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Summary

Proteins physically interact with each other and form protein complexes to

perform their biological functions. Di↵erent approaches for the identifica-

tion of protein complexes have been proposed. A common way to discover

protein complexes is to use protein-protein interactions (PPI) network and

search for clusters of highly-interconnected proteins. However, the predic-

tion of protein complexes from PPI network is usually di�cult when the

complexes are overlapping with each other in a dense region of the network.

It is hypothesized that many overlapping complexes are caused by the pres-

ence of date hubs, which are proteins that interact with many partners but

at di↵erent time or locations. A possible solution is to remove date hubs

(and associated edges) from a network before performing protein complex

prediction. A recent method uses a hub-removal approach with some suc-

cess. However, this method removes proteins with high degree instead of

date hubs.

In this thesis, we propose a computational methodology to improve pre-

diction of overlapping protein complexes. Particularly, we begin with col-

lecting a gold-standard list of date hub proteins from previous literature.

Then, we use these date hubs in a hub-removal approach. Next, we use

some simple topological characteristics of gold-standard date hub proteins

to predict date hubs from PPI network. Finally, we decompose the PPI net-

work by removing a list of predicted date hub proteins and apply the CMC

protein complex prediction algorithm. Overall, experimental results show

that the CMC algorithm augmented with date hub-based PPI-network de-

composition predicts more overlapping complexes than using CMC alone.
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Chapter 1

Introduction

Proteins play a vital role in cellular processes. Generally, they do not

act alone but form complexes with other proteins to carry out their bi-

ological functions. Protein complexes are formed by physical interaction

among proteins at specific time and space. Detecting protein complexes

is important for understanding the dynamics of biological processes within

an organism. Therefore, a wide variety of computational approaches were

developed specifically for the prediction of protein complexes. While pro-

tein complex prediction methods have evolved significantly in the last two

decades, their performance still has room for improvement.

1.1 Motivation

Protein-protein interactions (PPI) are usually represented by PPI network,

where nodes are proteins and edges are interactions between proteins. To

discover protein complexes, earlier computational approaches commonly

incorporate topological characteristics of the PPI network to find clusters

of highly-interconnected proteins within the PPI network as protein com-

plexes (Liu et al. 2009, Bader & Hogue 2003, Wu et al. 2009, Nepusz et al.
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2012, Li et al. 2008). Nonetheless, the performance of these algorithms was

not very satisfactory (Yong & Wong 2015a). A possible reason behind the

poor performance is that one protein can participate in the formation of

di↵erent complexes which perform distinct functions and occur at di↵erent

time and location. Therefore, there are many complexes in the PPI net-

work which overlap with each other. However, the PPI network does not

contain any information about when, where and how a protein interacts

with others. Overlapping complexes exist within a highly-connected region

of the PPI network. Prediction of such complexes is challenging for existing

complex discovery algorithms because the generated clusters may contain

extra proteins which are outside a complex but connect to the proteins that

participate in multiple other complexes (Yong & Wong 2015a). Therefore,

predicted complexes cannot match true complexes. To overcome this issue,

Liu et al. (2011) proposed a new technique to incorporate the dynamic

nature of protein interactions by decomposing the PPI network into sev-

eral smaller networks prior to clustering. This delimits the overlapping

complexes more precisely. To decompose PPI network, Liu et al. (2011)

removed hub proteins with large numbers of interaction partners, hypoth-

esizing that these proteins may correspond to ‘date’ hub proteins, which

bind their di↵erent partners at di↵erent time or location. However, proteins

with high degree may represent ‘party’ hub proteins which interact with

their partners simultaneously, and hence do not participate in the overlap-

ping complexes. This motivates us to apply the network decomposition

approach by removing a list of real date hub proteins, and investigate the

impact of decomposition on the performance of protein complex prediction

algorithms.
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1.2 Thesis organization

The organization of this thesis is as follows. In Chapter 2, we give a back-

ground on popular methods for protein complex prediction, and specifically

illustrate that CMC is a method that is generally e↵ective. At the same

time, we also highlight the challenges related to prediction of overlapping

complexes. Chapter 3 discusses insights from our examination of the role of

a gold-standard list of date hubs in overlapping complexes, and the impact

of network decomposition on the performance of CMC. Chapter 4 describes

our proposed methodology which predicts date hub proteins from PPI net-

work using some simple topological features, incorporates the predicted list

of date hubs for network decomposition by hub removal, and uses CMC to

predict protein complexes from the resulting decomposed protein-protein

interaction network. In Chapter 5, we also propose a double-barrel strategy

to combine predicted clusters before and after we remove date hubs.

13



Chapter 2

Clustering Algorithms for

Protein Complex Discovery

2.1 Introduction

Cellular processes are the result of the coordinated action of groups of

interacting proteins. The most widely and successfully used methods for

high-throughput screening of protein-protein interactions are the yeast two-

hybrid system (Y2H) (Fields & Song 1989) and the tandem a�nity purifica-

tion with mass spectrometry (TAP-MS) (Rigaut et al. 1999) system. Once

the PPI data are available from experimental detection methods, the PPI

network may be used for further computational analysis to infer the protein

complexes.

In this chapter, we first provide a brief description of experimental tech-

niques for inferring PPIs. Then we describe challenges in protein complex

prediction and review the computational methods to predict protein com-

plexes. Finally, we evaluate some of the most well-known protein complex

prediction methods applied to PPI network which could handle overlapping

14



protein complexes.

2.2 Experimental techniques for inferring PPIs

Yeast two-hybrid (Y2H)

A majority of published interactions have been detected using an Y2H

screen. The classic Y2H system was developed by Fields & Song (1989). It

involves a fragmented transcription factor to detect the interaction between

the protein of interest X, called a bait, and the potential interacting protein

Y, called a prey. Protein X is fused to the DNA binding domain of the

transcription factor. At the same time, protein Y is fused to the activation

domain (AD). The bait binds to the promoter region of a reporter gene,

and the interaction between bait and prey leads to the transcription of the

reporter gene. One major drawback of classic Y2H is that the interaction

can occur only within the yeast nucleus. Therefore, Y2H does not detect

interaction between two proteins if they do not localize into the nucleus af-

ter translation. Brückner et al. (2009) provides a comprehensive review on

recent Y2H approaches which overcome this limitation. Another problem

is that Y2H is limited to only direct-contact physical PPIs.

Tandem a�nity purification with mass spectrometry (TAP-MS)

The basic strategy underlying TAP-MS is tagging the protein of interest,

which allows it to interact with its binding partners, and applying two

a�nity purifications to examine binding partners. Unlike Y2H, TAP-MS

does not o↵er a list of pairwise binary interactions. Therefore, PPIs should

be uncover from the purified complexes. For this purpose two models may

be used. The first is a matrix model where the bait protein and all the prey

proteins are assumed to interact directly with each other. The second is

the spoke model where only the bait is assumed to interact directly with all

15



the prey proteins. The first model may give a large number of false-positive

interactions, while the spoke model leads to a few false positives and false

negatives. TAP-MS is able to detect all the components of a larger complex,

which do not necessarily interact directly with each other. However, Y2H

has advantages over TAP-MS because it is an in vivo technique.

There are multiple drawbacks associated with the above two approaches.

Both of them do not capture timing or localization information about the

PPIs, and have limitations which lead to false-positive interactions.

Constructing PPI network

Today PPIs data are available for a range of organisms, from di↵erent

interactions sources (curated PPIs, experimental PPIs, and predicted PPIs)

and from di↵erent experimental detection methods. A PPI network is

represented as an undirected graph where nodes are proteins and edges

are the interactions between these proteins. Often, each protein pair has

a weight which represents how likely the two proteins interact with each

other.

2.3 A challenge in protein complex predic-

tion

Using advances from high-throughput proteomic techniques, such as Y2H

and TAP-MS, it has become possible to compile a large network of protein

interactions. However, extracting useful knowledge from such networks is

a non-trivial task. Therefore, a wide variety of sophisticated PPI network

analysis algorithms to detect protein complexes have been proposed in the

last two decades. They are often designed to detect sub-graphs with spe-

cific topological structures in a PPI network, such as cliques (Palla et al.
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2005, Liu et al. 2009), dense sub-graphs (King et al. 2004, Nepusz et al.

2012), and core-attachment structures (Wu et al. 2009). Some algorithms

incorporate topological features to assign weights to vertices or edges, such

as the number of common neighbors (King et al. 2004, Li et al. 2008) and

density (Bader & Hogue 2003). A comprehensive review is given by Srihari

et al. (2015).

In reality proteins may perform di↵erent biological functions as members of

di↵erent complexes. Therefore, protein complexes often overlap. Overlap-

ping complexes exist within a highly-connected region of the PPI network.

Prediction of such complexes is challenging for existing protein complex

prediction algorithms and the generated clusters often contain multiple

complexes merged into large clusters. Therefore, predicted complexes can-

not match true complexes.

2.4 Protein complex prediction algorithms

In spite of the above challenge, previous works made considerable progress

in protein complex prediction. In this subsection, we give a background

on some popular protein complex prediction methods applied to PPI net-

work, and specifically illustrate that CMC is a method that is particularly

e↵ective and consistent across multiple datasets.

Molecular Complex Detection (MCODE)

MCODE (Bader & Hogue 2003) is the earliest method to detect protein

complexes based solely on the topology of PPIs network. It is a seed-

and-grow algorithm and consists of three steps: vertex weighting, complex

prediction and optional post-processing.

In the first step, for each vertex v, MCODE calculates the highest k -core

17



of the immediate neighborhood of v. Next, it computes a core-clustering

coe�cient of a vertex v as the density of the highest k -core. Then, MCODE

assigns a weight to a vertex as the product of the vertex’s core-clustering

coe�cient and the highest k-core level of the immediate neighborhood of

the vertex.

Next, for complex prediction, MCODE selects the highest weighted ver-

tex as a complex seed and recursively includes adjacent vertices into the

complex if their weight is above a given threshold. It stops once no more

vertices can be included into the complex.

Clustering based on merging Maximal Cliques (CMC)

CMC (Liu et al. 2009) is a clique-based approach which uses maximal

cliques to identify dense subgraphs from PPI networks. It first searches

for all the maximal cliques in the PPI network. Then for each clique C,

CMC calculates a score based on weighted density (Equation 2.1). Next,

all clusters are ranked by weighted density. Many generated clusters may

overlap. Therefore, highly overlapping clusters are merged if they have a

high inter-cluster connectivity (Equation 2.2). On the other hand, if two

highly overlapped clusters do not have a high inter-cluster connectivity,

CMC removes the cluster with the lower density.

score(C) =

P
u2C,v2C w(u, v)

|C|(|C|� 1)
(2.1)

inter score(C1, C2) =

sP
u2(C1�C2)

P
v2C2

w(u, v)

|C1 � C2||C2|

P
u2(C2�C1)

P
v2C1

w(u, v)

|C2 � C1||C1|
(2.2)

where w(u,v) is the weight of the interaction between proteins u and v.
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CFinder

CFinder (Palla et al. 2005) is a clique-based approach that employs Clique

Percolation Method (CPM) to predict protein complexes from a PPI net-

work. The algorithm works by computing all k -cliques which are a complete

subgraph of k vertices. A protein complex candidate is represented as a

union of all adjacent k -cliques, where two k -cliques are adjacent if they

share k-1 vertices. It should be noted that a larger value of k can lead to

smaller subgraphs with higher density.

A core-attachment based method (COACH)

Another way to predict protein complexes from a PPI network is to look

for clusters that have a core-attachment organization. COACH (Wu et al.

2009) works by considering the inherent structure of protein complexes.

The basic idea is to generate protein-complex cores and then include at-

tachments into the core. In general, a core is represented by a small and

dense subgraph in a PPI network. To detect cores, COACH first constructs

a neighborhood subgraph for each vertex. Next, vertices from a neighbor-

hood graph are defined as core proteins if their degrees are higher than the

average degree of that neighborhood graph. If the neighborhood subgraph

is dense enough then COACH returns it as a preliminary core. Otherwise,

COACH removes the core proteins from the it and forms several connected

components. Next, COACH adds back the core proteins into each con-

nected component and returns multiple preliminary cores.

Once a protein-complex core is detected, COACH adds the attachments to

form a potential protein complex. Attachments are the neighbors of the

vertices in the core which interact with at least half the core’s members.

Clustering with Overlapping Neighborhood Expansion (ClusterONE)

ClusterONE (Nepusz et al. 2012) follows the general framework of the
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seed-and-grow approach. The algorithm works by selecting the protein

with the highest degree as a seed from weighted PPI networks. Then it

grows the cluster by adding the neighboring vertices with high cohesiveness.

A cohesiveness function of a cluster correlates with how likely it is for

a group of proteins to form a protein complex, and is computed as the

ratio of the sum of edge weights within the cluster versus the sum of edge

weights within the cluster and outgoing edges from the cluster. The cluster

extension process terminates once there are no more proteins to be added

to the cluster. After all clusters are computed, highly overlapping pairs of

clusters are merged into protein complex candidates. The overlap score of

two protein sets A and B is calculated as follow:

overlap score(A,B) =
|A \B|2

|A||B| (2.3)

Finally, all protein complex candidates with less than three proteins are

discarded.

IPCA

IPCA (Li et al. 2008) employs a seed-and-grow strategy similar to Clus-

terONE. IPCA first assigns the weight of an edge [u,v ] as a number of

common neighbors for the vertices u and v. Then each vertex is assigned a

weight which is a sum of the weights of its incident edges. The vertices with

the highest weights are selected as the seeds. IPCA calculates two metrics

— the interaction probability and the cluster diameter — to grow a cluster

by adding highly-weighted neighboring vertices to it. The first metric is

represented by (Equation 2.4), shows how strongly the neighboring vertex

v is connected to a cluster C :

INv/2C =
mvC

nC
(2.4)
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where mvC is the number of edges between the vertex v and the cluster C,

and nC is the number of all vertices in C.

The second metric represents the largest length of a shortest path between

a pair of vertices in the cluster. The cluster is extended while neighboring

vertices satisfy the thresholds for both metrics.

Restricted Neighborhood Search Clustering (RNSC)

RNSC (King et al. 2004) is a cost-based local-search clustering algorithm.

It works by generating an initial set of random clusters, and then iteratively

moves a vertex from one cluster to another to improve the value of the cost

function. To move vertex v it calculates two scores. The first score is the

sum between the number of neighbours that are not in the same cluster

of v, and the number of node that are not neighbours of v but belong to

the same cluster. The second score for vertex v is the ratio of its first

score versus the sum of the number of nodes in cluster and the number of

neighbours of vertex v. Next, to create a list of protein complex candidates,

for each cluster RNSC computes the sum of these scores for each vertex

in cluster. The process of moving a vertex is terminated once some move

has been reached without decreasing the cost function. Finally, for each

complex candidate a p-value is calculated as a probability that a set of

proteins within a given cluster belongs to the same functional group by

chance. All clusters with p-values above a given threshold are discarded.

The main limitation of RNSC is that it does not support the detection of

overlapping clusters.

2.5 Performance of current methods

In this section, we compare the performance of four protein complex pre-

diction algorithms which allow overlapping complexes: CMC, ClusterOne,
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Algorithm Yeast Human
CMC overlap.thres=0.5 overlap.thres=0.5

merge.thres=0.75 merge.thres=0.75
ClusterOne -s 4 -s 4
COACH default default
IPCA -S 4 -P 2 -T 0.4 -S 4 -P 2 -T 0.6

Table 2.1: The four clustering algorithms and their parameters used for
yeast and human complex discovery.

COACH, and IPCA. For all these methods, the optimal parameters were

set as described in Yong & Wong (2015a) to maximize their F-measures

(Table 2.1). For comprehensive comparison, we employed several evalua-

tion measures, including recall, precision, F-measure, and the best match

cluster score. Below, we explain the design of our experiments and present

the results obtained from them.

2.5.1 Data sources

PPI datasets

In our experiments, we apply protein complex prediction methods on two

PPI networks, yeast (S. cerevisiae) and human (H. sapiens). The PPIs

were collected from (Yong & Wong 2015b), which are the union of physical

PPIs from three databases (viz. BioGRID (Chatr-Aryamontri et al. 2013),

IntAct (Orchard et al. 2013), MINT (Licata et al. 2012)) and the Consol-

idated PPI dataset (Collins et al. 2007). Collected PPIs have a reliability

score for each interacting pair (a,b) which is estimated as:

reliability(a, b) = 1�
Y

e2Ea,b

(1� rele)
ne,a,b (2.5)

where rele is the estimated reliability of experimental method e, Ea,b is

the set of experimental methods that detected interaction (a,b), and ne,a,b

is the number of times that experimental method e detected interaction
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(a,b). In our setup, we use top 20 000 edges with 3680 proteins in the yeast

PPI network, and top 20 000 edges with 6352 proteins in the human PPI

network.

Reference complexes for yeast and human

To evaluate the e↵ectiveness of four algorithms for detecting protein com-

plexes, we compare the predicted clusters produced by the algorithms with

known protein complexes collected from CYC2008 (Pu et al. 2009) pro-

tein complex catalog for yeast, and from the CORUM (Ruepp et al. 2009)

database for human. It is important to note that, reference complexes with

less than four proteins were removed from the both datasets. Overall, there

are 149 manually annotated complexes in the yeast set that each consists

of four or more proteins. The human set consists of 651 protein complexes

with size greater than three.

2.5.2 Evaluation methods

Best match cluster score

To investigate the performance of clustering algorithm, we compare a set

of predicted clusters with a real reference protein complex set. The match

between a predicted cluster and a reference protein complex may be often

only partial, and a reference complex can match more than one predicted

cluster and vice versa. In the present study, the best match cluster score

evaluates a set of predicted protein complexes with respect to a set of

reference complexes. To measure a match between a predicted cluster P

and a reference complex C, we calculate the Jaccard similarity between the

proteins contained in P and C.

Let VC be the set of proteins in the reference complex C, and VP be the set

of proteins in the predicted cluster P. According to a definition provided
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by Liu et al. (2011), a cluster P, created by a protein complex prediction

algorithm, matches a reference complex C at given match threshold, match-

thresh, only if Jaccard(P,C) � match-thresh, where Jaccard(P,C) is the

Jaccard similarity between the proteins contained in P and C:

Jaccard(P,C) =
|VP \ VC |
|VP [ VC |

(2.6)

A threshold of match-thresh = 0.75 was used in matching yeast complexes,

and match-thresh = 0.5 in matching human complexes. A more relaxed

threshold is used for human complexes because the human protein interac-

tion network is rather incomplete.

For each protein complex from reference dataset of protein complexes, we

plot the distribution of the best-match cluster scores for complexes therein,

to illustrate how well the predicted clusters represent the reference com-

plexes, and to investigate which algorithm can predict the reference com-

plexes with better matching clusters.

Recall and precision

For further performance assessment of each method, we report statistics

such as the precision, the recall and F-measure of all predicted clusters.

Suppose P = P1, P2, ... is a set of generated clusters, and C = C1, C2, ...

is a set of real protein complexes from the reference database, then the

precision, the recall and F-measure of the clusters are defined as follows:

precision =
| {Pi 2 P |9Cj 2 C, Pi matches Cj} |

|P |

recall =
| {Ci 2 C|9Pj 2 P, Pj matches Ci} |

|C|

F-measure =
2⇥ precision⇥ recall

precision+ recall
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2.5.3 Performance on overlapping complexes

To assess the performance of the methods on overlapping complexes, we,

first, tested each possible pair of protein complexes for overlap. If two

complexes have at least one common protein, these two complexes are

overlapping. Next, for each overlapping complex, the best match cluster

score was calculated.

Among large yeast complexes 66 pairs of complexes are overlapping, which

includes 68 complexes overlapping with at least one complex. In human,

7446 pairs of complexes are overlapping, which corresponds to 625 large

complexes overlapping with at least one complex. Because 96% of human

reference complexes are overlapping, we do not investigate the performance

on overlapping complexes for the human dataset.

2.6 Results and discussion

We now compare ClusterOne, CMC, IPCA and COACH comprehensively,

as they all can predict overlapping complexes.

Yeast dataset

A good protein complex prediction algorithm should identify as many

known complexes as possible. Table 2.2 provides the basic information

of predictions by various methods. As can be seen from the table, the clus-

ters generated by CMC match more real complexes than other methods for

match-thresh = 0.75.

Figure 2.1 summarizes the performance of all methods on prediction of large

yeast complexes in terms of recall, precision and F-measure. We observe
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Algorithms CMC ClusterOne COACH IPCA
# predicted complexes 354 548 652 1136

# detected real complexes 68 45 65 57
# predicted complexes 67 43 84 158

match real

Table 2.2: The results of various algorithms on yeast data, match-thresh =
0.75.

that CMC can achieve the highest recall and precision, which shows that

it can predict protein complexes more accurately. IPCA yields the closest

recall to CMC, but has much lower precision, suggesting that IPCA su↵ers

from many false positives. At the same time ClusterOne and COACH

perform very poorly (recall 30% and 44% respectively). It is clear that the

prediction of the big yeast complexes is a di�cult task.

Figure 2.2(a) illustrates the distribution of the best-match cluster scores

for the reference protein complexes across various methods. The methods

are in the x-axis, and the distribution of the best-match cluster scores

are in the y axis. It is clear that CMC has the highest median score.

Therefore, clusters predicted by CMC method are observed to match real

protein complexes better than those predicted by other approaches. Figure

2.2(b) illustrates that all methods show lower median of best-match scores

for overlapping complexes. Therefore, predicting overlapping complexes is

di�cult. The predicted clusters by CMC match real overlapping complexes

with higher match score. The above results clearly indicate that CMC

outperforms all other approaches on the yeast dataset.

Human dataset

Table 2.3 shows the basic information of predictions by various methods.

In Table 2.3, CMC predicted less number of complexes (450) than other ap-

proaches, but more precisely (117 match 223 real complexes). Figure 2.3(a)

shows the performance of the algorithms on the prediction of human com-

plexes at a matching requirement of match-thresh = 0.5. As can be seen,

26



Figure 2.1: CMC, ClusterOne, COACH, and IPCA performance analysis
on prediction of yeast complexes with match-thresh = 0.75.

(a) (b)

Figure 2.2: CMC, ClusterOne, COACH, and IPCA the distribution of
match score of real yeast complexes (a), overlapping real yeast complexes
(b).
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Algorithms CMC ClusterOne COACH IPCA
# predicted complexes 450 1427 945 1886

# detected real complexes 223 86 205 250
# predicted complexes match real 117 53 138 369

Table 2.3: The results of various algorithms on human data, match-
threshold = 0.5.

(a) (b)

Figure 2.3: CMC, ClusterOne, COACH, and IPCA performance analy-
sis on prediction of human complexes the precision, recall, F score, with
math � threshold = 0.5 (a), and CMC, ClusterOne, COACH, and IPCA
the distribution of match score (b).

more than half reference complexes cannot be predicted. It is clear that

IPCA algorithm provides better recall, compared to other methods, but

su↵ers from low precision. Again ClusterOne and COACH perform poorly.

In terms of precision and F-measure, CMC outperforms other methods.

To investigate which reference complexes match predicted clusters with

higher match score, we use the definitions from Yong & Wong (2015b) to

stratify all reference complexes by density (DENS) into low, medium, and

high DENS. The density for protein complex is defined as the ratio of the

number of PPI edges in the complex versus the total number of all possible

edges in the complex. Then complexes with low density correspond to

DENS of [0,0.35], complexes with medium density correspond to DENS of

(0.35,0.7], and complexes with high density correspond to DENS of (0.7,1].

We study the best-match score distribution for each subset reference com-
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(a) (b) (c)

Figure 2.4: CMC, ClusterOne, COACH, and IPCA performance analysis
on human complexes, stratified by DENS. a: The match score of the best
cluster for reference complexes in low DENS. b: The match score of the
best cluster for reference complexes in medium DENS. c: The match score
of the best cluster for reference complexes in high DENS.

plexes among three DENS strata. In Figures 2.4(a) - 2.4(c), we observe that

ClusterOne, COACH, IPCA perform very poorly on reference complexes

with low DENS. CMC is also seen not performing very well on extremely

sparsely-connected complexes. The possible reason is that complexes with

low DENS do not form dense clusters that these algorithms can pick. IPCA

has a higher median score for complexes with medium DENS. On the other

hand, CMC leads the other methods on high DENS complexes, whereas

ClusterOne performs the worst.

2.7 Conclusion

From our experiments above, we showed that the performance of exist-

ing protein complex prediction methods is not entirely satisfactory. We

presented results of four algorithms for prediction of large complexes in

yeast and human, and showed that in conjunction with higher recall, the

predictions from CMC are more precise for the yeast dataset, and have

the highest F-measure on the human dataset. Further analysis demon-

strated that clusters predicted by CMC have the highest median match

score. Therefore, in terms of all measures, CMC outperforms the other
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approaches on identifying protein complexes. For this reason, we use only

CMC in later comparisons in Chapters 3 to 5.

One possible reason why predicted clusters may not match real complexes

is that the reference data are incomplete. Therefore, predicted complexes

not matching any reference are not necessarily wrong and may correspond

to novel complexes. In addition, many proteins participate in multiple com-

plexes and form overlapping complexes in our reference datasets, leading

to highly-connected regions, which make it di�cult for protein complex

prediction algorithms to identify the complexes’ boundaries. To address

the problem of predicting overlapping complexes, an approach like network

decomposition (Liu et al. 2011) is promising. It decomposes a PPI network

by e.g. removing proteins with high degree (hubs) which are thus more

likely to participate in di↵erent complexes. This motivates us to examine

a list of proteins, which bind their di↵erent partners at di↵erent time or

at di↵erent location (viz. date hubs), manually collected from some recent

study (Pritykin & Singh 2013), for network decomposition. We also pro-

pose a methodology to predict date hubs based on simple network features.

Our approach and findings are discussed in the following chapters.
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Chapter 3

Predicting Protein Complexes

from PPI Network

Decomposed by Known Date

Hub Removal

3.1 Introduction

In this chapter, we first describe reference lists of date hubs. Then we

investigate which list of date hubs is more reliable to use for network de-

composition. Finally, we study network decomposition’s impact on the

performance of CMC by removing di↵erent lists of date hubs.
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3.2 Background

3.2.1 Date and party hub proteins

To perform di↵erent cellular functions a protein may be recruited by more

than one complex, and interacts with distinct sets of partners. A hub

protein is a protein that has a lot of interacting partners in the PPI net-

work. For a better understanding of protein interaction networks, Han et al.

(2004) studied hub proteins with gene expression data, and first introduced

the distinction between date and party hubs. First, they defined hubs as

proteins with degree greater than 5. Then for each hub, they calculated the

average of Pearson correlation coe�cients (PCC) between the hub protein

and each of its neighbors for mRNA expression. Their results suggest that

party hubs are co-expressed with their interacting partners (have higher av-

erage PCC), while date hubs have significantly more diverse localization of

partners. Therefore, party hubs are hubs that interact with their partners

at the same time, whereas date hubs bind their di↵erent partners, which

belong to multiple complexes, at di↵erent times or at di↵erent locations.

Using an arbitrary average PCC threshold, the hub proteins with higher

values of average PCC than the threshold were defined as party hubs, and

all other proteins with the degree higher than 5 were indicated as date

hubs.

A more recent study (Pritykin & Singh 2013) examined the correlation be-

tween the average co-expression of a hub protein with its partners and its

di↵erent topological measures, such as betweenness centrality and cluster-

ing coe�cient. While the first study used an arbitrary threshold to define

hub proteins, this research considered hubs to be proteins in the top 10%

by degree. It has been demonstrated that hubs with low betweenness or

high clustering coe�cient tend to have high average co-expression with
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their partners. This suggests that the hub proteins can be partitioned into

two classes based on their tendency to be co-expressed with their inter-

acting partners, with significantly di↵erent network properties. Finally, it

was confirmed that these simple topological and co-expression measures of

hub proteins tend to be conserved across di↵erent organisms including S.

cerevisiae, H. sapiens, D. melanogaster, A. thaliana, and E. coli (Pritykin

& Singh 2013).

3.2.2 Network decomposition by hub removal

Unfortunately, classic protein complex prediction algorithms are not able

to delimit the overlapping complexes precisely. Therefore, Liu et al. (2011)

proposed a possible solution via removing proteins with many interacting

partners (hubs) and all their edges from a PPI network before clustering.

The whole process of removing hub proteins from the given PPI network

is described below:

1. Remove hub proteins from a given PPI network.

2. Apply a protein complex prediction algorithm (viz. CMC in this

thesis) to find clusters from the remaining network.

3. Add a hub protein u back to a generated cluster C only if Connectivity(u, C) �

hub add thresh:

Connectivity(u, C) =

P
v2C w(u, v)

|C| (3.1)

where w(u,v) is the weight of edge (u,v), and hub add thresh = 0.3.

However, some hub proteins may interact with their partners simultane-

ously (Han et al. 2004), and hence do not participate in overlapping com-

plexes. This motivates us to inspect a gold-standard set of date hub pro-
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teins collected from the literature, and evaluate the performance of CMC

after applying the decomposition strategy using these date hub proteins.

3.3 Material and Method

3.3.1 Datasets

Reference lists of date and party hubs

We first manually collect the reference lists of date and party hubs for yeast

from two studies (Han et al. 2004, Pritykin & Singh 2013). The first list

consists of 91 date hubs and 108 party hubs. The second list has 358 date

hubs and 178 party hubs. In both lists, the hub IDs are in the form of

Uniprot IDs. We call the first dateset of date and party hubs Han 2004,

and we call the second dataset Pritykin 2013.

The human reference lists of date and party hubs were collected from (Pri-

tykin & Singh 2013), and have 294 date hubs and 146 party hubs. Human

hub IDs are in the form of ENSEMBLE gene IDs, while the PPI network is

in Uniprot id. Using Uniprot ID mapping tool we converted ENSEMBLE

IDs to Uniprot IDs. ENSEMBLE gene IDs can map to multiple proteins’

Uniprot IDs, but only one or two of these may actually be found in the

PPI network. As a result, we have 271 date hubs and 141 party hubs for

the human reference list.

List of hub proteins

Hub proteins were used by (Liu et al. 2011) to decompose PPI network.

Di↵erent degree thresholds were tested in Liu et al. (2011) to define hub

proteins and to optimize the performance of clustering algorithms. The

best performance of yeast complex discovery by CMC in terms of F-measure
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was when the degree threshold was set to 50. Therefore, for future analysis,

all proteins in the yeast PPI network with degree not less than 50 form a

list of 124 date hubs which we call HUB 50. According to Liu et al. (2011),

for human dateset, the optimal degree threshold is 150, leading to the list

HUB 150 of 5 date hubs.

Thus, in total, four sets of input date hub proteins belonging to three

di↵erent studies are used in our analysis.

3.3.2 Approach to compare the quality of reference

lists of date hubs

According to the definition, date hubs are proteins which interact with

many partners at di↵erent time and location. Hence, if two reference com-

plexes of di↵erent complex families overlap then the proteins within their

intersection should correspond to the date hubs. Therefore, we assume that

the real date hubs are more likely to appear within the intersection of over-

lapping complexes than the party hubs. One way to evaluate the quality of

reference lists of date hubs is to investigate how many date hub and party

hub proteins are present within the overlap of real protein complexes.

As mentioned in Subsection 2.5.3, among large real yeast complexes 66

pairs of complexes are overlapping. Hence, for each reference list of date

and party hubs, we calculate the number of overlapping real complexes

which have at least one hub in the intersection.
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(a) (b)

Figure 3.1: a: Presence of date hubs in the intersection of yeast refer-
ence complex pairs, b: Presence of party hubs in the intersection of yeast
reference complex pairs.

3.4 Results and discussion

3.4.1 Comparing the quality of reference lists of date

hubs

In this experiment we study the quality of date hubs collected from the

literature. The experiment is performed only on the yeast dataset because

the Han 2004 date hubs are available only for yeast.

Figure 3.1(a) shows that 65% of overlapping complex pairs contain some

date hubs from Pritykin 2013 in their intersection, and only a few pairs

contain party hubs (Fig. 3.1(b)). These findings confirm the di↵erence

in the role of date and party hubs across overlapping complexes. On the

other hand, the proportion of overlapping complex pairs, which contain

date hubs from Han 2004 within intersection, are much lower compared to

Pritykin 2013 dataset. This shows that the date hubs from Han 2004 are

less relevant to overlapping complexes, and thus, for all further experiments

we use the Pritykin 2013 list of date hubs.
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hubs list # hubs # PPIs discarded
HUB 50 124 6841

Pritykin 2013 358 7465

Table 3.1: Di↵erent list of hub proteins used and the resulting number of
proteins and PPIs discarded in the decomposed networks.

3.4.2 Protein complex prediction

In the second experiment, we study the impact of date hub removal on

the performance of CMC. We first apply the PPI network decomposition

technique mentioned in subsection 3.2.2 to remove the reference list of

date hubs in Pritykin 2013. We then run CMC on the remaining networks,

and add back all date hubs to the generated clusters. For comprehensive

comparison, we also run CMC on the decomposed network obtained by

removing the hubs (for yeast: HUB 50 list, for human: HUB 150 ), which

is similar to the initial work by Liu et al. (2011).

Experiment settings

We use the same PPI datasets and the same sets of reference complexes

as described in Chapter 2.5.1, considering only top 20 000 interactions.

Only CMC is used for complex discovery. For comprehensive analysis,

we employed the same evaluation measures, including F-measure and the

distribution of the best match cluster score.

Observations on yeast dataset

Table 3.1 shows the number of interactions discarded by removing di↵erent

sets of hubs. The Pritykin 2013 set has almost three times more hubs

than HUB 50, but the number of PPIs discarded from the network is not

significantly di↵erent. The possible explanation is that the date hubs from

the Pritykin 2013 list are obtained from a network which is di↵erent from

ours, leading to many proteins with a small degree in our PPI network.
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Figure 3.2: Performance of CMC, CMC with removing reference list of date
hubs (CMC DH reference), and CMC with removing hubs with degree at
least 50 (CMC HUB 50 ), on prediction of yeast complexes with match-
thresh = 0.75.

Algorithms CMC CMC HUB 50 CMC DH reference
# date hubs 0 124 348

# predicted complexes 354 277 220
# detected real complexes 68 66 60
# predicted complexes 67 66 60

match real

Table 3.2: The results of CMC on yeast data, match-threshold = 0.75.

From Figure 3.2, it is clear that the complexes predicted by CMC after net-

work decomposition by date hub removal (CMC DH reference) are better

in terms of precision and F-measure, and comparable, in terms of recall, to

the predictions of its competitors.

In Figure 3.3, we observe that the network decomposition technique does

not improve the performance in terms of best-match cluster. The con-

ventional CMC approach gives the best matching scores compared to the

predictions of CMC HUB 50 and CMC DH reference. This may happen

because some reference complexes has only four proteins, and some of these

proteins correspond to date hubs. Therefore, once we remove the date hub

during network decomposition, the remaining complex has three proteins

and CMC is not able to recover the complex anymore.
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(a) (b)

Figure 3.3: Match scores of the best clusters to yeast complexes. a: all real
yeast complexes, b: overlapping real yeast complexes.

Observations: Human

For human dataset we also measure precision, recall, F-measure (Fig. 3.4),

and inspect the best match cluster’s score distribution among three DENS

strata (Fig. 3.5). We observe a similar trend that removing the reference

list of date hubs gives mainly an improvement in precision. The recall

drops significantly because many proteins and interactions were discarded.

In addition, CMC DH reference shows the smallest median best match

score across all DENS strata. Table 3.3 summarizes the basic information

of predictions by CMC.

(a) (b) (c)

Figure 3.5: Match score of the best clusters to human complexes for CMC
in low DENS (a), medium DENS (b), and high DENS (c).
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Figure 3.4: Performance of CMC, CMC with removing reference list of
date hubs (CMC DH reference), and CMC with removing hubs with degree
at least 150 (CMC HUB 150), on prediction of human complexes, match-
thresh = 0.5.

Algorithms CMC CMC HUB 150 CMC DH reference
# date hubs 0 5 271

# predicted complexes 450 419 260
# detected real complexes 223 224 168
# predicted complexes 117 115 82

match real

Table 3.3: The results of CMC on human data, match-thresh = 0.5.

3.5 Conclusion

The earlier study (Liu et al. 2011) showed reasonable performance improve-

ment in CMC by removing hubs from the PPIs network before apply CMC.

In this Chapter, we assume that a reliable list of date hubs may further

improve the network decomposition technique. So, we manually collect a

reference list of date hubs from the literature.

As a starting point, we find that the date hubs tend to occur within the

intersection of real overlapping protein complexes. Moreover, we observe

that CMC DH reference achieves the highest F-measure on yeast, with
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the highest precision and comparable recall, which shows that it predicts

protein complexes more accurately. However, the distribution of the best

match cluster score has the lowest median score. This motivates us to create

a reliable list of date hub proteins by inspecting the topological properties

of the date hub reference list.
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Chapter 4

Predicting Protein Complexes

from PPI Network

Decomposed by Removing

Predicted Date Hub Proteins

4.1 Introduction

Earlier works on hub proteins in PPI networks show that they can be clas-

sified into date and party hubs on the basis of their partners’ expression

profiles. Previous research has established that properties of date and party

hubs are significantly distinct. In the next several sections, we inspect three

properties of date and party hubs on our PPI networks: degree, between-

ness centrality, and transitivity (also called the clustering coe�cient) to

confirm whether date hubs can be distinguished from party hubs in terms

of these properties. Degree is used as it has been shown from previous

experiments that PPI network is sensitive to removal of proteins with high

degree, also known as hubs. Protein betweenness centrality is calculated as
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a fraction of shortest paths passing through a protein in the network (Equa-

tion 4.1). Proteins with higher betweenness usually lie between complexes,

potentially indicating they are date hubs.

betweenness(v) =
X

s 6=v 6=t

�st(v)

�st
(4.1)

where �st denote the total number of shortest paths from protein s to

protein t, and �st(v) is the number of those paths that pass through v.

Finally, transitivity of a vertex v measures the probability that its imme-

diate neighbors are connected, and calculated as a ratio of the number of

edges between all immediate neighbors for vertex v to the number of edges

that could possibly exist between them. All these measures are purely

topological and do not use any information other than interaction data.

4.2 Methods

4.2.1 Date Hub Prediction

Previous research has established that network properties of date and party

hubs are distinct (Pritykin & Singh 2013). It should thus be possible to im-

prove the network decomposition approach by predicting date hubs based

on some simple topological features of PPI networks. First, we compute

the hub protein lists based on the degree of a vertex. Across all hub pro-

teins only some of them may correspond to the date hubs, the rest are

party hubs. Here, three topological measures (degree, betweenness, and

transitivity) are employed to characterize proteins and investigate whether

date hubs can be distinguished from party hub proteins in terms of these

properties. For each property, we discuss di↵erent thresholds to get a list of
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date hub candidates. Then, we incorporate the predicted list of date hubs

into network decomposition, run CMC on the decomposed network, and

evaluate the performance by calculating precision, recall and F-measure.

4.3 Results and discussion

In this section, we analyze the top 20 000 edges of PPI networks for human

and yeast, with 6352 and 3680 proteins respectively. First, three topological

measures are employed to characterize proteins and investigate whether

date hubs can be distinguished from party hub proteins in terms of these

properties. Next, for each property, we discuss di↵erent thresholds to get

a list of date hub candidates.

4.3.1 Network topology analysis

Experiment settings

Degree, betweenness, and transitivity of proteins were calculated by using

the iGraph library (Csardi & Nepusz 2006) in the statistical computing

environment R.

Observations on yeast dataset

For the yeast network, we confirm the clear di↵erences between date and

party hubs in terms of transitivity and degree. From Figure 4.1, we observe

that party hubs have higher transitivity and higher average degrees, leading

to denser neighborhoods. Therefore, it seems interesting to investigate how

to e↵ectively combine two measures to predict a list of date hubs. We also

note that date hubs tend to have a higher betweenness, suggesting that

they are more globally central in the network.
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(a) (b) (c)

Figure 4.1: Date and party hub analysis of topological features in the yeast
high quality interaction network: degree (a), betweenness centrality (b),
transitivity (c).

(a) (b) (c)

Figure 4.2: Date and party hub analysis of topological features in the
human high-quality PPI network: degree (a), betweenness (b), transitivity
(c).

Observations on human dataset

Next, we inspect the topological properties on the human PPI network.

Figure 4.2 shows the distribution of degree, betweenness, and transitivity.

We note that there are less obvious di↵erences across all three measures.

A possible explanation is that the current human PPI network is vastly

incomplete (Venkatesan et al. 2009). Although the network is incomplete,

the date hubs tend to have a higher betweenness and lower transitivity

than party hubs.
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4.3.2 Impact of di↵erent thresholds on predicting date

hubs

Next we study the impact of di↵erent transitivity and degree thresholds on

the selection of date hub proteins for network decomposition.

Di↵erent degree thresholds on yeast dataset

Analysis of topological properties showed significant di↵erences in protein

transitivity and degree for the yeast network, with date hubs having con-

sistently lower values. Less consistent results are found for betweenness.

Therefore, we examined only transitivity and degree as features to make

predictions of date hub proteins by setting di↵erent thresholds.

The goal at this step is to compute the hub protein lists before predicting

a list of date hubs. Liu et al. (2011) has already defined a protein as a

hub protein if it has at least Nhub neighbors, and investigated di↵erent

thresholds. They found that CMC achieves the best performance when

Nhub = 50. On the other hand, Pritykin & Singh (2013) defined hubs as all

proteins in the top 10% in the PPI network by the number of interactions,

leading to the degree threshold of Nhub = 23. We include both thresholds

into our experiments, and create two list of hub proteins:

1. HUB 50 contains 124 proteins with at least 50 neighbors.

2. HUB 23 contains 496 proteins with at least 23 neighbors.

Di↵erent transitivity thresholds on yeast dataset

As suggested by Figure 4.1(c), there is a clear separation between date and

party hubs in terms of transitivity. Based on results from Figure 4.1, we set

a transitivity threshold of 0.32 as the optimal point to separate date and
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Name # of date hubs # of PPIs removed Degree Transitivity
HUB 23 496 13896 23 –

HUB 23 0.32 181 7694 23 0.32
HUB 50 124 6941 50 –

HUB 50 0.32 51 3837 50 0.32

Table 4.1: Di↵erent values of degree and transitivity used, and the result-
ing number of date hub proteins and PPIs discarded in the decomposed
networks.

Algorithms HUB 50 HUB 50 0.32 HUB 23 HUB 23 0.32
# predicted complexes 277 304 163 220

# detected real complexes 66 67 62 67
# predicted complexes 66 66 59 66

match real

Table 4.2: Performance statistics on yeast complex discovery, match-thresh
= 0.75.

party hubs. A hub protein with transitivity value lower than the threshold

is predicted to be a date hub protein.

To support our choice of threshold, we examine the e↵ect of setting tran-

sitivity threshold of the hub proteins from HUB 50 and HUB 23. Table

4.1 shows the number of date hub proteins selected, and the number of

interactions discarded, under di↵erent degree and transitivity values. The

smaller the degree, the larger the number of interactions is discarded. To

be more precise, from HUB 50 0.32 and HUB 23 0.32 we remove all hubs

which were reported by Pritykin & Singh (2013) as party hubs. Finally, we

remove the remaining date hubs from the given PPI network, and apply

CMC on the resultant networks. After the clusters are generated, date

hub proteins are added back to the clusters. Table 4.4 shows the num-

bers of known complexes matched to the clusters generated by CMC when

di↵erent degree and transitivity thresholds are used for selecting date hub

proteins, for yeast complex prediction at match-thresh = 0.75.

We subsequently examined the precision, recall and F-measure to further
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Figure 4.3: Performance statistics for yeast complex discovery at match-
thresh = 0.75 using di↵erent lists of date hubs.

illustrate the e↵ect of transitivity threshold on yeast complex prediction

by CMC, at match-thresh = 0.75. From Figure 4.3, we observed that the

precision and F-measure of di↵erent groups vary dramatically. It is clear

that when we remove only the hub proteins from HUB 50 the performance

of predicted clusters is not perfect. Once we apply the transitivity thresh-

old to HUB 50, the number of potential date hub proteins drops signifi-

cantly, and we can recall more complexes with comparable precision. In

addition, when we decrease the degree threshold and remove the date hub

proteins (HUB 23 0.32 ), precision improves considerably, while recall re-

mains similar to HUB 50. However, when we remove only the hub proteins

(HUB 23 ), recall, as expected, drops substantially because too many pro-

teins and interactions are discarded, and the precision is improved because

many false-positive clusters are removed. Overall, the highest F-measure

was obtained when we decompose PPI network by removing HUB 23 0.32

date hub proteins. Therefore, we make predictions of date hubs by setting

the degree threshold to 23 and the transitivity threshold to 0.32. The list

of predicted date hubs can be found in Appendix A.

Di↵erent degree thresholds on human dataset
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Next we inspect the degree and transitivity features for the human dataset.

It has been reported that the hub-removal strategy gives the best perfor-

mance for CMC when the hub proteins have at least 150 neighbors (Liu

et al. 2011). However, we note that only five proteins in the high-confident

human PPI network have degree more than 150. Therefore, we assume that

this list of hub proteins for human dataset is incomplete, and potentially

more date hub proteins can be found. According to (Pritykin & Singh 2013)

the degree threshold for human hub proteins is 39. Therefore, in order to

obtain the list of hub proteins, we tested three values for degree – 30, 40,

and 50. A protein with degree value higher than the threshold is consid-

ered to be a hub protein. Hence, we examine three lists of hubs proteins

– HUB 30, HUB 40, and HUB 50. For each list of hub proteins we apply

di↵erent transitivity thresholds to shortlist the date hub proteins. Then

the network is decomposed by removing date hub proteins, the clusters are

predicted by CMC, and the date hubs are added back to the clusters.

Di↵erent transitivity thresholds on human dataset

Unfortunately, as discussed earlier, the results obtained from the prelimi-

nary analysis of topological features do not show a clear di↵erence between

the date and party hubs in terms of transitivity (Fig. 4.2 (c)) for human

dataset. However, we note that the date hubs tend to have smaller tran-

sitivity. As the human PPI network is highly incomplete, the probability

that a hub protein’s immediate neighbors have an edge between them is

low. Thus, we assume that the transitivity value for date hub proteins is

extremely small. Therefore, di↵erent transitivity thresholds are used for

indicating hub proteins, for decomposing PPI network. We use the dis-

tribution of the match score of the best cluster for reference complexes

stratified by DENS to study the e↵ectiveness of combinations of our fea-

tures in discriminating date hub proteins (Fig. 4.4). For clarity, we only
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Name # date hubs # PPIs removed Degree Transitivity
HUB 30 78 5481 30 0.05
HUB 30 168 9060 30 0.1
HUB 30 197 9794 30 0.15
HUB 40 59 4897 40 0.05
HUB 40 119 7765 40 0.1
HUB 40 126 7982 40 0.15
HUB 50 46 4382 50 0.05
HUB 50 86 6626 50 0.1
HUB 50 88 6691 50 0.15

Table 4.3: Di↵erent values of degree and transitivity used, and the result-
ing number of date hub proteins and PPIs discarded in the decomposed
networks.

Algorithms HUB 30 0.05 HUB 40 0.05 HUB 50 0.05
# predicted complexes 296 302 308

# detected real complexes 191 192 191
# predicted complexes 98 99 98

match real

Table 4.4: Performance statistics on human complex discovery, match-
threshold = 0.5.

show the results for transitivity = 0.05, 0.1, and 0.15.

Our experiments show that when the transitivity is high (transitivity =

0.15 ) and the degree is low (30), many reference complexes do not match

any predicted cluster (Fig. 4.4: 0.15, low/medium/high DENS ). This is

because too many proteins and interactions were discarded, and CMC may

not recover the reference complexes. But when we decrease the transitivity

threshold, the median match score increases (Fig. 4.4: 0.1, low/medium/high

DENS ). Moreover, we observe that when the value for transitivity is ex-

tremely small (0.05) the distribution of the best match score is similar

across di↵erent degree threshold, because the lists of predicted date hub

proteins are almost the same for these thresholds settings. Table 4.4 shows

the basic information of predictions by using di↵erent degree threshold.

From Table 4.4 and Figure 4.5, we conclude that the CMC obtains the

best performance when we decompose PPI network by removing proteins

which have at least 30 neighbors and the transitivity value is not more
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Figure 4.4: Match scores of the best clusters for human complexes at dif-
ferent transitivity thresholds of 0.05, 0.1, 0.15 in the three DENS strata:
low DENS, medium DENS, and high DENS.

than 0.05.

4.3.3 Protein complex prediction

Observations on yeast dataset

Figure 4.6a shows precision, recall and F-measure of CMC when predicted

date hubs and date hubs from reference dataset are used for the network

decomposition. Very clearly, CMC benefits much from removing predicted

date hubs (CMC DH predicted) and shows significant improvement in re-
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Figure 4.5: Match scores of the best clusters for human complexes at dif-
ferent transitivity thresholds of 0.05, 0.1, 0.15 in the three DENS strata:
low DENS, medium DENS, and high DENS.

Algorithms CMC CMC DH predicted CMC
DH reference

# predicted complexes 354 220 220
# detected real complexes 68 67 60
# predicted complexes 67 66 60

match real

Table 4.5: Performance statistics on yeast complex discovery, match-thresh
= 0.75.

call compared to CMC DH reference. CMC DH predicted also attains the

highest F-measure. In addition, we observe that conventional CMC has

lower precision compared to CMC after we decompose network by remov-

ing the predicted list of date hubs. Table 4.5 summarizes the performance

of di↵erent variants of CMC on yeast complex discovery at match-thresh =

0.75. Closer inspection of the table shows that CMC+CMC DH predicted

and CMC+CMC DH reference generate the same number of potential pro-

tein complexes, but CMC+CMC DH predicted attains a higher number of

detected real complexes.

Observations on human dataset

The prediction of complexes in human is much more challenging than that
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(a) (b)

Figure 4.6: Performance analysis on prediction of (a) yeast complexes with
match thresh = 0.75 , (b) human complexes with match thresh = 0.5.

Algorithms CMC CMC DH predicted CMC
DH reference

# predicted complexes 450 296 260
# detected real complexes 223 191 168
# predicted complexes 117 98 82

match real

Table 4.6: Performance statistics on human complex discovery, match-
thresh = 0.5.

in yeast. From Figure 4.6b, we observed that when we remove predicted

date hubs before applying the CMC, CMC DH predicted achieves very good

precision and the highest F-measure. Unfortunately, the recall drops sig-

nificantly, because along with the date hubs we also remove a large number

of interactions. In the human PPI network, the percentage of proteins with

degree at least 30 is about 2%, while they correspond to about 24% of the

interactions (Yong & Wong 2015b).

Table 4.6 presents an overview of predicted complexes by di↵erent variants

of CMC on human dataset. Closer inspection of the table shows that

CMC DH predicted attains a higher number of detected real complexes

compared to CMC DH reference .
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4.3.4 Example complexes

In this section we present a couple of real yeast complexes that are di�cult

to predict. Figure 4.7(a) shows two yeast complexes, with four overlapping

proteins (YDR190C, YFL039C, YJL081C, YPL235W), involved in chro-

matin remodeling activity: the Ino80p complex, consisting of 12 proteins,

and the Swr1 complex, consisting of 13 proteins. CMC applied on the yeast

PPI network was able to predict the Ino80p complex, at match-thresh =

0.75. However, Swr1p complex was not predicted. Figure 4.7(b) shows

the clusters generated by CMC. As can be seen, CMC found the cluster

that match Swr1p complex, but with two extraneous protein (YOL012C

and YLR399C) which are highly-connected to proteins in that complex.

In addition, two proteins from Swr1p complex were missed (YLR085C,

YLR385C). Complex Ino80p was predicted with one extraneous protein

(YER092W), but one protein (YOR189W) was missed. Sw1p was not

predicted by ClusterOne, COACH as well, at match-thresh = 0.75. It is

possible to lower our match-thresh cuto↵ to include Swr1p complex.

On the other hand, when we decomposed the PPI network by removing

the predicted list of date hub proteins before applying CMC, we were able

to recover both complexes. Moreover, all four overlapping proteins were

predicted as date hub proteins, and were incorporated into the network

decomposition. In addition to Swr1 complex, after network decomposition,

CMC was able to predict five new non-overlapping complexes which were

not found by CMC earlier, at match-threshold = 0.75 : Cytoplasmic exo-

some complex, DNA-directed RNA polymerase II complex, Ndc80p com-

plex, nuclear cohesin complex, ubiquitin ligase ERAD-L complex. On the

other hand, seven real protein complexes were no longer predicted after

we removed the date hubs from network. However, we investigated that

all seven complexes consist of four proteins, where at least one protein was
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(a) (b)

Figure 4.7: Reference yeast complexes Swr1p and Ino80p. (a) Swr1p and
Ino80p complexes are overlapping with each other. Proteins within the
intersection (green) were predicted as date hub proteins.(b) CMC included
extraneous proteins (YLR399C and YOL12C) in its clusters and missed
two proteins YLR085C and YLR385C.

predicted as a date hub. Therefore, once we decomposed the network, CMC

is not able to generate clusters of size three to predict those complexes.

These results suggest that the combination of the two lists of generated

clusters by CMC (before and after network decomposition) may improve

the overall performance of CMC.

4.4 Conclusion

In this chapter, we have proposed a two-step approach to predict a list

of date hubs based on the topological features of date and party hub pro-

teins from the reference datasets. In step one, we computed the list of hub

proteins by applying di↵erent degree thresholds. In step two, we analyzed

di↵erent transitivity thresholds to eliminate party hub proteins from hub

proteins. To test the predicted lists of date hubs, we examined their e↵ect

on the performance of CMC after applying the date hub removal strat-

egy. Our results demonstrate that CMC benefits much from this, attaining
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higher precision and recall across yeast and human datasets.

In addition, we analyzed protein complexes predicted by CMC before and

after network decomposition. We noticed that there are missing complexes

of size 4 after we decomposed a PPI network by removing predicted date

hubs. Therefore, the focus of the next chapter is to overcome this limitation

to further improve protein complex prediction performance.
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Chapter 5

A Strategy to Combine the

Two Sets of Clusters Predicted

by CMC Before and After PPI

Network Decomposition

5.1 Introduction

In the previous chapters, we verified that CMC after network decomposition

by date hub removal has the ability to predict more overlapping complexes

that were missed earlier. This illustrates that the date hub proteins are

important in maintaining overlapping complexes. However, the research

has also shown that the predicted complexes have lower median match

score. An investigation of predicted clusters has shown that some real

complexes of size 4 were not predicted after we removed the date hub

proteins. Therefore, the combination of the two lists of generated clusters

by CMC (before and after network decomposition) may further improve

the overall performance of CMC.
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5.2 Methods

5.2.1 Combining the two sets of predicted clusters

In this section, we propose a simple strategy to combine the two sets of

predicted clusters. For this purpose, we modify the approach which was

originally presented in the CMC algorithm (Liu et al. 2009) to merge highly

overlapping cliques. The whole process to merge or remove highly overlap-

ping clusters is described below. The modification proposed is the insertion

of Step 3 and 8:

1. Let C 0 be the set of clusters generated by CMC without PPI network

decomposition, and C

00 be the set of clusters generated by CMC on the

PPI network decomposed by removing predicted date hub proteins.

2. Let C = C

0 [ C

00 be the union of C 0 and C

00. C = {C1, C2, ..., Ck}

3. Consider only clusters without date hub proteins.

4. Keep only clusters of size� 4.

5. Remove all duplicate clusters from C.

6. Sort all clusters in descending order of their weighted density.

7. For each cluster Ci:

• Check whether there exists a cluster Cj such that Cj has a lower

weighted density than Ci and |Ci \ Cj|/|Cj| � overlap thresh,

where overlap thresh is a predefined threshold for overlapping;

• If such Cj exists, calculate the interconnectivity score inter score(Ci, Cj)

between Ci and Cj using Formula 2.2;

• If inter score(Ci, Cj) � merge thresh, then Cj is merged with

Ci; otherwise, Cj is removed.

8. Add the above processed clusters with date hub proteins back to

clusters in C.
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In the remaining experiments, for the best performance, we always set

overlap thresh to 0.75, and set merge thresh to 0.75.

5.2.2 Quality of novel complexes

To further investigate how PPI network decomposition by date hubs re-

moval improves the performance of large complex prediction by CMC, we

study its e↵ects on predicting novel complexes. The incomplete reference

dataset of real complexes can lead to artificial low precision of predicted

clusters. I.e., when the predicted complexes do not match real complexes,

this does not mean that the predicted complexes are necessarily wrong;

they may be novel complexes.

Therefore, next we compare the number and quality of novel complexes

predicted by our approach, against those predicted by other methods on the

PPI network. First, we keep only predicted complexes which do not match

any reference complex at match-thresh = 0.75. Next, we filter all duplicates

by keeping only unique clusters (match-thresh = 0.75 ). In order to evaluate

the quality of novel complexes, we examine the semantic coherence for

each cluster. Using the constituent proteins’ annotations to Gene Ontology

(GO) terms, we calculate three measures of semantic coherence for each

cluster: biological process (BP), cellular compartment (CC), and molecular

function (MF), using the same procedure as presented by Yong & Wong

(2015b).
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5.3 Results and discussion

5.3.1 Protein complex prediction

In this section, we inspect whether combining the two sets of predicted

clusters can improve the performance of CMC. First, we run CMC on the

PPI network and collect all generated clusters. Then we apply the network

decomposition strategy by removing all predicted date hubs. Next, CMC

is used on the decomposed PPI network to generate clusters. Finally, we

use the procedure described in subsection 5.2.1 to combine the two sets

of predicted clusters, and then compare the performance of this ”double-

barrel” CMC with other protein complex prediction algorithms.

For each algorithm, we use the same parameters settings as given in Table

2.1. We use the same parameters for all CMC experiments, including when

the decomposition method is used. Finally, we calculate recall, precision,

and F-measure. We also plot the distribution of the best-match cluster

score.

Observations on yeast dataset

Figure 5.1 shows that the double-barrel CMC+CMC DH predicted has

higher recall and precision than CMC, revealing the strong benefit of this

combined strategy. In fact, this combined strategy has the highest recall

among all methods, as well as the fourth highest precision. Its precision is

expectedly lower than CMC DH predicted, since the precision of the com-

bined strategy has to be between that of CMC and CMC DH predicted.

However, we should point out that, many predicted clusters may still cor-

respond to novel complexes, because the set of reference complexes is in-

complete. Table 5.1 summarizes the performance of di↵erent variants of

CMC on yeast complex discovery at match-thresh = 0.75.
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Figure 5.1: Performance analysis on prediction of yeast complexes with
match thresh = 0.75.

Algorithms CMC CMC DH predicted CMC+CMC
DH predicted

# predicted complexes 354 220 413
# detected real complexes 68 67 74
# predicted complexes 67 66 85

match real

Table 5.1: Performance statistics on yeast complex discovery, match-thresh
= 0.75.

From Figure 5.2, we observe a similar trend that CMC+CMC DH predicted

generates potential protein complexes with larger value of median match

score of the best clusters to yeast complexes than the other approaches.

Observations on human dataset

The prediction of complexes in humans is much more challenging than that

in yeast. From Figure 5.3, we observed that there is clear recall improve-

ment for the double-barrel CMC+CMC DH predicted, with a small e↵ect

for precision.

Table 5.2 presents an overview of predicted complexes by di↵erent vari-

ants of CMC on the human dataset. Closer inspection of the table shows
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(a)

(b)

Figure 5.2: a: Match scores of the best clusters for yeast complexes. b:
Match scores of the best clusters for overlapping yeast complexes.
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Figure 5.3: Performance analysis on prediction of human complexes with
match thresh = 0.5.

Algorithms CMC CMC DH predicted CMC+CMC
DH predicted

# predicted complexes 450 296 521
# detected real complexes 223 191 235
# predicted complexes 117 98 131

match real

Table 5.2: Performance statistics on human complex discovery, match-
thresh = 0.5.

that CMC+CMC DH predicted attains the highest number of detected real

complexes.

Figure 5.4 shows the performance of CMC before and after network de-

composition by removing date hubs, and the combination of the two in

terms of the distribution of best match score compared to other clustering

algorithms. The merged lists of generated clusters by the double-barrel

CMC+CMC DH predicted has noticeably higher median score for the best

match cluster to human complexes in medium and high density area. Fur-

thermore, as in yeast, the combination of the two CMC outputs outper-

forms other algorithms in high density area.
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(a) (b)

(c)

Figure 5.4: (a) Match scores of the best clusters to human complexes for
(a) low DENS, (b) medium DENS , and (c) high DENS.
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5.3.2 Quality of novel complexes

Figure 5.5 shows the number of novel complexes predicted in yeast by

di↵erent algorithms. Compared to the other approaches, CMC generates

fewer novel complexes. Once we combined the two CMC outputs, we get

293 novel complexes. Therefore, to evaluate the quality of novel predicted

complexes we consider only the top 300 clusters generated by each algo-

rithm and sorted by their density score.

The CYC2008 reference complexes are expected to demonstrate the high-

est values of the three measures of semantic coherence. From Figure

5.6, it is seen that predicted complexes by CMC DH predicted after net-

work decomposition have greater BP, CC and MF coherence than other

standard clustering algorithms. However, we observe that after we ap-

plied the combined strategy, CMC+CMC DH predicted has the highest

MF coherence and competitive BP and CC coherence. This suggests that

the CMC+CMC DH predicted generates a larger number of novel yeast

complexes, but with similar semantic coherence compared to the conven-

tional CMC. Moreover, the top 300 novel clusters generated by ClusterOne,

COACH, and IPCA are of lower quality in terms of Gene Ontology seman-

tic coherence compared to the CMC+CMC DH predicted. Furthermore,

if we do not restrict to the top 300 clusters, ClusterOne, COACH, and

IPCA have much lower coherence. Finally, we observe that the rest of the

novel clusters (beyond top 300) generated by these methods have the lowest

semantic coherence.

5.4 Conclusion

Identification of protein complexes is necessary to understand cellular orga-

nization and machinery. Many computational methods have been proposed
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Figure 5.5: Number of novel predicted yeast complexes.

for predicting protein complexes of yeast and human. This thesis investi-

gated the impact of PPI network decomposition by removing known and

predicted date hub proteins on the performance of protein complex predic-

tion.

Specifically, in Chapter 3, we evaluated the reliability of a reference set

of date hub proteins through their participation in overlapping reference

complexes. Then we inspected the potential benefits of removing real date

hubs from PPI network before clustering, and demonstrated the perfor-

mance advantages through the comparison to other methods.

Chapter 4 was undertaken to design a reliable list of date hub proteins, and

examined its e↵ects on the performance of CMC after applying the date

hub removal strategy. Following previous research, we first analyzed the

topological features of date and party hub proteins on yeast and human PPI

networks. Our findings confirmed significant di↵erences in proteins degree

and transitivity for the yeast network, with party hubs having consistently

higher values. Although date hubs have a higher median betweenness and

lower median transitivity than party hubs, less consistent results were found

for the human network.
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(a)

(b)

(c)

Figure 5.6: Coherence of predicted yeast complexes.
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Then we demonstrated that degree and transitivity can be used to predict

a reliable list of date hub proteins. The investigation of di↵erent threshold

values has shown that proteins with degree above a certain threshold and

with transitivity below a certain value are likely to be date hubs. Moreover,

we successfully applied the network decomposition approach and confirmed

that CMC benefits much from this, with improvements obtained in both

precision and F-measure for yeast complex discovery.

In Chapter 5, we proposed a double-barrel strategy to combine the clus-

ters predicted by CMC before and after we remove date hubs. We tested

this strategy on the prediction of yeast and human complexes, and demon-

strated that this strategy gave a performance boost in complex discovery

over using a single run of CMC, and outperformed some commonly-used

clustering algorithms applied on a PPI network. Moreover, the results sug-

gested that taking the double-barrel run tends to give bigger improvements

(in terms of generating more well-matched clusters) among overlapping

complexes across di↵erent datasets (yeast and human). Furthermore, we

also investigated that our approach generates novel predictions with higher

quality in terms of Gene Ontology semantic coherence.

In summary, our observations provide a better understanding of the de-

convolution of overlapping protein complexes from PPI networks. As more

specific, high-quality PPI data become available, we believe our approaches

to predict date hubs can reveal a further improvement on protein complex

prediction.
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Palla, G., Derényi, I., Farkas, I. & Vicsek, T. (2005), ‘Uncovering the over-

lapping community structure of complex networks in nature and society’,

Nature 435(7043), 814–818.

70



Pritykin, Y. & Singh, M. (2013), ‘Simple topological features reflect dy-

namics and modularity in protein interaction networks’, PLoS Comput

Biol 9(10), e1003243.

Pu, S., Wong, J., Turner, B., Cho, E. & Wodak, S. J. (2009), ‘Up-to-date

catalogues of yeast protein complexes’, Nucleic acids research 37(3), 825–

831.

Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M. & Séraphin,
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Appendix A

Lists of Date Hubs

Proteins (H. sapiens)
P38398 P04637 Q13616 P12004 P00533 Q15428 P54253 Q99873 P07948 Q13573
Q09472 P06400 P62993 P45983 P63165 Q03135 Q9UBN7 P53350 P08238 P63244
P35222 Q13547 P40337 P84022 P10415 Q96J02 Q99683 O00716 Q5S007 Q92731
Q00987 P01106 Q9UNE7 P03372 P46937 O14744 Q16539 P13569 Q99459 P62136
Q9Y4K3 P07900 P49841 Q9Y297 P11940 Q9UKV8 P42858 P28482 P61981 P05067
P63000 P46934 O75381 P55072 Q13263 P31946 P0CG48 O60260 P62837 Q96EB6
P12931 Q13501 Q9H492 P31749 P60953 P61956 P62158 P51668 P29350 P27348

Q15843 Q13618 P06241 O15379 P63104 Q9UL18 O43678 O43463

Table A.1: List of predicted date hubs for human: degree � 30 and
transitivity  0.05.
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Proteins (S. cerevisiae)
YIL035C YOR061W YDR394W YGL190C YDR448W YGR252W YBR079C

YPL031C YOR039W YPL129W YLR293C YER148W YGR274C
YOR326W YMR047C YOR341W YPR110C YBR198C YBR081C
YPL203W YDL145C YGL137W YML010W YPL082C YOR181W
YDL042C YDR388W YDR477W YGL112C YDR328C YLR442C
YER171W YOR151C YJR022W YDL188C YPL153C YDL132W
YBR109C YOL012C YJL187C YCR088W YOL139C YGR262C
YML064C YER125W YBR009C YBR010W YPL240C YMR309C
YLL036C YER165W YFR028C YJL076W YCR086W YGR162W
YLL039C YGL019W YNL031C YDR224C YPR041W YDL140C
YDR225W YGL237C YPR010C YNL161W YNL189W YER133W
YBL007C YIL106W YDL160C YFL039C YOL004W YGR040W
YFR004W YDR190C YER095W YNL330CYDL029W YLR347C

YDR386W YGR240C YMR186W YLR113W YPL235W YBR114W
YBL023C YOR080W YDR381W YDR510W YBR160W YMR223W
YER110C YDL155W YER177W YMR139W YJR066W YJL098W
YKL196C YAL005C YDL047W YDL126C YLR026C YBL016W
YAR007C YGL049C YPL169C YDL185W YPL106C YJL081C
YGL206C YDL043C YDL059C YLR423C YMR109W YJL041W
YHR030C YPL140C YPL204W YIL061C YKR048C YGL207W

YML069W YDR172W YHR064C YJL115W YER151C YFR024C-A
YNL030W YJL095W YNL209W YDR247W YGR218W YBL002W
YLR096W YMR304W YGR052W YDL101C YDL028C YAL035W
YGL173C YLL024C YDR212W YJL014W YPR115W YKR001C
YMR116C YIL142W YDR170C YGR220C YMR059W YOR267C
YLR180W YKL104C YNL307C YLR249W YOR204W YBR084W
YMR012W YLR427W YCL037C YOL086C YLR342W YDR188W
YIL131C YMR308C YCL011C YGL195W YOR304W YMR106C
YOL054W YKL081W YBL003C YDR432W YDR356W YMR001C

YHR099W YDL229W

Table A.2: List of predicted date hubs for yeast degree � 23 and
transitivity  0.32
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