVVIEATGIYAN-ESSYGHLEAGAKRVIISAPAK...

5  UniRef50_Q9Z518    ...DGKTIK--VLSERN-PADIPWGELGVDIVIESTGIFTKKADAEKHIAGGAKKVLISAPAK...

6  UniRef50_P46713    ...GSEKIK--ALAVREGPAALPWHAFGVDVVVESTGLFTNAAKAKGHLEAGAKKVIVSAPAT...

7 UniRef50 Q9ZKT0 GSLEIP--VFNSIK-------DLKGVGVIIECSGKFLEPKTLENYLLLGAKKVLLSAPFM7 UniRef50_Q9ZKT0           ...GSLEIP--VFNSIK-------DLKGVGVIIECSGKFLEPKTLENYLLLGAKKVLLSAPFM...

8  UniRef50_Q31EG6    ...----------------------------MIEATGKFRTRESLQAYLDQGVKQVIVAAPMK...

9  UniRef50_Q8CNY0    ...NGHEIK--LLSDRN-PENLPWNEMDIDVVIEATGKFNHGDKAVAHINAGAKKVLLTGPSK...

10 UniRef50_P29272    ...GRGPIK--VTAIRN-PAELPWA--GVDMAMECTGIFTTKEKAAAHLQNGAKRVLVSAPCD...

11 UniRef50 Q6L125 ...KGTLND---------------LMESSDIIVDATPEGMGMENIKIYKKKRVKAIFQGGEKS...11 UniRef50_Q6L125 ...KGTLND LMESSDIIVDATPEGMGMENIKIYKKKRVKAIFQGGEKS...

12 UniRef50_A1RV79    ...AGTIED---------------LIKASDIIIDASPEDVGRENKEKYYQRYDKPVIFQGGEE...

13 UniRef50_A4WIW2    ...AGTIED---------------LIKASDVIIDASPEDVGAENKEKYYSKFDKPVIFQGGEE...

14 UniRef50_A6UUN9    ...QGNIFD---------------IIEEADIVVDCAPGGIGKDNIENIYKKYNKKAIVQGGEK...

15 UniRef50 A3CYG8           ...AGDVEA---------------MLKAADIVVDATPGGVGEKNRPIYEKLGKKAIFQGGEDH..._

16 UniRef50_A7IB57    ...AGSVED---------------MCKAADVIVDATPGDIGVTNKPLYEKLGKKALWQGGEDH...

17 UniRef50_Q48335    ...DGTDFEAGIFHETD-PTQLPWDDLDVDVAFEATGIFRTKEDASQHLDAGADKVLISAPPK...

18 UniRef50_Q10SA3    ...-----------------------------------------MATHAALAASRIPATARLH...

19 UniRef50_P25857    ...DGKLIK--VVSNRD-PLKLPWAELGIDIVIEGTGVFVDGPGAGKHIQAGASKVIITAPAK...

20 UniRef50_O14556    ...DNHEIS--VYQCKE-PKQIPWRAVGSPYVVESTGVYLSIQAASDHISAGAQRVVISAPSP...

21 UniRef50_Q64467    ...DNLEIN--TYQCKD-PKEIPWSSIGNPYVVECTGVYLSIEAASAHISSGARRVVVTAPSP...

22 UniRef50_A4AD74    ...GKKRIR--VLSERD-PSRLPWKALNVDVVCECTGVFTARDKAAQHLAAGARKVLVSAPSA...

23 UniRef50_P34918    ...DSTPLS---FSEYGKPEDVPWEDFGVDLVLECSGKFRTPATLDPYFKRGVQKVIVAAPVK...

24 UniRef50_A8UN04           ...----------------------------------------------KEGAHHFLLERFKN...

25 UniRef50_Q4D9M5    ...-----------------------------------------------------MTGQPRD...

26 UniRef50_Q4D3Y9   ...------------------------------------------------------------...

27 UniRef50_B1WNQ3   ...----------------------SEGID---------------------------------...

28 U iR f50 B1L717 KGFLED FLEGIDFLMEYDPNELSIKLTFEGTGIQLSPKD28 UniRef50_B1L717           ...KGFLED--FLEGIDFLMEYDPNELSIKLTFEGTGIQLSPKD-------------------...

Figure 5.3: The conservation of AK.V.I instances in non-homologous Glyceraldehyde-3-

phosphate dehydrogenase (GPDH) proteins from the UniREF50 database [11]. The sequences

are at most 50% similar to one another. We note that our AK.V.I SLiM is conserved in 11 out

of 28 GPDH reference proteins and they are all aligned to the AK.V.I instances in the GPDH

proteins that are reported by D-SLIMMER (P07487 and P00359). 5 out of 11 clusters have

the exact AK.V.I SLiM while 6 have an approximate matching to the SLiM. For approximate

matching, position -1’s Alanine (A) can be replaced by a similarly small Valine (V). Position

+2’s Valine (V) can be replaced by other aliphatic residues like Leucine (L) and Isoleucine (I).

We also allow the same replacement for the position +4’s Isoleucine (I). The protein alignment

is generated by MUSCLE [10]. The protein alignment is generated by MUSCLE [10].

To confirm that AK.V.I is conserved in a large number of unrelated GPDH proteins,

we collected 28 reference proteins from the UNIRef50 database (this database contains

only reference proteins which are at most 50% similar to one another) using the keyword

”Glyceraldehyde-3-phosphate dehydrogenase”. We only selected full GPDH sequences

which are already reviewed and annotated in the database. Our predicted SLiM can be

found in 11 out of 28 representative GPDH sequences in the UNIRef50 database [11]

at the same alignment position as in the two P07487 and P00359 proteins (see Figure

5.3). This indicates that a significant number of unrelated GPDH proteins conserve
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Table 5.5: The region nearby known methylated residues in Yeast’s histone 3 and 4 proteins.

Km indicates the position of the methylated lysine. The residue’s indices are shifted to start

from 0 to conform with the literatures.

Segment Protein Position Reference

MARTKmQTAR Histone 3 4 PubMed: 11742990

QTARKmSTGG Histone 3 9 PubMed: 17194708

STGGKmAPRK Histone 3 14 PubMed: 17194708

KAPRKmQLAS Histone 3 19 PubMed: 17194708

QLASKmAARK Histone 3 24 PubMed: 17194708

KAARKmSAPS Histone 3 27 PubMed: 17194708

TGGVKmKPHR Histone 3 36 PubMed: 12773564

KRHRKmILRD Histone 4 20 PubMed: 17194708

the region where the SLiM occurs. Despite these indirect supporting evidences, to fully

confirm our SLiM’s correctness, one would still need to show that this position can be

acetylated and identify the corresponding acetyltransferase enzyme. We would leave

this experimental validation for future investigation.

Candidate Novel SLiM for the SET domain (PF00856)

The SET domain is a known family of methyltransferase enzymes that is known to add

methyl to specific lysine (K) residues on the N-terminal tail of the Histone proteins

(together they are called the protein lysine methyltransferase, PKMT). Histone methy-

lation has been implicated in many epigenetic regulation of the cell e.g. the formation

of Heterochromatin, X chromosome inactivation, and other transcriptional regulatory

process [53].

Until now, there is no consensus sequence known to be bound by the SET family,

except for the shared target lysine residue. Indeed, it seems that SET proteins have

very diverse set of targets which do not have strongly preferred residues (see Table 5.5).

D-SLIMMER found one SLiM that is related to the SET domain. The SLiM, SK.KK..H,

is found as the top SLiM in the BIOGRID’s SET domain PPI data. By comparing to

known SET targets in Table 5.5, we set the third Lysine (K) to be the methylation
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SET3_YEAST

SET4_YEAST

SET5_YEAST

RKM4_YEAST

SET1_SCHPO

SET9_SCHPO

PTK2_YEAST 790:SKKKKVIH

SNT1_YEAST 520:SKIKKEEH

KG1Z_YEAST 225:SKSKKVQH

SHG1_SCHPO 14:SKFKKEGH

RHP9_SCHPO 587:SKQKKLRH

Figure 5.4: The domain-SLiM protein set pair between SET domain (PF00856) and the SLiM

SK.KK..H. The conserved target Lysine (K) is predicted to be the third K residues (by com-

parison to known targets). The interactions between the proteins are separated between their

source species.

target and, for ease of notation, denote it with Km. The domain and SLiM proteins

corresponding to SK.KKm..H are listed in Figure 5.4.

At first, the interaction set seems odd as it does not include any of the Histone

targets. However, as we have showed earlier, the Histone targets are more degenerate

than what can be modeled by D-SLIMMER’s (L,W )-motif (and by the wildcard (l,d)-

motifs too) and none of them are significantly enriched in both PPI data (probably

because of the incompleteness of the data). Nevertheless, there are three indications

that the SLiM SK.KKm..H is indeed biologically viable:

1. Some SET proteins, like the SET79 in Human, was shown to also methylate non-

histone proteins like p53 and TAF10 [149] in addition to its originally known target,

the lysine at position 4 in the Histone H3 protein (H3K4). In fact, Huang and

Berger suggested that non-histone methylation may be more pervasive than what

is currently known [150].

2. We also found a PDB structure which shows one SET domain binding a pep-

tide with very similar property as the one defined by our SLiMs. The PDB

structure 3F9W shows a complex of Histone-lysine N-methyltransferase SETD8

bound to its Histone 4 Lysine 40 (H4K20) target whose sequence in the crystal is

KRHRKmVLRD bears a good resemblance to our proposed SLiM. The residue

at position -1,-3 and +3 with respect to the methylated Lysine are all occupied by

Arginine (R) residues; Arginine is a positively charged residue. The corresponding
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Table 5.6: The mutagenesis simulation on the SET-peptide complex PDB:3F9W using FoldX

[5]. The simulation makes use of the complex’s chain B (containing the SET domain) and chain

E (the short peptide). The table listed the binding energy (in kcal/mol) of the SET-peptide

complex given a mutation at a particular position on the peptide. For example, an entry on a

G row and pos -3 column gives the binding energy when the original peptide KRHRKmVLRD

is mutated to KGHRKmVLRD. The entries underlined are the energy of the original residues

in the crystal and the entries in bold are those suggested by D-SLIMMER’s SLiM SK.KKm..H.

The number in brackets is the rank of the residue’s binding energy in that position. ”Range”

lists the difference between the best and the worst binding energy. Average binding energies and

their standard deviations are listed as well.

Residue Pos -4 Pos -3 Pos -1 Pos +3

A -11.27 (14) -9.43 (15) -10.71 (15) -11.51 (18)

R -11.91 (3) -11.87 (2) -12.28 (5) -12.15 (2)

N -11.32 (13) -9.24 (17) -11.44 (10) -11.85 (7)

D -11.04 (20) -7.73 (19) -8.01 (20) -11.48 (19)

C -11.38 (12) -9.68 (13) -10.91 (13) -11.79 (8)

Q -11.23 (16) -9.62 (14) -11.07 (12) -11.48 (20)

E -11.18 (18) -7.67 (20) -9.25 (18) -11.75 (11)

G -11.25 (15) -9.41 (16) -10.1 (17) -12.01 (5)

H -11.72 (9) -9.86 (8) -13.68 (1) -11.69 (12)

I -11.82 (5) -10.25 (6) -12.01 (7) -11.63 (15)

L -11.78 (7) -10.99 (4) -11.76 (9) -11.77 (10)

K -11.85 (4) -10.25 (5) -12.47 (2) -11.78 (9)

M -12.04 (1) -11.74 (3) -12.23 (6) -12.36 (1)

F -11.79 (6) -11.87 (1) -12.3 (3) -12.06 (4)

P -11.19 (17) -9.91 (7) -8.34 (19) -11.88 (6)

S -11.16 (19) -9.84 (9) -10.31 (16) -11.56 (16)

T -11.39 (11) -9.7 (12) -10.73 (14) -11.66 (14)

W -11.91 (2) -8.43 (18) -11.07 (11) -11.51 (17)

Y -11.77 (8) -9.78 (10) -12.29 (4) -12.11 (3)

V -11.39 (10) -9.73 (11) -11.84 (8) -11.68 (13)

Range 1 4.2 5.67 0.88

Average -11.52 -9.85 -11.14 -11.79

Std. Dev. 0.32 1.16 1.42 0.25
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position in the SLiM are occupied by positive charged residues: Lysine (K) at

position -1 and -3 and a Histidine (H) at position +3. For position -4, our SLiM

reports a polar residue Serine instead of Lysine in the peptide (Lysine, being a

charged residue, is also a polar residue—however Lysine is quite a large residue

compared to Serine).

3. We also checked if the SLiM occurs on the accessible surface of the SLiM proteins.

Among the 5 partners, only RHP9 SCHPO have structural data (PDB: 2VXB and

2VXC). The motif’s instance SKQKKLRH falls in a linker region which is unde-

fined (probably disordered) in 2VXB and unstructured in 2VXC. Both structures

indicate that the region could harbor SLiM and would only become ordered upon

binding.

To further confirm our SLiM’s correctness, we took the crystal of 3F9W and run

a mutagenesis simulation using the program FoldX [5]. We check if the mutation of

the peptide KRHRKVLRD into one that conforms SK.KKm..H is energetically viable

as compared to other mutation. To do this, we simply mutate each position, one at a

time, in the peptide to all other amino acids and compute the approximate changes in

the complex’s binding energy. We make use of the PositionScan option in FoldX and

run the mutagenesis on the original crystal. The simulation result is listed in Table 5.6.

We observe that, in addition to correctly predicting the Km residue, D-SLIMMER

also give a good prediction for position -1 and -3. The lysine residue (binding energy

-12.47 kcal/mol) in the SLiM SK.KK..H at position -1 gives a slightly better predicted

binding energy than the original arginine (binding energy -12.28 kcal/mol) in the pep-

tide. In position -3, the predicted Lysine is the 5th best residue for that position where

the original arginine is ranked second.

We see that the result is not very good for pos -4 and +3. However, we observe that

for these two positions, the difference in the binding energies among different residues

is very small (less than 1 kcal/mol as seen in the ”Range” row—which compute the

difference between the best and the worst binding energy). We also see that the stan-

dard deviation of the binding energy of these two positions are much smaller than both

position -1 and -3 hence we propose that these two positions have weak, if at all, pref-

erence towards any residue. In all, D-SLIMMER’s SK.KKm..H manage to cover three
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important binding residues among its five predicted ones.

5.4 Conclusion

We have shown that by adopting a domain-SLiM (i.e. non-linear and linear motif pair)

interaction density approach, D-SLIMMER was able to detect twice as many literature

SLiMs from the PPI data as compared to the current best program, MotifCluster [3].

This indicates that to mine SLiMs from PPI data effectively, it is more advantageous

to model the interaction mechanisms using a domain-SLiM model, instead of the SLiM-

SLiM model adopted by the existing methods. We also showed that two novel SLiMs

detected by D-SLIMMER are biologically viable based on their supporting literature and

structural evidences. This shows that D-SLIMMER can predict biologically significant

novel SLiMs which are worth further experimental investigations. As we expect even

more high throughput PPI data to be produced in the coming years, D-SLIMMER would

be able to produce more novel domain-SLiM predictions.

5.5 List of publication

1) Hugo W, Ng S K, Sung W K. On Finding Domain-SLiM Interaction Motif from

High-Throughput Protein-Protein Interaction data. Submitted to RECOMB Satellite

Conference on Computational Proteomics, March 11–13, 2011.
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Chapter 6

Discovering Interaction Motifs

from Protein Structural Data:

SLiMDiet

6.1 Introduction

In the previous two chapters, we have studied the problem on mining SLiMs from high

throughput PPI data. We observe that there are several inherent limitations with these

approaches. First, as the SLiMs are highly degenerate and domains are mostly ho-

mologous, most of these algorithms mask out conserved domain regions (which are

assumed not to have many SLiMs) to reduce false positives hits arising from the ho-

mology. Recently, it was found that such filtering would cause some true motifs to be

missed [41]. Second, the motifs identified via the sequence-based approaches are not

guaranteed to occur on the binding interface. Such atomic level of details can only come

from high resolution three-dimensional (3D) structures [151]. Third, the algorithms are

highly dependent on the accuracy of the interaction identification experiments. How-

ever, these interaction data, being dominated by high throughput PPI data, are known

to be noisy [152].

The rapid increase of protein structure data in the PDB database [31] offers an

excellent opportunity to detect SLiMs directly from 3D structures instead of the proteins’

sequences. Some researchers have begun to exploit the structural data by using the
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structures as templates to find seed binding motifs which are subsequently enriched

using the available PPI data [48]. They therefore suffer from the accuracy and coverage

limitations of the PPI data like the previous methods. In this work, we directly find

de-novo SLiMs on domain interfaces extracted from 3D structures of protein-protein

interactions (Domain interface extraction, or Diet). The SLiMs are extracted from

structurally clustered domain-SLiM interaction 3D data for all PFAM domains which

have available structures in the PDB database.

Our SLiMDiet method comprises two steps: (i) Domain interface clustering: in-

teraction interfaces belonging to the same domain are grouped together and classified

using structural clustering; and (ii) SLiM extraction: interaction interfaces in each do-

main interface cluster are structurally aligned and the corresponding SLiM is extracted

from the alignment. We reported 452 distinct SLiMs found on the domain interaction

interfaces where 40 of them are known in the literature, 54 have at least one supporting

domain-short peptide structure (a PDB structure which shows that a single short peptide

instance of the SLiM is sufficient for binding the protein domain) and another 61 SLiMs

are found to be over-represented in the PPI data collected from the BioGRID [50].

Our data also revealed that the common assumption that SLiMs occur outside the

globular domain regions could be a cause for the lacklustre coverage of current SLiM

detection methods [3, 39, 41, 45]. Among the 452 distinct SLiMs that we reported, 198

of them have been detected on domain-domain interaction interfaces (we call these

domain-domain SLiMs). Current high throughput PPI-based SLiM detection methods

are not amenable to mining these domain-domain SLiMs since they rely on a motif’s

over-representation over a set of non-homologous protein sequences. It is virtually im-

possible to detect the over-representation of a domain-domain SLiM using sequence-

based methods since the domain’s homology would overwhelm the SLiM’s much weaker

similarity.

We conducted a further study on four novel domain-domain SLiMs that we have

found. The first one is a domain-domain SLiM bound by the Tumor Necrosis Factor

(TNF, PFAM domain:PF00229) domain on the BAFF proteins that have been impli-

cated in B cell hyperplasia and development of severe autoimmune diseases [153, 154].

A previous experiment reported in the literature has showed that an instance of our

predicted SLiM (a short peptide DLLVRHWV) can prevent the pathogenic condition
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from BAFF overexpression [155]. Another domain-domain SLiM of interest is a novel

SLiM found on the dimer interfaces of the Glyceraldehyde-3-phosphate dehydrogenase

enzyme which is associated with neurodegenerative disorders such as Huntington’s dis-

ease, Alzheimer’s disease, Parkinson’s disease and Machado-Joseph disease [156, 157].

We also discovered two SLiMs that are implicated in amyloid fibril formation impli-

cated in several debilitating human diseases such as Alzheimer’s disease, prion based

encephalopathies, liver cirrhosis and lung emphysema [158]. The class of domain-domain

SLiMs could therefore be particularly useful for designing inhibitors to disrupt the

domain-domain interactions which underlie the formation of pathogenic protein com-

plexes.

The fine atomic details offered by structural data made them an attractive data

source for discovering SLiMs that are beyond the coverage of existing sequence-based

methods. SLiM detection methods designed to directly find SLiMs on 3D interaction

interfaces can uncover new SLiMs that were undetected by the existing sequence-based

SLiM detection algorithms, in particular, those that occur on domain-domain interaction

regions. These domain-domain SLiMs could be good targets for disrupting the formation

of pathogenic protein complexes mediated by domain-domain interactions. With the

number of available protein structures continuing to grow rapidly, we can expect to

discover even more biologically significant novel SLiMs in the near future.

6.2 Methods

6.2.1 SLiMDiet’s workflow

In this study, we devised a method named SLiMDiet, a de-novo Short Linear Motif dis-

covery method by Domain Interface extraction from 3D protein structure data. SLiMDiet

consists of two steps: a DIet step, followed by a SLiM step. The DIet step takes a set

of protein structures from PDB as input, finds all known domains within the input

structures and extracts the domain interfaces associated with each of them. A domain

interface comprises two sets of amino acid residues: one found along a domain chain

(the set is called the domain face) while the other on a partner chain (partner face),

that are in close vicinity of each other. The interaction interfaces of each domain are

then clustered based on structural similarity. The resulting domain interface clusters
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represent various modes of interactions for the domain. In the SLiM step, we conduct

an approximate structural multiple alignment to align the domain faces and the partner

faces in each cluster. We then check if the alignment of the partner faces contains any

conserved linear region (called a ’block’) of length three to twelve residues. To ensure

robustness, we require that a block is constructed only from non-homologous partner

chains and we require at least four of them. Finally, we construct a (linear) Gapped

PSSM from the block to represent the predicted SLiMs. An illustration of SLiMDiet

algorithm can be seen in Figure 6.1.

6.2.2 Domain identification

A structural dataset was downloaded from the Protein Data Bank (PDB) on Aug 24th,

2009, containing 57559 structures. We chose structures containing at least one protein

chain and whose resolution is 3.0 Å or better, giving a total of 54981 legible structures

with 130488 protein chains. PFAM domain annotations on each PDB chain are com-

puted by running the hmmpfam program from the HMMER library version 2.3.2 [159]

using the latest PFAM 23.0 library [72].

We use PFAM [72] as our choice of protein domain definition as opposed to SCOP

( [76]) or CATH [77] because of the relatively better coverage of PFAM. PFAM was

previously reported to have 57% coverage on SWISSPROT+TREMBL sequences while

SCOP covers 31% [160]). PFAM also has higher PDB chain coverage on the current

dataset (PFAM version 23.0, released July 2008, covering 112424 chains (86.16% cov-

erage)) as compared to SCOP (version 1.75, dated June 2009, covering 87064 chains

(66.72% coverage)) and CATH (version 3.2.0, dated July 2008, covering 86105 chains

(65.99% coverage)). However, PFAM domain does have its own limitation. It currently

does not define structural domains that are formed by multiple protein chains. Nev-

ertheless, one can always apply SLiMDiet on SCOP/CATH domain definition without

major change on the program.

6.2.3 Interface extraction

For each PDB structure, we find the PFAM domains in its chains. For each domain, we

computed the domain interfaces as follows. First, we define the distance between two
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Figure 6.1: SLiMDiet’s overview. The domain interfaces of each PFAM domain are clustered by

their structural similarity. Next, from each cluster, the domain and partner faces are structurally

aligned and we build a Gapped PSSM based on the contacts on the partner faces. The Gapped

PSSM has flexible gaps defined by the minimum and maximum gaps observed between two PSSM

positions. We define a Gapped PSSM as linear when the total length of its non-gap positions

is three to twenty residues with gaps of at most four residues between any consecutive residue

positions. To detect domain-SLiM interfaces, we collect domain interface clusters whose partner

faces are covered by a linear Gapped PSSM.

amino acid residues to be the nearest distance between any pair of non-hydrogen atoms

between the two residues. As done in PSIMAP [161], we also use a contact distance

cutoff of 5Å here.

A domain interface comprises two sets of amino acid residues: the domain face and

the partner face. Each amino acid on one face must be within the defined contact

distance from some amino acid on the other face. The residues on each face must
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originate from a single protein chain (named domain and partner chain, respectively).

However, they need not be located consecutively in their respective chains. For the

domain face, the residues must also be within a single protein domain region of the

domain chain.

To curb possible non-biological (crystal) interfaces, which are generally of smaller

area, we set a threshold of having domain interfaces involving a minimum of eight amino

acids on the domain face and four amino acids on the partner face. This lower bound

corresponds to a binding area larger than 800 Å2 – which is roughly the average size

of a domain interface [46]. For intrachain domain interfaces, we also require that the

residues on the partner face are not within ten residues from the ends of the domain,

to avoid recognizing local contacts as interaction interfaces. This resulted in 270739

domain interfaces involving 4780 PFAM domains.

6.2.4 Pairwise structural alignment within each domain interface group

To classify similar interfaces that correspond to the same domain interaction class, we

define the similarity of two interfaces using the modified∗ S-score function from [162] as

follows:

Snorm = 1
(1+∆)

. N
min (|A|,|B|)

where ∆ is the root mean square distance (RMSD) between the two structures being

aligned, N is the number of aligned residues between the two interfaces, |A| and |B| are

the sizes of the aligned interfaces respectively.

Usually, the RMSD between two proteins is approximated by the RMSD of their

backbone’s Cα atoms. Since SLiMDiet’s domain interfaces only consist of the contact

residues (instead of the whole protein or domain), the Cα representation is rather in-

adequate. To capture the similarity better, we measure the similarity of two interfaces

using the backbone and side chain conformation of the residues on each interface. We

use the Cβ atom position to represent the direction of the side chain with respect to its

backbone Cα (a similar Cβ approximation was mentioned in [163]).

When comparing two interfaces, we treat both domain and partner faces of each

domain interface as one rigid continuous structure. We designed MatAlignAB for com-

∗The function is normalized by the size of the interface and scaled to yield similarity score between 0 to 1
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paring domain interfaces, a modified algorithm of MatAlign [164], which only aligns

residues from the same face type (i.e. residues from domain face in one interface can

only be aligned to residues in the domain face of the other) and aligns atoms of the

same atom type (i.e. Cα (Cβ , resp.) to Cα (Cβ , resp.)). As with the original algorithm,

MatAlignAB produces alignments which follow the sequential ordering of the residues

within their respective domain and partner sequences. The final results of this step con-

sist of the similarity scores and pairwise alignments among all pairs of domain interfaces

of each domain.

6.2.5 Hierarchical agglomerative clustering on the domain interfaces

For every domain, we cluster its interfaces into domain interface clusters by following

the steps of hierarchical agglomerative clustering algorithm using average linkage, where

the similarity of two clusters is defined to be the average pairwise similarity between all

the members of the two clusters (as done in [46]). The algorithm starts by setting every

domain interface as a cluster with one member. Next, it picks the pair of clusters which

has the highest pairwise similarity and combine the pair. Then, it computes the average

similarity of the combined cluster with the rest of the cluster. The latter two steps are

repeated until the similarity score between every possible pair of the clusters is below

a certain threshold. In SLiMDiet, we use the following range of thresholds 0.15, 0.2,

0.25, 0.3 to generate sets of (possibly overlapping) clusters each under the corresponding

threshold level. For those clusters which have more than 70% overlap, we group them

together and report one of the clusters as the representative.

6.2.6 Quantification of the clustering performance

Suppose C is a cluster of domain interfaces computed by a particular algorithm and R is

the reference cluster (in our case, R is the set of domain interfaces (manually) grouped

according to the literature). We use the F-score, which is the harmonic mean of the

sensitivity and specificity scores [165], to quantify the similarity of the predicted cluster

C and the reference cluster R.

F-score(C,R) =
2× Spec(C,R) × Sens(C,R)

(Spec(C,R) + Sens(C,R))
.
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Figure 6.2: An example of SLiMDIet’s gapped PSSM.

where Spec(C,R) is the specificity of the cluster C with respect to a reference cluster R

which is computed by Spec(C,R)=|C ∩ R|/|C|. Sens(C,R) is the sensitivity of the cluster

C with respect to R which is computed by Sens(C,R)=|C ∩ R|/|R|.

The F-score of an algorithm for a particular reference cluster R is the best score

among its computed clusters C. The F-score measure is used to compare the clustering

performance of SLiMDiet to SCOWLP’s on the benchmark data.

6.2.7 SLiM extraction from the interface clusters

We employ a position specific scoring matrix (PSSM) with flexible gaps, called gapped

PSSM to define the binding motif on the interaction interfaces. The gaps are defined

between any two consecutive positions in the PSSM. An example of our gapped PSSM

is depicted in Figure 6.2.

Given a cluster of domain interfaces, the construction of a gapped PSSM is performed

in two steps. First, the partner faces from the interface cluster are aligned to the cluster

center’s partner face. By aligning to the cluster center, which has the best average

similarity to the rest of the member of the cluster, we generate an approximate multiple

alignment of the partner faces.

Then, we ensure that the alignment contains 4 non-homologous faces. A face Fa is

defined as homologous to Fb when (1) Fa and Fb’s aligned residues in the alignment are

exactly the same and, (2) their full protein chains share more than 50% sequence similar-

ity. This means that two interfaces whose partner chains share high sequence similarity

can still be defined as non-homologous as long as their aligned interface residues differs.

We require that there are at least four non-homologous partner faces for a cluster to be

considered for SLiM extraction.

For each alignment column, we check if the column have at least 50% occupancy.
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Specifically, the number of non-empty residues aligned in each column must be greater

or equal than half of the number of non-homologous interfaces aligned. Some alignment

column have empty residues because the pairwise structural may choose not to align a

residue from a particular partner face to the cluster center’s residue when these residues’

3D positions are too different.

From the alignment of the non-homologous faces, a block is defined as a set of three

to twelve consecutive alignment positions with gaps of at most four residues in between

them. The SLiM corresponding to an interface alignment is computed from the longest

block in it. Such SLiM is said to be covering a partner face f if it covers at least half of

the contact residues in f . Given a set of partner faces F of size|F |, the number of partner

faces f ∈ F covered by the SLiM must be at least |F |
2 . The step-by-step construction of

the multiple SLiM alignment is given in Figure 6.3.

From a linear block satisfying the coverage constraint, we construct a Gapped PSSM

for the SLiM by extrapolating the score of all 20 amino acids against the residues

observed in each alignment column based on the BLOSUM62 substitution score [166].

As our multiple alignment is derived from a limited structural data, we refrain from

directly scoring a residue with its observed frequency in the alignment. Instead, we

define the score of a residue X on the alignment column i by

GappedPSSM(i,X) = ln

 ∑
AA∈Res(i)

freqi(AA) · eBLOSUM(X,AA)


where Res(i) is the set of amino acids seen in the column i of the alignment and

freqi(X) is the frequency of residue X in column i. Basically, the formula computes

the weighted combination of the BLOSUM62 substitution score of the residues seen in

the column with residue X. This scoring basically uses the the physical residues seen

in the alignment column (as they all come from a PDB structure) and extrapolate the

feasibility of having other residues in that position based on the BLOSUM62 substitution

matrix. The gaps in between each alignment column is simply computed by taking the

minimum and maximum gap observed between two residue position. An illustration of

Gapped PSSM construction can be seen in Figure 6.4.

From 39170 domain clusters with at least four members, SLiMDiet found 7473 with

at least four non-homologous interfaces. Out of these, only 1592 met the coverage
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Figure 6.3: Partner face alignment for finding SLiMs.

constraint. We then grouped interface clusters from different similarity cutoffs when they

have at least 70% member overlap. The grouping yields 452 distinct Gapped PSSMs

involving 280 PFAM domains. The full listing of SLiMDiet’s predicted SLiMs and

their Gapped PSSM can be downloaded from http://www.comp.nus.edu.sg/∼hugowill/

SLiMDiet/SLiMListing.doc.
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Figure 6.4: An illustration of SLiMDIet’s gapped PSSM generation from an interface alignment.

6.2.8 Computing the statistical significance of the SLiM using PPI

data

When a SLiM is extracted from a particular domain-SLiM interface clusters, we conduct

statistical tests to see if the motif occurs significantly more in the interaction partners

of the domain as compared to any random interaction.

Given a protein sequence S, the Gapped PSSM score of one particular position j in

S is just the maximum sum of the Gapped PSSM’s residue scores starting at j over all

possible gap combination in the PSSM. For example, the best score of position 0 in the

string FSDTK based on the gapped PSSM†

 L:4.62

F :1.38

 .{1, 2}
 T :2.4

D:−.12

 would be

†This is a mini-version of Gapped PSSM for exemplary purpose, the real gapped PSSM would have scores for

all 20 amino acids
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max

1.38 + (−0.12) (gap=1),

1.38 + 2.4 (gap=2)

For a position in a protein with a gapped PSSM score s, it is defined as an occurrence

of the PSSM if the probability of scoring s or better by random is at most equal to

10−4. To this end, we created 10000 random protein sequences, each of length 500,

with their amino acid distribution following the one observed in our PPI data from

BioGRID [50] release 2.0.58. For each gapped PSSM, we computed the scores of all

positions in the random dataset (of approximately 5 million positions) and sorted the

scores in non-increasing order. The 500th score on the sorted score list would have an

empirical P-value of 10−4 and is chosen as the cutoff score for the occurrence of the

gapped PSSM.

Given a SLiM’s gapped PSSM, the probability of observing a certain number of

occurrences in the partners of a protein domain by random can be computed by the

standard hypergeometric distribution function

P-value(I, ID, IM , IDM ) =

( |IM |
|IDM |

)( (|I|−|IM |)
(|ID|−|IDM |)

)( |I|
|ID|

)
where I is the whole set of the high throughput PPI data, IM is the subset of I which

contain an occurrence of the motifM , ID is the subset of I containing the domain D and

IDM is the subset of ID which contain an instance of M . To construct I, we collected

a set of 181997 non homologous PPI data by combining all available interactions from

all species included in the BioGRID interaction database version 2.0.58 [50] (dated Oct,

2009). We removed genetic (non-physical) interactions (as defined by BioGRID) and

those derived directly from structural data (to avoid self-discovery). Non-homology is

enforced by keeping only one interaction among those whose both interacting proteins

are at least 70% homologous to another pair(s) of interacting protein.

We checked the correctness of our PPI dataset and hypergeometric scoring function

by checking the hypergeometric p-values of SLiMs known in the literature (we call them

as the literature SLiMs). To this end, we collected 34 ELM and MiniMotif (MnM) SLiMs

that are also predicted by SLiMDIet. We expect that the majority of the literature

SLiMs are over-represented in the PPI data. We also check if the P-values computed for

our Gapped PSSM are consistent with respect to the literature SLiM’s p-value. It turns
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No Domain Name Literature SLiM
Literature

SLiM p-value

SLiMDIet

p-value

1 14-3-3 [RHK][STALV].[ST].[PESRDIF] 1.72E-04 9.93E-02

2 Alpha_adaptinC2 [DE][DES][DEGAS]F[SGAD][DEAP][LVIMFD] 2.89E-04 2.15E-01

3 Arm K[KR].[KR] 1.27E-02 1.55E-04

4 BIR A[VIT]P[FYVI] 3.10E-02 3.93E-02

5 Cyclin_N [RK].L.{0,1}[FYLIVMP] 3.81E-12 1.00E+00

6 Dynein_light [^P].[KR].TQT 4.50E-02 6.11E-09

7 efhand ...[SACLIVTM]..[ILVMFCT]Q.{3}[RK].{4,5}[RKQ].. 1.22E-06 7.69E-02

8 FHA ..T..[DE]. 3.45E-06 1.00E+00

9 Hormone_recep [^P]L[^P][^P]LL[^P] 1.00E+00 1.00E+00

10 Hormone_recep L[^P].{2}[HI]I[^P].{2}[IAV][IL] 1.00E+00 1.00E+00

11 IRS [IL]....NP.Y 1.00E+00 1.96E-01

12 MATH [PSAT].[QE]E 2.76E-05 3.56E-02

13 MATH [PA][^P][^FYWIL]S[^P] 5.59E-09 8.18E-02

14 PCNA_C
(^.{0,3}|Q).[^FHWY][ILM][^P][^FHILVWYP][DHFM][

FMY]..
1.36E-04 8.51E-06

15 PDZ .[ST].[VIL]$ 4.59E-21 3.08E-04

16 PID NP.Y 4.15E-02 2.28E-01

17 PID [IL].NP.Y 1.00E+00 1.96E-01

18 Pkinase [RK]..S[VI].. 2.69E-64 1.69E-03

19 Pkinase [KR]{0,2}[KR].{0,2}[KR].{2,4}[ILVM].[ILVF] 2.97E-50 2.61E-03

20 Pkinase_Tyr IYE 1.00E+00 1.00E+00

21 Profilin [GL]PPPPPP 8.41E-02 2.87E-02

22 SH2 Y[QDEVAIL][DENPYHI][IPVGAHS] 1.00E+00 1.00E+00

23 SH2 Y.N. 1.00E+00 1.00E+00

24 SH2 Y[IV].[VILP] 1.00E+00 1.00E+00

25 SH2 Y..M 4.49E-09 4.83E-02

26 SH2 Y..P 1.00E+00 6.08E-02

27 SH3_1 [RKY]..P..P 8.40E-40 2.00E-36

28 SH3_1 P..P.[KR] 9.34E-42 2.69E-41

29 SH3_1 P.[IV][ND]R..KP 6.96E-11 1.46E-09

30 SWIB F...W..[LIV] 1.43E-01 1.00E+00

31 TPR_1
(.[SAPTC][KRH][LMFI]$)|([KRH][SAPTC][NTS][LMF

I]$)
5.63E-05 5.94E-04

32 ubiquitin [WFY]..A...S..[DE] 2.52E-02 8.34E-03

33 WW PP.Y 1.12E-25 1.20E-12

34 WW PPLP 2.60E-02 7.19E-10

Figure 6.5: P-value checking on the literature SLiMs and SLiMDIet’s Gapped PSSM based

SLiMs. The ’motif’ column shows the literature’s reference SLiM. We can see that 23 out of the

34 known SLiMs in ELM and MnM are enriched in our PPI data based on the hypergeometric

p-value ≤ 0.05. The p-values of 17 of SLiMDIet’s Gapped PSSM are also ≤ 0.05 with 16 of them

overlap with the 23 SLiMs from ELM and MnM with p-value ≤ 0.05.
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out that 23 out of the 34 literature SLiMs are enriched in our PPI data (hypergeometric

P-value ≤ 0.05, matching is done using Regular Expression—since the literature SLiMs

are defined using regular expressions). Out of this 23, 16 are enriched for their Gapped

PSSM too. The detailed listing of the p-values for both literature SLiMs and our Gapped

PSSM is given in Fig. 6.5.

6.2.9 Computing the statistical significance of domain-domain SLiM

Some of the SLiMs that are mined by SLiMDiet are domain-domain SLiMs. A domain-

domain SLiM is a SLiM found in an interface cluster with at least four non-homologous

partner faces which occur within some (not necessarily the same) PFAM domains. These

domains are called the SLiM’s host domains. We want to know if these domain-domain

SLiMs are over-represented in the protein sequences of their host domain(s). If they do,

we can reasonably expect that the domain-domain SLiMs are conserved and commonly

used to mediate the domain-domain interaction.

We again use the hypergeometric P-value to compute the significance of the occur-

rence of the SLiM within its host domain’s sequence as compared to its occurrence across

a set of unrelated, non-homologous domain sequences. Formally, let the whole set of

non-homologous protein domain sequences that we collected be S and the subset of S

containing the occurrence of a SLiM P (in the form of Gapped PSSM) be SP . Next, let

the set of domain sequences of P ’s host domains be D. When there are more than one

such domains, D would be the union of each host domain’s set of instances. Finally, let

the set of host domain instances which contain the occurrence of P be DP . For multiple

host domains, DP is also the union of the sequence instances with P ’s occurrence on each

host domain’s instances. Then the hypergeometric P-value of having DP occurrence in

D by random would be

P-value(S,D, SP , DP ) =

( |SP |
|DP |

)( (|S|−|SP |)
(|D|−|DP |)

)( |S|
|D|

)
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6.3 Results

6.3.1 Both known and novel SLiMs are discovered

SLiMDiet detected 452 distinct SLiMs from the whole PDB dataset (dated August

2009). 40 of which are known in the literature. Amongst the remaining 412 candidate

novel SLiMs, 54 have at least an instance of a domain-short peptide structure in their

respective domain-SLiM clusters. The presence of such a domain-short peptide structure

is a strong indicator that the domain is capable of binding a linear peptide defined by

the predicted SLiM. Indeed, all of the literature-backed SLiMs have at least one domain-

short peptide structure.

From the remaining 358 candidate novel SLiMs, we found 61 are over-represented

in the interaction partners of their respective domains within the high-throughput PPI

data (p-value ≤ 0.05). The detailed listing of the total of 155 validated SLiMs is given

at http://www.comp.nus.edu.sg/∼hugowill/SLiMDiet/ValidatedSLiM.xls.

It is important to note that SLiMs with poor p-value are not necessarily erroneous

since the PPI data is far from complete. Indeed, as many as 145 of the remaining 297

SLiMs (those with p-value > 0.05) have less than 10 distinct interaction data—99 of

them have no PPI data support at all. This shows the limitation of SLiM detection

methods that relied solely or heavily on PPI data.

6.3.2 SLiMs with validations from the literature

We compared our predicted SLiMs with those listed in the ELM [1] and MiniMotif

database [2]. SLiMDiet reported 40 SLiMs with strong similarity with the known SLiMs

in literature. Since there is a significant overlap in the entries of ELM and MiniMotif,

most of our SLiMs correspond to more than one database entry in both databases. In

summary, our SLiMs covered 30 out of 136 known ELM SLiMs and 72 of 524 MiniMo-

tif SLiMs (from the publicly available MiniMotif ver. 1). The coverage is significant

considering that the SLiMs are solely computed from a more limited structural data

source.

As a comparison, we also checked the discovery of these literature-backed SLiMs

in the profiles collected by D-MIST [48]. D-MIST, like SLiMDiet, constructs binding

profiles of different domains based on the structural data. However, it relies on the high-
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throughput PPI data to refine their predicted motifs. Out of the 40 literature-backed

SLiMs found by SLiMDiet, we could only find the corresponding D-MIST profiles for 9 of

them. For the missing 31 SLiMs, D-MIST did not have any profile related to the SLiM’s

domain for 24 of them and for the remaining 7 SliMs, D-MIST’s profiles are too divergent

from the literature SLiMs. Such poor coverage could be due to the fact that D-MIST was

collected from a subset of PDB (10064 structures). However, we observe that even the

older, well-studied SLiMs recognized by domains like SH2(Grb2), WW, FHA, PDZ, and

PID(PTB) were also missing. We present the detailed listing of matched D-MIST pro-

files in the supplementary file at http://www.comp.nus.edu.sg/∼hugowill/SLiMDiet/D-

MIST comparison.xls.

6.4 Discussion

6.4.1 Different SLiM classes have different interface geometries

It has been known that some SLiM-recognizing domains can bind multiple classes of

SLiMs. The SH3 domain, for example, is known to recognize two classes of SLiMs;

[KRY]..P..P (SH3 class 1 SLiM) and P..P.[KR] (SH3 class 2 SLiM) [1]. We hypothesize

that the existence of such different classes of SLiM that can bind to the same domain

is due to observable differences in their corresponding domain interface geometries. In

other words, one can differentiate domain-SLiM interfaces belonging to different classes

of SLiMs through geometric comparison.

To verify our conjecture, we hand-curated a benchmark set of 230 domain-SLiM

interfaces from three well-studied domains—SH2 (123 interfaces), SH3 (80 interfaces)

and 14-3-3 (27 interfaces)—whose interaction classes are well-annotated in the literature.

For example, from the reference paper [167], we know that the SH3 domain in the chain

C of PDB structure 1oeb recognizes the motif P.[VI][DN]R..KP. The SH3 domain in PDB

structure 1uj0 was also reported to recognize the same motif in [168]. Then we check if

our program would cluster the interfaces of these two PDB structures under one cluster.

The detailed listing of the benchmark interfaces can be found at http://www.comp.nus

.edu.sg/∼hugowill/SLiMDiet/BenchmarkInterfaceList.pdf.

We compare the structural clustering of SLiMDiet with an existing domain interface

clustering method SCOWLP [47] on the benchmark clusters. The computed clusters of
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Table 6.1: The benchmark interfaces and their classification based on the literature reference.

Interface Class Benchmark Size Reference ID

SH3-class 1 32 PMID:14672668

SH3-class 2 44 PMID:14672668

SH3 P.[VI][DN]R..KP 4 PMID:12773374

SH2-(class 1A) 65

PMID:17956856

SH2-(class 1B) 9

SH2-(class 1C) 24

SH2-(class 2A) 16

SH2-(class 2B) 9

14-3-3 Class 1 6 PMID:10488331

14-3-3 Class 2 17 PMID:10488331

14-3-3 Class 3 4 PMID:16091624

SLiMDIet and SCOWLP are selected from the clustering output of the two methods

over a range of similarity cutoff. The cutoff used for SLiMDIet is 0.15, 0.2, 0.25, and 0.3

while SCOWLP uses 0.1, 0.2, 0.3, and 0.4 (as provided by SCOWLP’s authors as the

standard range of cutoff values). This way, both SCOWLP and SLiMDIet have four sets

of clusters originating from each method’s preferred cutoff value. For each domain-LM

class in the benchmark data, the best scoring cluster from any of the four set from each

method is reported where the clustering score is computed based on the F-Score function

defined in Section 6.2.6. As SCOWLP might not include all interfaces in our benchmark

datasets (it is based on an older release of PDB), its sensitivity is computed based on

the subset benchmark interfaces that are already existent when SCOWLP was built.

Table 6.2 shows that SLiMDiet’s clustering has a better overall average specificity,

sensitivity and F-score in the benchmark. On the classification of SH3, we observe

that SH3’s Class 1 and Class 2 have different peptide orientations but they make use of

essentially the same domain face on the SH3 domain. This causes SCOWLP to have diffi-

culties to distinguish the two main classes (and, to a certain extent, the P.[VI][DN]R..KP

class which has a Class-2 like conformation). SLiMDIet can easily recognize the differ-

ence when it aligns the peptides as well. We can also see that the SH3 class 2 and the

121



P.[VI][DN]R..KP class are separated well, thanks to the Cα and Cβ structural compar-

ison done by MatAlignAB.

On 14-3-3, SLiMDIet somehow have a less than expected performance on distinguish-

ing class 1 from class 3 in the dataset. A further check on our benchmark interfaces

reveals that some 14-3-3 class 1 interfaces only shows an incomplete peptide which only

covers a portion of the known Class 1 motif (for example, the structure PDB ID: 1ywt

has two interfaces with only 2 residues before the phosphoserine). These small interfaces,

most probably results from a poor resolution of the crystal, become indistinguishable

by SLiMDIet when compared to similarly small interfaces of 14-3-3 class 3.

The performance of SLiMDIet on SH2 is more mixed. It is better than SCOWLP on

class 1A and 1C; have similar performance (less than 10 percentage point difference in

their F-score) on class 1B and 2B; and is worse than SCOWLP on class 2A. These cases

are mainly caused by the SH2 SLiM classification being based more on the chemical

properties of the SH2 interface rather than its shape. Class 2A in particular, contains

both the (hydrophobic) two-pronged and the (hydrophobic) extended confirmation that

were separated in the earlier classification of SH2 [169]. On the other hand, SH2 class 1A

and 1C have distinctive shapes (class 1A contains the two-pronged, polar, SH2-peptide

binding while the peptides bound by SH2 Class 1C have a β-turn conformation). Because

of the distinct shapes, SLiMDIet performed reasonably well on both cases.

Nevertheless, the overall higher correspondence of SLiMDiet’s structural clusters

with the literature reference clusters indicates that different classes of domain-SLiM

interfaces indeed are associated with different domain interface geometries. We also note

that SCOWLP was not designed specifically for clustering domain-SLiM interfaces— but

it was the only existing method we found to be able to cluster domain-SLiM interfaces.

6.4.2 Known and Novel SLiMs are found on domain-domain interfaces

Interestingly, we observed that 198 of the total 452 predicted SLiMs are domain-domain

SLiMs. We found 2 of our 198 reported domain-domain SLiMs have literature support.

They are SLiMs found within SH3 1 and Ubiquitin domain. All of the instances of our

predicted SLiM for Ubiquitin are found within a domain called Ubiquitin Interacting

Motif (UIM, ID: PF02809), which shows that the SLiM is genuine. We also found
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Table 6.2: Clustering performance comparison of SLiMDiet and SCOWLP. We collected the

interfaces of the SH2, SH3 and 14-3-3 domains whose domain-SLiM interaction class is defined

in their respective reference papers. The grouping from the literature constitutes the reference

clusters, against which the accuracy of both SLiMDiet and SCOWLP are computed. The cases

where one method outperforms the other are printed in bold.

Interaction Class
SLiMDiet SCOWLP

Sens Spec F-Scr Sens Spec F-Scr

SH3-class 1 0.97 1.00 0.98 0.71 0.55 0.62

SH3-class 2 0.98 0.92 0.95 0.88 0.54 0.67

SH3 P.[VI][DN]R..KP 1.00 1.00 1.00 0.25 1.00 0.40

SH2-(class 1A) 0.75 0.86 0.80 0.62 0.67 0.65

SH2-(class 1B) 0.67 1.00 0.80 0.75 1.00 0.86

SH2-(class 1C) 1.00 1.00 1.00 0.83 0.59 0.69

SH2-(class 2A) 0.25 1.00 0.40 0.50 1.00 0.67

SH2-(class 2B) 0.67 0.86 0.75 0.67 1.00 0.80

14-3-3 Class 1 1.00 0.50 0.67 0.50 1.00 0.67

14-3-3 Class 2 1.00 1.00 1.00 0.67 1.00 0.80

14-3-3 Class 3 0.50 1.00 0.67 1.00 0.33 0.50

another 6 domain-domain SLiMs with supporting domain-short peptide structures and

35 domain-domain SLiMs with over-representation in the PPI data.

Domain-domain SLiMs are over-represented in their host domains

We also checked the over representation of these 198 domain-domain SLiMs within

the domain they occur in (their host domains). To this end, we listed the set of 228

host domains of the 198 SLiMs (some of the domain-domain SLiMs have multiple host

domains). For each domain, we use INTERPRO version 23.1 [73] and UNIPROT se-

quence data version 15.10 [11] to generate the set of domain sequence instances. To

save time on computation, we just sample at most 50 sequences with less than 50%

homology to one another to generate each host domain’s instance set. When any do-

main has less than 50 non-homologous sequence instances, we use all that are available.

The 50% homology cutoff was also applied on the sequences across different domain’s
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instances to ensure that the overall occurrence of our SLiM is not due to homology.

Using this procedure, we generated a total of 9283 non-homologous domain instances

(denoted by the set S in the equation in Section 6.2.9) for the 228 host domains. We

then computed the set Smatch, D and Dmatch for every domain-domain SLiM and pro-

ceed to compute their P-values. 143 out of 198 domain-domain SLiMs that we found

are over-represented in their respective PFAM domains (P-value ≤ 0.05). The list of

these domain-domain SLiMs along with their P-values are listed at http://www.comp.nus

.edu.sg/∼hugowill/SLiMDiet/DomainDomainSLiM.doc.

Candidates for Novel Domain-domain SLiMs

Finding domain-domain SLiMs is an important discovery since it is commonly believed

that SLiMs occur outside the globular domain regions [1]. In fact, most of the current

SLiM detection methods remove domain regions from the search space [39,41] because of

this belief. The discovery of such domain-domain SLiMs also indicates that many of the

apparent domain-domain interactions could be mediated by domain-SLiM interactions.

Indeed, a recent study had actually found genuine occurrences of ELM SLiMs on the

accessible parts of a globular domain [170].

One particularly interesting novel domain-domain SLiM found by SLiMDiet is a

SLiM that is bound by the Glyceraldehyde 3-phosphate dehydrogenase, C-terminal

(Gp dh C) domain (ID: PF02800). The Gp dh C domain is the C-terminal domain

of Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) enzyme. The enzyme exists

as a tetramer of identical chains, each containing two conserved functional domains, the

Gp dh N (ID: PF00044) and Gp dh C (ID: PF02800) domain. Figure 6.6 (A) shows the

structure of half of the tetramer, comprising of two chains of GAPDH (one chain on

the left and one on the right). Figure 6.6 (B, C) illustrates only the Gp dh C domain

surfaces with the linear peptide regions of Gp dh N on them.

Glyceraldehyde 3-phosphate dehydrogenase has an important role in glycolysis and

gluconeogenesis, and it is also involved in the signaling mechanism for programmed cell

death (apoptosis) ( [156]). Several studies associated the enzyme with neurodegenerative

disorders such as Huntington’s disease, Alzheimer’s disease, Parkinson’s disease and

Machado-Joseph disease ( [156,157]). The SLiM computed by SLiMDiet for Gp dh C is

[YH]..[KRQ][YH]D[ST] which is found within the Gp dh N domain. The predicted SLiM
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Figure 6.6: Domain-SLiM interface between Glyceraldehyde 3-phosphate dehydrogenase, C-

terminal (Gp dh C, ID: PF02800) and Glyceraldehyde 3-phosphate dehydrogenase, N-terminal

(Gp dh N, ID: PF00044). (A). The dimer of the Glyceraldehyde 3-phosphate dehydrogenase

complex (PDB ID:1gd1). The blue part is the C-terminal domain and the red part mark the

N-terminal domain. The C-terminal domain binds to a linear region on the N-terminal do-

main of the opposite chain (highlighted in ball-and-stick mode). SLiMDiet’s predicted SLiM

for this region is [YH]..[KRQ][YH]D[ST] (B). The surface representation of the Gp dh C do-

main of Holo-glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus (PDB

ID:1gdl). The linear region HLLKYDSVHGR of the opposite N-terminal domain bound

to the domain is shown in ball-and-stick representation. (C). The structure of linear se-

quence YQMKHDTVHGR bound to the Gp dh C domain of Leishmania mexicana’s glyco-

somal glyceraldehyde-3-phosphate dehydrogenase (PDB ID:1a7k). This figure is generated by

PyMOL [7].

is found within 9 non-homologous GAPDH dimers. It was reported in an earlier study

that inhibition on the formation of GADPH tetramer protects against neuronal induced

cell-death ( [171]), a phenomenon frequently seen in many neurogenerative diseases.

Interestingly, the dimeric and monomeric form of the enzyme retain its glycolysis and

gluconeogenesis functionality and research had shown that they have higher catalytic

activity ( [172]). We suggest that our domain-domain SLiM could be used as a template
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Figure 6.7: Domain-SLiM interfaces of TNF domain of BAFF proteins recognizing the SLiM

D[LHS]L[LV][RH]..[IV]. (A). The TNF interface from BAFF with a part of BAFF receptor

protein (PDB ID:1oqe). The linear region is shown in ball-and-stick display, comprising the

residues DLLVRHCV. (B). The structure between the TNF domain of BAFF complexed with

only the minimal peptide DLLVRHWV (shown in ball-and-stick, PDB ID:1osg). This figure is

generated by PyMOL [7].

for designing inhibitors to disrupt the enzyme’s complex formation and keep it in its

monomeric form.

Another notable example of domain-domain SLiMs is a SLiM interacting with the

Tumor Necrosis Factor domain (ID: PF00229) of BAFF proteins. SLiMDiet predicted

that it binds a SLiM D[LHS]L[LV][RH]..[IV] on its domain partners (BaffR-Tall bind

(ID: PF09256), BCMA-Tall bind (ID: PF09257), TACI-CRD2 (ID: PF09305)). BAFF

protein overexpression was previously shown to result in B cell hyperplasia and develop-

ment of severe autoimmune diseases ( [173, 174]). In fact, it has already been reported

that an instance of the SLiM can confer BAFF binding and block the signaling pathway

leading to the pathogenic condition from BAFF overexpression ( [155]). However, there

were no TNF binding SLiM for BAFF reported in the literature and SLiMDiet managed

to predict one. The predicted SLiM could provide further insights for designing more

effective treatments. Figure 6.7 shows two PDB structures in which two TNF domains

are binding a short peptide and a full partner domain, respectively; both containing our

predicted SLiMs.

A third domain-domain SLiM is found on the dimer interface of RnaseA domains
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(ID: PF00074) of Ribonuclease protein. The protein is known to form dimers using

two modes of domain swapping. The major mode swaps the C-terminal beta sheets

( [175]) while the minor mode swaps the N-terminal helix ( [176]). Previous experiments

have shown that a peptide instance of the N-terminal helix could compete with the

minor mode of the domain swapping and disrupt dimer formation ( [176]). It has

also been reported that domain swapping is one possible mechanism of amyloid fibril

formation ( [158, 175]) and based on the domain swapping observed in Rnase, Liu et.

al. proposed a model of amyloid fibril formation which is stabilized by the swapped

domain binding ( [175]). The formation of amyloid is associated with a variety of

neurodegenerative diseases such as Alzheimer’s disease, Huntington’s disease and the

new variant Creutzfeldt-Jakob disease (nvCJD). It is also implicated in other diseases

such as the sickle cell anemia, α-antitrypsin related liver cirrhosis and emphysema (

[158]). In such a model, knowing the SLiM bound by the domain would enable one

to design an inhibitor to destabilize and prevent the amyloid formation. SLiMDiet

predicted two distinct novel SLiMs that correspond to the two swapping modes of the

Rnase domain, namely YVPVH[FYL][DAN]AS (major mode) and AA..[FAM]ERQH.DS

(minor mode).

6.5 Conclusion

SLiMs are important mediators of protein-protein interactions but they are difficult to

detect experimentally and computationally. In this work, we showed that it is possible to

systematically detect de novo SLiMs on domain interaction interfaces extracted directly

from structural data. The atomic level of details available in the high resolution 3D

structures provide a rich source of data for discovering SLiMs that are guaranteed to

occur on the binding surfaces. In fact, by mining the different domain-SLiM interaction

classes from the PDB database, our SLiMDiet method detected many novel SLiMs,

including the domain-domain SLiMs.

The discovery of domain-domain SLiMs uncovered a limitation in the current SLiM

detection approaches. These SLiMs are located in regions that are routinely masked out

by the current SLiM detection methods. They cannot be detected simply by turning

off the masking step—the strong similarity of the domain regions would bury the weak
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signal of the degenerate SLiM(s) in them. This class of SLiM is therefore currently under-

represented in the known databases and literature, and they present real opportunities

for domain-domain interaction inhibitor design.

Current SLiM detection methods also rely heavily on PPI data and are thus affected

by its accuracy. An earlier study ( [39]) has reported that some of the known SLiMs

were not detected in the PPI due to noisy and incomplete interaction data. In our study,

we also observed a similar problem where as many as 111 SLiMs do not have any PPI

data containing their binding domains. Among them, two are known in the literature,

namely the Toxin 1 ( [177]) and fn1 domain ( [178]) and 10 have domain-short peptide

evidences.

As the structural genomic initiatives continue to make more and more high quality

structural data available, we can have a viable chance of detecting the SLiMs that

mediate many of our important protein-protein interactions directly from 3D structural

data. As future work, we plan to continue to improve SLiMDiet’s capability by refining

the notion of interface similarity to take into account the interface residues’ chemical

properties and their connectivity within the domain interfaces.

6.6 List of publication

1) Hugo W, Song F, Aung Z, Ng S K, Sung W K. SLiM on Diet: finding short linear

motifs on domain interaction interfaces in Protein Data Bank. Bioinformatics, 26(8):

1036–1042, 2010.
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Chapter 7

Conclusion

This thesis had presented several contributions in the problem of finding interaction

motifs from the biomolecular data. We proposed an improved algorithm to infer RNA

secondary structure of an RNA sequence given a template RNA structure. The improve-

ment in both time and space complexity is important to enable current existing programs

to handle longer RNA sequences and also efficiently solve the secondary structures of

more RNA sequences.

We also introduced the correlated motif concept to mine interaction motifs in protein

interaction data. We specifically focused on the problem of mining short linear motifs,

SLiMs, which are recently receiving considerable attention. Our programs D-STAR and

D-SLIMMER have been shown to be able to mine biologically meaningful SLiMs and our

comparative study indicates that D-SLIMMER gives the highest accuracy as compared

to the existing SLiM mining programs.

From the protein structural data, we devised SLiMDiet to take advantage of the

detailed interaction information in the protein structural data to mine SLiMs. SLiMDiet

is based on a structural clustering approach on the interaction interfaces of known protein

domains. We reported a list of 452 SLiMs; 155 of them are either experimentally verified

or significantly enriched in known PPI data. Almost half of the reported 452 SLiMs are

found on a domain-domain interaction interface. These SLiMs are virtually undetectable

when mining SLiM from the sequence data because the SLiMs conservation signal would

be eclipsed by the conservation of the whole domain they occur in. Hence, we propose

that SLiMDiet, and SLiM mining from the structural data in general, is an important
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direction to complement the current computational prediction of SLiMs.

The methods we presented are made more relevant with the rapid increase in their

supporting data. The number of raw RNA sequences is expected to rise rapidly as the

use of the second generation sequencing technology is getting more common nowadays.

Today, whole transcriptome RNA sequencing have become quite routine and we will have

a huge amount of RNA sequence data in the near future. The number of resolved RNA

structures, albeit currently being a rather small part in the PDB structures (currently

∼ 1744 resolved RNA structures), should increase substantially in the coming years as

more resources is put into the studies of yet-uncharacterized non-coding RNA.

On the protein side, both PPI and protein structural data have also increased steadily

in the recent years. We also witnessed the same rapid growth trend for protein structural

data fueled by the Structural Genomic initiatives. By the time of this thesis’ writing,

there are 64353 structures in the PDB; a significant addition of approximately 7000

structures since SLiMDiet was written in August 2009.

7.1 Possible future works

For our RNA algorithms, there are two directions we plan to pursue. Firstly, we plan to

apply our program to predict the secondary structure (and hence annotate) of the large

number of RNA sequences produced by the new high throughput sequencing technol-

ogy. Secondly, we wish to look into the possibility of combining both subclasses of the

comparative approach. We note that the first subclass has a limitation on having sec-

ondary structure models that is unable to detect remote homologs. The second subclass

depends on the existence of a known secondary structure. One possible way to combine

both subclasses is to start with the first subclass method and come up with a secondary

structure. Then, we convert the secondary structure into one or more arc-annotated

sequence(s) and try identify more remote homolog of the secondary structures. This

way, it is possible to do secondary structure prediction purely on sequence data.

We plan to use D-SLIMMER and SLiMDiet to generate a database of our predicted

and validated SLiMs. We also plan to improve the pairwise interface comparison algo-

rithm, currently based on the MatAlignAB algorithm, to include all non-hydrogen atoms

in the side chain. This would allow more fine-grained similarity measures between the
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domain-SLiM interfaces and allow SLiMDiet to produce even better clustering perfor-

mance.

Last but not least, we wish to work in collaboration with the experimental biolo-

gists to confirm our SLiM predictions. We believe that computational approaches are

very useful in filtering out noise in the biological data and proposing statistically sig-

nificant answers to a biological problem but these may not be necessary and sufficient

conditions for actual biological significance. Thus, we need to continually assess our

working assumptions by validating our predictions and use the results to enhance our

understanding and further improve our methods.
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